Abundance is our future | Peter Diamandis

501,926 views ・ 2012-03-01

TED


請雙擊下方英文字幕播放視頻。

譯者: Jesse Chen 陳鉦翰 審譯者: Wang-Ju Tsai
00:15
(Applause)
0
15260
3000
(掌聲)
00:18
(Video) Announcer: Threats, in the wake of Bin Laden's death, have spiked.
1
18260
3000
(賓拉登死後 威脅不斷竄出)
00:21
Announcer Two: Famine in Somalia. Announcer Three: Police pepper spray.
2
21260
2000
(索馬利亞的飢荒) (警方的胡椒噴霧)
00:23
Announcer Four: Vicious cartels. Announcer Five: Caustic cruise lines.
3
23260
2000
(企業的惡意壟斷) (嚴峻的航線)
00:25
Announcer Six: Societal decay. Announcer Seven: 65 dead.
4
25260
3000
(社會的腐敗) (六十五人死亡)
00:28
Announcer Eight: Tsunami warning. Announcer Nine: Cyberattacks.
5
28260
2000
(海嘯警報) (網路駭客攻擊)
00:30
Multiple Announcers: Drug war. Mass destruction. Tornado.
6
30260
2000
(毒品戰爭) (大規模毀滅) (龍捲風)
00:32
Recession. Default. Doomsday. Egypt. Syria.
7
32260
2000
(經濟衰退) (國家債務) (世界末日) (埃及) (敘利亞)
00:34
Crisis. Death. Disaster.
8
34260
2000
(危機) (死亡) (災難)
00:36
Oh, my God.
9
36260
3000
(喔!我的天啊)
00:39
Peter Diamandis: So those are just a few of the clips
10
39260
2000
彼得.戴曼迪斯:這些新聞只是我過去
00:41
I collected over the last six months --
11
41260
2000
六個月所蒐集的一小部分
00:43
could have easily been the last six days
12
43260
2000
有六天前的
00:45
or the last six years.
13
45260
2000
也有六年前的新聞
00:47
The point is that the news media
14
47260
2000
重點是新聞媒體
00:49
preferentially feeds us negative stories
15
49260
3000
喜歡報導負面新聞
00:52
because that's what our minds pay attention to.
16
52260
3000
因為這類的新聞能吸引大家注意
00:55
And there's a very good reason for that.
17
55260
2000
這有理由可以解釋
00:57
Every second of every day,
18
57260
2000
每天的每分每秒
00:59
our senses bring in way too much data
19
59260
2000
我們的感官接收了太多資訊
01:01
than we can possibly process in our brains.
20
61260
3000
超過了我們大腦的負荷
01:04
And because nothing is more important to us
21
64260
2000
而且對我們來說沒有任何東西
01:06
than survival,
22
66260
2000
是比活著更重要的
01:08
the first stop of all of that data
23
68260
2000
我們接收訊息的第一站
01:10
is an ancient sliver of the temporal lobe
24
70260
2000
是一個在「顳葉」(腦葉之一)中的古老小裂片
01:12
called the amygdala.
25
72260
2000
稱為「扁桃體」
01:14
Now the amygdala is our early warning detector,
26
74260
3000
扁桃體是我們身體最初期的
01:17
our danger detector.
27
77260
2000
警告和危險偵測系統
01:19
It sorts and scours through all of the information
28
79260
3000
它整理、搜尋所有訊息
01:22
looking for anything in the environment that might harm us.
29
82260
3000
偵測環境中任何對我們有害的物質
01:25
So given a dozen news stories,
30
85260
2000
所以在眾多的新聞中
01:27
we will preferentially look
31
87260
2000
我們會偏好於
01:29
at the negative news.
32
89260
2000
負面的新聞
01:31
And that old newspaper saying,
33
91260
2000
曾有一個新聞業界的格言說
01:33
"If it bleeds it leads,"
34
93260
2000
「有血才會賣」
01:35
is very true.
35
95260
2000
一點也沒錯
01:37
So given all of our digital devices
36
97260
3000
我們從各種數位設備
01:40
that are bringing all the negative news to us
37
100260
2000
接收各種負面的新聞
01:42
seven days a week, 24 hours a day,
38
102260
3000
一個禮拜七天、一天24小時毫無間斷
01:45
it's no wonder that we're pessimistic.
39
105260
2000
這也難怪我們這麼悲觀
01:47
It's no wonder that people think
40
107260
2000
難怪人們想的都是
01:49
that the world is getting worse.
