Tom Chatfield: 7 ways video games engage the brain

203,695 views ・ 2010-11-01

TED


Please double-click on the English subtitles below to play the video.

Prevodilac: Ivana Korom Lektor: Sandra Gojic
00:15
I love video games.
0
15260
3000
Obožavam video igre.
00:18
I'm also slightly in awe of them.
1
18260
3000
Gajim i neko strahopoštovanje prema njima.
00:21
I'm in awe of their power
2
21260
2000
Prema njihovoj moći
00:23
in terms of imagination, in terms of technology,
3
23260
2000
u smislu mašte, tehnologije,
00:25
in terms of concept.
4
25260
2000
u smislu ideje.
00:27
But I think, above all,
5
27260
2000
Ali mislim da povrh svega
00:29
I'm in awe at their power
6
29260
2000
gajim strahopoštovanje prema njihovoj moći
00:31
to motivate, to compel us,
7
31260
3000
da nas motivišu, podstaknu,
00:34
to transfix us,
8
34260
2000
fiksiraju za sebe
00:36
like really nothing else we've ever invented
9
36260
3000
kao što ništa drugo što smo napravili
00:39
has quite done before.
10
39260
2000
nije uspevalo ranije.
00:41
And I think that we can learn some pretty amazing things
11
41260
3000
Mislim da možemo naučiti neke prilično neverovatne stvari
00:44
by looking at how we do this.
12
44260
2000
ako posmatramo kako one to čine.
00:46
And in particular, I think we can learn things
13
46260
2000
I posebno, mislim da možemo naučiti
00:48
about learning.
14
48260
3000
o učenju.
00:51
Now the video games industry
15
51260
2000
Industrija video igara
00:53
is far and away the fastest growing
16
53260
2000
se najbrže razvija
00:55
of all modern media.
17
55260
2000
od svih modernih medija.
00:57
From about 10 billion in 1990,
18
57260
2000
Od oko 10 milijardi 1990.,
00:59
it's worth 50 billion dollars globally today,
19
59260
3000
danas na svetskom nivou vredi 50 milijardi dolara
01:02
and it shows no sign of slowing down.
20
62260
3000
i ne pokazuje znake usporavanja.
01:05
In four years' time,
21
65260
2000
Procenjuje se da će
01:07
it's estimated it'll be worth over 80 billion dollars.
22
67260
3000
za četiri godine vredeti preko 80 milijardi dolara.
01:10
That's about three times the recorded music industry.
23
70260
3000
To je tri puta više od muzičke industrije.
01:13
This is pretty stunning,
24
73260
2000
To je prilično zapanjujuće, ali
01:15
but I don't think it's the most telling statistic of all.
25
75260
3000
to nije podatak koji ostavlja najsnažniji utisak.
01:18
The thing that really amazes me
26
78260
2000
Ono što me zaista fascinira
01:20
is that, today,
27
80260
2000
je to da, danas,
01:22
people spend about
28
82260
2000
ljudi troše oko
01:24
eight billion real dollars a year
29
84260
3000
osam milijardi pravih dolara godišnje
01:27
buying virtual items
30
87260
2000
kupujući virtuelne predmete
01:29
that only exist
31
89260
2000
koji postoje samo
01:31
inside video games.
32
91260
3000
unutar video igara.
01:34
This is a screenshot from the virtual game world, Entropia Universe.
33
94260
3000
Ovo je snimak iz virtuelnog sveta "Entropia Universe".
01:37
Earlier this year,
34
97260
2000
Početkom ove godine,
01:39
a virtual asteroid in it
35
99260
2000
virtuelni asteroid je tu
01:41
sold for 330,000 real dollars.
36
101260
4000
prodat za 330 000 pravih dolara.
01:45
And this
37
105260
2000
Ovo je brod
01:47
is a Titan class ship
38
107260
3000
klase "Titan"
01:50
in the space game, EVE Online.
39
110260
2000
u svemirskoj igri "EVE Online".
01:52
And this virtual object
40
112260
2000
Za izgradnju ovog virtuelnog predmeta
01:54
takes 200 real people
41
114260
2000
potrebno je da 200 pravih ljudi
01:56
about 56 days of real time to build,
42
116260
3000
uloži 56 dana pravog vremena,
01:59
plus countless thousands of hours
43
119260
3000
plus mnogo hiljada sati
02:02
of effort before that.
44
122260
2000
napora pre toga.
02:04
And yet, many of these get built.
45
124260
3000
A opet, mnogi od ovih se grade.
02:07
At the other end of the scale,
46
127260
2000
S druge strane,
02:09
the game Farmville that you may well have heard of,
47
129260
3000
igru "Farmville", za koju ste sigurno čuli,
02:12
has 70 million players
48
132260
2000
igra 70 miliona ljudi
02:14
around the world
49
134260
2000
širom sveta,
02:16
and most of these players
50
136260
2000
a većina njih
02:18
are playing it almost every day.
51
138260
2000
igra je skoro svakog dana.
02:20
This may all sound
52
140260
2000
Sve ovo možda zvuči
02:22
really quite alarming to some people,
53
142260
2000
prilično alarmantno, nekim ljudima,
02:24
an index of something worrying
54
144260
2000
kao pokazatelj nečeg zabrinjavajućeg
02:26
or wrong in society.
55
146260
2000
ili pogrešnog u društvu.
