Tom Chatfield: 7 ways video games engage the brain

203,334 views ・ 2010-11-01

TED


Dvaput kliknite na engleske titlove ispod za reprodukciju videozapisa.

Prevoditelj: Mislav Ante Omazić - EFZG Recezent: Tilen Pigac - EFZG
00:15
I love video games.
0
15260
3000
Obožavam video igre.
00:18
I'm also slightly in awe of them.
1
18260
3000
Gajim i neko strahopoštovanje prema njima.
00:21
I'm in awe of their power
2
21260
2000
Strahopoštovanje naspram moći
00:23
in terms of imagination, in terms of technology,
3
23260
2000
u vidu mašte, u vidu tehnologije,
00:25
in terms of concept.
4
25260
2000
u vidu koncepta.
00:27
But I think, above all,
5
27260
2000
Ali mislim, iznad svega,
00:29
I'm in awe at their power
6
29260
2000
strahopoštovanje naspram njihove moći
00:31
to motivate, to compel us,
7
31260
3000
za motivaciju, za prisiliti nas,
00:34
to transfix us,
8
34260
2000
za paralizirati nas,
00:36
like really nothing else we've ever invented
9
36260
3000
poput ničega drugoga što smo osmislili
00:39
has quite done before.
10
39260
2000
do sada.
00:41
And I think that we can learn some pretty amazing things
11
41260
3000
I mislim kako možemo naučiti neke prilično nevjerojatne stvari
00:44
by looking at how we do this.
12
44260
2000
gledajući nas kako to radimo.
00:46
And in particular, I think we can learn things
13
46260
2000
A posebno, mislim da možemo naučiti neke stvari
00:48
about learning.
14
48260
3000
o učenju.
00:51
Now the video games industry
15
51260
2000
Sada, industrija video igara
00:53
is far and away the fastest growing
16
53260
2000
je daleko najbrže rastuća
00:55
of all modern media.
17
55260
2000
od svih modernih medija.
00:57
From about 10 billion in 1990,
18
57260
2000
Od otprilike 10 milijardi u 1990.,
00:59
it's worth 50 billion dollars globally today,
19
59260
3000
danas globalno vrijedi 50 milijardi dolara,
01:02
and it shows no sign of slowing down.
20
62260
3000
i ne pokazuje nikakve znakove usporavanja.
01:05
In four years' time,
21
65260
2000
U roku od četiri godine,
01:07
it's estimated it'll be worth over 80 billion dollars.
22
67260
3000
procjena je da će vrijediti preko 80 milijardi dolara.
01:10
That's about three times the recorded music industry.
23
70260
3000
To je otprilike tri puta više od muzičke industrije.
01:13
This is pretty stunning,
24
73260
2000
To je prilično iznenađujuče,
01:15
but I don't think it's the most telling statistic of all.
25
75260
3000
ali ne mislim kako je to podatak koji ostavlja najsnažniji utisak.
01:18
The thing that really amazes me
26
78260
2000
Stvar koja me stvarno zapanjuje
01:20
is that, today,
27
80260
2000
je da, danas,
01:22
people spend about
28
82260
2000
ljudi potroše oko
01:24
eight billion real dollars a year
29
84260
3000
osam milijardi stvarnih dolara godišnje
01:27
buying virtual items
30
87260
2000
kupujući virtualne artikle
01:29
that only exist
31
89260
2000
koji samo postoje
01:31
inside video games.
32
91260
3000
u video igricama.
01:34
This is a screenshot from the virtual game world, Entropia Universe.
33
94260
3000
Ovo je snimka iz virtualnog svijeta igrice "Entropia Universe".
01:37
Earlier this year,
34
97260
2000
Ranije ove godine,
01:39
a virtual asteroid in it
35
99260
2000
virtualni asteroid u njoj
01:41
sold for 330,000 real dollars.
36
101260
4000
prodan je za stvarnih 330,000 dolara.
01:45
And this
37
105260
2000
I ovo
01:47
is a Titan class ship
38
107260
3000
je Titan klasa broda
01:50
in the space game, EVE Online.
39
110260
2000
u svemirskoj igrici, "EVE Online".
01:52
And this virtual object
40
112260
2000
I taj virtualni objekt
01:54
takes 200 real people
41
114260
2000
uzme 200 stvarnih ljudi
01:56
about 56 days of real time to build,
42
116260
3000
oko 56 dana stvarnog vremena da ga sagrade,
01:59
plus countless thousands of hours
43
119260
3000
plus bezbrojne tisuće sati
02:02
of effort before that.
44
122260
2000
napora prije toga.
02:04
And yet, many of these get built.
45
124260
3000
I opet, mnogi od ovih se sagrade.
02:07
At the other end of the scale,
46
127260
2000
S druge strane,
02:09
the game Farmville that you may well have heard of,
47
129260
3000
igricu "Farmville", za koju ste možda čuli,
02:12
has 70 million players
48
132260
2000
igra 70 milijuna igrača
02:14
around the world
49
134260
2000
širom svijeta,
02:16
and most of these players
50
136260
2000
i većina tih igrača
02:18
are playing it almost every day.
51
138260
2000
se igra gotovo svaki dan.
02:20
This may all sound
52
140260
2000
Sve to možda zvuči
02:22
really quite alarming to some people,
53
142260
2000
stvarno prilično alarmantno nekim ljudima,
02:24
an index of something worrying
54
144260
2000
kao pokazatelj nečeg zabrinjavajućeg
02:26
or wrong in society.
55
146260
2000
ili krivog u društvu.