41
109260
4000
世界越來越沒希望
01:53
But perhaps that's not the case.
42
113260
3000
但這也許不是事實
01:56
Perhaps instead,
43
116260
2000
這或許是
01:58
it's the distortions brought to us
44
118260
2000
媒體帶給我們
02:00
of what's really going on.
45
120260
3000
對現今新聞的偏見
02:03
Perhaps the tremendous progress we've made
46
123260
2000
也許我們在上個世紀
02:05
over the last century
47
125260
2000
藉由一連串的努力
02:07
by a series of forces
48
127260
2000
創造的大幅進步
02:09
are, in fact, accelerating to a point
49
129260
3000
事實上已帶給我們現在的優勢
02:12
that we have the potential in the next three decades
50
132260
3000
在未來三十年是有潛力
02:15
to create a world of abundance.
51
135260
3000
去創造一個富足的世界
02:18
Now I'm not saying
52
138260
2000
我不是說
02:20
we don't have our set of problems --
53
140260
2000
我們沒有以下一連串的問題:
02:22
climate crisis, species extinction,
54
142260
2000
『氣候危機、物種滅絕、
02:24
water and energy shortage -- we surely do.
55
144260
3000
水源和能源匱乏』這些問題是存在的
02:27
And as humans, we are far better
56
147260
2000
身為人類,我們好多了
02:29
at seeing the problems way in advance,
57
149260
3000
我們早就看到這些問題的產生
02:32
but ultimately we knock them down.
58
152260
4000
但最後我們仍解決了這些問題
02:36
So let's look
59
156260
2000
我們來看看
02:38
at what this last century has been
60
158260
2000
上個世紀到底發生了什麼事
02:40
to see where we're going.
61
160260
2000
而接下來會把我們帶到哪去
02:42
Over the last hundred years,
62
162260
2000
過去一百多年以來
02:44
the average human lifespan has more than doubled,
63
164260
3000
人類的平均壽命成長了兩倍以上
02:47
average per capita income adjusted for inflation
64
167260
3000
經過調整通膨的各國平均國民所得
02:50
around the world has tripled.
65
170260
2000
也成長了三倍以上
02:52
Childhood mortality
66
172260
2000
兒童死亡率
02:54
has come down a factor of 10.
67
174260
2000
也下降到為原來的十分之一
02:56
Add to that the cost of food, electricity,
68
176260
2000
再加上糧食、電能、
02:58
transportation, communication
69
178260
2000
交通、通訊的花費
03:00
have dropped 10 to 1,000-fold.
70
180260
4000
也變成以前的十分之一到千分之一
03:04
Steve Pinker has showed us
71
184260
2000
史迪芬.平克(實驗心理學家)告訴我們
03:06
that, in fact, we're living during the most peaceful time ever
72
186260
3000
我們現在生活的世代
03:09
in human history.
73
189260
2000
是人類史上最和平的一段時間
03:11
And Charles Kenny
74
191260
2000
而查爾斯.肯尼(作家)說
03:13
that global literacy has gone from 25 percent to over 80 percent
75
193260
3000
過去130年,我們的全球識字率
03:16
in the last 130 years.
76
196260
3000
也從25%上升到80%
03:19
We truly are living in an extraordinary time.
77
199260
4000
我們真的生活在一個黃金時期
03:23
And many people forget this.
78
203260
2000
但很多人都忘了這個
03:25
And we keep setting our expectations higher and higher.
79
205260
3000
我們不斷把期望設的越來越高
03:28
In fact, we redefine what poverty means.
80
208260
3000
事實上我們重寫了貧窮的定義
03:31
Think of this, in America today,
81
211260
2000
想想看現今的美國
03:33
the majority of people under the poverty line
82
213260
3000
在貧窮線以下的大多數人
03:36
still have electricity, water, toilets, refrigerators,
83
216260
3000
卻還擁有水、電、馬桶、冰箱、
03:39
television, mobile phones,
84
219260
2000
電視、手機、
03:41
air conditioning and cars.
85
221260
3000
甚至是冷氣和車子
03:44
The wealthiest robber barons of the last century, the emperors on this planet,
86
224260
3000
上個世紀最富有的強盜貴族、各國的帝王
03:47
could have never dreamed of such luxuries.