02:28
But we're here for the good news,
56
148260
2000
Ali ovde smo zbog dobrih vesti,
02:30
and the good news is
57
150260
2000
a dobra vest je ta
02:32
that I think we can explore
58
152260
2000
da mislim da možemo da istražujemo
02:34
why this very real human effort,
59
154260
3000
zašto se javljaju ova
02:37
this very intense generation of value, is occurring.
60
157260
4000
stremljenja i ovakve vrednosti.
02:41
And by answering that question,
61
161260
2000
Mislim da možemo,
02:43
I think we can take something
62
163260
2000
odgovaranjem na to pitanje,
02:45
extremely powerful away.
63
165260
2000
otkloniti nešto veoma moćno.
02:47
And I think the most interesting way
64
167260
2000
Mislim da, najzanimljiviji način
02:49
to think about how all this is going on
65
169260
2000
da razmišljamo o tome kako se sve ovo dešava,
02:51
is in terms of rewards.
66
171260
2000
je razmišljanje o nagradama.
02:53
And specifically, it's in terms
67
173260
3000
A posebno, u smislu
02:56
of the very intense emotional rewards
68
176260
2000
veoma intenzivnih emocionalnih nagrada
02:58
that playing games offers to people
69
178260
2000
koje igranje igara donosi ljudima,
03:00
both individually
70
180260
2000
kako individualno
03:02
and collectively.
71
182260
2000
tako i kolektivno.
03:04
Now if we look at what's going on in someone's head
72
184260
2000
Ako pogledamo šta se dešava u nečijoj glavi
03:06
when they are being engaged,
73
186260
2000
dok se bavi igranjem,
03:08
two quite different processes are occurring.
74
188260
3000
vidimo da se javljaju dva procesa.
03:11
On the one hand, there's the wanting processes.
75
191260
3000
S jedne strane imamo procese želje.
03:14
This is a bit like ambition and drive -- I'm going to do that. I'm going to work hard.
76
194260
3000
Ovo liči na ambiciju i motivaciju - uradiću to. Uložiću napor.
03:17
On the other hand, there's the liking processes,
77
197260
2000
S druge strane, imamo procese sviđanja,
03:19
fun and affection
78
199260
2000
zabavu i dopadanje
03:21
and delight
79
201260
2000
i oduševljenje -
03:23
and an enormous flying beast with an orc on the back.
80
203260
2000
i ogromnu leteću zver sa orkom na leđima.
03:25
It's a really great image. It's pretty cool.
81
205260
2000
Zaista sjajna slika. Prilično je kul.
03:27
It's from the game World of Warcraft with more than 10 million players globally,
82
207260
3000
To je iz igre "World of Warcraft" koja ima više od 10 miliona igrača u svetu,
03:30
one of whom is me, another of whom is my wife.
83
210260
3000
među kojima smo i moja žena i ja.
03:33
And this kind of a world,
84
213260
2000
I ova vrsta sveta,
03:35
this vast flying beast you can ride around,
85
215260
2000
ova ogromna leteća zver koju jašete
03:37
shows why games are so very good
86
217260
2000
pokazuje zašto su igre podjednako dobre
03:39
at doing both the wanting and the liking.
87
219260
3000
u procesima želje i sviđanja.
03:42
Because it's very powerful. It's pretty awesome.
88
222260
2000
Jer su veoma moćne. Prilično fantastične.
03:44
It gives you great powers.
89
224260
2000
Imate ogromne moći.
03:46
Your ambition is satisfied, but it's very beautiful.
90
226260
3000
Ambicija vam je zadovoljena, ali je i veoma lepo.
03:49
It's a very great pleasure to fly around.
91
229260
3000
To letenje predstavlja ogromno zadovoljstvo.
03:52
And so these combine to form
92
232260
2000
Sve ovo formira
03:54
a very intense emotional engagement.
93
234260
2000
veoma intenzivnu emocionalnu uključenost.
03:56
But this isn't the really interesting stuff.
94
236260
3000
Ali ovo nije najinteresatnije od svega.
03:59
The really interesting stuff about virtuality
95
239260
2000
Ono što je stvarno interesantno u vezi virtuelnog
04:01
is what you can measure with it.
96
241260
2000
sveta je da njime možete da merite.
04:03
Because what you can measure in virtuality
97
243260
3000
Jer u virtuelnom svetu možete
04:06
is everything.
98
246260
2000
da merite sve.
04:08
Every single thing that every single person
99
248260
2000
Svaka pojedina stvar koju je svaka osoba
04:10
who's ever played in a game has ever done can be measured.
100
250260
3000
koja je nekad igrala neku igru uradila, može da se meri.
04:13
The biggest games in the world today
101
253260
2000
Najveće igre na svetu danas
04:15
are measuring more than one billion points of data
102
255260
4000
prate više od milijardu pojedinačnih podataka
04:19
about their players, about what everybody does --
103
259260
2000
o svojim igračima, o tome šta svi rade -
04:21
far more detail than you'd ever get from any website.
104
261260
3000
mnogo više od detalja koje biste dobili preko nekog sajta.
04:24
And this allows something very special
105
264260
3000
Ovo omogućava da se
04:27
to happen in games.
106
267260
2000
u igrama dešava nešto posebno.
04:29
It's something called the reward schedule.
107
269260
3000
To se zove raspored nagrada.
