Pawan Sinha on how brains learn to see

64,774 views ・ 2010-02-25

TED


Za predvajanje videoposnetka dvakrat kliknite na spodnje angleške podnapise.

Translator: Lenka Tušar Reviewer: Tilen Pigac - EFZG
00:15
If you are a blind child in India,
0
15260
4000
Če ste slepi otrok v Indiji,
00:19
you will very likely have to contend with
1
19260
3000
se boste morali spoprijeti z
00:22
at least two big pieces of bad news.
2
22260
3000
vsaj dvema zelo slabima novicama.
00:25
The first bad news
3
25260
2000
Prva je,
00:27
is that the chances of getting treatment
4
27260
3000
da so možnosti zdravljenja
00:30
are extremely slim to none,
5
30260
3000
zelo majhne ali nične,
00:33
and that's because most of the blindness
6
33260
2000
saj je večina programov
00:35
alleviation programs in the country
7
35260
2000
za ublažitev posledic slepote v državi
00:37
are focused on adults,
8
37260
2000
namenjena odraslim
00:39
and there are very, very few hospitals
9
39260
3000
in tako je izjemno malo bolnišnic
00:42
that are actually equipped to treat children.
10
42260
3000
opremljenih za zdravjenje otrok.
00:46
In fact, if you were to be treated,
11
46260
4000
Če pa pridete do zdravljenja,
00:51
you might well end up being treated
12
51260
3000
se lahko zgodi, da bo to v rokah
00:54
by a person who has no medical credentials
13
54260
3000
osebe brez zdravniške izobrazbe,
00:57
as this case from Rajasthan illustrates.
14
57260
3000
kot prikazuje ta primer iz Radžastana.
01:00
This is a three-year-old orphan girl
15
60260
2000
To je triletna osirotela deklica,
01:02
who had cataracts.
16
62260
2000
ki ima sivo mreno.
01:04
So, her caretakers took her
17
64260
2000
Njeni skrbniki so jo peljali
01:06
to the village medicine man,
18
66260
2000
k vaškemu zdravilcu, ki,
01:08
and instead of suggesting to the caretakers
19
68260
3000
namesto da bi jim svetoval,
01:11
that the girl be taken to a hospital,
20
71260
3000
naj jo peljejo v bolnišnico,
01:14
the person decided to burn her abdomen
21
74260
2000
se je odločil žgati njen trebuh
01:16
with red-hot iron bars
22
76260
2000
z razžarjenimi železnimi palicami,
01:18
to drive out the demons.
23
78260
2000
da bi izgnal zle sile.
01:20
The second piece of bad news
24
80260
3000
Drugo slabo novico
01:23
will be delivered to you
25
83260
2000
bi izvedeli pri nevrologih,
01:25
by neuroscientists, who will tell you
26
85260
3000
ki bi vam povedali,
01:28
that if you are older than four or five years of age,
27
88260
3000
da če ste starejši od štirih ali pet let,
01:31
that even if you have your eye corrected,
28
91260
3000
bi, čeprav bi vam ozdravili oči,
01:34
the chances of your brain learning how to see
29
94260
3000
bila verjetnost možganov, da se naučijo videti,
01:37
are very, very slim --
30
97260
2000
zelo zelo majhna
01:39
again, slim or none.
31
99260
3000
ali nična.
01:42
So when I heard these two things,
32
102260
2000
Ko sem to izvedel,
01:44
it troubled me deeply,
33
104260
2000
me je hudo zaskrbelo,
01:46
both because of personal reasons
34
106260
2000
tako iz osebnih
01:48
and scientific reasons.
35
108260
2000
kot znanstvenih razlogov.
01:50
So let me first start with the personal reason.
36
110260
3000
Naj začnem z osebno platjo.
01:53
It'll sound corny, but it's sincere.
37
113260
3000
Zvenelo bo osladno, a je iskreno.
01:56
That's my son, Darius.
38
116260
2000
To je moj sinček, Darius.
01:58
As a new father,
39
118260
2000
Kot mladi očka
02:00
I have a qualitatively different sense
40
120260
4000
se precej drugače zavedam,
02:04
of just how delicate babies are,
41
124260
3000
kako občutljivi so dojenčki,
02:07
what our obligations are towards them
42
127260
3000
kakšne so naše odgovornosti do njih
02:10
and how much love
43
130260
2000
in koliko ljubezni
02:12
we can feel towards a child.
44
132260
3000
lahko čutimo do otrok.
02:15
I would move heaven and earth
45
135260
2000
Premaknil bi nebo in zemljo,
02:17
in order to get treatment for Darius,
46
137260
3000
da bi Dariusu omogočil zdravljenje,
02:20
and for me to be told
47
140260
2000
in ko sem izvedel,
02:22
that there might be other Dariuses
48
142260
2000
da so tu še drugi Dariusi,
02:24
who are not getting treatment,
49
144260
2000
ki zdravljenja niso deležni,
02:26
that's just viscerally wrong.
50
146260
3000
sem bil globoko prizadet.
02:29
So that's the personal reason.
51
149260
2000
To je torej osebni razlog.
