Tom Chatfield: 7 ways video games engage the brain

203,337 views ・ 2010-11-01

TED


请双击下面的英文字幕来播放视频。

翻译人员: Yanni Wu 校对人员: Jenny Yang
00:15
I love video games.
0
15260
3000
我爱电子游戏
00:18
I'm also slightly in awe of them.
1
18260
3000
也对它抱有些许敬畏
00:21
I'm in awe of their power
2
21260
2000
我敬畏它们
00:23
in terms of imagination, in terms of technology,
3
23260
2000
想象力,技术
00:25
in terms of concept.
4
25260
2000
概念方面的力量
00:27
But I think, above all,
5
27260
2000
但是最重要的是
00:29
I'm in awe at their power
6
29260
2000
我所敬畏它们能够
00:31
to motivate, to compel us,
7
31260
3000
激励着,迫使着我们
00:34
to transfix us,
8
34260
2000
让我们目瞪口呆,
00:36
like really nothing else we've ever invented
9
36260
3000
这是人类其它发明
00:39
has quite done before.
10
39260
2000
所不能企及的。
00:41
And I think that we can learn some pretty amazing things
11
41260
3000
我们从观察玩电子游戏
00:44
by looking at how we do this.
12
44260
2000
中学到一些非常了不起的东西
00:46
And in particular, I think we can learn things
13
46260
2000
特别是,我想我们能学习关于
00:48
about learning.
14
48260
3000
学习的本质
00:51
Now the video games industry
15
51260
2000
现在电子游戏产业
00:53
is far and away the fastest growing
16
53260
2000
超速发展,远远领先于
00:55
of all modern media.
17
55260
2000
所有现代媒体
00:57
From about 10 billion in 1990,
18
57260
2000
从1990年代的大约100亿美元
00:59
it's worth 50 billion dollars globally today,
19
59260
3000
到今天在全球范围内值500亿美元
01:02
and it shows no sign of slowing down.
20
62260
3000
它没有显示出放缓的迹象
01:05
In four years' time,
21
65260
2000
在未来的四年里
01:07
it's estimated it'll be worth over 80 billion dollars.
22
67260
3000
据估计它的价值会超过800亿美元
01:10
That's about three times the recorded music industry.
23
70260
3000
这大约是唱片行业的三倍
01:13
This is pretty stunning,
24
73260
2000
真的很惊人
01:15
but I don't think it's the most telling statistic of all.
25
75260
3000
但我不认为这就是所有统计数据中最据说服力的
01:18
The thing that really amazes me
26
78260
2000
最使我惊讶的
01:20
is that, today,
27
80260
2000
就是,今天
01:22
people spend about
28
82260
2000
人们每年花费
01:24
eight billion real dollars a year
29
84260
3000
大约80亿美元现金
01:27
buying virtual items
30
87260
2000
用于购买仅存于
01:29
that only exist
31
89260
2000
电子游戏里的
01:31
inside video games.
32
91260
3000
虚拟iTunes服务
01:34
This is a screenshot from the virtual game world, Entropia Universe.
33
94260
3000
这是一个虚拟游戏世界的截图,来自《安特罗皮亚世界》
01:37
Earlier this year,
34
97260
2000
今年的早些时候
01:39
a virtual asteroid in it
35
99260
2000
在里面一个虚拟的小行星
01:41
sold for 330,000 real dollars.
36
101260
4000
卖到了33万美元现金
01:45
And this
37
105260
2000
这是
01:47
is a Titan class ship
38
107260
3000
是一艘泰坦級的宇宙飛船
01:50
in the space game, EVE Online.
39
110260
2000
来自太空游戏《星战前夜Online》
01:52
And this virtual object
40
112260
2000
这个虚拟的物体
01:54
takes 200 real people
41
114260
2000
需要200个真人
01:56
about 56 days of real time to build,
42
116260
3000
大约56个天建成
01:59
plus countless thousands of hours
43
119260
3000
还加上此前无数成千小时
02:02
of effort before that.
44
122260
2000
的前期工作
02:04
And yet, many of these get built.
45
124260
3000
類似這樣被造出的還有很多
02:07
At the other end of the scale,
46
127260
2000
而另一方面
02:09
the game Farmville that you may well have heard of,
47
129260
3000
游戏《虚拟农场》,你也许早有耳闻
02:12
has 70 million players
48
132260
2000
在全世界范围内
02:14
around the world
49
134260
2000
拥有700亿玩家
02:16
and most of these players
50
136260
2000
玩家中的绝大多数
02:18
are playing it almost every day.
51
138260
2000
几乎每天都在玩
02:20
This may all sound
52
140260
2000
这也许听起来
02:22
really quite alarming to some people,
53
142260
2000
对一些人来说,这是一个很令人警惕的
02:24
an index of something worrying
54
144260
2000
令人担忧的
02:26
or wrong in society.