04:32
And by this, I mean looking
108
272260
2000
Pod ovim mislim na posmatranje
04:34
at what millions upon millions of people have done
109
274260
2000
onoga šta milioni i milioni ljudi rade
04:36
and carefully calibrating the rate,
110
276260
2000
i pažljivo odmeravanje rasporeda,
04:38
the nature, the type, the intensity of rewards in games
111
278260
3000
prirode, vrste, intenziteta nagrada u igrama,
04:41
to keep them engaged
112
281260
2000
kako bi se održavali u igri
04:43
over staggering amounts of time and effort.
113
283260
3000
i ulagali zapanjujuće količine napora i vremena.
04:46
Now, to try and explain this
114
286260
2000
Pokušaću da objasnim ovo
04:48
in sort of real terms,
115
288260
3000
u realnim terminima,
04:51
I want to talk about a kind of task
116
291260
2000
pa ću govoriti o vrsti zadatka
04:53
that might fall to you in so many games.
117
293260
2000
koji verovatno dobijate u mnogim igrama.
04:55
Go and get a certain amount of a certain little game-y item.
118
295260
3000
Idite i nabavite određenu količinu određenog igračkog predmeta.
04:58
Let's say, for the sake of argument,
119
298260
2000
Recimo, u svrhu ove priče,
05:00
my mission is to get 15 pies
120
300260
3000
da je moja misija da nabavim 15 pita,
05:03
and I can get 15 pies
121
303260
3000
i nabaviću ih
05:06
by killing these cute, little monsters.
122
306260
2000
ako ubijem ova slatka, mala čudovišta.
05:08
Simple game quest.
123
308260
2000
Jednostavna misija u igri.
05:10
Now you can think about this, if you like,
124
310260
2000
Ako želite, možete o ovome razmišljati
05:12
as a problem about boxes.
125
312260
2000
kao o problemu kutija.
05:14
I've got to keep opening boxes.
126
314260
2000
Moram da nastavim da otvaram te kutije.
05:16
I don't know what's inside them until I open them.
127
316260
3000
Ne znam šta je u njima dok ih ne otvorim.
05:19
And I go around opening box after box until I've got 15 pies.
128
319260
3000
Idem okolo i otvaram jednu po jednu, dok ne skupim 15 pita.
05:22
Now, if you take a game like Warcraft,
129
322260
2000
Sad, ako uzmete igru kao što je "Warcraft",
05:24
you can think about it, if you like,
130
324260
2000
možete je, ako želite, posmatrati
05:26
as a great box-opening effort.
131
326260
3000
kao naporni poduhvat otvaranja kutija.
05:29
The game's just trying to get people to open about a million boxes,
132
329260
3000
Igra navodi ljude da otvore oko milion kutija,
05:32
getting better and better stuff in them.
133
332260
2000
u kojima se nalaze sve bolje i bolje stvari.
05:34
This sounds immensely boring
134
334260
3000
Ovo zvuči izuzetno dosadno,
05:37
but games are able
135
337260
2000
ali igre imaju moć
05:39
to make this process
136
339260
2000
da ovaj proces učine
05:41
incredibly compelling.
137
341260
2000
neverovatno ubedljivim.
05:43
And the way they do this
138
343260
2000
A to čine
05:45
is through a combination of probability and data.
139
345260
3000
kombinacijom verovatnoće i podataka.
05:48
Let's think about probability.
140
348260
2000
Razmislimo o verovatnoći.
05:50
If we want to engage someone
141
350260
2000
Ako želimo da uključimo nekoga
05:52
in the process of opening boxes to try and find pies,
142
352260
3000
u taj proces otvaranja kutija i traženja pita,
05:55
we want to make sure it's neither too easy,
143
355260
2000
želimo da budemo sigurni da nije ni previše lako,
05:57
nor too difficult, to find a pie.
144
357260
2000
ni previše teško pronaći pitu.
05:59
So what do you do? Well, you look at a million people --
145
359260
2000
Šta tada radimo? Pa, pogledajte milion ljudi -
06:01
no, 100 million people, 100 million box openers --
146
361260
3000
ne, 100 miliona ljudi, 100 miliona koji otvaraju kutije -
06:04
and you work out, if you make the pie rate
147
364260
3000
i izračunajte, ako je verovatnoća pite
06:07
about 25 percent --
148
367260
2000
oko 25% -
06:09
that's neither too frustrating, nor too easy.
149
369260
3000
to nije ni previše frustrirajuće, ni previše lako;
06:12
It keeps people engaged.
150
372260
2000
drži ljude angažovanim -
06:14
But of course, that's not all you do -- there's 15 pies.
151
374260
3000
ali naravno, to nije sve - ima 15 pita.
06:17
Now, I could make a game called Piecraft,
152
377260
2000
Sad, mogao bih da nazovem igru "Piecraft" (pie - pita),
06:19
where all you had to do was get a million pies
153
379260
2000
gde samo tražite milion pita
06:21
or a thousand pies.
154
381260
2000
ili hiljadu pita.
06:23
That would be very boring.
155
383260
2000
To bi bilo veoma dosadno.
06:25
Fifteen is a pretty optimal number.
156
385260
2000
15 je prilično optimalan broj.
06:27
You find that -- you know, between five and 20
157
387260
2000
Vidite da je između pet i 20
06:29
is about the right number for keeping people going.
158
389260
2000
to prilično dobar broj da bi ljudi nastavljali.
06:31
But we don't just have pies in the boxes.
159
391260
2000
Ali u kutijama nisu samo pite.
06:33
There's 100 percent up here.
160
393260
2000
Ovde je sto procenata.