87
227260
3000
根本想不到會有這種奢侈品
03:53
Underpinning much of this
88
233260
3000
鞏固這種現象的
03:56
is technology,
89
236260
2000
是科技
03:58
and of late,
90
238260
2000
是最近以來
04:00
exponentially growing technologies.
91
240260
2000
快速發展的科技做出的貢獻
04:02
My good friend Ray Kurzweil
92
242260
2000
我的好朋友 雷.庫茨魏爾(科學家)說
04:04
showed that any tool that becomes an information technology
93
244260
3000
任何變成資訊科技的工具
04:07
jumps on this curve, on Moore's Law,
94
247260
3000
都躍上了這個摩爾定律曲線
04:10
and experiences price performance doubling
95
250260
2000
感受科技行情在每一年
04:12
every 12 to 24 months.
96
252260
3000
或每兩年的雙倍成長
04:15
That's why the cellphone in your pocket
97
255260
2000
這就是為什麼你們口袋裡的手機
04:17
is literally a million times cheaper and a thousand times faster
98
257260
2000
比起70年代的超級電腦
04:19
than a supercomputer of the '70s.
99
259260
2000
還要更便宜、更快速了幾百萬倍
04:21
Now look at this curve.
100
261260
2000
請看這個曲線
04:23
This is Moore's Law over the last hundred years.
101
263260
2000
這是一百多年前的摩爾定律
04:25
I want you to notice two things from this curve.
102
265260
2000
我要你注意這曲線上的兩個東西
04:27
Number one, how smooth it is --
103
267260
4000
第一,它是十分平穩的曲綫
04:31
through good time and bad time, war time and peace time,
104
271260
3000
曲線穿越過好時期和壞時期、戰爭時期和和平時期、
04:34
recession, depression and boom time.
105
274260
3000
經濟衰退期、低迷和繁榮時期
04:37
This is the result of faster computers
106
277260
2000
這是速度快的電腦
04:39
being used to build faster computers.
107
279260
3000
被用來創造更快速的電腦的結果
04:42
It doesn't slow for any of our grand challenges.
108
282260
4000
它不因爲我們面對艱鉅的挑戰而慢下來
04:46
And also, even though it's plotted
109
286260
2000
雖然它描繪成
04:48
on a log curve on the left,
110
288260
2000
左邊向上發展
04:50
it's curving upwards.
111
290260
2000
的對數曲線
04:52
The rate at which the technology is getting faster
112
292260
2000
這個是科技進步的比率
04:54
is itself getting faster.
113
294260
3000
科技本身越來越先進
04:57
And on this curve, riding on Moore's Law,
114
297260
3000
在這條摩爾定律曲線上
05:00
are a set of extraordinarily powerful technologies
115
300260
3000
是一連串我們可利用的
05:03
available to all of us.
116
303260
2000
強大而先進的科技
05:05
Cloud computing,
117
305260
2000
「雲端運算」
05:07
what my friends at Autodesk call infinite computing;
118
307260
2000
我在"歐特克公司(Autodesk)"的朋友都稱它為「無限運算」
05:09
sensors and networks; robotics;
119
309260
3000
感應器、網路、自動化設備、3D印刷
05:12
3D printing, which is the ability to democratize and distribute
120
312260
3000
都是在全球能被大眾化跟
05:15
personalized production around the planet;
121
315260
2000
廣為運用的人性化產品
05:17
synthetic biology;
122
317260
2000
人造生物學、
05:19
fuels, vaccines and foods;
123
319260
3000
燃料、疫苗和食物、
05:22
digital medicine; nanomaterials; and A.I.
124
322260
3000
數位醫學、奈米材料和人工智慧
05:25
I mean, how many of you saw the winning of Jeopardy
125
325260
3000
你們有多少人看過IBM沃森
05:28
by IBM's Watson?
126
328260
2000
贏了《危險邊緣》(美國智力競賽節目)?
05:30
I mean, that was epic.
127
330260
3000
那次很經典
05:33
In fact, I scoured the headlines
128
333260
2000
為了找一個最好的頭條標題
05:35
looking for the best headline in a newspaper I could.
129
335260
2000
事實上我搜尋了很多報紙
05:37
And I love this: "Watson Vanquishes Human Opponents."
130
337260
4000
而我喜歡這個:《沃森擊敗了"人類"對手》
05:42
Jeopardy's not an easy game.
131
342260
2000
《危險邊緣》不是個容易的比賽
05:44
It's about the nuance of human language.
