How does artificial intelligence learn? - Briana Brownell

717,673 views ・ 2021-03-11

TED-Ed


請雙擊下方英文字幕播放視頻。

譯者: Jing-Ai Huang 審譯者: Helen Chang
00:09
Today, artificial intelligence helps doctors diagnose patients,
0
9829
5167
現在人工智慧幫醫生診斷病人,
00:14
pilots fly commercial aircraft, and city planners predict traffic.
1
14996
5042
幫飛行員駕駛商用飛機, 幫規劃師預測交通。
00:20
But no matter what these AIs are doing, the computer scientists who designed them
2
20038
4250
但是不管人工智慧在做什麼,
設計它們的電腦科學家們 可能並不知道它們到底在做什麼。
00:24
likely don’t know exactly how they’re doing it.
3
24288
2750
00:27
This is because artificial intelligence is often self-taught,
4
27038
3875
這是因為人工智慧是自學成才的,
00:30
working off a simple set of instructions
5
30913
2374
從一組簡單的指令
00:33
to create a unique array of rules and strategies.
6
33287
3584
創造出一組獨特的規則和策略。
00:36
So how exactly does a machine learn?
7
36871
2625
那麼機器到底是如何學習的呢?
00:39
There are many different ways to build self-teaching programs.
8
39496
3000
建立自學程式有很多不同的方式。
00:42
But they all rely on the three basic types of machine learning:
9
42496
3916
但它們都依賴於三種 基本類型的機器學習。
00:46
unsupervised learning, supervised learning, and reinforcement learning.
10
46412
5000
非監督式學習、監督式學習 和強化式學習。
00:51
To see these in action,
11
51412
1959
舉例來說,
00:53
let’s imagine researchers are trying to pull information
12
53371
3250
讓我們想像研究人員
從一組包含數千份患者資料的 醫療數據中蒐集數據。
00:56
from a set of medical data containing thousands of patient profiles.
13
56621
4208
01:01
First up, unsupervised learning.
14
61371
3125
首先是非監督式學習,
01:04
This approach would be ideal for analyzing all the profiles
15
64496
3333
這種方法常被用來分析所有的檔案
01:07
to find general similarities and useful patterns.
16
67829
3625
找規律性和有用的特徵。
01:11
Maybe certain patients have similar disease presentations,
17
71454
3417
也許某些患者有相似的臨床表現
01:14
or perhaps a treatment produces specific sets of side effects.
18
74871
4042
或一種治療方法會產生特定的副作用。
01:18
This broad pattern-seeking approach can be used to identify similarities
19
78913
4125
這種廣泛的搜索模式
在沒有人的指導下
01:23
between patient profiles and find emerging patterns,
20
83038
3375
可以在患者的檔案中 找出新興的特徵。
01:26
all without human guidance.
21
86413
2291
01:28
But let's imagine doctors are looking for something more specific.
22
88704
3209
但我們想像一下, 醫生要找的是更具體的東西。
01:32
These physicians want to create an algorithm
23
92371
2208
這些醫生希望建立一個
01:34
for diagnosing a particular condition.
24
94579
2709
可用於診斷某一特定症狀的演算法。
01:37
They begin by collecting two sets of data—
25
97288
2583
他們首先蒐集了兩組數據,
01:39
medical images and test results from both healthy patients
26
99871
3375
健康的人和那些被診斷出 有病情的患者的
01:43
and those diagnosed with the condition.
27
103246
2417
醫學影像和檢驗結果。
01:45
Then, they input this data into a program
28
105663
2583
然後,他們將這些數據輸入到一個
01:48
designed to identify features shared by the sick patients
29
108246
3375
設計於辨別患者有
01:51
but not the healthy patients.
30
111621
2125
但是健康的人沒有共同特徵的程式。
01:53
Based on how frequently it sees certain features,
31
113746
3083
根據看到某些特徵的頻率,
01:56
the program will assign values to those features’ diagnostic significance,
32
116829
4042
程式將為這些特徵的診斷意義賦值。
02:00
generating an algorithm for diagnosing future patients.
33
120871
3708
產生用於診斷未來的病人的算法。
02:04
However, unlike unsupervised learning,
34
124579
3167
但是與非監督式學習不同的是 醫生和計算機科學家
02:07
doctors and computer scientists have an active role in what happens next.
35
127746
4625
對接下來發生的事情 扮演著重要的角色。
02:12
Doctors will make the final diagnosis
36
132371
2083
醫生會做出最終診斷
02:14
and check the accuracy of the algorithm’s prediction.
37
134454
2917
並檢查算法預測的準確性。
02:17
Then computer scientists can use the updated datasets
38
137871
2917
然後,計算機科學家 可以使用更新的數據集
02:20
to adjust the program’s parameters and improve its accuracy.
39
140788
3500
調整程式的參數,提高準確性。
02:24
This hands-on approach is called supervised learning.
40
144663
3166
這種實踐的方法叫做監督式學習。
02:27