02:28
But we're here for the good news,
56
148260
2000
Ali ovdje smo zbog dobrih vijesti,
02:30
and the good news is
57
150260
2000
a dobre vijesti su
02:32
that I think we can explore
58
152260
2000
da mislim kako možemo istraživati
02:34
why this very real human effort,
59
154260
3000
zašto taj jako stvaran ljudski napor,
02:37
this very intense generation of value, is occurring.
60
157260
4000
zašto se ta jako intenzivna generacija vrijednosti pojavljuje.
02:41
And by answering that question,
61
161260
2000
I odgovarajući na to pitanje,
02:43
I think we can take something
62
163260
2000
mislim kako možemo uzeti nešto
02:45
extremely powerful away.
63
165260
2000
stvarno moćno.
02:47
And I think the most interesting way
64
167260
2000
I mislim kako je najinteresantniji način
02:49
to think about how all this is going on
65
169260
2000
za razmišljanje o tome kako se sve to odvija,
02:51
is in terms of rewards.
66
171260
2000
jest u smislu nagrada.
02:53
And specifically, it's in terms
67
173260
3000
I specifično, to je u smislu
02:56
of the very intense emotional rewards
68
176260
2000
vrlo intenzivnih emocionalnih nagrada
02:58
that playing games offers to people
69
178260
2000
koje igranje igrica nudi ljudima,
03:00
both individually
70
180260
2000
kako individualno,
03:02
and collectively.
71
182260
2000
tako i kolektivno.
03:04
Now if we look at what's going on in someone's head
72
184260
2000
Ako pogledamo što se događa u nečijoj glavi
03:06
when they are being engaged,
73
186260
2000
kada su uključeni,
03:08
two quite different processes are occurring.
74
188260
3000
vidimo kako se pojavljuju dva različita procesa.
03:11
On the one hand, there's the wanting processes.
75
191260
3000
S jedne strane, to je proces želje.
03:14
This is a bit like ambition and drive -- I'm going to do that. I'm going to work hard.
76
194260
3000
To je djelomično nalik ambiciji i motivaciji -- učiniti ću to. Raditi ću naporno.
03:17
On the other hand, there's the liking processes,
77
197260
2000
S druge strane, to je proces sviđanja,
03:19
fun and affection
78
199260
2000
zabave i privrženosti
03:21
and delight
79
201260
2000
te ushićenja --
03:23
and an enormous flying beast with an orc on the back.
80
203260
2000
i ogromnu leteću zvijer s orkom na leđima.
03:25
It's a really great image. It's pretty cool.
81
205260
2000
Ovo je stvarno sjajna slika. Prilično dobra.
03:27
It's from the game World of Warcraft with more than 10 million players globally,
82
207260
3000
Ovo je iz igrice "World of Warcraft" koja ima više od 10 milijuna igrača globalno,
03:30
one of whom is me, another of whom is my wife.
83
210260
3000
jedan od kojih sam i ja, drugi je moja žena.
03:33
And this kind of a world,
84
213260
2000
I ta vrsta svijeta,
03:35
this vast flying beast you can ride around,
85
215260
2000
ta ogromna leteća zvijer koju možete jahati okolo
03:37
shows why games are so very good
86
217260
2000
pokazuje zašto su igrice toliko dobre
03:39
at doing both the wanting and the liking.
87
219260
3000
za dobivanje oba osjećaja, željenja i sviđanja.
03:42
Because it's very powerful. It's pretty awesome.
88
222260
2000
Jer su jako moćne. Prilično su impresivne.
03:44
It gives you great powers.
89
224260
2000
Daju vam veliku moć.
03:46
Your ambition is satisfied, but it's very beautiful.
90
226260
3000
Vaša ambicija je zadovoljena, a jako je lijepo.
03:49
It's a very great pleasure to fly around.
91
229260
3000
Ugodno je letjeti okolo.
03:52
And so these combine to form
92
232260
2000
I sve to formira
03:54
a very intense emotional engagement.
93
234260
2000
jako intenzivnu emocionalnu povezanost.
03:56
But this isn't the really interesting stuff.
94
236260
3000
Ali to nije stvarno toliko interesantno.
03:59
The really interesting stuff about virtuality
95
239260
2000
Stvarno interesantno o virtualnosti
04:01
is what you can measure with it.
96
241260
2000
jest što možete mjeriti s njom.
04:03
Because what you can measure in virtuality
97
243260
3000
Jer ono što možete mjeriti u virtualnom svijetu
04:06
is everything.
98
246260
2000
jest sve.
04:08
Every single thing that every single person
99
248260
2000
Svaka pojedina stvar koju je svaka pojedina osoba
04:10
who's ever played in a game has ever done can be measured.
100
250260
3000
koja je ikada igrala igricu napravila, može se mjeriti.
04:13
The biggest games in the world today
101
253260
2000
Najveće igre u svijetu danas
04:15
are measuring more than one billion points of data
102
255260
4000
mjere više od milijarde pojedinačnih podataka
04:19
about their players, about what everybody does --
103
259260
2000
o svojim igračima, o tome što bilo tko napravi --
04:21
far more detail than you'd ever get from any website.
104
261260
3000
puno više detalja od onoga što ćete dobiti s bilo koje web stranice.
04:24
And this allows something very special
105
264260
3000
I to omogućava nešto stvarno posebno
04:27
to happen in games.
106
267260
2000
da se dogodi u igricama.
04:29
It's something called the reward schedule.
107
269260
3000
To je nešto što se naziva rasporedom nagrada.