132
344260
3000
它關係著人類語言的細微差別
05:47
And imagine if you would
133
347260
2000
想像一下
05:49
A.I.'s like this on the cloud
134
349260
2000
人工智慧就跟這個一樣
05:51
available to every person with a cellphone.
135
351260
3000
有手機的人都能擁有
05:54
Four years ago here at TED,
136
354260
2000
四年前
05:56
Ray Kurzweil and I started a new university
137
356260
2000
雷.庫茨魏爾和我進了一所
05:58
called Singularity University.
138
358260
2000
叫「奇點大學」(Singularity University)的新學校教書
06:00
And we teach our students all of these technologies,
139
360260
3000
我們教導學生這些所有科技
06:03
and particularly how they can be used
140
363260
2000
尤其是教他們如何運用
06:05
to solve humanity's grand challenges.
141
365260
3000
這些科技解決人類的巨大挑戰
06:08
And every year we ask them
142
368260
2000
我們每年都要求他們
06:10
to start a company or a product or a service
143
370260
3000
去開新公司、生產產品或是提供服務
06:13
that can affect positively the lives of a billion people
144
373260
3000
希望在十年內帶給
06:16
within a decade.
145
376260
2000
幾百萬人正面的影響
06:18
Think about that, the fact that, literally, a group of students
146
378260
3000
想想看,一群學生說真的
06:21
can touch the lives of a billion people today.
147
381260
3000
可以影響百萬人的生活
06:24
30 years ago that would have sounded ludicrous.
148
384260
2000
這在30年前聽起來是很荒唐的
06:26
Today we can point at dozens of companies
149
386260
3000
現在我們可以說出幾百家的公司
06:29
that have done just that.
150
389260
2000
都在做這種事
06:31
When I think about creating abundance,
151
391260
6000
當我說要創造富足的社會
06:37
it's not about creating a life of luxury for everybody on this planet;
152
397260
3000
不是說要讓世界上每個人都享受奢華生活
06:40
it's about creating a life of possibility.
153
400260
3000
而是要創造出生命的可能性
06:43
It is about taking that which was scarce
154
403260
3000
是要豐富我們
06:46
and making it abundant.
155
406260
2000
所缺乏的東西
06:48
You see, scarcity is contextual,
156
408260
3000
缺乏是因人而異
06:51
and technology is a resource-liberating force.
157
411260
5000
而科技是一個資源解放的力量
06:56
Let me give you an example.
158
416260
3000
我舉個例
06:59
So this is a story of Napoleon III
159
419260
2000
這是在十八世紀中關於
07:01
in the mid-1800s.
160
421260
2000
拿破崙三世的故事
07:03
He's the dude on the left.
161
423260
3000
左邊那個是他
07:06
He invited over to dinner
162
426260
2000
他邀請暹羅國王
07:08
the king of Siam.
163
428260
2000
來共進晚餐
07:10
All of Napoleon's troops
164
430260
2000
拿破崙的軍隊
07:12
were fed with silver utensils,
165
432260
3000
用的是銀製餐具
07:15
Napoleon himself with gold utensils.
166
435260
2000
拿破崙則是用金製餐具
07:17
But the King of Siam,
167
437260
2000
但暹羅國王
07:19
he was fed with aluminum utensils.
168
439260
2000
用的卻是鋁製餐具
07:21
You see, aluminum
169
441260
2000
07:23
was the most valuable metal on the planet,
170
443260
3000
曾是世上最高貴的金屬
07:26
worth more than gold and platinum.
171
446260
3000
甚至比黃金和白金更有價值
07:29
It's the reason that the tip of the Washington Monument
172
449260
3000
這就是為什麼華盛頓紀念碑的頂端
07:32
is made of aluminum.
173
452260
2000
是由鋁所製成
07:34
You see, even though aluminum
174
454260
2000
雖然鋁礦有大批的藏量
07:36
is 8.3 percent of the Earth by mass,
175
456260
3000
佔地球質量的8.3%
07:39
it doesn't come as a pure metal.
176
459260
2000
但鋁不是純金屬的方式存在
07:41
It's all bound by oxygen and silicates.
177
461260
3000
而是由以「氧」和「矽酸鹽」化合物的方式存在
07:44
But then the technology of electrolysis came along
178
464260
3000
隨著電解科技的到來
07:47
and literally made aluminum so cheap
179
467260
3000
使得鋁越來越廉價
07:50
that we use it with throw-away mentality.