06:35
And what we do is make sure that every time a box is opened,
161
395260
3000
Mi osiguramo da se svaki put kad se kutija otvori,
06:38
there's something in it, some little reward
162
398260
2000
u njoj nalazi neka mala nagrada
06:40
that keeps people progressing and engaged.
163
400260
2000
zbog koje ljudi napreduju i nastavljaju.
06:42
In most adventure games,
164
402260
2000
U većini avanturističkih igara
06:44
it's a little bit in-game currency, a little bit experience.
165
404260
3000
to je neka valuta ili iskustvo unutar igre,
06:47
But we don't just do that either.
166
407260
2000
ali ne radimo samo to.
06:49
We also say there's going to be loads of other items
167
409260
2000
Takođe kažemo da će biti još gomila drugih predmeta
06:51
of varying qualities and levels of excitement.
168
411260
2000
različitog kvaliteta i nivoa uzbuđenja.
06:53
There's going to be a 10 percent chance you get a pretty good item.
169
413260
3000
Postoji 10% šanse da dobijete prilično dobar predmet.
06:56
There's going to be a 0.1 percent chance
170
416260
2000
Imate šansu od 0.1%
06:58
you get an absolutely awesome item.
171
418260
3000
da dobijete stvarno izuzetan predmet.
07:01
And each of these rewards is carefully calibrated to the item.
172
421260
3000
I svaka od ovih nagrada pažljivo je odmerena za neki predmet.
07:04
And also, we say,
173
424260
2000
Takođe, kažemo, "Pa, koliko
07:06
"Well, how many monsters? Should I have the entire world full of a billion monsters?"
174
426260
3000
čudovišta? Da li bi trebalo da ceo svet bude pun milijardama čudovišta?"
07:09
No, we want one or two monsters on the screen at any one time.
175
429260
3000
Ne, želimo jedno ili dva čudovišta na ekranu u bilo kom trenutku.
07:12
So I'm drawn on. It's not too easy, not too difficult.
176
432260
3000
To me privlači. Nije previše lako, nije previše teško.
07:15
So all this is very powerful.
177
435260
2000
Sve ovo je veoma moćno.
07:17
But we're in virtuality. These aren't real boxes.
178
437260
3000
Ali mi smo u virtuelnom svetu; nisu to prave kutije.
07:20
So we can do
179
440260
2000
Tako da možemo da
07:22
some rather amazing things.
180
442260
2000
činimo neke prilično neverovatne stvari.
07:24
We notice, looking at all these people opening boxes,
181
444260
4000
Gledajući sve te ljude kako otvaraju kutije, primećujemo
07:28
that when people get to about 13 out of 15 pies,
182
448260
3000
da kad ljudi stignu do nekih 13 od 15 pita,
07:31
their perception shifts, they start to get a bit bored, a bit testy.
183
451260
3000
njihova percepcija se menja i postaje im pomalo dosadno.
07:34
They're not rational about probability.
184
454260
2000
Ne odnose se racionlano prema verovatnoći.
07:36
They think this game is unfair.
185
456260
2000
Misle da igra nije fer.
07:38
It's not giving me my last two pies. I'm going to give up.
186
458260
2000
Ne daje mi moje poslednje dve pite. Odustajem.
07:40
If they're real boxes, there's not much we can do,
187
460260
2000
Da su to prave kutije, ne bismo mogli mnogo da uradimo,
07:42
but in a game we can just say, "Right, well.
188
462260
2000
ali u igri možemo reći, "Dobro, u redu".
07:44
When you get to 13 pies, you've got 75 percent chance of getting a pie now."
189
464260
4000
Kada stignete do 13 pita, imate 75% šanse da sada dobijete pitu.
07:48
Keep you engaged. Look at what people do --
190
468260
2000
I dalje ste uključeni. Pogledajte šta ljudi rade -
07:50
adjust the world to match their expectation.
191
470260
2000
prilagode svet da se poklapa sa njihovim očekivanjem.
07:52
Our games don't always do this.
192
472260
2000
Naše igre ne rade ovo uvek.
07:54
And one thing they certainly do at the moment
193
474260
2000
A jedna stvar koju sigurno sada rade
07:56
is if you got a 0.1 percent awesome item,
194
476260
3000
je da, ako ste dobili super predmet sa 0.1% šanse,
07:59
they make very sure another one doesn't appear for a certain length of time
195
479260
3000
one će osigurati da se još neki takav predmet neće pojaviti poduže vreme
08:02
to keep the value, to keep it special.
196
482260
2000
kako bi se zadržala vrednost i posebnost.
08:04
And the point is really
197
484260
2000
Poenta je zapravo
08:06
that we evolved to be satisfied by the world
198
486260
2000
da smo se razvili da imamo
08:08
in particular ways.
199
488260
2000
razna zadovoljstva iz sveta.
08:10
Over tens and hundreds of thousands of years,
200
490260
3000
Desetinama, stotinama hiljada godina
08:13
we evolved to find certain things stimulating,
201
493260
2000
smo se razvijali da neke stvari doživimo kao stimulativne,
08:15
and as very intelligent, civilized beings,
202
495260
2000
i kao veoma inteligentna i civilizovana bića,
08:17
we're enormously stimulated by problem solving and learning.
203
497260
3000
u velikoj meri nas stimuliše učenje i rešavanje problema.
08:20
But now, we can reverse engineer that
204
500260
2000
Ali sada, možemo da obrnemo proces
08:22
and build worlds
205
502260
2000
i da gradimo svetove
08:24
that expressly tick our evolutionary boxes.