04:32
And by this, I mean looking
108
272260
2000
Pod ovim, mislim na praćenje
04:34
at what millions upon millions of people have done
109
274260
2000
onoga što milijuni i milijuni ljudi rade
04:36
and carefully calibrating the rate,
110
276260
2000
i pažljivog kalibriranja mjere,
04:38
the nature, the type, the intensity of rewards in games
111
278260
3000
prirode, tipa, intenziteta nagrada u igricama
04:41
to keep them engaged
112
281260
2000
kako biste ih držali uključenima
04:43
over staggering amounts of time and effort.
113
283260
3000
iznad zapanjujuće količine vremena i napora.
04:46
Now, to try and explain this
114
286260
2000
Sada ću pokušati objasniti to
04:48
in sort of real terms,
115
288260
3000
u realnim pojmovima,
04:51
I want to talk about a kind of task
116
291260
2000
želim govoriti o vrsti zadatka
04:53
that might fall to you in so many games.
117
293260
2000
koji možete dobiti u velikom broju igrica.
04:55
Go and get a certain amount of a certain little game-y item.
118
295260
3000
Idite i prikupite određenu količinu određenih malih igračih predmeta.
04:58
Let's say, for the sake of argument,
119
298260
2000
Recimo, zbog ove priče,
05:00
my mission is to get 15 pies
120
300260
3000
moja misija je da uzmem 15 pita,
05:03
and I can get 15 pies
121
303260
3000
i mogu uzeti 15 pita
05:06
by killing these cute, little monsters.
122
306260
2000
ubijajući ova slatka, mala čudovišta.
05:08
Simple game quest.
123
308260
2000
Jednostavan igrački pohod.
05:10
Now you can think about this, if you like,
124
310260
2000
Sada o tome možete razmišljati, ako želimo,
05:12
as a problem about boxes.
125
312260
2000
kao o problemu kutija.
05:14
I've got to keep opening boxes.
126
314260
2000
Moram otvarati kutije,
05:16
I don't know what's inside them until I open them.
127
316260
3000
jer ne znam što se krije u njima, dok ih ne otvorim.
05:19
And I go around opening box after box until I've got 15 pies.
128
319260
3000
I idem okolo otvarajući kutiju za kutijom, dok ne skupim 15 pita.
05:22
Now, if you take a game like Warcraft,
129
322260
2000
Ako uzmete igru poput "Warcraft-a",
05:24
you can think about it, if you like,
130
324260
2000
možete o njoj razmišljati, ako želite,
05:26
as a great box-opening effort.
131
326260
3000
kao o velikom poduhvatu otvaranja kutija.
05:29
The game's just trying to get people to open about a million boxes,
132
329260
3000
Igra jednostavno od ljudi traži da otvore oko milijun kutija,
05:32
getting better and better stuff in them.
133
332260
2000
kako bi iz njih dobili sve bolje stvari.
05:34
This sounds immensely boring
134
334260
3000
To zvuči nevjerojatno dosadno,
05:37
but games are able
135
337260
2000
ali igrice su sposobne
05:39
to make this process
136
339260
2000
napraviti taj proces
05:41
incredibly compelling.
137
341260
2000
nevjerojatno neodoljivim.
05:43
And the way they do this
138
343260
2000
I način na koji to rade
05:45
is through a combination of probability and data.
139
345260
3000
jest kombinacijom vjerojatnosti i podataka.
05:48
Let's think about probability.
140
348260
2000
Razmislimo o vjerojatnosti.
05:50
If we want to engage someone
141
350260
2000
Ako želimo nekoga uključiti
05:52
in the process of opening boxes to try and find pies,
142
352260
3000
u proces otvaranja kutija kako bi pronašli pite.
05:55
we want to make sure it's neither too easy,
143
355260
2000
Želimo biti sigurni kako nije niti lagano,
05:57
nor too difficult, to find a pie.
144
357260
2000
niti previše teško, pronaći pite.
05:59
So what do you do? Well, you look at a million people --
145
359260
2000
Što onda radimo? Pratite milijun ljudi --
06:01
no, 100 million people, 100 million box openers --
146
361260
3000
ne, 100 milijuna ljudi, 100 milijuna otvarača kutija --
06:04
and you work out, if you make the pie rate
147
364260
3000
i izradite, ako podesite pokazatelje za pite
06:07
about 25 percent --
148
367260
2000
na 25 posto --
06:09
that's neither too frustrating, nor too easy.
149
369260
3000
to nije niti previše frustrirajuće, niti previše lagano;
06:12
It keeps people engaged.
150
372260
2000
to čini ljude uključenima --
06:14
But of course, that's not all you do -- there's 15 pies.
151
374260
3000
ali naravno, to nije sve što radite -- tu je 15 pita.
06:17
Now, I could make a game called Piecraft,
152
377260
2000
mogao bih napraviti igricu "Piecraft",
06:19
where all you had to do was get a million pies
153
379260
2000
gdje sve što trebate napraviti jest uzeti milijun pita,
06:21
or a thousand pies.
154
381260
2000
ili tisuću pita.
06:23
That would be very boring.
155
383260
2000
To bi bilo prilično dosadno.
06:25
Fifteen is a pretty optimal number.
156
385260
2000
15 pita je prilično optimalan broj.
06:27
You find that -- you know, between five and 20
157
387260
2000
Nalazi se -- znate, između 5 i 20,
06:29
is about the right number for keeping people going.
158
389260
2000
to je otprilike pravi broj koji će uključiti ljude.
06:31
But we don't just have pies in the boxes.
159
391260
2000
Ali mi nemamo samo pite u kutijama.
06:33
There's 100 percent up here.
160
393260
2000
Tu je gore 100 posto.