55
146260
2000
社会问题的象征
02:28
But we're here for the good news,
56
148260
2000
但我们在这里讨论一些好消息
02:30
and the good news is
57
150260
2000
好消息就是
02:32
that I think we can explore
58
152260
2000
我们可以去探索
02:34
why this very real human effort,
59
154260
3000
为什么这种真实的人类劳动
02:37
this very intense generation of value, is occurring.
60
157260
4000
这么巨大的价值的创造会得以出现
02:41
And by answering that question,
61
161260
2000
借回答这个问题
02:43
I think we can take something
62
163260
2000
我觉得我们可以从中得到
02:45
extremely powerful away.
63
165260
2000
极其强大的信息。
02:47
And I think the most interesting way
64
167260
2000
我想最有趣的方式
02:49
to think about how all this is going on
65
169260
2000
思考这些问题的角度
02:51
is in terms of rewards.
66
171260
2000
就是奖赏。
02:53
And specifically, it's in terms
67
173260
3000
更具体来说,
02:56
of the very intense emotional rewards
68
176260
2000
就是非常密集的情感奖赏,
02:58
that playing games offers to people
69
178260
2000
通过玩游戏提供给人们,
03:00
both individually
70
180260
2000
既是个人的,
03:02
and collectively.
71
182260
2000
也有集体的。
03:04
Now if we look at what's going on in someone's head
72
184260
2000
如果我们观察一下某人的大脑,
03:06
when they are being engaged,
73
186260
2000
当他们忙碌时是怎样运作的,
03:08
two quite different processes are occurring.
74
188260
3000
两个相当不同的进程同时发生着。
03:11
On the one hand, there's the wanting processes.
75
191260
3000
在一方面,有一个期望过程
03:14
This is a bit like ambition and drive -- I'm going to do that. I'm going to work hard.
76
194260
3000
有点像野心和驱动力--我要去做那件事,我要努力
03:17
On the other hand, there's the liking processes,
77
197260
2000
在另一方面,有趣味的过程
03:19
fun and affection
78
199260
2000
乐趣,感情
03:21
and delight
79
201260
2000
和愉悦--
03:23
and an enormous flying beast with an orc on the back.
80
203260
2000
一个庞大的飞行动物背上骑着兽人
03:25
It's a really great image. It's pretty cool.
81
205260
2000
真是一个绝佳的图像,真的太酷了
03:27
It's from the game World of Warcraft with more than 10 million players globally,
82
207260
3000
它来自游戏《魔兽世界》,在全球拥有超过100万玩家
03:30
one of whom is me, another of whom is my wife.
83
210260
3000
其中有一个就是我,还有一个是我妻子
03:33
And this kind of a world,
84
213260
2000
这是一种世界
03:35
this vast flying beast you can ride around,
85
215260
2000
有大量的飞行动物你可以骑着到处跑
03:37
shows why games are so very good
86
217260
2000
而这正显示出为什么游戏是多么善于
03:39
at doing both the wanting and the liking.
87
219260
3000
让人同时做要做和喜欢做的事。
03:42
Because it's very powerful. It's pretty awesome.
88
222260
2000
因为它功能强大,它棒极了
03:44
It gives you great powers.
89
224260
2000
它给予你强大的力量
03:46
Your ambition is satisfied, but it's very beautiful.
90
226260
3000
你的野心被满足,同时它也是美好的
03:49
It's a very great pleasure to fly around.
91
229260
3000
能够飞来飞去多妙啊
03:52
And so these combine to form
92
232260
2000
所以所有这些东西结合起来构造了
03:54
a very intense emotional engagement.
93
234260
2000
一个非常强烈的情感活动
03:56
But this isn't the really interesting stuff.
94
236260
3000
但这并非真正有趣的东西
03:59
The really interesting stuff about virtuality
95
239260
2000
真正有趣的东西是它的虚拟性
04:01
is what you can measure with it.
96
241260
2000
是用它你能度量一些东西
04:03
Because what you can measure in virtuality
97
243260
3000
因为在虚拟世界你可以度量
04:06
is everything.
98
246260
2000
任何东西
04:08
Every single thing that every single person
99
248260
2000
在游戏里玩过的每个人
04:10
who's ever played in a game has ever done can be measured.
100
250260
3000
做的每件事情,都可以被测量
04:13
The biggest games in the world today
101
253260
2000
目前全世界最大的游戏
04:15
are measuring more than one billion points of data
102
255260
4000
所测量的数据超过数十亿份
04:19
about their players, about what everybody does --
103
259260
2000
关于它的玩家,关于每个人的行动
04:21
far more detail than you'd ever get from any website.
104
261260
3000
远远超过你从任何一个网站上所获得的细节
04:24
And this allows something very special
105
264260
3000
这就使一些特殊的东西
04:27
to happen in games.
106
267260
2000
在游戏中发生
04:29
It's something called the reward schedule.