02:31
Scientific reason is that this notion
52
151260
3000
Znanstveni pa je, da me trditev
02:34
from neuroscience of critical periods --
53
154260
2000
nevrologov o kritičnem obdobju možganov --
02:36
that if the brain is older
54
156260
3000
možgani, starejši
02:39
than four or five years of age,
55
159260
2000
od štirih ali petih let,
02:41
it loses its ability to learn --
56
161260
2000
naj bi izgubili sposobnost učenja --
02:43
that doesn't sit well with me,
57
163260
2000
ni prepričala,
02:45
because I don't think that idea
58
165260
2000
saj mislim, da za potrditev
02:47
has been tested adequately.
59
167260
3000
ni bila primerno testirana.
02:50
The birth of the idea is from
60
170260
2000
Ta ideja je plod dela
02:52
David Hubel and Torsten Wiesel's work,
61
172260
2000
Davida Hubela in Torstena Wiesela,
02:54
two researchers who were at Harvard,
62
174260
2000
dveh raziskovalcev s Harvarda,
02:56
and they got the Nobel Prize in 1981
63
176260
3000
dobitnikov Nobelove nagrade leta 1981
02:59
for their studies of visual physiology,
64
179260
2000
za študiji vizualne fiziologije,
03:01
which are remarkably beautiful studies,
65
181260
2000
izjemni in čudoviti študiji,
03:03
but I believe some of their work
66
183260
2000
čeprav menim, da je bilo nekaj
03:05
has been extrapolated
67
185260
2000
njunih izsledkov prezgodaj prenešenih
03:07
into the human domain prematurely.
68
187260
2000
v domeno človeškega telesa.
03:09
So, they did their work with kittens,
69
189260
2000
Raziskave sta opravljala na mačkah,
03:11
with different kinds of deprivation regiments,
70
191260
2000
prikrajšanih na različne načine,
03:13
and those studies,
71
193260
2000
izsledki teh raziskav
03:15
which date back to the '60s,
72
195260
2000
iz šestdesetih let
03:17
are now being applied to human children.
73
197260
3000
pa so bili prenešeni tudi na človeške otroke.
03:20
So I felt that I needed to do two things.
74
200260
3000
Čutil sem, da moram narediti dvoje.
03:23
One: provide care
75
203260
3000
Prvič, priskrbeti pomoč
03:26
to children who are currently
76
206260
2000
otrokom, ki so trenutno
03:28
being deprived of treatment.
77
208260
2000
prikrajšani za zdravljenje.
03:30
That's the humanitarian mission.
78
210260
2000
To je človekoljubno poslanstvo.
03:32
And the scientific mission would be
79
212260
2000
Znanstveno poslanstvo pa bi bilo
03:34
to test the limits
80
214260
2000
testirati meje
03:36
of visual plasticity.
81
216260
2000
vizualne plastičnosti.
03:38
And these two missions, as you can tell,
82
218260
3000
Ti dve poslanstvi, kot lahko vidite,
03:41
thread together perfectly. One adds to the other;
83
221260
3000
se čudovito prepletata. Eno prispeva k drugemu,
03:44
in fact, one would be impossible without the other.
84
224260
3000
pravzaprav sami zase ne bi mogla obstajati.
03:49
So, to implement
85
229260
2000
Za namene združitve teh dveh poslanstev
03:51
these twin missions,
86
231260
2000
sem pred nekaj leti
03:53
a few years ago, I launched Project Prakash.
87
233260
3000
začel Projekt Prakash.
03:56
Prakash, as many of you know,
88
236260
2000
Beseda prakash, kot vas veliko ve,
03:58
is the Sanskrit word for light,
89
238260
2000
v sanskritu pomeni svetlobo,
04:00
and the idea is that
90
240260
2000
naša zamisel je, da preko
04:02
in bringing light into the lives of children,
91
242260
3000
osvetljevanja otroških življenj
04:05
we also have a chance
92
245260
2000
najdemo tudi možnosti
04:07
of shedding light on some of the
93
247260
2000
osvetljevanja nekaterih
04:09
deepest mysteries of neuroscience.
94
249260
3000
najglobljih skrivnosti nevroznanosti.
04:12
And the logo -- even though it looks extremely Irish,
95
252260
3000
Naš logotip, čeprav je videti zelo irski,
04:15
it's actually derived from
96
255260
2000
pravzaprav izhaja iz
04:17
the Indian symbol of Diya, an earthen lamp.
97
257260
4000
indijskega simbola za oljenko, Diyo.
04:21
The Prakash, the overall effort
98
261260
3000
V splošnem je cilj Prakasha
04:24
has three components:
99
264260
2000
razdeljen na tri dele:
04:26
outreach, to identify children in need of care;
100
266260
4000
pomoč, iskanje otrok, ki potrebujejo nego;
04:30
medical treatment; and in subsequent study.
101
270260
3000
zdravljenje; in posledična študija.
04:33
And I want to show you a short video clip
102
273260
3000
Pokazal vam bom kratek posnetek,
04:36
that illustrates the first two components of this work.
103
276260
3000
ki prikazuje prva dva člena našega dela.
04:41
This is an outreach station
104
281260
2000
To je center za pomoč,
04:43
conducted at a school for the blind.