206
504260
3000
koji direktno utiču na te naše osobine.
08:27
So what does all this mean in practice?
207
507260
2000
Šta sve ovo znači u praksi?
08:29
Well, I've come up
208
509260
2000
Pa, ja sam došao
08:31
with seven things
209
511260
2000
do sedam stvari
08:33
that, I think, show
210
513260
2000
za koje mislim da pokazuju
08:35
how you can take these lessons from games
211
515260
2000
kako možete ove lekcije iz igara
08:37
and use them outside of games.
212
517260
3000
preneti na svet van igara.
08:40
The first one is very simple:
213
520260
2000
Prva je veoma jednostavna:
08:42
experience bars measuring progress --
214
522260
2000
indikator iskustva koji meri napredak -
08:44
something that's been talked about brilliantly
215
524260
2000
nešto o čemu su ljudi poput
08:46
by people like Jesse Schell earlier this year.
216
526260
3000
Džesija Šela odlično pričali početkom godine.
08:49
It's already been done at the University of Indiana in the States, among other places.
217
529260
3000
Već se primenjuje na Univerzitetu u Indijani, u Americi, i nekim drugim mestima.
08:52
It's the simple idea that instead of grading people incrementally
218
532260
3000
Ideja je da, umesto da postepeno ocenjujete ljude
08:55
in little bits and pieces,
219
535260
2000
u delovima,
08:57
you give them one profile character avatar
220
537260
2000
date im profil jednog lika
08:59
which is constantly progressing
221
539260
2000
koji konstantno napreduje putem
09:01
in tiny, tiny, tiny little increments which they feel are their own.
222
541260
3000
sitnih, sitnih stepena koji ljudi doživljavaju kao svoje.
09:04
And everything comes towards that,
223
544260
2000
I sve ide u tom pravcu
09:06
and they watch it creeping up, and they own that as it goes along.
224
546260
3000
i oni gledaju kako se pomera i poseduju ga.
09:09
Second, multiple long and short-term aims --
225
549260
2000
Drugo, mnogi dugoročni i kratkoročni ciljevi -
09:11
5,000 pies, boring,
226
551260
2000
5000 pita, dosadno,
09:13
15 pies, interesting.
227
553260
2000
15 pita, zanimljivo.
09:15
So, you give people
228
555260
2000
Dajete ljudima
09:17
lots and lots of different tasks.
229
557260
2000
mnogo različitih zadataka.
09:19
You say, it's about
230
559260
2000
Zadatak je
09:21
doing 10 of these questions,
231
561260
2000
da se uradi 10 ovih pitanja,
09:23
but another task
232
563260
2000
ali sledeći zadatak
09:25
is turning up to 20 classes on time,
233
565260
2000
je da se pojavite na 20 časova,
09:27
but another task is collaborating with other people,
234
567260
3000
sledeći je da radite zajedno sa drugim ljudima,
09:30
another task is showing you're working five times,
235
570260
3000
naredni je da prikažete svoj rad pet puta,
09:33
another task is hitting this particular target.
236
573260
2000
naredni je da stignete do određenog cilja.
09:35
You break things down into these calibrated slices
237
575260
3000
Razložite stvari na odmerene delove
09:38
that people can choose and do in parallel
238
578260
2000
koje ljudi mogu da biraju i rade paralelno
09:40
to keep them engaged
239
580260
2000
da bi i dalje bili angažovani
09:42
and that you can use to point them
240
582260
2000
a koje vi koristite da ih navedete
09:44
towards individually beneficial activities.
241
584260
3000
ka aktivnostima koje su im individualno korisne.
09:48
Third, you reward effort.
242
588260
2000
Treće, nagradite napor.
09:50
It's your 100 percent factor. Games are brilliant at this.
243
590260
3000
To je vaš faktor od 100%. Igre su fantastiče u ovome.
09:53
Every time you do something, you get credit; you get a credit for trying.
244
593260
3000
Svaki put kad nešto radite, dobijete nagradu za pokušaj.
09:56
You don't punish failure. You reward every little bit of effort --
245
596260
3000
Ne kažnjava se neuspeh; nagrađuje se i najmanji napor -
09:59
a little bit of gold, a little bit of credit. You've done 20 questions -- tick.
246
599260
3000
pomalo zlata, pomalo nagrada - uradili ste 20 pitanja - tik.
10:02
It all feeds in as minute reinforcement.
247
602260
3000
Sve funkcioniše kao instant ojačanje.
10:05
Fourth, feedback.
248
605260
2000
Četvrto, povratna informacija.
10:07
This is absolutely crucial,
249
607260
2000
Ovo je izuzetno bitno,
10:09
and virtuality is dazzling at delivering this.
250
609260
2000
a virtuelni svet je očaravajuće dobar u tome.
10:11
If you look at some of the most intractable problems in the world today
251
611260
3000
Ako pogledamo neke od najtežih problema u svetu danas,
10:14
that we've been hearing amazing things about,
252
614260
2000
o kojima slušamo neverovatne stvari,
10:16
it's very, very hard for people to learn
253
616260
3000
ljudima je veoma teško da nauče
10:19
if they cannot link consequences to actions.
254
619260
3000
ukoliko ne mogu da povežu posledice sa delima.
10:22
Pollution, global warming, these things --
255
622260
2000
Zagađenje, globalno zagrevanje, posledice
10:24
the consequences are distant in time and space.