107
269260
3000
这些东西名为奖励量表
04:32
And by this, I mean looking
108
272260
2000
说到这,我的意思是
04:34
at what millions upon millions of people have done
109
274260
2000
看着亿万人做了什么
04:36
and carefully calibrating the rate,
110
276260
2000
然后仔细校准在游戏中的
04:38
the nature, the type, the intensity of rewards in games
111
278260
3000
频率,性质,类型和奖励力度
04:41
to keep them engaged
112
281260
2000
以保持他们参与
04:43
over staggering amounts of time and effort.
113
283260
3000
以这惊人数量的时间和努力
04:46
Now, to try and explain this
114
286260
2000
现在,为了尝试做些
04:48
in sort of real terms,
115
288260
3000
实例性解释
04:51
I want to talk about a kind of task
116
291260
2000
我想谈谈在很多游戏里
04:53
that might fall to you in so many games.
117
293260
2000
一种任务极可能降临到你身上
04:55
Go and get a certain amount of a certain little game-y item.
118
295260
3000
去寻找一定数量的某些游戏小玩意
04:58
Let's say, for the sake of argument,
119
298260
2000
比方说,为了便于讨论
05:00
my mission is to get 15 pies
120
300260
3000
我的任务是去找15个馅饼
05:03
and I can get 15 pies
121
303260
3000
我可以得到15个馅饼
05:06
by killing these cute, little monsters.
122
306260
2000
就靠去杀掉这些可爱的小怪物
05:08
Simple game quest.
123
308260
2000
很简单的游戏要求
05:10
Now you can think about this, if you like,
124
310260
2000
现在你可以把这个当做,如果你愿意
05:12
as a problem about boxes.
125
312260
2000
一个关于箱子的问题
05:14
I've got to keep opening boxes.
126
314260
2000
我要一直打开箱子
05:16
I don't know what's inside them until I open them.
127
316260
3000
在打开它们之前我并不知道里面有什么
05:19
And I go around opening box after box until I've got 15 pies.
128
319260
3000
所以我四处走,打开一个又一个箱子,直到我得到15个饼
05:22
Now, if you take a game like Warcraft,
129
322260
2000
现在,如果你玩像魔兽这类游戏
05:24
you can think about it, if you like,
130
324260
2000
你可以把它当做,如果你愿意的话
05:26
as a great box-opening effort.
131
326260
3000
一个庞大的开箱子工程
05:29
The game's just trying to get people to open about a million boxes,
132
329260
3000
游戏只是尽可能地让人们打开成千上万的箱子
05:32
getting better and better stuff in them.
133
332260
2000
从中获得越来越好的装备
05:34
This sounds immensely boring
134
334260
3000
这听起来非常无聊
05:37
but games are able
135
337260
2000
但游戏却有能力
05:39
to make this process
136
339260
2000
将这一过程变得
05:41
incredibly compelling.
137
341260
2000
异常地有吸引力
05:43
And the way they do this
138
343260
2000
而他们做到这些的方法就是
05:45
is through a combination of probability and data.
139
345260
3000
通过结合概率和数理统计
05:48
Let's think about probability.
140
348260
2000
让我们先想想概率吧
05:50
If we want to engage someone
141
350260
2000
如果我想让某人参与进
05:52
in the process of opening boxes to try and find pies,
142
352260
3000
这个为了寻找馅饼去开箱子的过程中
05:55
we want to make sure it's neither too easy,
143
355260
2000
我想要保证这一过程既不太简单
05:57
nor too difficult, to find a pie.
144
357260
2000
也不会太难
05:59
So what do you do? Well, you look at a million people --
145
359260
2000
所以你会怎么做?好的,你看着一百万人
06:01
no, 100 million people, 100 million box openers --
146
361260
3000
不,一亿人,一亿个开箱者
06:04
and you work out, if you make the pie rate
147
364260
3000
然后你计算,如果你使得到馅饼的几率成
06:07
about 25 percent --
148
367260
2000
大约25%--
06:09
that's neither too frustrating, nor too easy.
149
369260
3000
那就既不太让人丧气,又不会太简单
06:12
It keeps people engaged.
150
372260
2000
它能使人持续参与
06:14
But of course, that's not all you do -- there's 15 pies.
151
374260
3000
当然,这还不是全部, 这只是 15 个馅饼。
06:17
Now, I could make a game called Piecraft,
152
377260
2000
现在,我可以做一个游戏名为《馅饼争霸》
06:19
where all you had to do was get a million pies
153
379260
2000
在里面你要做的所有事就是得到一百万个馅饼
06:21
or a thousand pies.
154
381260
2000
或者一千个馅饼
06:23
That would be very boring.
155
383260
2000
那会变得很无趣
06:25
Fifteen is a pretty optimal number.
156
385260
2000
15是个最佳的数字
06:27
You find that -- you know, between five and 20
157
387260
2000
你得到--你知道,在5和20之间
06:29
is about the right number for keeping people going.