06:35
And what we do is make sure that every time a box is opened,
161
395260
3000
Mi osiguramo da se svaki puta kada se kutija otvori,
06:38
there's something in it, some little reward
162
398260
2000
nešto je unutra, neka mala nagrada,
06:40
that keeps people progressing and engaged.
163
400260
2000
zbog koje ljudi napreduju i ostaju uključeni.
06:42
In most adventure games,
164
402260
2000
U većini avanturističkih igara,
06:44
it's a little bit in-game currency, a little bit experience.
165
404260
3000
to je pomalo poput neke igračke valute, malog iskustva,
06:47
But we don't just do that either.
166
407260
2000
ali ne radimo samo to.
06:49
We also say there's going to be loads of other items
167
409260
2000
Također kažemo da će biti još gomila drugih predmeta
06:51
of varying qualities and levels of excitement.
168
411260
2000
različite kvalitete i razina uzbuđenja.
06:53
There's going to be a 10 percent chance you get a pretty good item.
169
413260
3000
Postoji 10 posto šanse da ćete dobiti neki dobar predmet.
06:56
There's going to be a 0.1 percent chance
170
416260
2000
Biti će 0,1 posto šanse
06:58
you get an absolutely awesome item.
171
418260
3000
da dobijete apsolutno sjajan predmet.
07:01
And each of these rewards is carefully calibrated to the item.
172
421260
3000
I svaka od tih nagrada je pažljivo kalibrirana za neki predmet.
07:04
And also, we say,
173
424260
2000
I još, kažemo,
07:06
"Well, how many monsters? Should I have the entire world full of a billion monsters?"
174
426260
3000
"Koliko čudovišta? Trebam li imati cijeli svijet zatrpan milijardom čudovišta?"
07:09
No, we want one or two monsters on the screen at any one time.
175
429260
3000
Ne, mi hoćemo jedno ili dva čudovišta na ekranu u svakom trenutku.
07:12
So I'm drawn on. It's not too easy, not too difficult.
176
432260
3000
To me privlači. Nije previše lagano, nije previše teško.
07:15
So all this is very powerful.
177
435260
2000
Sve je to jako snažno.
07:17
But we're in virtuality. These aren't real boxes.
178
437260
3000
Ali mi se nalazimo u virtualnom svijetu; te kutije nisu stvarne.
07:20
So we can do
179
440260
2000
Dakle možemo učiniti
07:22
some rather amazing things.
180
442260
2000
neke prilično nevjerojatne stvari.
07:24
We notice, looking at all these people opening boxes,
181
444260
4000
Primjećujemo, gledajući sve te ljude koji otvaraju kutije,
07:28
that when people get to about 13 out of 15 pies,
182
448260
3000
da kada ljudi uzmu 13 od 15 pita,
07:31
their perception shifts, they start to get a bit bored, a bit testy.
183
451260
3000
njihova se percepcija promijeni, postaje im pomalo dosadno, pomalo su razdražljivi.
07:34
They're not rational about probability.
184
454260
2000
Nisu racionalni oko vjerojatnosti.
07:36
They think this game is unfair.
185
456260
2000
Misle kako je igrica nepoštena.
07:38
It's not giving me my last two pies. I'm going to give up.
186
458260
2000
Ne daje mi moje zadnje dvije pite. Odustati ću.
07:40
If they're real boxes, there's not much we can do,
187
460260
2000
Kada bi to bile stvarne kutije, nebismo puno toga mogli napraviti,
07:42
but in a game we can just say, "Right, well.
188
462260
2000
ali u igrici jednostavno kažemo, "Dobro, u redu."
07:44
When you get to 13 pies, you've got 75 percent chance of getting a pie now."
189
464260
4000
Kada imate 13 pita, imate 75% vjerojatnost da ćete sada osvojiti pitu.
07:48
Keep you engaged. Look at what people do --
190
468260
2000
To vas drži uključenima. Pogledajte što ljudi naprave --
07:50
adjust the world to match their expectation.
191
470260
2000
prilagode svijet da se poklapa s njihovim očekivanjima.
07:52
Our games don't always do this.
192
472260
2000
Naše igrice ne rade uvijek to.
07:54
And one thing they certainly do at the moment
193
474260
2000
A jedna stvar koju zasigurno mogu učiniti u trenutku
07:56
is if you got a 0.1 percent awesome item,
194
476260
3000
je, ako imate 0,1 posto impresivnih stvari,
07:59
they make very sure another one doesn't appear for a certain length of time
195
479260
3000
osiguraju se da se slijedeća ne pojavi unutar određenog vremena
08:02
to keep the value, to keep it special.
196
482260
2000
kako bi zadržali vrijednost, kako bi i dalje bila posebna.
08:04
And the point is really
197
484260
2000
A stvar je u biti
08:06
that we evolved to be satisfied by the world
198
486260
2000
da smo evolvirali kako bi bili zadovoljni sa svijetom
08:08
in particular ways.
199
488260
2000
na posebne načine.
08:10
Over tens and hundreds of thousands of years,
200
490260
3000
Kroz desetke i stotine tisuća godina,
08:13
we evolved to find certain things stimulating,
201
493260
2000
mi smo evoluirali tako da nas određene stvari stimuliraju,
08:15
and as very intelligent, civilized beings,
202
495260
2000
i kao inteligentna, civilizirana bića,
08:17
we're enormously stimulated by problem solving and learning.
203
497260
3000
mi smo nevjerojatno potaknuti rješavanjem problema i učenjem.
08:20
But now, we can reverse engineer that
204
500260
2000
Ali sada, možemo okrenuti proces tako da
08:22
and build worlds
205
502260
2000
mi gradimo svijetove
08:24
that expressly tick our evolutionary boxes.
