How does artificial intelligence learn? - Briana Brownell

709,016 views ・ 2021-03-11

TED-Ed


请双击下面的英文字幕来播放视频。

翻译人员: Yuwei Wu 校对人员: Helen Chang
00:09
Today, artificial intelligence helps doctors diagnose patients,
0
9829
5167
如今的人工智能 可以帮助医生诊断病人,
00:14
pilots fly commercial aircraft, and city planners predict traffic.
1
14996
5042
飞行员驾驶商业飞机, 城市规划员预测交通。
00:20
But no matter what these AIs are doing, the computer scientists who designed them
2
20038
4250
但不论人工智能如何运作
设计它们计算机科学家 却可能不知道其具体运作方法。
00:24
likely don’t know exactly how they’re doing it.
3
24288
2750
00:27
This is because artificial intelligence is often self-taught,
4
27038
3875
这是因为人工智能常有自学能力,
00:30
working off a simple set of instructions
5
30913
2374
它们会根据设定好的程序指令
00:33
to create a unique array of rules and strategies.
6
33287
3584
创造一套独特的规则和策略。
00:36
So how exactly does a machine learn?
7
36871
2625
那么机器到底是如何自主学习的?
00:39
There are many different ways to build self-teaching programs.
8
39496
3000
创建自学程序的方法有很多种。
00:42
But they all rely on the three basic types of machine learning:
9
42496
3916
但它们都依赖三种基础机器学习方法:
00:46
unsupervised learning, supervised learning, and reinforcement learning.
10
46412
5000
无监督学习、监督学习,和强化学习。
00:51
To see these in action,
11
51412
1959
来看看它们的真实运作情况,
00:53
let’s imagine researchers are trying to pull information
12
53371
3250
先想象一下,研究员正尝试 从一组包含了几千名患者的
00:56
from a set of medical data containing thousands of patient profiles.
13
56621
4208
医疗资料中提取信息。
01:01
First up, unsupervised learning.
14
61371
3125
首先,是无监督学习。
01:04
This approach would be ideal for analyzing all the profiles
15
64496
3333
此方法适用于通过分析所有资料
01:07
to find general similarities and useful patterns.
16
67829
3625
来获取大体的相似性和有用的模式。
01:11
Maybe certain patients have similar disease presentations,
17
71454
3417
也许某些患者有类似的疾病表现,
01:14
or perhaps a treatment produces specific sets of side effects.
18
74871
4042
抑或治疗会产生特定的副作用。
01:18
This broad pattern-seeking approach can be used to identify similarities
19
78913
4125
这种广泛的模式寻找方法
可以用来识别患者 档案之间的相似之处,
01:23
between patient profiles and find emerging patterns,
20
83038
3375
并发现新出现的模式,
01:26
all without human guidance.
21
86413
2291
所有这些都无需人类的指导。
01:28
But let's imagine doctors are looking for something more specific.
22
88704
3209
但让我们想象一下医生 在寻找更具体的东西。
01:32
These physicians want to create an algorithm
23
92371
2208
这些医生想要创建一种算法
01:34
for diagnosing a particular condition.
24
94579
2709
来诊断特定的疾病。
01:37
They begin by collecting two sets of data—
25
97288
2583
他们首先收集两组数据:
01:39
medical images and test results from both healthy patients
26
99871
3375
健康患者和确诊患者的 医学图像和测试结果。
01:43
and those diagnosed with the condition.
27
103246
2417
01:45
Then, they input this data into a program
28
105663
2583
然后,他们将这些数据输入一个程序,
01:48
designed to identify features shared by the sick patients
29
108246
3375
该程序旨在识别患病患者
01:51
but not the healthy patients.
30
111621
2125
而非健康患者共有的特征。
01:53
Based on how frequently it sees certain features,
31
113746
3083
根据看到某些特征的频率,
01:56
the program will assign values to those features’ diagnostic significance,
32
116829
4042
该程序将对这些特征的诊断意义赋值,
02:00
generating an algorithm for diagnosing future patients.
33
120871
3708
生成一种用于诊断未来患者的算法。
02:04
However, unlike unsupervised learning,
34
124579
3167
然而,与无监督学习不同的是,
02:07
doctors and computer scientists have an active role in what happens next.
35
127746
4625
医生和计算机科学家在接下来 发生的事情中扮演着重要的角色。
02:12
Doctors will make the final diagnosis
36
132371
2083
医生将做出最终诊断,
02:14
and check the accuracy of the algorithm’s prediction.
37
134454
2917
并检查算法预测的准确性。
02:17
Then computer scientists can use the updated datasets
38
137871
2917
然后,计算机科学家 可以使用更新的数据集
02:20
to adjust the program’s parameters and improve its accuracy.
39
140788
3500
来调整程序的参数,并提高其准确性。
02:24
This hands-on approach is called supervised learning.
40
144663
3166
这种亲身实践的方法被称为监督学习。
02:27