256
624260
2000
svih tih stvari su daleke u vremenu i prostoru.
10:26
It's very hard to learn, to feel a lesson.
257
626260
2000
Veoma je teško naučiti da osetimo lekciju,
10:28
But if you can model things for people,
258
628260
2000
ali ako uobličimo stvari,
10:30
if you can give things to people that they can manipulate
259
630260
2000
ako ljudima damo stvari koje su opipljive
10:32
and play with and where the feedback comes,
260
632260
2000
i kojima mogu da se igraju i od kojih imaju povratnu informaciju,
10:34
then they can learn a lesson, they can see,
261
634260
2000
onda mogu da nauče lekciju, da vide,
10:36
they can move on, they can understand.
262
636260
3000
da napreduju, razumeju.
10:39
And fifth,
263
639260
2000
I peto,
10:41
the element of uncertainty.
264
641260
2000
element nesigurnosti.
10:43
Now this is the neurological goldmine,
265
643260
3000
Ovo je neurološki rudnik zlata,
10:46
if you like,
266
646260
2000
ako hoćete,
10:48
because a known reward
267
648260
2000
jer poznata nagrada
10:50
excites people,
268
650260
2000
uzbuđuje ljude,
10:52
but what really gets them going
269
652260
2000
ali ono što ih stvarno podstiče
10:54
is the uncertain reward,
270
654260
2000
je nesigurna nagrada,
10:56
the reward pitched at the right level of uncertainty,
271
656260
2000
ona koja se javlja na određenom stepenu nesigurnosti,
10:58
that they didn't quite know whether they were going to get it or not.
272
658260
3000
za koju ne znaju da li će je dobiti.
11:01
The 25 percent. This lights the brain up.
273
661260
3000
Tih 25%. To stimuliše mozak.
11:04
And if you think about
274
664260
2000
I ako razmišljate o
11:06
using this in testing,
275
666260
2000
korišćenju ovoga u testovima,
11:08
in just introducing control elements of randomness
276
668260
2000
o tome da uvedete kontrolisane elemente nasumičnosti
11:10
in all forms of testing and training,
277
670260
2000
u sve vrste testiranja i treninga,
11:12
you can transform the levels of people's engagement
278
672260
2000
možete kod ljudi promeniti nivoe angažovanosti
11:14
by tapping into this very powerful
279
674260
2000
tako što ćete se umešati u ovaj
11:16
evolutionary mechanism.
280
676260
2000
moćni evolutivni mehanizam.
11:18
When we don't quite predict something perfectly,
281
678260
2000
Taj da se veoma uzbudimo oko
11:20
we get really excited about it.
282
680260
2000
nečeg što ne možemo savršeno da predvidimo.
11:22
We just want to go back and find out more.
283
682260
2000
Samo želimo da se vratimo i saznamo više.
11:24
As you probably know, the neurotransmitter
284
684260
2000
Kao što verovatno znate, neurotransmiter
11:26
associated with learning is called dopamine.
285
686260
2000
koji je u vezi sa učenjem zove se dopamin.
11:28
It's associated with reward-seeking behavior.
286
688260
3000
Povezan je sa ponašanjem traženja nagrade.
11:31
And something very exciting is just beginning to happen
287
691260
3000
Nešto veoma uzbudljivo počinje da se dešava
11:34
in places like the University of Bristol in the U.K.,
288
694260
3000
na primer na Univerzitetu u Bristolu, u Velikoj Britaniji,
11:37
where we are beginning to be able to model mathematically
289
697260
3000
gde počinjemo da matematički oblikujemo
11:40
dopamine levels in the brain.
290
700260
2000
nivoe dopamina u mozgu.
11:42
And what this means is we can predict learning,
291
702260
2000
To znači da možemo da predvidimo učenje,
11:44
we can predict enhanced engagement,
292
704260
3000
da predvidimo povećano angažovanje,
11:47
these windows, these windows of time,
293
707260
2000
te vremenske periode kada
11:49
in which the learning is taking place at an enhanced level.
294
709260
3000
se učenje dešava na povišenom nivou.
11:52
And two things really flow from this.
295
712260
2000
Iz ovoga proizlaze dve stvari.
11:54
The first has to do with memory,
296
714260
2000
Prva ima veze sa pamćenjem,
11:56
that we can find these moments.
297
716260
2000
da možemo pronaći ove trenutke.
11:58
When someone is more likely to remember,
298
718260
2000
Kada neko ima više šanse da se seti,
12:00
we can give them a nugget in a window.
299
720260
2000
dajemo mu nagradu u nekim trenucima.
12:02
And the second thing is confidence,
300
722260
2000
Druga stvar je sigurnost,
12:04
that we can see how game-playing and reward structures
301
724260
2000
vidimo kako igranje igara i struktura nagrada
12:06
make people braver, make them more willing to take risks,
302
726260
3000
čine ljude hrabrijima, voljnijima da se upuštaju u rizike,
12:09
more willing to take on difficulty,
303
729260
2000
da se bore sa teškoćama,
12:11
harder to discourage.
304
731260
2000
teže ih je obeshrabriti.
12:13
This can all seem very sinister.
305
733260
2000
Sve ovo može da izgleda veoma opako.
12:15
But you know, sort of "our brains have been manipulated; we're all addicts."
306
735260
2000
Znate, kao "Našim mozgovima se manipuliše, svi smo zavisnici".
12:17
The word "addiction" is thrown around.