158
389260
2000
这是维持人们进行的恰当的数字
06:31
But we don't just have pies in the boxes.
159
391260
2000
但我们在箱子里找到的不只是馅饼。
06:33
There's 100 percent up here.
160
393260
2000
这点我敢百分百肯定。
06:35
And what we do is make sure that every time a box is opened,
161
395260
3000
我们要做的就是保证每次一个箱子被打开
06:38
there's something in it, some little reward
162
398260
2000
都有一些东西在里面,一些小奖励
06:40
that keeps people progressing and engaged.
163
400260
2000
它能促使人们前进并参与活动
06:42
In most adventure games,
164
402260
2000
在大多数冒险游戏中
06:44
it's a little bit in-game currency, a little bit experience.
165
404260
3000
会是一些游戏币,一些经验值
06:47
But we don't just do that either.
166
407260
2000
但我们也并不只做这些
06:49
We also say there's going to be loads of other items
167
409260
2000
我们还说将会加载其他物品
06:51
of varying qualities and levels of excitement.
168
411260
2000
它们具备各种属性和等级
06:53
There's going to be a 10 percent chance you get a pretty good item.
169
413260
3000
你得到一个非常好的东西的几率是百分之十
06:56
There's going to be a 0.1 percent chance
170
416260
2000
将会有千分之一的几率
06:58
you get an absolutely awesome item.
171
418260
3000
你能得到一个绝对超棒的物品
07:01
And each of these rewards is carefully calibrated to the item.
172
421260
3000
每一个奖励都被仔细和物品校准
07:04
And also, we say,
173
424260
2000
并且,我们假设
07:06
"Well, how many monsters? Should I have the entire world full of a billion monsters?"
174
426260
3000
“好的,需要多少怪物?我要用十亿个怪物把整个世界装满吗?”
07:09
No, we want one or two monsters on the screen at any one time.
175
429260
3000
不,我们每次在屏幕场景中放一或两个怪物
07:12
So I'm drawn on. It's not too easy, not too difficult.
176
432260
3000
所以我描述了,这既不很简单,也不很难
07:15
So all this is very powerful.
177
435260
2000
所以这一切都非常有力
07:17
But we're in virtuality. These aren't real boxes.
178
437260
3000
但我们在虚拟世界里,那些不是真的箱子
07:20
So we can do
179
440260
2000
所以我们可以做
07:22
some rather amazing things.
180
442260
2000
一些更加令人惊奇的事
07:24
We notice, looking at all these people opening boxes,
181
444260
4000
我们发现,看着所有这些人打开箱子
07:28
that when people get to about 13 out of 15 pies,
182
448260
3000
当人们得到大约13到15个馅饼的时候
07:31
their perception shifts, they start to get a bit bored, a bit testy.
183
451260
3000
他们的感觉变化了,他们开始觉得有点无趣,有点急躁
07:34
They're not rational about probability.
184
454260
2000
他们对待概率并不理性
07:36
They think this game is unfair.
185
456260
2000
他们觉得这个游戏不公平
07:38
It's not giving me my last two pies. I'm going to give up.
186
458260
2000
它仍没有给我最后两个馅饼,我要放弃了
07:40
If they're real boxes, there's not much we can do,
187
460260
2000
如果这些箱子都是真的的,我们就无能为力
07:42
but in a game we can just say, "Right, well.
188
462260
2000
但是在游戏中我们可以就这样说,“是的,好吧”
07:44
When you get to 13 pies, you've got 75 percent chance of getting a pie now."
189
464260
4000
当你得到13个馅饼的时候,你得到馅饼的机率会成为75%
07:48
Keep you engaged. Look at what people do --
190
468260
2000
让你继续前进,观察人们如何玩游戏— —
07:50
adjust the world to match their expectation.
191
470260
2000
调整世界以符合他们的期望
07:52
Our games don't always do this.
192
472260
2000
我们的游戏并不一直做这些事情
07:54
And one thing they certainly do at the moment
193
474260
2000
但眼下有一件事情是他们必定做的
07:56
is if you got a 0.1 percent awesome item,
194
476260
3000
就是,如果你得到了千分之一几率的超棒物品
07:59
they make very sure another one doesn't appear for a certain length of time
195
479260
3000
它们绝对保证在一段时间里不会出现另一个
08:02
to keep the value, to keep it special.
196
482260
2000
以保持它的价值,保证它的独特性
08:04
And the point is really
197
484260
2000
关键在于
08:06
that we evolved to be satisfied by the world
198
486260
2000
我们进化去适应世界的需要
08:08
in particular ways.
199
488260
2000
以一种特殊的方式
08:10
Over tens and hundreds of thousands of years,
200
490260
3000
历经了几千几万年
08:13
we evolved to find certain things stimulating,
201
493260
2000
我们进化去找一些刺激的事
08:15
and as very intelligent, civilized beings,
202
495260
2000
作为高等智能,社会化的人
08:17
we're enormously stimulated by problem solving and learning.