180
470260
3000
我們也就把鋁視為平凡的金屬
07:53
So let's project this analogy going forward.
181
473260
4000
我們可以依此類推
07:57
We think about energy scarcity.
182
477260
2000
想想看能源缺乏
07:59
Ladies and gentlemen,
183
479260
2000
各位
08:01
we are on a planet
184
481260
2000
我們生活在一個星球
08:03
that is bathed with 5,000 times more energy
185
483260
3000
一個擁有高出我們一年
08:06
than we use in a year.
186
486260
3000
所使用能源5000倍的星球
08:09
16 terawatts of energy hits the Earth's surface
187
489260
2000
每88分鐘就有16兆瓦的能源
08:11
every 88 minutes.
188
491260
4000
降落在地球表面
08:15
It's not about being scarce,
189
495260
2000
所以問題並不在於缺乏能源
08:17
it's about accessibility.
190
497260
2000
而在於能源的可利用性
08:19
And there's good news here.
191
499260
2000
有個好消息
08:21
For the first time, this year
192
501260
2000
今年是有史以來第一次
08:23
the cost of solar-generated electricity
193
503260
3000
印度的太陽能發電的花費
08:26
is 50 percent that of diesel-generated electricity in India --
194
506260
4000
是柴油發電的一半
08:30
8.8 rupees versus 17 rupees.
195
510260
3000
8.8盧比對17盧比的差別
08:33
The cost of solar dropped 50 percent last year.
196
513260
2000
去年太陽能發電花費就降了一半
08:35
Last month, MIT put out a study
197
515260
2000
上個月麻省理工學院發表了一項研究
08:37
showing that by the end of this decade,
198
517260
2000
他們表示約在十年後
08:39
in the sunny parts of the United States,
199
519260
2000
美國陽光普照的地區
08:41
solar electricity will be six cents a kilowatt hour
200
521260
2000
太陽能電價格跟現在平均一度要價15分美元相比
08:43
compared to 15 cents
201
523260
2000
每一度電
08:45
as a national average.
202
525260
2000
只要價六分美元
08:47
And if we have abundant energy,
203
527260
3000
我們有了充足的能源
08:50
we also have abundant water.
204
530260
3000
我們就會有充足的水源
08:53
Now we talk about water wars.
205
533260
5000
再來談水資源的戰爭
08:58
Do you remember
206
538260
2000
你是否記得
09:00
when Carl Sagan turned the Voyager spacecraft
207
540260
2000
當卡爾.薩根(天文學家)在1990年
09:02
back towards the Earth,
208
542260
2000
把剛通過土星的航海家1號
09:04
in 1990 after it just passed Saturn?
209
544260
2000
送回地球的時候?
09:06
He took a famous photo. What was it called?
210
546260
3000
他拍了一張很出名的相片,那叫什麼?
09:09
"A Pale Blue Dot."
211
549260
2000
《蒼藍小點》
09:11
Because we live on a water planet.
212
551260
3000
我們住在一個水星球
09:14
We live on a planet 70 percent covered by water.
213
554260
3000
一個表面被70%的水覆蓋的星球
09:17
Yes, 97.5 percent is saltwater,
214
557260
2000
其中97.5%是鹹水
09:19
two percent is ice,
215
559260
2000
2%是冰
09:21
and we fight over a half a percent of the water on this planet,
216
561260
3000
我們為了地球上一半的水在爭吵
09:24
but here too there is hope.
217
564260
2000
天無絕人之路
09:26
And there is technology coming online,
218
566260
3000
一個新科技出現了
09:29
not 10, 20 years from now,
219
569260
2000
不是在十幾二十年後
09:31
right now.
220
571260
2000
是現在
09:33
There's nanotechnology coming on, nanomaterials.
221
573260
3000
奈米科技製造的奈米材料誕生了
09:36
And the conversation I had with Dean Kamen this morning,
222
576260
3000
我今天早上和狄恩.卡門聊天
09:39
one of the great DIY innovators,
223
579260
2000
他是一個偉大的DIY發明家
09:41
I'd like to share with you -- he gave me permission to do so --
224
581260
3000
他允許我可以跟你們分享這段對話
09:44
his technology called Slingshot
225
584260
2000
他的發明-"Slingshot"
09:46
that many of you may have heard of,
226
586260
2000
你們應該都聽過
09:48
it is the size of a small dorm room refrigerator.