307
737260
2000
Koristi se reč zavisnost.
12:19
There are real concerns there.
308
739260
2000
Tu postoje ozbiljne brige.
12:21
But the biggest neurological turn-on for people
309
741260
2000
Ali ono što na neurološkom nivou najviše
12:23
is other people.
310
743260
2000
uzbuđuje ljude su drugi ljudi.
12:25
This is what really excites us.
311
745260
3000
To nas stvarno podstiče.
12:28
In reward terms, it's not money;
312
748260
2000
U terminima nagrada, to nije novac,
12:30
it's not being given cash -- that's nice --
313
750260
3000
nije dobijanje gotovine - to je lepo -
12:33
it's doing stuff with our peers,
314
753260
2000
nego kad radimo nešto sa drugima,
12:35
watching us, collaborating with us.
315
755260
2000
kada nas posmatraju, kada sarađujemo.
12:37
And I want to tell you a quick story about 1999 --
316
757260
2000
Želim da vam ispričam kratku priču o 1999. godini -
12:39
a video game called EverQuest.
317
759260
2000
o video igri "Everquest".
12:41
And in this video game,
318
761260
2000
U njoj su postojala dva
12:43
there were two really big dragons, and you had to team up to kill them --
319
763260
3000
ogromna zmaja i trebalo je da se udružite da biste ih ubili -
12:46
42 people, up to 42 to kill these big dragons.
320
766260
3000
42 ljudi - do 42 da bi se ubili ovi zmajevi.
12:49
That's a problem
321
769260
2000
To je problem, jer
12:51
because they dropped two or three decent items.
322
771260
3000
su oni za sobom ostavljali dva ili tri dobra predmeta.
12:54
So players addressed this problem
323
774260
3000
Igrači su ovom problemu prišli tako
12:57
by spontaneously coming up with a system
324
777260
2000
što su spontano pronašli sistem
12:59
to motivate each other,
325
779260
2000
međusobne motivacije,
13:01
fairly and transparently.
326
781260
2000
pošteno i otvoreno.
13:03
What happened was, they paid each other a virtual currency
327
783260
3000
Oni su jedni drugima plaćali virtuelnom valutom
13:06
they called "dragon kill points."
328
786260
3000
koju su zvali poenima za ubijanje zmaja.
13:09
And every time you turned up to go on a mission,
329
789260
2000
I svaki put kad biste se pojavili u nekoj misiji,
13:11
you got paid in dragon kill points.
330
791260
2000
plaćali bi vas poenima za ubijanje zmaja.
13:13
They tracked these on a separate website.
331
793260
2000
To su beležili na posebnom veb sajtu.
13:15
So they tracked their own private currency,
332
795260
2000
Pratili su sopstvenu privatnu valutu,
13:17
and then players could bid afterwards
333
797260
2000
a igrači su kasnije mogli da se nadmeću
13:19
for cool items they wanted --
334
799260
2000
za kul predmete koje su želeli -
13:21
all organized by the players themselves.
335
801260
2000
to su sve organizovali sami igrači.
13:23
Now the staggering system, not just that this worked in EverQuest,
336
803260
3000
Ovaj zadivljujuć sistem nije funkcionisao samo u ovoj igri,
13:26
but that today, a decade on,
337
806260
2000
nego danas, deset godina kasnije,
13:28
every single video game in the world with this kind of task
338
808260
3000
svaka igra na svetu sa ovakvom vrstom zadatka
13:31
uses a version of this system --
339
811260
2000
koristi neku varijantu ovog sistema -
13:33
tens of millions of people.
340
813260
2000
desetine miliona ljudi.
13:35
And the success rate
341
815260
2000
A nivo uspešnosti
13:37
is at close to 100 percent.
342
817260
2000
je blizu 100%.
13:39
This is a player-developed,
343
819260
2000
Ovo je dobrovoljna, samoprimenljiva
13:41
self-enforcing, voluntary currency,
344
821260
3000
valuta, koju su razvili igrači,
13:44
and it's incredibly sophisticated
345
824260
2000
i to je veoma sofisticirano
13:46
player behavior.
346
826260
2000
igračko ponašanje.
13:50
And I just want to end by suggesting
347
830260
2000
Želim da završim predlažući
13:52
a few ways in which these principles
348
832260
2000
nekoliko načina na koje ovi principi
13:54
could fan out into the world.
349
834260
2000
mogu da se prošire u svetu.
13:56
Let's start with business.
350
836260
2000
Počeću sa poslovanjem.
13:58
I mean, we're beginning to see some of the big problems
351
838260
2000
Mislim, viđamo neke od velikih problema
14:00
around something like business are
352
840260
2000
u stvarima kao što su biznis,
14:02
recycling and energy conservation.
353
842260
2000
recikliranje i ušteda energije.
14:04
We're beginning to see the emergence of wonderful technologies
354
844260
2000
Viđamo pojavu izuzetnih tehnologija
14:06
like real-time energy meters.
355
846260
2000
kao što su merači energije.