203
497260
3000
我们受到解决问题和学习过程极大地激发
08:20
But now, we can reverse engineer that
204
500260
2000
但现在,我们可以逆反这一过程
08:22
and build worlds
205
502260
2000
并建造世界
08:24
that expressly tick our evolutionary boxes.
206
504260
3000
明确地对我们的进化发展进行评估
08:27
So what does all this mean in practice?
207
507260
2000
所有这些对现实有什么意义?
08:29
Well, I've come up
208
509260
2000
好的,我将提出
08:31
with seven things
209
511260
2000
7件事
08:33
that, I think, show
210
513260
2000
我觉得能体现
08:35
how you can take these lessons from games
211
515260
2000
从游戏中你怎样学到这些经验
08:37
and use them outside of games.
212
517260
3000
然后把它们运用到游戏之外
08:40
The first one is very simple:
213
520260
2000
首先看一个简单的:
08:42
experience bars measuring progress --
214
522260
2000
用经验值条量度进程— —
08:44
something that's been talked about brilliantly
215
524260
2000
它曾经被人精彩地讨论过
08:46
by people like Jesse Schell earlier this year.
216
526260
3000
比如杰西谢尔,在今年的早些时候
08:49
It's already been done at the University of Indiana in the States, among other places.
217
529260
3000
它已经被美国印第安纳大学做到了,也在其他的地方
08:52
It's the simple idea that instead of grading people incrementally
218
532260
3000
这个朴素的理念是,取代用零碎的方式
08:55
in little bits and pieces,
219
535260
2000
将人们逐步分级
08:57
you give them one profile character avatar
220
537260
2000
你给他们一个人物轮廓
08:59
which is constantly progressing
221
539260
2000
一个可以不断进步的
09:01
in tiny, tiny, tiny little increments which they feel are their own.
222
541260
3000
以非常,非常小的增量,一种他们感觉是自己的东西
09:04
And everything comes towards that,
223
544260
2000
然后所有事都向其发展
09:06
and they watch it creeping up, and they own that as it goes along.
224
546260
3000
他们看着其攀升,然后他们的自我也随之提升
09:09
Second, multiple long and short-term aims --
225
549260
2000
第二点,长期与短期目标
09:11
5,000 pies, boring,
226
551260
2000
5000个馅饼,无趣
09:13
15 pies, interesting.
227
553260
2000
15个,有趣
09:15
So, you give people
228
555260
2000
所以你给人们
09:17
lots and lots of different tasks.
229
557260
2000
很多很多不同的任务
09:19
You say, it's about
230
559260
2000
你说,这个是
09:21
doing 10 of these questions,
231
561260
2000
解决其中的10个问题
09:23
but another task
232
563260
2000
但另一个任务
09:25
is turning up to 20 classes on time,
233
565260
2000
是在规定时间里上升20个等级
09:27
but another task is collaborating with other people,
234
567260
3000
另一个任务是和其他人一起合作的
09:30
another task is showing you're working five times,
235
570260
3000
另一个任务要求你工作量提高五倍
09:33
another task is hitting this particular target.
236
573260
2000
还有一个任务是达到某个特定目标
09:35
You break things down into these calibrated slices
237
575260
3000
你把事情分成这些可计量的小部分
09:38
that people can choose and do in parallel
238
578260
2000
人们可以选择然后同时进行
09:40
to keep them engaged
239
580260
2000
以让他们持续参与
09:42
and that you can use to point them
240
582260
2000
并将它们和
09:44
towards individually beneficial activities.
241
584260
3000
个人的获利行为挂钩。
09:48
Third, you reward effort.
242
588260
2000
第三,奖励成就
09:50
It's your 100 percent factor. Games are brilliant at this.
243
590260
3000
这是你百分之百的要素,游戏在此很明确
09:53
Every time you do something, you get credit; you get a credit for trying.
244
593260
3000
每次你做一些事,你得到功劳,你因尽力而为获得认可
09:56
You don't punish failure. You reward every little bit of effort --
245
596260
3000
你不惩罚失败,你奖励每一个小小的努力
09:59
a little bit of gold, a little bit of credit. You've done 20 questions -- tick.
246
599260
3000
你的一点金子,你的一点功劳--你解决了20个问题--打上勾
10:02
It all feeds in as minute reinforcement.
247
602260
3000
这些都是通过小小的鼓励实现的。
10:05
Fourth, feedback.
248
605260
2000
第四,反馈
10:07
This is absolutely crucial,
249
607260
2000
这绝对关键
10:09
and virtuality is dazzling at delivering this.
250
609260
2000
虚拟世界以眼花缭乱的方式传递这一信息
10:11
If you look at some of the most intractable problems in the world today
251
611260
3000
如果你看看今天世界上一些最棘手的问题
10:14
that we've been hearing amazing things about,
252
614260
2000
我们所听到的一些惊人的事情
10:16
it's very, very hard for people to learn
253
616260
3000
非常,非常难为人们所领会
10:19
if they cannot link consequences to actions.