227
588260
2000
那是一個約一個小宿舍房間大的冰箱
09:50
It's able to generate
228
590260
2000
它可以發電
09:52
a thousand liters of clean drinking water a day
229
592260
2000
可以每天淨化一千加侖的飲用水
09:54
out of any source -- saltwater, polluted water, latrine --
230
594260
3000
鹹水、汙染水、廁所汙水它都能淨化
09:57
at less than two cents a liter.
231
597260
3000
且一加侖成本少於2分美元
10:02
The chairman of Coca-Cola has just agreed
232
602260
2000
可口可樂的董事長也同意
10:04
to do a major test
233
604260
2000
做一個大規模測試
10:06
of hundreds of units of this in the developing world.
234
606260
3000
在開發中國家置入幾百套這種設備
10:09
And if that pans out,
235
609260
2000
如果成功了
10:11
which I have every confidence it will,
236
611260
2000
當然我有信心它會成功
10:13
Coca-Cola will deploy this globally
237
613260
2000
可口可樂公司就會
10:15
to 206 countries
238
615260
2000
將此計畫推展至
10:17
around the planet.
239
617260
2000
全球206個國家
10:19
This is the kind of innovation, empowered by this technology,
240
619260
3000
這就是現代科技
10:22
that exists today.
241
622260
4000
所帶來的革新
10:26
And we've seen this in cellphones.
242
626260
2000
手機就是一個代表
10:28
My goodness, we're going to hit 70 percent penetration
243
628260
2000
天啊,我們要在2013之前
10:30
of cellphones in the developing world
244
630260
2000
讓手機在開發中國家
10:32
by the end of 2013.
245
632260
2000
達到70%的使用率
10:34
Think about it,
246
634260
2000
想想看
10:36
that a Masai warrior on a cellphone in the middle of Kenya
247
636260
3000
一個肯亞馬賽族戰士用的手機
10:39
has better mobile comm
248
639260
2000
比25年前雷根總統在位時的
10:41
than President Reagan did 25 years ago.
249
641260
3000
通訊品質還要更好
10:44
And if they're on a smartphone on Google,
250
644260
2000
如果他們用谷歌(Google)的智慧型手機
10:46
they've got access to more knowledge and information
251
646260
2000
就能比15年前柯林頓總統在位時
10:48
than President Clinton did 15 years ago.
252
648260
2000
接收更多的知識和資訊
10:50
They're living in a world of information and communication abundance
253
650260
3000
他們就此生活在一個有富足資訊和通訊的世界
10:53
that no one could have ever predicted.
254
653260
3000
這原本是沒人能預料到的
10:57
Better than that,
255
657260
2000
更好的是
10:59
the things that you and I
256
659260
2000
我們花了
11:01
spent tens and hundreds of thousands of dollars for --
257
661260
2000
好幾十萬在這些東西上:
11:03
GPS, HD video and still images,
258
663260
3000
GPS、高畫質影片和靜止圖像
11:06
libraries of books and music,
259
666260
3000
書本和音樂庫、
11:09
medical diagnostic technology --
260
669260
2000
醫療診斷科技...
11:11
are now literally dematerializing and demonetizing
261
671260
3000
而現在這些東西都漸漸的被融入
11:14
into your cellphone.
262
674260
3000
在你們的手機上
11:19
Probably the best part of it
263
679260
2000
而維護人民健康的收費的下降
11:21
is what's coming down the pike in health.
264
681260
3000
大概是其中最好的部分吧
11:24
Last month, I had the pleasure of announcing with Qualcomm Foundation
265
684260
4000
上個月我很榮幸跟「高通基金會」(Qualcomm Foundation)一起宣布
11:28
something called the $10 million Qualcomm Tricorder X Prize.
266
688260
4000
高通"Tricorder"的「X大獎」千萬得主
11:32
We're challenging teams around the world
267
692260
2000
我們向全球參賽者們提出挑戰
11:34
to basically combine these technologies
268
694260
2000
把這些全部功能
11:36
into a mobile device
269
696260
2000
融合在一個移動式的設備裡
11:38
that you can speak to, because it's got A.I.,
270
698260
2000
因為有人工智慧,所以你能對著它講話
11:40
you can cough on it, you can do a finger blood prick.
271
700260
3000
可以對它咳嗽或是做手指血液採樣
11:43
And to win, it needs to be able to diagnose you better
272
703260
2000
要贏得此獎,該儀器的診斷技術
11:45
than a team of board-certified doctors.