Now, let’s say these doctors want to design another algorithm
41
147829
3167
假設這些醫生想設計另一種算法
02:30
to recommend treatment plans.
42
150996
1750
來建議治療方法,
02:32
Since these plans will be implemented in stages,
43
152746
2833
由於這些計劃將分階段實施,
02:35
and they may change depending on each individual's response to treatments,
44
155579
3959
而且它們可能會根據每個人 對治療的反應而改變,
02:39
the doctors decide to use reinforcement learning.
45
159538
2833
醫生們會決定使用強化式學習。
02:42
This program uses an iterative approach to gather feedback
46
162746
3167
這個程式使用迭代法來收集反饋意見,
02:45
about which medications, dosages and treatments are most effective.
47
165913
4583
哪些藥物、劑量和治療方法最有效。
02:50
Then, it compares that data against each patient’s profile
48
170496
3000
然後,它將這些數據 與每個病人的檔案進行比較。
02:53
to create their unique, optimal treatment plan.
49
173496
2833
來製造出獨特的最佳治療方案。
02:56
As the treatments progress and the program receives more feedback,
50
176329
3500
隨著治療的進展和項目 收到更多的反饋。
02:59
it can constantly update the plan for each patient.
51
179829
3292
它可以不斷更新每個病人的計劃。
03:03
None of these three techniques are inherently smarter than any other.
52
183121
3375
三種技術之一並不比其他兩種聰明。
03:06
While some require more or less human intervention,
53
186496
2667
雖然有些需要或多或少的干涉,
03:09
they all have their own strengths and weaknesses
54
189163
2416
但是尺有所短,寸有所長,
03:11
which makes them best suited for certain tasks.
55
191579
2250
這讓它們各有自己適合的任務。
03:14
However, by using them together,
56
194329
2375
然而,一起使用它們的話
03:16
researchers can build complex AI systems,
57
196704
2875
研究人員可以構建 複雜的人工智慧系統,
03:19
where individual programs can supervise and teach each other.
58
199579
3292
讓它們互相監督和教導。
03:22
For example, when our unsupervised learning program
59
202871
2958
例如,當我們的非監督式學習程式
03:25
finds groups of patients that are similar,
60
205829
2334
找到一群相似的患者,
03:28
it could send that data to a connected supervised learning program.
61
208163
3375
它可以將這些數據發送到 一個有連結的監督式學習程式中。
03:31
That program could then incorporate this information into its predictions.
62
211829
3500
然後,那個程式就可以 將資訊納入預測中。
03:35
Or perhaps dozens of reinforcement learning programs
63
215871
2792
或許這幾十個強化式學習程式
03:38
might simulate potential patient outcomes
64
218663
2291
可以模擬病患會有的結果
03:40
to collect feedback about different treatment plans.
65
220954
2750
以收集對不同治療方案的反饋。
03:43
There are numerous ways to create these machine-learning systems,
66
223704
3125
創建這些機器學習系統的方法有很多,
03:46
and perhaps the most promising models
67
226829
1834
而最有前途的系統
03:48
are those that mimic the relationship between neurons in the brain.
68
228663
3416
是那些能模仿大腦神經元之間關係的。
03:52
These artificial neural networks can use millions of connections
69
232079
3292
這些人工神經網絡 可以使用數以百萬計的連接。
03:55
to tackle difficult tasks like image recognition, speech recognition,
70
235371
4417
以應對圖像識別、 語音識別等困難任務,
03:59
and even language translation.
71
239788
2041
甚至語言翻譯。
04:01
However, the more self-directed these models become,
72
241829
3292
然而,這些模式越是自我導向。
04:05
the harder it is for computer scientists
73
245121
2125
計算機科學家越難以確定
04:07
to determine how these self-taught algorithms arrive at their solution.
74
247246
3833
這些自學算法是如何得出 其解決方案的。
04:11
Researchers are already looking at ways to make machine learning more transparent.
75
251079
4459
研究人員已經在研究 如何讓機器學習更加透明。
04:15
But as AI becomes more involved in our everyday lives,
76
255538
2916
但隨著人工智慧越來越頻繁得 參與在我們的日常生活中。
04:18
these enigmatic decisions have increasingly large impacts
77
258454
2792
這些神祕的決定
04:21
on our work, health, and safety.
78
261246
2875
對我們的工作、健康和安全 產生了越來越大的影響
04:24
So as machines continue learning to investigate, negotiate and communicate,
79
264121
4958
所以隨著機器不斷學習、 調查、協商和交流。
04:29
we must also consider how to teach them to teach each other to operate ethically.
80
269079
5209
我們必須考慮該如何教導它們, 讓它們互相教導經營道德。
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7