254
619260
3000
如果他们不能把结果与行为连接起来
10:22
Pollution, global warming, these things --
255
622260
2000
污染,全球变暖,这些事情
10:24
the consequences are distant in time and space.
256
624260
2000
结果的产生在时间和空间上都是久远的
10:26
It's very hard to learn, to feel a lesson.
257
626260
2000
这非常难以学习或者体会经验
10:28
But if you can model things for people,
258
628260
2000
但是如果你能模拟东西给人们看
10:30
if you can give things to people that they can manipulate
259
630260
2000
如果你给予人们一些东西,他们可以操作
10:32
and play with and where the feedback comes,
260
632260
2000
可以演示,可以收集反馈
10:34
then they can learn a lesson, they can see,
261
634260
2000
人们就可以学到经验,他们能看
10:36
they can move on, they can understand.
262
636260
3000
他们能行动,他们能明白
10:39
And fifth,
263
639260
2000
第五点
10:41
the element of uncertainty.
264
641260
2000
不确定性因素
10:43
Now this is the neurological goldmine,
265
643260
3000
现在这是个神经学金矿
10:46
if you like,
266
646260
2000
如果你愿意的话
10:48
because a known reward
267
648260
2000
因为一个已知的奖励
10:50
excites people,
268
650260
2000
会激发人们
10:52
but what really gets them going
269
652260
2000
但是真正能让他们前进下去的
10:54
is the uncertain reward,
270
654260
2000
是未知的奖励
10:56
the reward pitched at the right level of uncertainty,
271
656260
2000
带着适当不确定性的奖励
10:58
that they didn't quite know whether they were going to get it or not.
272
658260
3000
也就是人们不知道是否能得到的奖励
11:01
The 25 percent. This lights the brain up.
273
661260
3000
比如25%的获奖机率,会使大脑兴奋
11:04
And if you think about
274
664260
2000
如果你想把它
11:06
using this in testing,
275
666260
2000
运用到测验中
11:08
in just introducing control elements of randomness
276
668260
2000
引入控制随机变量
11:10
in all forms of testing and training,
277
670260
2000
到任何形式的检测和训练里
11:12
you can transform the levels of people's engagement
278
672260
2000
你能够改变人们的投入程度
11:14
by tapping into this very powerful
279
674260
2000
通过引进这种非常有力的
11:16
evolutionary mechanism.
280
676260
2000
进化机制
11:18
When we don't quite predict something perfectly,
281
678260
2000
当我们不能完全预测某事时
11:20
we get really excited about it.
282
680260
2000
我们为之十分兴奋
11:22
We just want to go back and find out more.
283
682260
2000
我们就想追溯出更多东西
11:24
As you probably know, the neurotransmitter
284
684260
2000
你知道, 神经递质
11:26
associated with learning is called dopamine.
285
686260
2000
伴随学习产生的神经递质叫做多巴胺。
11:28
It's associated with reward-seeking behavior.
286
688260
3000
它与寻找奖励的行为相关联
11:31
And something very exciting is just beginning to happen
287
691260
3000
有些非常激动人心的事要开始发生在
11:34
in places like the University of Bristol in the U.K.,
288
694260
3000
像英国布里斯托尔大学这样的地方
11:37
where we are beginning to be able to model mathematically
289
697260
3000
那里我们开始能用数学模型
11:40
dopamine levels in the brain.
290
700260
2000
模拟大脑中多巴胺的水平
11:42
And what this means is we can predict learning,
291
702260
2000
这意味着我们能够预测学习过程
11:44
we can predict enhanced engagement,
292
704260
3000
我们能预测加强型活动
11:47
these windows, these windows of time,
293
707260
2000
这些机会期,这段时间
11:49
in which the learning is taking place at an enhanced level.
294
709260
3000
学习的过程在其中一个更高的水平上进行
11:52
And two things really flow from this.
295
712260
2000
随之而来的是两样东西
11:54
The first has to do with memory,
296
714260
2000
首先一定是关于记忆
11:56
that we can find these moments.
297
716260
2000
我们能发现这些时候
11:58
When someone is more likely to remember,
298
718260
2000
当一些人更容易记忆时
12:00
we can give them a nugget in a window.
299
720260
2000
我们可以给他们提供机会期这一宝贵的资源
12:02
And the second thing is confidence,
300
722260
2000
第二样东西是自信
12:04
that we can see how game-playing and reward structures
301
724260
2000
我们能看见游戏的运行和奖励结构
12:06
make people braver, make them more willing to take risks,
302
726260
3000
如何使人更勇敢,让他们更愿意去冒险
12:09
more willing to take on difficulty,
303
729260
2000
更愿意承担困难
12:11
harder to discourage.