206
504260
3000
koji će brzo utjecati na naše evolutivne kutije.
08:27
So what does all this mean in practice?
207
507260
2000
Dakle, što sve to znači u praksi?
08:29
Well, I've come up
208
509260
2000
Dobro, došao sam
08:31
with seven things
209
511260
2000
do sedam stvari
08:33
that, I think, show
210
513260
2000
koje, mislim, pokazuju
08:35
how you can take these lessons from games
211
515260
2000
kako bi mogli naučiti te lekcije iz igrica
08:37
and use them outside of games.
212
517260
3000
i upotrijebiti ih izvan njih.
08:40
The first one is very simple:
213
520260
2000
Prva je prilično jednostavna:
08:42
experience bars measuring progress --
214
522260
2000
indikator iskustva koji mjeri napredak --
08:44
something that's been talked about brilliantly
215
524260
2000
nešto o čemu sjajno pričaju
08:46
by people like Jesse Schell earlier this year.
216
526260
3000
ljudi poput Jesse Schell-a ranije ove godine.
08:49
It's already been done at the University of Indiana in the States, among other places.
217
529260
3000
Već je primjenjuju na državnom Sveučilištu Indiane, između ostalih mjesta.
08:52
It's the simple idea that instead of grading people incrementally
218
532260
3000
To je jednostavna ideja, umjesto da ljude ocjenjujemo postepeno
08:55
in little bits and pieces,
219
535260
2000
kroz male dijelove,
08:57
you give them one profile character avatar
220
537260
2000
date im određeni profil avatara
08:59
which is constantly progressing
221
539260
2000
koji stalno napreduje
09:01
in tiny, tiny, tiny little increments which they feel are their own.
222
541260
3000
u sićušnim, sićušnim dijelovima, za koje osjećaju da su njihovi.
09:04
And everything comes towards that,
223
544260
2000
I sve ide u tom pravcu da,
09:06
and they watch it creeping up, and they own that as it goes along.
224
546260
3000
oni gledaju kako napreduju, i oni to posjeduju kroz taj napredak.
09:09
Second, multiple long and short-term aims --
225
549260
2000
Drugo, mnoštvo kratkoročnih i dugoročnih ciljeva --
09:11
5,000 pies, boring,
226
551260
2000
5.000 pita, dosadno,
09:13
15 pies, interesting.
227
553260
2000
15 pita, zanimljivo.
09:15
So, you give people
228
555260
2000
Dakle, dajete ljudima
09:17
lots and lots of different tasks.
229
557260
2000
puno različitih zadataka.
09:19
You say, it's about
230
559260
2000
Kažete, zadatak je
09:21
doing 10 of these questions,
231
561260
2000
napraviti 10 ovih pitanja,
09:23
but another task
232
563260
2000
slijedeći zadatak
09:25
is turning up to 20 classes on time,
233
565260
2000
je da se pojavite na 20 satova na vrijeme,
09:27
but another task is collaborating with other people,
234
567260
3000
slijedeći zadatak je kolaboracija s drugim ljudima,
09:30
another task is showing you're working five times,
235
570260
3000
naredni zadatak je pokazati svoj rad pet puta,
09:33
another task is hitting this particular target.
236
573260
2000
slijedeći zadatak je pogoditi tu specifičnu metu.
09:35
You break things down into these calibrated slices
237
575260
3000
Razbijete stvari na te kalibrirane dijelove
09:38
that people can choose and do in parallel
238
578260
2000
koje ljudi biraju i paralelno rade
09:40
to keep them engaged
239
580260
2000
kako biste ih držali uključenima
09:42
and that you can use to point them
240
582260
2000
a koje vi možete iskoristiti da ih navedete
09:44
towards individually beneficial activities.
241
584260
3000
prema individualno korisnim aktivnostima.
09:48
Third, you reward effort.
242
588260
2000
Treće, nagrađujete napor.
09:50
It's your 100 percent factor. Games are brilliant at this.
243
590260
3000
To je vaš čimbenik 100 posto. Igre su sjajne za to.
09:53
Every time you do something, you get credit; you get a credit for trying.
244
593260
3000
Svaki puta kada nešto učinite, dobijete nagradu za pokušaj.
09:56
You don't punish failure. You reward every little bit of effort --
245
596260
3000
Ne kažnjavate pogreške; nagrađujete svaki mali napor --
09:59
a little bit of gold, a little bit of credit. You've done 20 questions -- tick.
246
599260
3000
malo vašeg zlata, malo vaših nagrada -- napravili ste 20 pitanja -- tik.
10:02
It all feeds in as minute reinforcement.
247
602260
3000
Sve to funkcionira kao trenutno osnaživanje.
10:05
Fourth, feedback.
248
605260
2000
Četvrto, povratna informacija.
10:07
This is absolutely crucial,
249
607260
2000
To je apsolutno krucijalno,
10:09
and virtuality is dazzling at delivering this.
250
609260
2000
a virtualni svijet je sjajan u isporuci toga.
10:11
If you look at some of the most intractable problems in the world today
251
611260
3000
Ako pogledate na neke od najtežih problema u svijetu danas
10:14
that we've been hearing amazing things about,
252
614260
2000
o kojima čujemo nevjerojatne stvari,
10:16
it's very, very hard for people to learn
253
616260
3000
jako, jako je teško ljudima učiti
10:19
if they cannot link consequences to actions.
254
619260
3000
ako ne mogu povezati posljedice i aktivnosti.
10:22
Pollution, global warming, these things --
255
622260
2000
Zagađivanje, globalno zatopljavanje, te stvari,
10:24
the consequences are distant in time and space.