14:08
And I just look at this, and I think, yes,
356
848260
2000
Gledam to i mislim, da,
14:10
we could take that so much further
357
850260
3000
možemo otići mnogo dalje s ovim,
14:13
by allowing people to set targets
358
853260
2000
dozvoljavajući ljudima da postave ciljeve,
14:15
by setting calibrated targets,
359
855260
2000
postavljajući odmerene ciljeve,
14:17
by using elements of uncertainty,
360
857260
3000
koristeći elemente nesigurnosti,
14:20
by using these multiple targets,
361
860260
2000
koristeći više ciljeva,
14:22
by using a grand, underlying reward and incentive system,
362
862260
3000
koristeći sistem implicitnih nagrada i motivacije,
14:25
by setting people up
363
865260
2000
podstičući ljude da
14:27
to collaborate in terms of groups, in terms of streets
364
867260
2000
sarađuju u grupama, ulicama,
14:29
to collaborate and compete,
365
869260
2000
sarađuju i takmiče se,
14:31
to use these very sophisticated
366
871260
2000
da iskoriste ove veoma prefinjene
14:33
group and motivational mechanics we see.
367
873260
2000
grupne i motivacione mehanizme.
14:35
In terms of education,
368
875260
2000
Kad govorimo o obrazovanju,
14:37
perhaps most obviously of all,
369
877260
2000
možda najočiglednije možemo
14:39
we can transform how we engage people.
370
879260
3000
da preoblikujemo način na koji angažujemo ljude.
14:42
We can offer people the grand continuity
371
882260
2000
Možemo ponuditi ljudima kontinuitet
14:44
of experience and personal investment.
372
884260
3000
iskustva i lične investicije.
14:47
We can break things down
373
887260
2000
Možemo razložiti stvari na
14:49
into highly calibrated small tasks.
374
889260
2000
veoma specifične male zadatke.
14:51
We can use calculated randomness.
375
891260
2000
Možemo koristiti proračunatu nasumičnost.
14:53
We can reward effort consistently
376
893260
2000
Možemo stalno nagrađivati napor
14:55
as everything fields together.
377
895260
3000
kako se stvari uklapaju.
14:58
And we can use the kind of group behaviors
378
898260
2000
I možemo koristiti grupna ponašanja
15:00
that we see evolving when people are at play together,
379
900260
3000
koja se razvijaju kada ljudi igraju zajedno,
15:03
these really quite unprecedentedly complex
380
903260
3000
te složene mehanizme saradnje
15:06
cooperative mechanisms.
381
906260
2000
koji se potpuno bez presedana.
15:08
Government, well, one thing that comes to mind
382
908260
2000
Vlada, pa pada mi na pamet da
15:10
is the U.S. government, among others,
383
910260
3000
američka vlada, pored drugih,
15:13
is literally starting to pay people
384
913260
2000
bukvalno počinje da plaća
15:15
to lose weight.
385
915260
2000
ljudima da smršaju.
15:17
So we're seeing financial reward being used
386
917260
2000
Dakle vidimo da se finansijska nagrada koristi
15:19
to tackle the great issue of obesity.
387
919260
2000
za tretiranje ogromnog problema gojaznosti.
15:21
But again, those rewards
388
921260
2000
Ali opet, te nagrade
15:23
could be calibrated so precisely
389
923260
3000
mogu precizno da se odrede
15:26
if we were able to use the vast expertise
390
926260
3000
kad bismo mogli da koristimo veliku stručnost
15:29
of gaming systems to just jack up that appeal,
391
929260
3000
sistema igara da bismo samo to pokrenuli,
15:32
to take the data, to take the observations,
392
932260
2000
da skupimo podatke, skupimo posmatranja
15:34
of millions of human hours
393
934260
2000
miliona ljudskih sati
15:36
and plow that feedback
394
936260
2000
da bismo utkali tu povratnu informaciju
15:38
into increasing engagement.
395
938260
2000
u povećanje angažovanosti.
15:40
And in the end, it's this word, "engagement,"
396
940260
3000
Na kraju, ta reč, angažovanje,
15:43
that I want to leave you with.
397
943260
2000
je ono s čim želim da vas ostavim.
15:45
It's about how individual engagement
398
945260
2000
Kako individualno angažovanje
15:47
can be transformed
399
947260
2000
može da se transformiše
15:49
by the psychological and the neurological lessons
400
949260
3000
psihološkim i neurološkim lekcijama
15:52
we can learn from watching people that are playing games.
401
952260
3000
koje možemo naučiti iz posmatranja ljudi koji igraju igre.
15:55
But it's also about collective engagement
402
955260
3000
Ali radi se i o kolektivnoj angažovanosti
15:58
and about the unprecedented laboratory
403
958260
3000
i jedinstvenoj laboratoriji
16:01
for observing what makes people tick
404
961260
2000
za posmatranje toga šta ljude podstiče
16:03
and work and play and engage
405
963260
2000
da rade i igraju i da se angažuju
16:05
on a grand scale in games.
406
965260
3000
u velikoj meri u igrama.
16:08
And if we can look at these things and learn from them
407
968260
3000
I ako možemo da posmatramo ove stvari i iz njih učimo
16:11
and see how to turn them outwards,
408
971260
2000
i vidimo kako da ih iskoristimo,
16:13
then I really think we have something quite revolutionary on our hands.
409
973260
3000
onda mislim da imamo nešto revolucionarno u rukama.
16:16
Thank you very much.
410
976260
2000
Mnogo vam hvala.
16:18
(Applause)
411
978260
4000
(aplauz)
About this website

This site will introduce you to YouTube videos that are useful for learning English. You will see English lessons taught by top-notch teachers from around the world. Double-click on the English subtitles displayed on each video page to play the video from there. The subtitles scroll in sync with the video playback. If you have any comments or requests, please contact us using this contact form.

https://forms.gle/WvT1wiN1qDtmnspy7