Now, let’s say these doctors want to design another algorithm
41
147829
3167
现在,假设这些医生想设计另一种算法
02:30
to recommend treatment plans.
42
150996
1750
来推荐治疗方案。
02:32
Since these plans will be implemented in stages,
43
152746
2833
由于这些计划将分阶段实施,
02:35
and they may change depending on each individual's response to treatments,
44
155579
3959
并可能根据每个人 对治疗的反应而改变,
02:39
the doctors decide to use reinforcement learning.
45
159538
2833
医生决定使用强化学习。
02:42
This program uses an iterative approach to gather feedback
46
162746
3167
这个程序使用一种迭代的方法 来收集关于哪种药物、
02:45
about which medications, dosages and treatments are most effective.
47
165913
4583
关于哪种药物、剂量和治疗 最有效的反馈。
02:50
Then, it compares that data against each patient’s profile
48
170496
3000
然后,它将这些数据 与每个患者的档案进行比较,
02:53
to create their unique, optimal treatment plan.
49
173496
2833
以创建他们独特的、最佳的治疗方案。
02:56
As the treatments progress and the program receives more feedback,
50
176329
3500
随着治疗的进展 和程序收到更多的反馈,
02:59
it can constantly update the plan for each patient.
51
179829
3292
它可以不断更新每个患者的计划。
03:03
None of these three techniques are inherently smarter than any other.
52
183121
3375
这三种技术中没有哪一种 天生就比其他的更聪明。
03:06
While some require more or less human intervention,
53
186496
2667
虽然有些需要或多或少的人工干预,
03:09
they all have their own strengths and weaknesses
54
189163
2416
但它们都有自己的优缺点,
03:11
which makes them best suited for certain tasks.
55
191579
2250
这使它们最适合某些任务。
03:14
However, by using them together,
56
194329
2375
然而,通过将它们一起使用,
03:16
researchers can build complex AI systems,
57
196704
2875
研究人员可以构建 复杂的人工智能系统,
03:19
where individual programs can supervise and teach each other.
58
199579
3292
其中单个程序可以相互监督和指导。
03:22
For example, when our unsupervised learning program
59
202871
2958
例如,当我们的非监督学习程序
03:25
finds groups of patients that are similar,
60
205829
2334
发现相似的患者群体时,
03:28
it could send that data to a connected supervised learning program.
61
208163
3375
它可以将这些数据发送到 连接的监督学习程序。
03:31
That program could then incorporate this information into its predictions.
62
211829
3500
然后该程序将这些信息纳入其预测。
03:35
Or perhaps dozens of reinforcement learning programs
63
215871
2792
或者,数十个强化学习项目
03:38
might simulate potential patient outcomes
64
218663
2291
可能会模拟潜在的患者结果,
03:40
to collect feedback about different treatment plans.
65
220954
2750
以收集关于不同治疗计划的反馈。
03:43
There are numerous ways to create these machine-learning systems,
66
223704
3125
有许多方法可以创建 这些机器学习系统,
03:46
and perhaps the most promising models
67
226829
1834
而最有希望的模型可能是
03:48
are those that mimic the relationship between neurons in the brain.
68
228663
3416
那些模拟大脑神经元之间关系的模型。
03:52
These artificial neural networks can use millions of connections
69
232079
3292
这些人工神经网络 可以使用数百万个连接
03:55
to tackle difficult tasks like image recognition, speech recognition,
70
235371
4417
来处理图像识别、语音识别
03:59
and even language translation.
71
239788
2041
甚至语言翻译等困难任务。
04:01
However, the more self-directed these models become,
72
241829
3292
然而,这些模型越自我指导,
04:05
the harder it is for computer scientists
73
245121
2125
计算机科学家就越难确定
04:07
to determine how these self-taught algorithms arrive at their solution.
74
247246
3833
这些自学的算法是如何得到 它们的解决方案的。
04:11
Researchers are already looking at ways to make machine learning more transparent.
75
251079
4459
研究人员已经在寻找 让机器学习更透明的方法。
04:15
But as AI becomes more involved in our everyday lives,
76
255538
2916
但随着人工智能越来越多地 参与到我们的日常生活中,
04:18
these enigmatic decisions have increasingly large impacts
77
258454
2792
这些神秘的决定对我们的工作、
04:21
on our work, health, and safety.
78
261246
2875
健康和安全产生越来越大的影响。
04:24
So as machines continue learning to investigate, negotiate and communicate,
79
264121
4958
因此,在机器继续学习调查、 谈判和沟通的同时,
04:29
we must also consider how to teach them to teach each other to operate ethically.
80
269079
5209
我们也必须考虑如何教它们 彼此如何合乎道德地操作。
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7