256
624260
2000
imaju posljedice koje su udaljene u vremenu i prostoru.
10:26
It's very hard to learn, to feel a lesson.
257
626260
2000
Jako je teško učiti i osjećati lekciju,
10:28
But if you can model things for people,
258
628260
2000
ali ako možete modelirati stvari za ljude,
10:30
if you can give things to people that they can manipulate
259
630260
2000
ako možete dati stvari ljudima s kojima oni mogu manipulirati
10:32
and play with and where the feedback comes,
260
632260
2000
i igrati se te da dobiju povratnu informaciju,
10:34
then they can learn a lesson, they can see,
261
634260
2000
oni će naučiti lekciju, mogu je vidjeti,
10:36
they can move on, they can understand.
262
636260
3000
mogu napredovati, mogu razumijeti.
10:39
And fifth,
263
639260
2000
I peto,
10:41
the element of uncertainty.
264
641260
2000
element nesigurnosti.
10:43
Now this is the neurological goldmine,
265
643260
3000
To je neurološki rudnik zlata,
10:46
if you like,
266
646260
2000
ako želite,
10:48
because a known reward
267
648260
2000
jer poznate nagrade
10:50
excites people,
268
650260
2000
uzbuđuju ljude,
10:52
but what really gets them going
269
652260
2000
ali ono što ih stvarno tjera na napredak
10:54
is the uncertain reward,
270
654260
2000
jest nesigurnost nagrada,
10:56
the reward pitched at the right level of uncertainty,
271
656260
2000
nagrade koje su javljaju na određenoj razini nesigurnosti,
10:58
that they didn't quite know whether they were going to get it or not.
272
658260
3000
za koje nisu sa sigurnošću znali hoće li ih dobiti ili ne.
11:01
The 25 percent. This lights the brain up.
273
661260
3000
25%. To stimulira mozak.
11:04
And if you think about
274
664260
2000
I ako razmislite o
11:06
using this in testing,
275
666260
2000
korištenju ovoga u ispitivanju,
11:08
in just introducing control elements of randomness
276
668260
2000
o tome da jednostavno uvedete kontrolirane elemente slučajnosti
11:10
in all forms of testing and training,
277
670260
2000
u sve oblike testiranja i treninga,
11:12
you can transform the levels of people's engagement
278
672260
2000
onda možete transformirati razine uključenosti ljudi
11:14
by tapping into this very powerful
279
674260
2000
u taj vrlo moćni
11:16
evolutionary mechanism.
280
676260
2000
evolutivni mehanizam.
11:18
When we don't quite predict something perfectly,
281
678260
2000
Koji kada ne predvidimo nešto savršeno,
11:20
we get really excited about it.
282
680260
2000
shvaća kako se oko toga jako uzbudimo.
11:22
We just want to go back and find out more.
283
682260
2000
Jednostavno se želimo vratiti i saznati više.
11:24
As you probably know, the neurotransmitter
284
684260
2000
Kao što vjerojatno znate, neurotransmiter
11:26
associated with learning is called dopamine.
285
686260
2000
povezan s učenjem se zove dopamin.
11:28
It's associated with reward-seeking behavior.
286
688260
3000
On je povezan s ponašanjem traženja nagrada.
11:31
And something very exciting is just beginning to happen
287
691260
3000
I nešto jako uzbudljivo se počinje događati
11:34
in places like the University of Bristol in the U.K.,
288
694260
3000
na mjestima poput Sveučilišta u Bristolu u Velikoj Britaniji,
11:37
where we are beginning to be able to model mathematically
289
697260
3000
gdje započinjemo biti u mogućnosti da matematički modeliramo
11:40
dopamine levels in the brain.
290
700260
2000
razine dopamina u mozgu.
11:42
And what this means is we can predict learning,
291
702260
2000
A to znači da možemo predvidjeti učenje,
11:44
we can predict enhanced engagement,
292
704260
3000
možemo predvidjeti pojačano angažiranje,
11:47
these windows, these windows of time,
293
707260
2000
te periode, te vremenske periode,
11:49
in which the learning is taking place at an enhanced level.
294
709260
3000
u kojima se učenje događa na višoj razini.
11:52
And two things really flow from this.
295
712260
2000
I dvije stvari slijede iz ovoga.
11:54
The first has to do with memory,
296
714260
2000
Prva ima veze s pamćenjem,
11:56
that we can find these moments.
297
716260
2000
koje možemo pronaći u tim trenucima.
11:58
When someone is more likely to remember,
298
718260
2000
Kada postoji veća mogućnost da će netko nešto zapamtiti,
12:00
we can give them a nugget in a window.
299
720260
2000
možemo im dati nagradu u tim trenucima.
12:02
And the second thing is confidence,
300
722260
2000
A druga stvar je smjelost,
12:04
that we can see how game-playing and reward structures
301
724260
2000
koju vidimo kako igranje igrica i strukture nagrada
12:06
make people braver, make them more willing to take risks,
302
726260
3000
čine ljude hrabrijima, čine ljude spremnijima da preuzmu rizik,
12:09
more willing to take on difficulty,
303
729260
2000
spremnijima da preuzmu težinu,
12:11
harder to discourage.
304
731260
2000
težima za obeshrabrenje.
12:13
This can all seem very sinister.
305
733260
2000
To se sve može činiti jako zlokobnim.
12:15
But you know, sort of "our brains have been manipulated; we're all addicts."
306
735260
2000
Znate, na neki način "Našim mozgovima se manipulira, svi smo mi ovisnici."
12:17
The word "addiction" is thrown around.
307
737260
2000
Riječ ovisnost se koristi.
12:19
There are real concerns there.
308
739260
2000
To su legitimne brige.
12:21
But the biggest neurological turn-on for people
309
741260
2000
Ali najveće neurološko uzbuđenje za ljude
12:23
is other people.
310
743260
2000
su drugi ljudi.
12:25
This is what really excites us.
311
745260
3000
To je ono što nas stvarno potiče.
12:28
In reward terms, it's not money;
312
748260
2000
U smislu nagrada, to nije novac,
12:30
it's not being given cash -- that's nice --
313
750260
3000
to nije dobivanje gotovine -- to je lijepo --
12:33
it's doing stuff with our peers,
314
753260
2000
to je rad na stvarima s našim kolegama,
12:35
watching us, collaborating with us.
315
755260
2000
kada nas promatraju, kada surađujemo.
12:37
And I want to tell you a quick story about 1999 --
316
757260
2000
I reči ću vam kratku priču o 1999. --
12:39
a video game called EverQuest.
317
759260
2000
video igrica koja se zvala "Everquest".
12:41
And in this video game,
318
761260
2000
I u toj video igrici,
12:43
there were two really big dragons, and you had to team up to kill them --
319
763260
3000
postoje dva stvarno velika zmaja, i morate se udružiti kako biste ih ubili --
12:46
42 people, up to 42 to kill these big dragons.
320
766260
3000
42 ljudi -- do 42 kako bi se ubili ti zmajevi.
12:49
That's a problem
321
769260
2000
To je problem,
12:51
because they dropped two or three decent items.
322
771260
3000
jer su oni za sobom ostavljali dva ili tri dobra predmeta.
12:54
So players addressed this problem
323
774260
3000
Tako su igrači pristupili ovom problemu
12:57
by spontaneously coming up with a system
324
777260
2000
tako da su spontano složili sustav
12:59
to motivate each other,
325
779260
2000
međusobne motivacije,
13:01
fairly and transparently.
326
781260
2000
pošten i transparentan.
13:03
What happened was, they paid each other a virtual currency
327
783260
3000
Ono što se dogodilo jest, da su jedini drugima plaćali virtualnom valutom
13:06
they called "dragon kill points."
328
786260
3000
koju su nazivali bodovi za ubijanje zmaja.
13:09
And every time you turned up to go on a mission,
329
789260
2000
I svaki puta kada se pojavite za odlazak u misiju,
13:11
you got paid in dragon kill points.
330
791260
2000
plaća vam se u bodovima za ubijanje zmaja.
13:13
They tracked these on a separate website.
331
793260
2000
To su pratili na zasebnoj web stranici.
13:15
So they tracked their own private currency,
332
795260
2000
Tako su pratili svoju vlastitu valutu,
13:17
and then players could bid afterwards
333
797260
2000
i onda su se igrači poslije mogli nadmetati
13:19
for cool items they wanted --
334
799260
2000
za stvari koje su željeli --
13:21
all organized by the players themselves.
335
801260
2000
sve organizirano od strane igrača.
13:23
Now the staggering system, not just that this worked in EverQuest,
336
803260
3000
Ovaj zadivljujući sustav nije funkcionirao samo u ovoj igrici,
13:26
but that today, a decade on,
337
806260
2000
već danas, desetljeće kasnije,
13:28
every single video game in the world with this kind of task
338
808260
3000
svaka video igrica koja ima sličan zadatak
13:31
uses a version of this system --
339
811260
2000
koristi verziju tog sustava --
13:33
tens of millions of people.
340
813260
2000
deseci milijuna ljudi.
13:35
And the success rate
341
815260
2000
A stopa uspješnosti
13:37
is at close to 100 percent.
342
817260
2000
je blizu 100 posto.
13:39
This is a player-developed,
343
819260
2000
To je razvijena od strane igrača,
13:41
self-enforcing, voluntary currency,
344
821260
3000
samo-potaknuta, dobrovoljna valuta,
13:44
and it's incredibly sophisticated
345
824260
2000
i to nevjerojatno sofisticirano
13:46
player behavior.
346
826260
2000
ponašanje igrača.
13:50
And I just want to end by suggesting
347
830260
2000
I želio bih završiti sugestijom
13:52
a few ways in which these principles
348
832260
2000
nekoliko načina putem kojih se ovi principi
13:54
could fan out into the world.
349
834260
2000
mogu proširiti svijetom.
13:56
Let's start with business.
350
836260
2000
Započeti ću s poslovnim svijetom.
13:58
I mean, we're beginning to see some of the big problems
351
838260
2000
Mislim, počinjemo uviđati neke velike probleme
14:00
around something like business are
352
840260
2000
oko poslovnog svijeta,
14:02
recycling and energy conservation.
353
842260
2000
recikliranje i sačuvanje energije.
14:04
We're beginning to see the emergence of wonderful technologies
354
844260
2000
Počinjemo vidjeti nastajanje prekrasnih tehnologija
14:06
like real-time energy meters.
355
846260
2000
poput energometara u realnom vremenu.
14:08
And I just look at this, and I think, yes,
356
848260
2000
I samo gledam u to, i mislim, da,
14:10
we could take that so much further
357
850260
3000
mogli bismo to pomaknuti dalje
14:13
by allowing people to set targets
358
853260
2000
dozvoljavajući ljudima da si postave ciljeve
14:15
by setting calibrated targets,
359
855260
2000
postavljajući kalibrirane ciljeve,
14:17
by using elements of uncertainty,
360
857260
3000
koristeći elemente nesigurnosti,
14:20
by using these multiple targets,
361
860260
2000
koristeći mnogobrojne mete,
14:22
by using a grand, underlying reward and incentive system,
362
862260
3000
koristeći snažan, suptilni sustav implicitnih nagrada i motivacije,
14:25
by setting people up
363
865260
2000
potičući ljude
14:27
to collaborate in terms of groups, in terms of streets
364
867260
2000
na suradnju u smislu grupa, u smislu da ulice
14:29
to collaborate and compete,
365
869260
2000
međusobno surađuju i takmiče se,
14:31
to use these very sophisticated
366
871260
2000
da koriste ove jako profinjene
14:33
group and motivational mechanics we see.
367
873260
2000
grupe i motivacijske mehanizme koje vidite.
14:35
In terms of education,
368
875260
2000
U smislu edukacije,
14:37
perhaps most obviously of all,
369
877260
2000
možda najočitije od svega,
14:39
we can transform how we engage people.
370
879260
3000
možemo transformirati na koji način se ljudi uključuju.
14:42
We can offer people the grand continuity
371
882260
2000
Možemo ponuditi ljudima veliki kontinuitet
14:44
of experience and personal investment.
372
884260
3000
iskustava i osobnih investicija.
14:47
We can break things down
373
887260
2000
Možemo razbiti stvari
14:49
into highly calibrated small tasks.
374
889260
2000
na jako dobro odmjerene male zadatke.
14:51
We can use calculated randomness.
375
891260
2000
Možemo koristiti proračunatu slučajnost.
14:53
We can reward effort consistently
376
893260
2000
Možemo nagrađivati napor konzistentno
14:55
as everything fields together.
377
895260
3000
dok se stvari zajedno preklapaju.
14:58
And we can use the kind of group behaviors
378
898260
2000
I možemo koristiti vrstu grupnog ponašanja
15:00
that we see evolving when people are at play together,
379
900260
3000
koja nastaje kada se ljudi zajedno igraju,
15:03
these really quite unprecedentedly complex
380
903260
3000
te stvarno nepredvidive kompleksne
15:06
cooperative mechanisms.
381
906260
2000
mehanizme suradnje.
15:08
Government, well, one thing that comes to mind
382
908260
2000
Vlada, jedna stvar koja mi pada na pamet
15:10
is the U.S. government, among others,
383
910260
3000
je da američka vlada, poput drugih,
15:13
is literally starting to pay people
384
913260
2000
doslovno plaća ljudima
15:15
to lose weight.
385
915260
2000
da izgube na težini.
15:17
So we're seeing financial reward being used
386
917260
2000
Kažem da se koriste financijske nagrade
15:19
to tackle the great issue of obesity.
387
919260
2000
kako bi se napao veliki problem pretilosti.
15:21
But again, those rewards
388
921260
2000
Ali opet, te nagrade
15:23
could be calibrated so precisely
389
923260
3000
bi se mogle tako dobro kalibrirati
15:26
if we were able to use the vast expertise
390
926260
3000
kada bismo bili sposobni koristiti veliku stručnost
15:29
of gaming systems to just jack up that appeal,
391
929260
3000
igračkih sustava za pokretanje samo,
15:32
to take the data, to take the observations,
392
932260
2000
prikupljanje podataka, prikupljanje promatranja,
15:34
of millions of human hours
393
934260
2000
milijuna ljudskih sati
15:36
and plow that feedback
394
936260
2000
kako bismo utkali tu povratnu informaciju
15:38
into increasing engagement.
395
938260
2000
u povećanu uključenost.
15:40
And in the end, it's this word, "engagement,"
396
940260
3000
I na kraju, to je ta riječ, angažman,
15:43
that I want to leave you with.
397
943260
2000
s kojom vas želim ostaviti.
15:45
It's about how individual engagement
398
945260
2000
Radi se o tome kako se pojedinačni angažman
15:47
can be transformed
399
947260
2000
može transformirati
15:49
by the psychological and the neurological lessons
400
949260
3000
kroz psihološke i neurološke lekcije
15:52
we can learn from watching people that are playing games.
401
952260
3000
koje možemo naučiti promatrajući ljude dok se igraju.
15:55
But it's also about collective engagement
402
955260
3000
Ali radi se i o kolektivnoj uključenosti
15:58
and about the unprecedented laboratory
403
958260
3000
i jedinstvenom laboratoriju
16:01
for observing what makes people tick
404
961260
2000
za promatranje onoga što čini ljude da se povežu
16:03
and work and play and engage
405
963260
2000
i rade i igraju se i uključe
16:05
on a grand scale in games.
406
965260
3000
u velikom broju u igrice.
16:08
And if we can look at these things and learn from them
407
968260
3000
I ako možemo promatrati te stvari i učiti iz njih
16:11
and see how to turn them outwards,
408
971260
2000
i vidjeti kako ih poslije pretvoriti,
16:13
then I really think we have something quite revolutionary on our hands.
409
973260
3000
onda stvarno mislim da imamo nešto revolucionarno u svojim rukama.
16:16
Thank you very much.
410
976260
2000
Hvala vam puno.
16:18
(Applause)
411
978260
4000
(Pljesak)
O ovoj web stranici

Ova stranica će vas upoznati s YouTube videozapisima koji su korisni za učenje engleskog jezika. Vidjet ćete lekcije engleskog koje vode vrhunski profesori iz cijelog svijeta. Dvaput kliknite na engleske titlove prikazane na svakoj video stranici da biste reproducirali video s tog mjesta. Titlovi se pomiču sinkronizirano s reprodukcijom videozapisa. Ako imate bilo kakvih komentara ili zahtjeva, obratite nam se putem ovog obrasca za kontakt.

https://forms.gle/WvT1wiN1qDtmnspy7