304
731260
2000
更难被打击
12:13
This can all seem very sinister.
305
733260
2000
这些都看来好像很险恶
12:15
But you know, sort of "our brains have been manipulated; we're all addicts."
306
735260
2000
但你知道,有些“我们的大脑被控制了,我们都沉迷了”的说法
12:17
The word "addiction" is thrown around.
307
737260
2000
沉迷这个字眼总萦绕周围
12:19
There are real concerns there.
308
739260
2000
那有些真正的忧虑
12:21
But the biggest neurological turn-on for people
309
741260
2000
但激发人类神经的最大因素是
12:23
is other people.
310
743260
2000
他人
12:25
This is what really excites us.
311
745260
3000
这才是真正让我们兴奋的
12:28
In reward terms, it's not money;
312
748260
2000
在奖励方面,不是金钱
12:30
it's not being given cash -- that's nice --
313
750260
3000
不是获得现金--那也不错--
12:33
it's doing stuff with our peers,
314
753260
2000
而是与我们的同伴一起共事
12:35
watching us, collaborating with us.
315
755260
2000
看着我们,与我们合作
12:37
And I want to tell you a quick story about 1999 --
316
757260
2000
我想说一个小故事,在1999年--
12:39
a video game called EverQuest.
317
759260
2000
有一个游戏名为《无尽的任务》
12:41
And in this video game,
318
761260
2000
在这个游戏中
12:43
there were two really big dragons, and you had to team up to kill them --
319
763260
3000
有两条巨大的龙,而你需要组建起队伍去屠戮它们--
12:46
42 people, up to 42 to kill these big dragons.
320
766260
3000
42人--总共42人去屠龙
12:49
That's a problem
321
769260
2000
那是个问题
12:51
because they dropped two or three decent items.
322
771260
3000
因为他们落下了两到三个合适的项目
12:54
So players addressed this problem
323
774260
3000
所以玩家为了设法解决这个问题
12:57
by spontaneously coming up with a system
324
777260
2000
自发地形成了一个系统
12:59
to motivate each other,
325
779260
2000
公平地,公开地
13:01
fairly and transparently.
326
781260
2000
激励彼此
13:03
What happened was, they paid each other a virtual currency
327
783260
3000
事情是这样的,他们相互偿付一种虚拟的货币
13:06
they called "dragon kill points."
328
786260
3000
他们称之为弑龙点
13:09
And every time you turned up to go on a mission,
329
789260
2000
每次你出现去进行一项任务
13:11
you got paid in dragon kill points.
330
791260
2000
你被得到弑龙点数作为报酬
13:13
They tracked these on a separate website.
331
793260
2000
他们在另一个网站上对此进行追踪
13:15
So they tracked their own private currency,
332
795260
2000
所以玩家们能搜索自己私人的货币
13:17
and then players could bid afterwards
333
797260
2000
于是他们可以在此之后竞价
13:19
for cool items they wanted --
334
799260
2000
以获得他们想要的东西--
13:21
all organized by the players themselves.
335
801260
2000
这些所有都由玩家自己安排
13:23
Now the staggering system, not just that this worked in EverQuest,
336
803260
3000
现在这个惊人的系统已经不只是像《无尽的任务》那样了
13:26
but that today, a decade on,
337
806260
2000
在今天,十年之后
13:28
every single video game in the world with this kind of task
338
808260
3000
每个具有这种任务的单机游戏
13:31
uses a version of this system --
339
811260
2000
使用这样一个版本的系统--
13:33
tens of millions of people.
340
813260
2000
依靠成千上万的人
13:35
And the success rate
341
815260
2000
而成功率
13:37
is at close to 100 percent.
342
817260
2000
接近百分之百
13:39
This is a player-developed,
343
819260
2000
这是基于玩家开发的
13:41
self-enforcing, voluntary currency,
344
821260
3000
自我实施的,自愿的货币
13:44
and it's incredibly sophisticated
345
824260
2000
这真是难以置信的复杂的
13:46
player behavior.
346
826260
2000
玩家行为
13:50
And I just want to end by suggesting
347
830260
2000
作为结束,我想提出
13:52
a few ways in which these principles
348
832260
2000
一些方法使得这些原则
13:54
could fan out into the world.
349
834260
2000
可以在引入真实的世界
13:56
Let's start with business.
350
836260
2000
我将从商业开始
13:58
I mean, we're beginning to see some of the big problems
351
838260
2000
我的意思是,我们开始看见一些难题
14:00
around something like business are
352
840260
2000
围绕在,比如商业
14:02
recycling and energy conservation.
353
842260
2000
回收和能源保护的周围
14:04
We're beginning to see the emergence of wonderful technologies
354
844260
2000
我们开始看见对优秀技术的亟待需求
14:06
like real-time energy meters.