273
705260
4000
必須比公會認證的醫師團隊還要精確
11:49
So literally, imagine this device
274
709260
3000
想像一下這個儀器
11:52
in the middle of the developing world where there are no doctors,
275
712260
3000
能被用在沒有醫生的開發中國家
11:55
25 percent of the disease burden
276
715260
2000
在那裏有25%的地區在疾病肆虐的壓力下
11:57
and 1.3 percent of the health care workers.
277
717260
3000
且只有1.3%的人是醫療保健工作者
12:00
When this device sequences an RNA or DNA virus
278
720260
2000
而當這個儀器無法辨識出
12:02
that it doesn't recognize,
279
722260
2000
所排列的RNA或DNA病毒時
12:04
it calls the CDC
280
724260
2000
它就會通報「疾病防治中心」(CDC)
12:06
and prevents the pandemic from happening in the first place.
281
726260
3000
進而防止疾病從該地區散播出去
12:11
But here, here is the biggest force
282
731260
3000
這有一個最強大的力量
12:14
for bringing about a world of abundance.
283
734260
2000
能帶來一個富足的世界
12:16
I call it the rising billion.
284
736260
3000
我稱它為「上升十億」
12:19
So the white lines here are population.
285
739260
3000
白色那條代表人口
12:22
We just passed the seven billion mark on Earth.
286
742260
3000
我們剛通過了七十億大關
12:25
And by the way,
287
745260
2000
順道一提
12:27
the biggest protection against a population explosion
288
747260
2000
防止人口爆炸的最大力量
12:29
is making the world educated
289
749260
2000
就是教育
12:31
and healthy.
290
751260
3000
和健康
12:34
In 2010,
291
754260
2000
在2010年
12:36
we had just short of two billion people
292
756260
2000
全球還不到20億人口
12:38
online, connected.
293
758260
2000
有網際網路的連線
12:40
By 2020,
294
760260
2000
到2020年
12:42
that's going from two billion to five billion
295
762260
2000
網路使用者會從20億
12:44
Internet users.
296
764260
2000
躍進到50億
12:46
Three billion new minds
297
766260
2000
新加入的30億人口
12:48
who have never been heard from before
298
768260
2000
之前從沒聽過網路這種東西
12:50
are connecting to the global conversation.
299
770260
4000
他們終於能跟世界對話
12:54
What will these people want?
300
774260
2000
這些人想要什麼?
12:56
What will they consume? What will they desire?
301
776260
2000
他們會接收到什麼?他們渴望什麼?
12:58
And rather than having economic shutdown,
302
778260
2000
當然不是經濟的蕭條
13:00
we're about to have the biggest economic injection ever.
303
780260
3000
而是要感受有史以來最繁榮的經濟
13:03
These people represent
304
783260
2000
這些人意味著
13:05
tens of trillions of dollars
305
785260
2000
有幾十兆美元
13:07
injected into the global economy.
306
787260
3000
投入了全球經濟市場
13:10
And they will get healthier
307
790260
2000
他們就會藉由
13:12
by using the Tricorder,
308
792260
2000
"Tricorder"(剛提過的診斷儀器)變健康
13:14
and they'll become better educated by using the Khan Academy,
309
794260
2000
和藉由「可漢學院」(非營利教育組織)得到較好的教育
13:16
and by literally being able to use
310
796260
3000
漸漸地能使用
13:19
3D printing and infinite computing
311
799260
3000
3D列印技術和無限運算功能
13:22
[become] more productive than ever before.
312
802260
3000
變得更有生產力
13:25
So what could three billion rising,
313
805260
3000
所以這30億
13:28
healthy, educated, productive members of humanity
314
808260
3000
健康、教育良好和高生産力的人口
13:31
bring to us?
315
811260
2000
能帶給我們什麽?
13:33
How about a set of voices that have never been heard from before.
316
813260
3000
說到之前一堆被忽視的聲音
13:36
What about giving the oppressed,
317
816260
2000
他們無論到哪裡
13:38
wherever they might be,
318
818260
2000
都被壓迫著
13:40
the voice to be heard and the voice to act
319
820260
2000
他們的聲音要到哪時候才能
13:42
for the first time ever?
320
822260
3000
被重視而不被忽略?
13:45
What will these three billion people bring?
321
825260
3000
這30億人能帶來什麼?
13:48
What about contributions we can't even predict?