105
283260
3000
ki jo vodimo na šoli za slepe.
04:46
(Text: Most of the children are profoundly and permanently blind ...)
106
286260
5000
(Večina otrok je hudo slabovidna ali trajno slepa ...)
04:51
Pawan Sinha: So, because this is a school for the blind,
107
291260
5000
Pawan Sinha: Ker je to šola za slepe,
04:56
many children have permanent conditions.
108
296260
2000
imamo veliko otrok s trajnimi okvarami.
04:58
That's a case of microphthalmos,
109
298260
3000
To je primer mikroftalmije,
05:01
which is malformed eyes,
110
301260
2000
nepravilno razvitih zrkel,
05:03
and that's a permanent condition;
111
303260
2000
ki je trajna
05:05
it cannot be treated.
112
305260
2000
in neozdravljiva.
05:07
That's an extreme of micropthalmos
113
307260
2000
To je skrajen primer mikroftalmije,
05:09
called enophthalmos.
114
309260
2000
imenovan enoftalmos.
05:11
But, every so often, we come across children
115
311260
2000
A vsake toliko najdemo otroke,
05:13
who show some residual vision,
116
313260
3000
ki kažejo znake vidnega zaznavanja,
05:16
and that is a very good sign
117
316260
3000
kar je zelo dober znak
05:19
that the condition might actually be treatable.
118
319260
2000
za možnost uspešnega zdravljenja.
05:21
So, after that screening, we bring the children to the hospital.
119
321260
3000
Po pregledu otroke pripeljemo v bolnišnico.
05:24
That's the hospital we're working with in Delhi,
120
324260
2000
To je bolnišnica v Delhiju, s katero sodelujemo,
05:26
the Schroff Charity Eye Hospital.
121
326260
3000
bolnišnica Schroff Charity Eye.
05:29
It has a very well-equipped
122
329260
2000
Tu je zelo dobro opremljen
05:31
pediatric ophthalmic center,
123
331260
3000
center za otroške očesne bolezni,
05:35
which was made possible in part
124
335260
2000
ki ga je delno omogočila donacija
05:37
by a gift from the Ronald McDonald charity.
125
337260
4000
dobrodelne ustanove Ronalda McDonalda.
05:41
So, eating burgers actually helps.
126
341260
3000
Kot vidite, hitra hrana lahko tudi pomaga.
05:45
(Text: Such examinations allow us to improve
127
345260
2000
(Taki pregledi nam omogočajo izboljšanje
05:47
eye-health in many children, and ...
128
347260
2000
očesnega stanja mnogih otrok in ...
05:54
... help us find children who can participate in Project Prakash.)
129
354260
3000
... pomagajo nam najti otroke, ki bi postali del Projekta Prakash.)
05:57
PS: So, as I zoom in to the eyes of this child,
130
357260
2000
PS: Če približam v oči tega otroka,
05:59
you will see the cause of his blindness.
131
359260
3000
boste videli razlog njegove slepote.
06:03
The whites that you see in the middle of his pupils
132
363260
3000
Belina v sredini njegovih zenic
06:06
are congenital cataracts,
133
366260
3000
je prirojena siva mrena,
06:09
so opacities of the lens.
134
369260
2000
torej motnost leče.
06:11
In our eyes, the lens is clear,
135
371260
3000
V naših očeh so leče prozorne,
06:14
but in this child, the lens has become opaque,
136
374260
2000
pri tem otroku pa so postale motne,
06:16
and therefore he can't see the world.
137
376260
3000
zato ne more videti sveta.
06:19
So, the child is given treatment. You'll see shots of the eye.
138
379260
3000
Omogočimo mu zdravljenje. Videli boste posnetke očesa.
06:22
Here's the eye with the opaque lens,
139
382260
2000
Tu je oko z zamegljeno lečo,
06:24
the opaque lens extracted
140
384260
2000
ki jo odstranimo
06:26
and an acrylic lens inserted.
141
386260
3000
in nadomestimo z akrilno lečo.
06:29
And here's the same child
142
389260
2000
To je isti otrok po treh tednih
06:31
three weeks post-operation,
143
391260
3000
okrevanja po posegu,
06:34
with the right eye open.
144
394260
3000
z odprtim desnim očesom.
06:40
(Applause)
145
400260
6000
(Aplavz)
06:46
Thank you.
146
406260
2000
Hvala.
06:48
So, even from that little clip, you can begin to get the sense
147
408260
3000
Tako lahko tudi na tem kratkem prikazu vidite,
06:51
that recovery is possible,
148
411260
2000
da je zdravljenje možno,
06:53
and we have now
149
413260
2000
in do zdaj smo ga zagotovili
06:55
provided treatment to over 200 children,
150
415260
3000
že več kot 200 otrokom,
06:58
and the story repeats itself.
151
418260
2000
zgodba pa se še nadaljuje.
07:00
After treatment, the child
152
420260
2000
Po zdravljenju se otrokova
07:02
gains significant functionality.
153
422260
3000
funkcionalnost znatno izboljša.
07:05
In fact, the story holds true
154
425260
3000
Ta postopek je uspešen tudi
07:08
even if you have a person who got sight
155
428260
2000
pri ljudeh, ki so spregledali
07:10
after several years of deprivation.
156
430260
2000
po več letih slepote.
07:12
We did a paper a few years ago
157
432260
2000
Pred leti smo pisali o ženski,
07:14
about this woman that you see on the right, SRD,
158
434260
4000
ki jo vidite na desni, SRD,
07:18
and she got her sight late in life,
159
438260
2000
ki je spregledala v poznih letih
07:20
and her vision is remarkable at this age.
160
440260
4000
in danes je njen vid izjemen.
07:24
I should add a tragic postscript to this --
161
444260
3000
A tu je še tragični del njene zgodbe,
07:27
she died two years ago
162
447260
2000
pred dvema letoma je umrla
07:29
in a bus accident.
163
449260
2000
v nesreči avtobusa.
07:31
So, hers is just a truly inspiring story --
164
451260
4000
A njena zgodba je vseeno navdihujoča,
07:35
unknown, but inspiring story.
165
455260
3000
čeprav neznana.
07:38
So when we started finding these results,
166
458260
2000
Ko smo torej prišli do teh rezultatov, smo,
07:40
as you might imagine, it created quite a bit of stir
167
460260
3000
kot si lahko predstavljate, precej pretresli
07:43
in the scientific and the popular press.
168
463260
3000
znanstveni in poljudni tisk.
07:46
Here's an article in Nature
169
466260
2000
Tu je članek v znanstvenem tedniku Nature,
07:48
that profiled this work,
170
468260
2000
ki opisuje naše delo,
07:50
and another one in Time.
171
470260
2000
in še en v časniku Time.
07:52
So, we were fairly convinced -- we are convinced --
172
472260
2000
Bili smo torej trdno prepričani -- smo prepričani --
07:54
that recovery is feasible,
173
474260
2000
da je zdravljenje lahko uspešno
07:56
despite extended visual deprivation.
174
476260
3000
kljub dolgotrajni slabovidnosti.
07:59
The next obvious question to ask:
175
479260
2000
Naslednje očitno vprašanje je,
08:01
What is the process of recovery?
176
481260
3000
kako poteka okrevanje?
08:04
So, the way we study that is,
177
484260
3000
To preučujemo tako,
08:07
let's say we find a child who has light sensitivity.
178
487260
2000
da najdemo otroka, ki zaznava svetlobo.
08:09
The child is provided treatment,
179
489260
2000
Otroku priskrbimo zdravljenje,
08:11
and I want to stress that the treatment
180
491260
2000
ki, poudarjam, je
08:13
is completely unconditional;
181
493260
2000
popolnoma brezpogojno,
08:15
there is no quid pro quo.
182
495260
2000
brez vsakršne protistoritve.
08:17
We treat many more children then we actually work with.
183
497260
3000
Zdravimo veliko več otrok, kot dejansko z njimi delamo.
08:20
Every child who needs treatment is treated.
184
500260
3000
Vsak otrok, ki potrebuje zdravljenje, ga dobi.
08:23
After treatment, about every week,
185
503260
2000
Po njem približno vsak teden
08:25
we run the child
186
505260
2000
pri otroku izvedemo
08:27
on a battery of simple visual tests
187
507260
3000
vrsto preprostih vizualnih testov,
08:30
in order to see how their visual skills
188
510260
2000
da vidimo, kako napredujejo
08:32
are coming on line.
189
512260
2000
njegove vidne sposobnosti.
08:34
And we try to do this for as long as possible.
190
514260
3000
To poskušamo izvajati kolikor dolgo mogoče.
08:37
This arc of development
191
517260
2000
Skozi ta lok razvoja
08:39
gives us unprecedented
192
519260
2000
dobimo neverjetne
08:41
and extremely valuable information
193
521260
2000
in izjemno važne podatke o tem,
08:43
about how the scaffolding of vision
194
523260
2000
kako se sestavlja
08:45
gets set up.
195
525260
2000
gradbeni oder vida.
08:47
What might be the causal connections
196
527260
2000
Kakšne bi lahko bile naključne povezave
08:49
between the early developing skills
197
529260
2000
med sposobnostmi zgodnjega
08:51
and the later developing ones?
198
531260
2000
in poznejšega razvoja vida?
08:53
And we've used this general approach to study
199
533260
2000
Poslužili smo se splošnega pristopa
08:55
many different visual proficiencies,
200
535260
3000
za preučevanje mnogih različnih vizualnih znanj,
08:58
but I want to highlight one particular one,
201
538260
4000
tu pa želim posebej omeniti eno,
09:02
and that is image parsing into objects.
202
542260
3000
in sicer razčlenitev oblik v predmete.
09:05
So, any image of the kind that you see on the left,
203
545260
2000
Katerakoli podoba, ki jo vidite na levi,
09:07
be it a real image or a synthetic image,
204
547260
3000
tako prava kot sintetična podoba,
09:10
it's made up of little regions
205
550260
2000
je sestavljena iz majhnih območij,
09:12
that you see in the middle column,
206
552260
2000
ki jih vidite na srednji sliki,
09:14
regions of different colors, different luminances.
207
554260
3000
območij različnih barv ali svetlosti.
09:17
The brain has this complex task
208
557260
3000
Možgani imajo zapleteno nalogo,
09:20
of putting together, integrating,
209
560260
3000
da sestavijo in združijo
09:23
subsets of these regions
210
563260
2000
delce teh območij
09:25
into something that's more meaningful,
211
565260
2000
v nekaj z večjim pomenom,
09:27
into what we would consider to be objects,
212
567260
2000
kar mi dojemamo kot predmete,
09:29
as you see on the right.
213
569260
2000
in to vidite na desni.
09:31
And nobody knows how this integration happens,
214
571260
2000
Nihče ne ve, kako to združevanje poteka,
09:33
and that's the question we asked with Project Prakash.
215
573260
4000
zato smo se to vprašali v Projektu Prakash.
09:37
So, here's what happens
216
577260
2000
To se torej zgodi
09:39
very soon after the onset of sight.
217
579260
3000
takoj po začetku vida.
09:42
Here's a person who had gained sight just a couple of weeks ago,
218
582260
3000
Ta moški je spregledal pred le nekaj tedni,
09:45
and you see Ethan Myers, a graduate student from MIT,
219
585260
3000
ob njem pa je Ethan Myers, podiplomski študent s
09:48
running the experiment with him.
220
588260
3000
Tehnološkega inštituta v Massachusettsu, ki izvaja test.
09:51
His visual-motor coordination is quite poor,
221
591260
4000
Njegova vizualno-motorična usklajenost je precej slaba,
09:55
but you get a general sense
222
595260
2000
a vseeno lahko razumete,
09:57
of what are the regions that he's trying to trace out.
223
597260
3000
katera območja želi pokazati.
10:00
If you show him real world images,
224
600260
2000
Če mu pokažemo podobe iz resničnega sveta,
10:02
if you show others like him real world images,
225
602260
3000
prav tako kot njemu podobnim ljudem,
10:05
they are unable to recognize most of the objects
226
605260
2000
ne bo mogel prepoznati večine predmetov,
10:07
because the world to them is over-fragmented;
227
607260
3000
saj je svet zanj preveč razčlenjen;
10:10
it's made up of a collage, a patchwork,
228
610260
3000
je le sestavljanja, krpanka
10:13
of regions of different colors and luminances.
229
613260
2000
območij različnih barv in svetlosti.
10:15
And that's what's indicated in the green outlines.
230
615260
2000
To nakazujejo zelene obrobe.
10:17
When you ask them,
231
617260
2000
Ko jim rečete,
10:19
"Even if you can't name the objects, just point to where the objects are,"
232
619260
3000
"Tudi če predmetov ne znate imenovati, pokažite, kje so,"
10:22
these are the regions that they point to.
233
622260
2000
bodo pokazali na ta območja.
10:24
So the world is this complex
234
624260
2000
Zanje je torej svet ta zapletena
10:26
patchwork of regions.
235
626260
2000
sestavljanja območij.
10:28
Even the shadow on the ball
236
628260
2000
Celo senca na žogi
10:30
becomes its own object.
237
630260
3000
postane predmet zase.
10:33
Interestingly enough,
238
633260
2000
Zelo zanimivo,
10:35
you give them a few months,
239
635260
2000
pa se po nekaj mesecih
10:37
and this is what happens.
240
637260
3000
zgodi to.
10:43
Doctor: How many are these?
241
643260
2000
Zdravnik: Koliko stvari je tu?
10:45
Patient: These are two things.
242
645260
2000
Pacient: Tu sta dve stvari.
10:47
Doctor: What are their shapes?
243
647260
2000
Zdravnik: Kakšnih oblik sta?
10:49
Patient: Their shapes ...
244
649260
2000
Pacient: Oblika ...
10:51
This one is a circle,
245
651260
3000
To je krog,
10:54
and this
246
654260
2000
in to
10:56
is a square.
247
656260
2000
je kvadrat.
10:58
PS: A very dramatic transformation has come about.
248
658260
3000
PS: Prišlo je do zelo dramatične preobrazbe.
11:01
And the question is:
249
661260
2000
Vprašanje pa je:
11:03
What underlies this transformation?
250
663260
2000
Kaj povzroči tako preobrazbo?
11:05
It's a profound question,
251
665260
2000
Gre za globoko vprašanje,
11:07
and what's even more amazing is how simple
252
667260
2000
a bolj neverjetno je,
11:09
the answer is.
253
669260
2000
kako preprost je odgovor nanj.
11:11
The answer lies in motion
254
671260
2000
Odgovor se skriva v gibanju,
11:13
and that's what I want to show you in the next clip.
255
673260
3000
kar vam bom pokazal v naslednjem prizoru.
11:18
Doctor: What shape do you see here?
256
678260
2000
Zdravnik: Katero obliko vidite?
11:20
Patient: I can't make it out.
257
680260
3000
Pacient: Ne morem ugotoviti.
11:28
Doctor: Now?
258
688260
2000
Zdravnik: Kaj pa zdaj?
11:31
Patient: Triangle.
259
691260
2000
Pacient: Trikotnik.
11:35
Doctor: How many things are these?
260
695260
3000
Zdravnik: Koliko stvari vidite?
11:48
Now, how many things are these?
261
708260
3000
Kaj pa zdaj, koliko jih je?
11:51
Patient: Two.
262
711260
2000
Pacient: Dve.
11:53
Doctor: What are these things?
263
713260
2000
Zdravnik: Kateri sta ti dve stvari?
11:56
Patient: A square and a circle.
264
716260
2000
Pacient: Kvadrat in krog.
11:58
PS: And we see this pattern over and over again.
265
718260
3000
PS: Ta vzorec se ponavlja znova in znova.
12:01
The one thing the visual system needs
266
721260
3000
Edino, kar sistem vidnega zaznavanja potrebuje,
12:04
in order to begin parsing the world
267
724260
2000
da razčleni in definira svet,
12:06
is dynamic information.
268
726260
2000
je podatek o gibanju.
12:08
So the inference we are deriving from this,
269
728260
2000
Iz tega in nekaj drugih poskusov
12:10
and several such experiments,
270
730260
2000
smo sklepali,
12:12
is that dynamic information processing,
271
732260
2000
da je obdelava podatkov o
12:14
or motion processing,
272
734260
2000
dinamiki ali gibanju
12:16
serves as the bedrock for building
273
736260
2000
temelj celotne preostale
12:18
the rest of the complexity of visual processing;
274
738260
4000
zapletene vizualne obdelave;
12:22
it leads to visual integration
275
742260
2000
vodi do vizualnega združevanja
12:24
and eventually to recognition.
276
744260
3000
in posledično prepoznavanja.
12:27
This simple idea has far reaching implications.
277
747260
3000
Ta preprosta ideja pa ima široke možnosti uporabe.
12:30
And let me just quickly mention two,
278
750260
3000
Naj na hitro omenim le dve,
12:33
one, drawing from the domain of engineering,
279
753260
2000
prva je inženirske,
12:35
and one from the clinic.
280
755260
2000
druga pa klinične narave.
12:37
So, from the perspective of engineering,
281
757260
2000
Z inženirskega stališča
12:39
we can ask: Goven that we know
282
759260
3000
se lahko vprašamo: Če vemo,
12:42
that motion is so important for the human visual system,
283
762260
2000
da je gibanje tako pomembno za človeški vidni sistem,
12:44
can we use this as a recipe
284
764260
3000
ali lahko to znanje uporabimo
12:47
for constructing machine-based vision systems
285
767260
3000
za konstrukcijo mehanskih vizualnih sistemov,
12:50
that can learn on their own, that don't need to be programmed
286
770260
3000
ki se lahko učijo sami
12:53
by a human programmer?
287
773260
2000
in brez človeškega programiranja?
12:55
And that's what we're trying to do.
288
775260
2000
To tudi poskušamo narediti.
12:57
I'm at MIT, at MIT you need to apply
289
777260
3000
Na Tehnološkem inštitutu v Massachusettsu, kjer delam,
13:00
whatever basic knowledge you gain.
290
780260
2000
uporabimo vsa osnovna znanja, ki jih imamo.
13:02
So we are creating Dylan,
291
782260
2000
Tako smo ustvarili Dylan,
13:04
which is a computational system
292
784260
2000
računalniški sistem
13:06
with an ambitious goal
293
786260
2000
z visoko zastavljenim ciljem
13:08
of taking in visual inputs
294
788260
2000
prepoznavati vizualne podatke,
13:10
of the same kind that a human child would receive,
295
790260
3000
enake, kot bi jih dobil otrok,
13:13
and autonomously discovering:
296
793260
2000
in iz njih samostojno razbrati,
13:15
What are the objects in this visual input?
297
795260
3000
katere predmete predstavljajo ti vizualni podatki.
13:18
So, don't worry about the internals of Dylan.
298
798260
3000
Tu se ne bomo spuščali v podrobnosti programa,
13:21
Here, I'm just going to talk about
299
801260
3000
povedal bom le,
13:24
how we test Dylan.
300
804260
2000
kako smo ga testirali.
13:26
The way we test Dylan is by giving it
301
806260
2000
To smo storili tako, da smo mu, kot rečeno,
13:28
inputs, as I said, of the same kind
302
808260
3000
posredovali enake vrste podatkov,
13:31
that a baby, or a child in Project Prakash would get.
303
811260
3000
kot jih dobi otrok v Projektu Prakash.
13:34
But for a long time we couldn't quite figure out:
304
814260
3000
A dolgo časa nismo uspeli dognati:
13:37
Wow can we get these kinds of video inputs?
305
817260
3000
Kako bi pridobili take video podatke?
13:41
So, I thought,
306
821260
2000
Pomislil sem,
13:43
could we have Darius
307
823260
2000
da bi nam lahko pomagal Darius
13:45
serve as our babycam carrier,
308
825260
3000
in nosil kamero,
13:48
and that way get the inputs that we feed into Dylan?
309
828260
3000
da bi tako dobili podatke za sistem Dylan.
13:51
So that's what we did.
310
831260
2000
To smo tudi naredili.
13:53
(Laughter)
311
833260
7000
(Smeh)
14:00
I had to have long conversations with my wife.
312
840260
3000
Dolgo časa sem moral prepričevati ženo.
14:03
(Laughter)
313
843260
5000
(Smeh)
14:08
In fact, Pam, if you're watching this,
314
848260
2000
Pam, če to gledaš,
14:10
please forgive me.
315
850260
2000
mi, prosim, oprosti.
14:13
So, we modified the optics of the camera
316
853260
4000
Optične nastavitve kamere smo spremenili,
14:17
in order to mimic the baby's visual acuity.
317
857260
3000
da je imitirala ostrino dojenčkovega vida.
14:20
As some of you might know,
318
860260
2000
Kot verjetno nekateri veste,
14:22
babyies are born pretty much legally blind.
319
862260
4000
se dojenčki rodijo skoraj popolnoma slepi.
14:26
Their acuity -- our acuity is 20/20;
320
866260
3000
Ostrina našega vida je 20/20,
14:29
babies' acuity is like 20/800,
321
869260
3000
ostrina dojenčkovega vida pa okrog 20/800,
14:32
so they are looking at the world
322
872260
2000
zato vidijo svet
14:34
in a very, very blurry fashion.
323
874260
3000
zelo zelo megleno.
14:37
Here's what a baby-cam video looks like.
324
877260
3000
Približno tako vidi dojenček.
14:41
(Laughter)
325
881260
9000
(Smeh)
14:50
(Applause)
326
890260
3000
(Aplavz)
14:53
Thankfully, there isn't any audio
327
893260
2000
Na srečo je ta posnetek
14:55
to go with this.
328
895260
3000
brez zvoka.
14:58
What's amazing is that working with such
329
898260
2000
Pri tem je izjemno, da pri še tako
15:00
highly degraded input,
330
900260
2000
okrnjenih vizualnih podatkih
15:02
the baby, very quickly, is able
331
902260
2000
dojenček lahko zelo hitro
15:04
to discover meaning in such input.
332
904260
3000
odkrije pomen takega prizora.
15:07
But then two or three days afterward,
333
907260
2000
Po dveh ali treh dnevih
15:09
babies begin to pay attention
334
909260
2000
dojenčki postanejo pozorni
15:11
to their mother's or their father's face.
335
911260
2000
na materin ali očetov obraz.
15:13
How does that happen? We want Dylan to be able to do that,
336
913260
3000
Kako se to zgodi? To želimo prikazati z Dylanom,
15:16
and using this mantra of motion,
337
916260
3000
ki lahko z mantro gibanja
15:19
Dylan actually can do that.
338
919260
2000
to dejansko izvede.
15:21
So, given that kind of video input,
339
921260
3000
Pri takih vizualnih podatkih,
15:24
with just about six or seven minutes worth of video,
340
924260
3000
posnetku, dolgem le šest ali sedem minut,
15:27
Dylan can begin to extract patterns
341
927260
3000
lahko Dylan začne izločati vzorce,
15:30
that include faces.
342
930260
3000
ki vključujejo obraze.
15:33
So, it's an important demonstration
343
933260
2000
To je torej pomemben prikaz
15:35
of the power of motion.
344
935260
2000
moči gibanja.
15:37
The clinical implication, it comes from the domain of autism.
345
937260
3000
Cilj klinične implikacije odkritja pa je avtizem.
15:40
Visual integration has been associated with autism
346
940260
2000
Vizualno povezovanje je avtizmu pripisalo
15:42
by several researchers.
347
942260
2000
precej raziskovalcev.
15:44
When we saw that, we asked:
348
944260
2000
Ko smo to videli, smo se vprašali,
15:46
Could the impairment in visual integration
349
946260
3000
ali bi lahko bilo okrnjeno vizualno povezovanje
15:49
be the manifestation of something underneath,
350
949260
3000
pravzaprav posledica nečesa globljega,
15:52
of dynamic information processing deficiencies in autism?
351
952260
3000
oslabljene obdelave podatkov dinamike pri avtizmu.
15:55
Because, if that hypothesis were to be true,
352
955260
3000
Če bi namreč to hipotezo potrdili,
15:58
it would have massive repercussions in our understanding
353
958260
3000
bi to imelo izjemne posledice v našem razumevanju
16:01
of what's causing the many different aspects
354
961260
2000
razlogov in dejavnikov za različne vidike
16:03
of the autism phenotype.
355
963260
3000
lastnosti in značilnosti avtistov.
16:06
What you're going to see are
356
966260
2000
Videli boste posnetke dveh otrok,
16:08
video clips of two children -- one neurotypical,
357
968260
3000
nevrotipičnega in avtističnega,
16:11
one with autism, playing Pong.
358
971260
2000
pri igranju igre Pong.
16:13
So, while the child is playing Pong, we are tracking where they're looking.
359
973260
3000
Med igranjem sledimo njunemu pogledu.
16:16
In red are the eye movement traces.
360
976260
3000
Sledi gibanja oči so rdeče barve.
16:19
This is the neurotypical child, and what you see
361
979260
3000
To je posnetek nevrotipičnega otroka in vidite,
16:22
is that the child is able to make cues
362
982260
2000
da lahko iz podatkov o dinamiki
16:24
of the dynamic information
363
984260
2000
dobi namig in iztočnico
16:26
to predict where the ball is going to go.
364
986260
2000
in tako predvidi, kam se bo odbila žogica.
16:28
Even before the ball gets to a place,
365
988260
3000
Še preden se ta odbije,
16:31
the child is already looking there.
366
991260
3000
otrok že gleda tja.
16:34
Contrast this with a child
367
994260
2000
Primerjajte to z avtističnim otrokom
16:36
with autism playing the same game.
368
996260
2000
pri igranju iste igre.
16:38
Instead of anticipating,
369
998260
2000
Namesto pričakovanja
16:40
the child always follows where the ball has been.
370
1000260
3000
otrok vedno sledi točki, kjer je žogica bila.
16:43
The efficiency of the use
371
1003260
2000
Učinkovitost uporabe podatkov
16:45
of dynamic information
372
1005260
2000
o dinamiki je, kot kaže,
16:47
seems to be significantly compromised in autism.
373
1007260
3000
pri avtistih občutno okrnjena.
16:51
So we are pursuing this line of work
374
1011260
3000
Z delom nadaljujemo
16:54
and hopefully we'll have
375
1014260
2000
v upanju novih rezultatov,
16:56
more results to report soon.
376
1016260
2000
o katerih bomo kmalu poročali.
16:58
Looking ahead, if you think of this disk
377
1018260
3000
Če gledamo naprej, zamislite si,
17:01
as representing all of the children
378
1021260
2000
da ta krog predstavlja vse otroke,
17:03
we've treated so far,
379
1023260
2000
ki smo jih doslej zdravili.
17:05
this is the magnitude of the problem.
380
1025260
2000
To pa je razsežnost problematike.
17:07
The red dots are the children we have not treated.
381
1027260
3000
Rdeče pike so otroci, ki jih nismo zdravili.
17:10
So, there are many, many more children who need to be treated,
382
1030260
2000
Obstaja torej še nepopisno več otrok, potrebnih zdravljenja,
17:12
and in order to expand the scope of the project,
383
1032260
3000
in z željo širiti domet projekta,
17:15
we are planning on launching
384
1035260
2000
načrtujemo odprtje
17:17
The Prakash Center for Children,
385
1037260
2000
Otroškega centra Prakash
17:19
which will have a dedicated pediatric hospital,
386
1039260
3000
s posebno pediatrično kliniko,
17:22
a school for the children we are treating
387
1042260
2000
šolo za otroke, ki jih zdravimo,
17:24
and also a cutting-edge research facility.
388
1044260
2000
in visokotehnološko raziskovalno ustanovo.
17:26
The Prakash Center will integrate health care,
389
1046260
3000
Center Prakash bo združeval zdravniško oskrbo,
17:29
education and research in a way
390
1049260
2000
izobraževanje in raziskovanje,
17:31
that truly creates the whole
391
1051260
2000
ki bodo skupaj sestavljali celoto,
17:33
to be greater than the sum of the parts.
392
1053260
3000
večjo, kot bi bila vsota vseh delov.
17:36
So, to summarize: Prakash, in its five years of existence,
393
1056260
3000
Naj povzamem: Prakash je v petih letih delovanja
17:39
it's had an impact in multiple areas,
394
1059260
3000
vplival na mnogo področij,
17:42
ranging from basic neuroscience
395
1062260
2000
od osnovne nevroznanosti,
17:44
plasticity and learning in the brain,
396
1064260
2000
plastičnosti in učenja možganov,
17:46
to clinically relevant hypotheses like in autism,
397
1066260
4000
do klinično pomembnih hipotez, kot pri avtizmu,
17:50
the development of autonomous machine vision systems,
398
1070260
3000
razvoja samostojnih mehanskih sistemov vizualnega prepoznavanja,
17:53
education of the undergraduate and graduate students,
399
1073260
3000
izobraževanja dodiplomskih in podiplomskih študentov,
17:56
and most importantly in the alleviation
400
1076260
2000
in najpomembneje, zdravljenja
17:58
of childhood blindness.
401
1078260
2000
slepote otrok.
18:00
And for my students and I, it's been
402
1080260
2000
Zame in za moje študente
18:02
just a phenomenal experience
403
1082260
2000
je bila to izredna izkušnja,
18:04
because we have gotten to do interesting research,
404
1084260
4000
saj smo izvedli zanimivo raziskovanje,
18:08
while at the same time
405
1088260
2000
poleg tega pa pomagali
18:10
helping the many children that we have worked with.
406
1090260
2000
množici otrok, s katerimi smo delali.
18:12
Thank you very much.
407
1092260
2000
Najlepša hvala.
18:14
(Applause)
408
1094260
2000
(Aplavz)
O tej spletni strani

Na tem mestu boste našli videoposnetke na YouTubu, ki so uporabni za učenje angleščine. Ogledali si boste lekcije angleščine, ki jih poučujejo vrhunski učitelji z vsega sveta. Z dvoklikom na angleške podnapise, ki so prikazani na vsaki strani z videoposnetki, lahko predvajate videoposnetek od tam. Podnapisi se pomikajo sinhronizirano s predvajanjem videoposnetka. Če imate kakršne koli pripombe ali zahteve, nam pišite prek tega obrazca za stike.

https://forms.gle/WvT1wiN1qDtmnspy7