355
846260
2000
比如实时能源表
14:08
And I just look at this, and I think, yes,
356
848260
2000
看到这些,我想,是的
14:10
we could take that so much further
357
850260
3000
我们能可以把它带到更广阔的境界
14:13
by allowing people to set targets
358
853260
2000
以让人们去设定目标的方式
14:15
by setting calibrated targets,
359
855260
2000
以设置校准目标的方式
14:17
by using elements of uncertainty,
360
857260
3000
以使用不确定因素的方式
14:20
by using these multiple targets,
361
860260
2000
以使用这些多重目标的方式
14:22
by using a grand, underlying reward and incentive system,
362
862260
3000
以一个浩大的,潜在的奖励和激励系统
14:25
by setting people up
363
865260
2000
依靠建立合作
14:27
to collaborate in terms of groups, in terms of streets
364
867260
2000
以群体形式,路边组合形式
14:29
to collaborate and compete,
365
869260
2000
协作,竞争
14:31
to use these very sophisticated
366
871260
2000
以这些我们看到的
14:33
group and motivational mechanics we see.
367
873260
2000
非常复杂的群体和激励机制
14:35
In terms of education,
368
875260
2000
这在教育方面
14:37
perhaps most obviously of all,
369
877260
2000
大概显然是最有效的
14:39
we can transform how we engage people.
370
879260
3000
就是我们可以改变和人共事的方式
14:42
We can offer people the grand continuity
371
882260
2000
我们可以提供人们在经历和
14:44
of experience and personal investment.
372
884260
3000
个人投资上浩大的连续性
14:47
We can break things down
373
887260
2000
我们可以把事情拆分
14:49
into highly calibrated small tasks.
374
889260
2000
为可高度校准的小任务
14:51
We can use calculated randomness.
375
891260
2000
我们能用数理随机性
14:53
We can reward effort consistently
376
893260
2000
我们能持续奖励努力
14:55
as everything fields together.
377
895260
3000
正如所有东西传递承接在一起
14:58
And we can use the kind of group behaviors
378
898260
2000
并且我们能用这种群体行为
15:00
that we see evolving when people are at play together,
379
900260
3000
我们看到它在人们共同游戏时演变
15:03
these really quite unprecedentedly complex
380
903260
3000
这些极空前复杂的
15:06
cooperative mechanisms.
381
906260
2000
合作机制
15:08
Government, well, one thing that comes to mind
382
908260
2000
政府,有件事在我脑海中浮现
15:10
is the U.S. government, among others,
383
910260
3000
那就是美国政府,是所有政府中
15:13
is literally starting to pay people
384
913260
2000
首次书面声明支付费用给人们
15:15
to lose weight.
385
915260
2000
用于减肥
15:17
So we're seeing financial reward being used
386
917260
2000
所以我们在谈论财政激励被用于
15:19
to tackle the great issue of obesity.
387
919260
2000
解决肥胖症的巨大问题
15:21
But again, those rewards
388
921260
2000
但,那些激励
15:23
could be calibrated so precisely
389
923260
3000
能够被如此精确地标量
15:26
if we were able to use the vast expertise
390
926260
3000
如果我们能够用游戏系统中庞大的
15:29
of gaming systems to just jack up that appeal,
391
929260
3000
专门技术来支持这种需要
15:32
to take the data, to take the observations,
392
932260
2000
去积累数据,执行观察分析
15:34
of millions of human hours
393
934260
2000
代替百万人工作量
15:36
and plow that feedback
394
936260
2000
和艰苦劳动来反馈
15:38
into increasing engagement.
395
938260
2000
提升人的参与度
15:40
And in the end, it's this word, "engagement,"
396
940260
3000
最后,关键词是,参与度
15:43
that I want to leave you with.
397
943260
2000
这是我要留给大家的
15:45
It's about how individual engagement
398
945260
2000
这是关于如何用心理学和神经学的经验
15:47
can be transformed
399
947260
2000
来转换
15:49
by the psychological and the neurological lessons
400
949260
3000
个人的参与行为
15:52
we can learn from watching people that are playing games.
401
952260
3000
我们可以从观察人的游戏中学习
15:55
But it's also about collective engagement
402
955260
3000
这同时也是关于集体参与
15:58
and about the unprecedented laboratory
403
958260
3000
这是前所未有的实验室
16:01
for observing what makes people tick
404
961260
2000
我们通过游戏世界这个平台
16:03
and work and play and engage
405
963260
2000
观察什么让人行动
16:05
on a grand scale in games.
406
965260
3000
什么让人工作,游戏和投入
16:08
And if we can look at these things and learn from them
407
968260
3000
如果我们观察这些并从中学习
16:11
and see how to turn them outwards,
408
971260
2000
并找到将它通用到游戏之外的方法
16:13
then I really think we have something quite revolutionary on our hands.
409
973260
3000
那么我真的任务我们正在做的士一件具有革命性的事情
16:16
Thank you very much.
410
976260
2000
非常感谢
16:18
(Applause)
411
978260
4000
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7