322
828260
3000
有可能是誰也無法預料到的貢獻?
13:51
The one thing I've learned at the X Prize
323
831260
2000
我在「X大獎」學到的一件事
13:53
is that small teams
324
833260
2000
就是即使一個小團隊
13:55
driven by their passion with a clear focus
325
835260
3000
當目標明確又被熱情所驅動下
13:58
can do extraordinary things,
326
838260
2000
也能完成一番不平凡的大事業
14:00
things that large corporations and governments
327
840260
2000
能完成在以前
14:02
could only do in the past.
328
842260
3000
只有大企業和政府才能作到的事
14:05
Let me share and close with a story
329
845260
2000
我分享一個故事作結尾
14:07
that really got me excited.
330
847260
3000
這真的很激勵我
14:10
There is a program that some of you might have heard of.
331
850260
2000
應該有人聽過這個程式
14:12
It's a game called Foldit.
332
852260
2000
一個叫《Foldit》的遊戲程式
14:14
It came out of the University of Washington in Seattle.
333
854260
4000
它是由西雅圖華盛頓大學開發的
14:18
And this is a game
334
858260
2000
它是一個遊戲
14:20
where individuals can actually take a sequence of amino acids
335
860260
4000
玩家能決定胺基酸的排列
14:24
and figure out how the protein is going to fold.
336
864260
4000
進而算出蛋白質接下來如何折疊
14:28
And how it folds dictates its structure and its functionality.
337
868260
2000
蛋白質的折疊方式決定了它的結構和功能
14:30
And it's very important for research in medicine.
338
870260
3000
這對藥物的研究很重要
14:33
And up until now, it's been a supercomputer problem.
339
873260
3000
但現在,這是超級電腦要做的事
14:36
And this game has been played
340
876260
2000
這個遊戲
14:38
by university professors and so forth.
341
878260
2000
已被大學教授之類的人玩過
14:40
And it's literally, hundreds of thousands of people
342
880260
3000
現在漸漸的有幾十萬人
14:43
came online and started playing it.
343
883260
2000
也開始在玩
14:45
And it showed that, in fact, today,
344
885260
2000
這顯示出事實上現在
14:47
the human pattern recognition machinery
345
887260
2000
人類的模式識別機器
14:49
is better at folding proteins than the best computers.
346
889260
3000
比現在最好的電腦更能折疊蛋白質
14:52
And when these individuals went and looked
347
892260
2000
這些玩家都想知道
14:54
at who was the best protein folder in the world,
348
894260
3000
誰是世界上最會折疊蛋白質的人
14:57
it wasn't an MIT professor,
349
897260
2000
不是麻省理工學院的教授
14:59
it wasn't a CalTech student,
350
899260
2000
也不是加州理工學院的學生
15:01
it was a person from England, from Manchester,
351
901260
3000
是一個住在英國曼徹斯特的女人
15:04
a woman who, during the day,
352
904260
4000
在白天
15:08
was an executive assistant at a rehab clinic
353
908260
3000
她是一個復健診所的行政助理
15:11
and, at night, was the world's best protein folder.
354
911260
4000
到了晚上她就是世界上最會折疊蛋白質的人
15:16
Ladies and gentlemen,
355
916260
2000
各位
15:18
what gives me tremendous confidence
356
918260
2000
是什麼東西讓我
15:20
in the future
357
920260
4000
對未非常有信心?
15:24
is the fact that we are now more empowered as individuals
358
924260
4000
我們現在能活得更自主更完整
15:28
to take on the grand challenges of this planet.
359
928260
3000
能接受各種襲來的巨大挑戰
15:31
We have the tools with this exponential technology.
360
931260
3000
我們有讓科技快速成長的工具
15:34
We have the passion of the DIY innovator.
361
934260
3000
有DIY發明家的熱情
15:37
We have the capital of the techno-philanthropist.
362
937260
3000
也有科技慈善家(高通基金會)當作資本
15:40
And we have three billion new minds
363
940260
2000
還有30億的新人
15:42
coming online to work with us
364
942260
2000
來幫助我們
15:44
to solve the grand challenges,
365
944260
2000
解決艱鉅的挑戰
15:46
to do that which we must do.
366
946260
4000
做我們該做的事
15:50
We are living into extraordinary decades ahead.
367
950260
2000
未來的黃金年代正等著我們!
15:52
Thank you.
368
952260
2000
謝謝
15:54
(Applause)
369
954260
14000
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog