Conrad Wolfram: Teaching kids real math with computers

355,666 views ใƒป 2010-11-15

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Yubal Masalker ืžื‘ืงืจ: Sigal Tifferet
00:15
We've got a real problem with math education right now.
0
15260
4000
ื™ืฉ ืœื ื• ื›ื™ื•ื ื‘ืขื™ื” ืืžื™ืชื™ืช ืขื ื”ื•ืจืืช ืžืชืžื˜ื™ืงื”.
00:19
Basically, no one's very happy.
1
19260
3000
ื‘ื’ื“ื•ืœ, ืืฃ ืื—ื“ ืื™ื ื• ืžืจื•ืฆื” ื‘ืžื™ื•ื—ื“.
00:22
Those learning it
2
22260
2000
ืืœื” ืฉืœื•ืžื“ื™ื ืื•ืชื”
00:24
think it's disconnected,
3
24260
2000
ืกื‘ื•ืจื™ื ืฉื”ื™ื ืžื ื•ืชืงืช,
00:26
uninteresting and hard.
4
26260
2000
ืœื ืžืขื ื™ื™ื ืช ื•ืงืฉื”.
00:28
Those trying to employ them
5
28260
2000
ื”ืžืขืกื™ืงื™ื ืื•ืชื ืกื‘ื•ืจื™ื
00:30
think they don't know enough.
6
30260
2000
ืฉื”ื ืื™ื ื ื™ื•ื“ืขื™ื ืžืกืคื™ืง.
00:32
Governments realize that it's a big deal for our economies,
7
32260
3000
ืžืžืฉืœื•ืช ืžื’ืœื•ืช ืฉื”ื™ื ื—ืฉื•ื‘ื” ืœื›ืœื›ืœื•ืช ืฉืœื ื•,
00:35
but don't know how to fix it.
8
35260
3000
ืื‘ืœ ืื™ื ืŸ ื™ื•ื“ืขื•ืช ื›ื™ืฆื“ ืœืชืงืŸ ืื•ืชื”.
00:38
And teachers are also frustrated.
9
38260
2000
ื’ื ื”ืžื•ืจื™ื ืžืชื•ืกื›ืœื™ื.
00:40
Yet math is more important to the world
10
40260
3000
ืขื ื–ืืช, ืžืชืžื˜ื™ืงื” ื—ืฉื•ื‘ื” ืœืขื•ืœื ื™ื•ืชืจ ืžืืฉืจ
00:43
than at any point in human history.
11
43260
2000
ื‘ื›ืœ ืชืงื•ืคื” ืื—ืจืช ื‘ื”ื™ืกื˜ื•ืจื™ื”.
00:45
So at one end we've got falling interest
12
45260
2000
ื›ืš ืฉืžืฆื“ ืื—ื“ ื™ืฉ ืขื ื™ื™ืŸ ื”ื•ืœืš ื•ืคื•ื—ืช
00:47
in education in math,
13
47260
2000
ื‘ืœื™ืžื•ื“ื™ ืžืชืžื˜ื™ืงื”,
00:49
and at the other end we've got a more mathematical world,
14
49260
3000
ื•ืžืฆื“ ืฉื ื™ ื™ืฉ ืœื ื• ืขื•ืœื ืฉื”ื•ื ื™ื•ืชืจ ืžืชืžื˜ื™,
00:52
a more quantitative world than we ever have had.
15
52260
3000
ืขื•ืœื ื™ื•ืชืจ ืžื“ื™ื“ ื•ื›ืžื•ืชื™, ื™ื—ืกื™ืช ืœื›ืœ ืžื” ืฉื”ื™ื” ื‘ืขื‘ืจ.
00:56
So what's the problem, why has this chasm opened up,
16
56260
2000
ืื– ืื™ืคื” ื”ื‘ืขื™ื”, ืžื“ื•ืข ื ื•ืฆืจื” ื”ืชื”ื•ื ื”ื–ื•,
00:58
and what can we do to fix it?
17
58260
3000
ื•ืžื” ื ื™ืชืŸ ืœืขืฉื•ืช ื›ื“ื™ ืœืกื’ื•ืจ ืื•ืชื”?
01:01
Well actually, I think the answer
18
61260
2000
ืœืžืขืฉื”, ืื ื™ ื—ื•ืฉื‘ ืฉื”ืชืฉื•ื‘ื”
01:03
is staring us right in the face:
19
63260
2000
ื›ื‘ืจ ื ื™ืฆื‘ืช ื‘ืคื ื™ื ื•.
01:05
Use computers.
20
65260
2000
ืฉื™ืžื•ืฉ ื‘ืžื—ืฉื‘ื™ื.
01:07
I believe
21
67260
2000
ืื ื™ ืžืืžื™ืŸ
01:09
that correctly using computers
22
69260
2000
ืฉืฉื™ืžื•ืฉ ื ื›ื•ืŸ ื‘ืžื—ืฉื‘ื™ื
01:11
is the silver bullet
23
71260
2000
ื”ื•ื ืคื™ืชืจื•ืŸ ื”ืงืกื
01:13
for making math education work.
24
73260
3000
ืฉื™ื’ืจื•ื ืœื”ื•ืจืืช ืžืชืžื˜ื™ืงื” ืœื”ื™ื•ืช ืืคืงื˜ื™ื‘ื™ืช.
01:16
So to explain that,
25
76260
2000
ื›ื“ื™ ืœื”ืกื‘ื™ืจ ื–ืืช
01:18
let me first talk a bit about what math looks like in the real world
26
78260
3000
ืืชืืจ ื‘ืงืฆืจื” ืื™ืš ื ืจืื™ืช ื”ืžืชืžื˜ื™ืงื” ื‘ืขื•ืœื ื”ืืžื™ืชื™
01:21
and what it looks like in education.
27
81260
2000
ื•ืื™ืš ื”ื™ื ื ืจืื™ืช ื‘ื—ื™ื ื•ืš.
01:23
See, in the real world
28
83260
2000
ืชืจืื•, ื‘ืขื•ืœื ื”ืืžื™ืชื™
01:25
math isn't necessarily done by mathematicians.
29
85260
3000
ืžืชืžื˜ื™ืงื” ืœื ื‘ื”ื›ืจื— ืžืชื‘ืฆืขืช ืขืœ-ื™ื“ื™ ืžืชืžื˜ื™ืงืื™ื.
01:28
It's done by geologists,
30
88260
2000
ื”ื™ื ืžืชื‘ืฆืขืช ืขืœ-ื™ื“ื™ ื’ืื•ืœื•ื’ื™ื,
01:30
engineers, biologists,
31
90260
2000
ืžื”ื ื“ืกื™ื, ื‘ื™ื•ืœื•ื’ื™ื,
01:32
all sorts of different people --
32
92260
2000
ื›ืœ ืžื™ื ื™ ืื ืฉื™ื --
01:34
modeling and simulation.
33
94260
2000
ืขื™ืฆื•ื‘ ื•ื”ื“ืžื™ื”.
01:36
It's actually very popular.
34
96260
2000
ื‘ืขืฆื ื–ื” ืžืื•ื“ ื ืคื•ืฅ.
01:38
But in education it looks very different --
35
98260
3000
ืื‘ืœ ื‘ื—ื™ื ื•ืš ื–ื” ื ืจืื” ืžืื•ื“ ืฉื•ื ื” --
01:41
dumbed-down problems, lots of calculating,
36
101260
2000
ื‘ืขื™ื•ืช ืžืคื•ืฉื˜ื•ืช, ื”ืžื•ืŸ ื—ื™ืฉื•ื‘ื™ื --
01:43
mostly by hand.
37
103260
2000
ื‘ืขื™ืงืจ ื‘ืขื–ืจืช ื™ื“ื™ื™ื.
01:46
Lots of things that seem simple
38
106260
2000
ื”ืจื‘ื” ื“ื‘ืจื™ื ืฉื ืจืื™ื ืคืฉื•ื˜ื™ื
01:48
and not difficult like in the real world,
39
108260
2000
ื•ืœื ืžืกื•ื‘ื›ื™ื, ืฉืœื ื›ืžื• ื‘ืขื•ืœื ื”ืืžื™ืชื™,
01:50
except if you're learning it.
40
110260
2000
ืืœื ืื ืืชื ืœื•ืžื“ื™ื ืื•ืชื.
01:53
And another thing about math:
41
113260
2000
ื•ืขื•ื“ ื“ื‘ืจ ืขืœ ืžืชืžื˜ื™ืงื”:
01:55
math sometimes looks like math --
42
115260
2000
ืžืชืžื˜ื™ืงื” ื ืจืื™ืช ืœืขื™ืชื™ื ื›ืžื• ืžืชืžื˜ื™ืงื” --
01:57
like in this example here --
43
117260
3000
ื›ืžื• ื‘ื“ื•ื’ืžื ื›ืืŸ --
02:00
and sometimes it doesn't --
44
120260
2000
ื•ืœืคืขืžื™ื ื”ื™ื ืœื ื ืจืื™ืช ื›ืš --
02:02
like "Am I drunk?"
45
122260
3000
ื›ืžื• "ื”ืื ืื ื™ ืฉืชื•ื™?"
02:07
And then you get an answer that's quantitative in the modern world.
46
127260
3000
ื•ืื– ืžืงื‘ืœื™ื ืชืฉื•ื‘ื” ืฉื”ื™ื ื›ืžื•ืชื™ืช ื‘ืขื•ืœื ื”ืžื•ื“ืจื ื™.
02:10
You wouldn't have expected that a few years back.
47
130260
3000
ืœื ื”ื™ื™ื ื• ืžืฆืคื™ื ืœื–ื” ืœืคื ื™ ืžืกืคืจ ืฉื ื™ื.
02:13
But now you can find out all about --
48
133260
3000
ืื‘ืœ ื›ื™ื•ื ื ื™ืชืŸ ืœืžืฆื•ื ื”ื›ืœ ืขืœ --
02:16
unfortunately, my weight is a little higher than that, but --
49
136260
3000
ืœืฆืขืจื™, ืžืฉืงืœื™ ืงืฆืช ื™ื•ืชืจ ื’ื“ื•ืœ ืžื–ื” --
02:19
all about what happens.
50
139260
2000
ื›ืœ ืžื” ืฉืงื•ืจื”.
02:21
So let's zoom out a bit and ask,
51
141260
2000
ืื– ื‘ื•ืื• ื ื™ืงื— ืฆืขื“ ืื—ื•ืจื” ื•ื ืฉืืœ,
02:23
why are we teaching people math?
52
143260
2000
ืžื“ื•ืข ืื ื• ืžืœืžื“ื™ื ืžืชืžื˜ื™ืงื”?
02:25
What's the point of teaching people math?
53
145260
3000
ืžื” ื”ื˜ืขื ื‘ืœื™ืžื•ื“ ืžืชืžื˜ื™ืงื”?
02:28
And in particular, why are we teaching them math in general?
54
148260
3000
ื•ื‘ืžื™ื•ื—ื“, ืžื“ื•ืข ื‘ืื•ืคืŸ ื›ืœืœื™ ืื ื• ืžืœืžื“ื™ื ืžืชืžื˜ื™ืงื”?
02:31
Why is it such an important part of education
55
151260
3000
ืžื“ื•ืข ื–ื” ื—ืœืง ื›ืœ-ื›ืš ื—ืฉื•ื‘ ืฉืœ ื”ื—ื™ื ื•ืš
02:34
as a sort of compulsory subject?
56
154260
2000
ื‘ืชื•ืจ ื ื•ืฉื ื—ื•ื‘ื”?
02:36
Well, I think there are about three reasons:
57
156260
3000
ืื ื™ ื—ื•ืฉื‘ ืฉื™ืฉื ืŸ ืฉืœื•ืฉ ืกื™ื‘ื•ืช ืœื›ืš:
02:39
technical jobs
58
159260
2000
ืขื™ืกื•ืงื™ื ื˜ื›ื ื™ื™ื ืฉื”ื
02:41
so critical to the development of our economies,
59
161260
3000
ื›ืœ-ื›ืš ื—ืฉื•ื‘ื™ื ืœื”ืชืคืชื—ื•ืช ื”ื›ืœื›ืœื•ืช ืฉืœื ื•,
02:44
what I call "everyday living" --
60
164260
3000
ืžื” ืฉืื ื™ ืžื›ื ื” ื—ื™ื™ ื™ื•ื ื™ื•ื.
02:48
to function in the world today,
61
168260
2000
ื›ื“ื™ ืœืชืคืงื“ ื‘ืขื•ืœื ืฉืœ ื”ื™ื•ื,
02:50
you've got to be pretty quantitative,
62
170260
2000
ื—ื™ื™ื‘ื™ื ืœื”ื™ื•ืช ื›ืžื•ืชื™ื™ื,
02:52
much more so than a few years ago:
63
172260
2000
ื”ืจื‘ื” ื™ื•ืชืจ ืžืืฉืจ ืœืคื ื™ ืžืกืคืจ ืฉื ื™ื.
02:54
figure out your mortgages,
64
174260
2000
ืœื—ืฉื‘ ืžืฉื›ื ืชืื•ืช,
02:56
being skeptical of government statistics, those kinds of things --
65
176260
3000
ืœื”ื˜ื™ืœ ืกืคืง ื‘ืกื˜ื˜ื™ืกื˜ื™ืงื•ืช ืžืžืฉืœืชื™ื•ืช, ื“ื‘ืจื™ื ื›ืืœื”.
03:00
and thirdly, what I would call something like
66
180260
3000
ื•ืฉืœื™ืฉื™ืช, ืžื” ืฉื”ื™ื™ืชื™ ืžื›ื ื”, ืžืฉื”ื• ื›ืžื•
03:03
logical mind training, logical thinking.
67
183260
3000
ืชืจื’ื•ืœ ื”ื”ื™ื’ื™ื•ืŸ ืฉืœ ื”ื ืคืฉ, ื—ืฉื™ื‘ื” ื”ื’ื™ื•ื ื™ืช.
03:06
Over the years
68
186260
2000
ืขื ื—ืœื•ืฃ ื”ืฉื ื™ื,
03:08
we've put so much in society
69
188260
2000
ื”ืฉืงืขื ื• ื›ืœ-ื›ืš ื”ืจื‘ื” ื‘ื—ื‘ืจื”
03:10
into being able to process and think logically. It's part of human society.
70
190260
3000
ืฉืชื”ื™ื” ืžืกื•ื’ืœืช ืœืขื‘ื“ ืžื™ื“ืข ื•ืœื—ืฉื•ื‘ ื‘ื”ื™ื’ื™ื•ืŸ; ื–ื” ื—ืœืง ืžื—ื‘ืจื” ืื ื•ืฉื™ืช.
03:13
It's very important to learn that
71
193260
2000
ื–ื” ื—ืฉื•ื‘ ืžืื•ื“ ืœืœืžื•ื“ ื–ืืช.
03:15
math is a great way to do that.
72
195260
2000
ืžืชืžื˜ื™ืงื” ื”ื™ื ื“ืจืš ื ื”ื“ืจืช ืœื”ืฉื™ื’ ื–ืืช.
03:17
So let's ask another question.
73
197260
2000
ื›ืขืช ื ืฉืืœ ืฉืืœื” ื ื•ืกืคืช.
03:19
What is math?
74
199260
2000
ืžื”ื™ ืžืชืžื˜ื™ืงื”?
03:21
What do we mean when we say we're doing math,
75
201260
2000
ืœืžื” ืื ื• ืžืชื›ื•ื•ื ื™ื ื›ืืฉืจ ืื ื• ืื•ืžืจื™ื ืฉืื ื• ืžืฉืชืžืฉื™ื ื‘ืžืชืžื˜ื™ืงื”,
03:23
or educating people to do math?
76
203260
2000
ืื• ืœื—ื ืš ืื ืฉื™ื ืœื”ืฉืชืžืฉ ื‘ืžืชืžื˜ื™ืงื”?
03:25
Well, I think it's about four steps, roughly speaking,
77
205260
3000
ืื ื™ ืกื‘ื•ืจ ืฉืžื“ื•ื‘ืจ ื‘ืงื™ืจื•ื‘ ืขืœ ืืจื‘ืขื” ืฉืœื‘ื™ื,
03:28
starting with posing the right question.
78
208260
2000
ื›ืืฉืจ ืžืชื—ื™ืœื™ื ืขื ื”ืขืœืืช ื”ืฉืืœื” ื”ื ื›ื•ื ื”.
03:30
What is it that we want to ask? What is it we're trying to find out here?
79
210260
3000
ืžื” ื‘ืขืฆื ืื ื• ืจื•ืฆื™ื ืœืฉืื•ืœ? ืžื”ื• ื–ื” ืฉืื ื• ืžื—ืคืฉื™ื ื›ืืŸ?
03:33
And this is the thing most screwed up in the outside world,
80
213260
2000
ื•ื–ื” ื”ื“ื‘ืจ ืฉื”ื›ื™ ื”ืฉืชื‘ืฉ ื‘ืขื•ืœื,
03:35
beyond virtually any other part of doing math.
81
215260
3000
ืžืขื‘ืจ ืœื›ืœ ื“ื‘ืจ ืฉืขื•ืฉื™ื ื‘ืกื•ืฃ ืขื ืžืชืžื˜ื™ืงื”.
03:38
People ask the wrong question,
82
218260
2000
ืื ืฉื™ื ืฉื•ืืœื™ื ืืช ื”ืฉืืœื” ื”ืœื ื ื›ื•ื ื”,
03:40
and surprisingly enough, they get the wrong answer,
83
220260
2000
ื•ื‘ืื•ืคืŸ ื“ื™ ืžืคืชื™ืข, ื”ื ืžื’ื™ืขื™ื ืœืชืฉื•ื‘ื” ื”ืœื ื ื›ื•ื ื”,
03:42
for that reason, if not for others.
84
222260
2000
ืžื”ืกื™ื‘ื” ื”ื–ื•, ืื ืœื ืžืกื™ื‘ื•ืช ืื—ืจื•ืช.
03:44
So the next thing is take that problem
85
224260
2000
ืœื›ืŸ ื”ืฆืขื“ ื”ื‘ื ื”ื•ื ืœืงื—ืช ืืช ื”ื‘ืขื™ื”
03:46
and turn it from a real world problem
86
226260
2000
ื•ืœื”ืคื•ืš ืื•ืชื” ืžื‘ืขื™ื” ืžื”ืขื•ืœื ื”ืืžื™ืชื™
03:48
into a math problem.
87
228260
2000
ืœื‘ืขื™ื™ืช ืžืชืžื˜ื™ืงื”.
03:50
That's stage two.
88
230260
2000
ื–ื”ื• ื”ืฉืœื‘ ื”ืฉื ื™.
03:52
Once you've done that, then there's the computation step.
89
232260
3000
ื‘ืจื’ืข ืฉืขืฉื™ื ื• ื–ืืช, ืžื’ื™ืข ื”ืฉืœื‘ ื”ื—ื™ืฉื•ื‘ื™.
03:55
Turn it from that into some answer
90
235260
2000
ืฉืœื‘ ื–ื” ืžืคื™ืง ืคืชืจื•ืŸ ื›ืœืฉื”ื• ืœื‘ืขื™ื”,
03:57
in a mathematical form.
91
237260
3000
ื‘ืฆื•ืจื” ืžืชืžื˜ื™ืช.
04:00
And of course, math is very powerful at doing that.
92
240260
2000
ื•ื‘ืจื•ืจ ืฉืžืชืžื˜ื™ืงื” ืžืฆื˜ื™ื™ื ืช ื‘ืœืขืฉื•ืช ื–ืืช.
04:02
And then finally, turn it back to the real world.
93
242260
2000
ื•ืื– ืœื‘ืกื•ืฃ, ืœื”ืคื•ืš ืืช ื”ืคืชืจื•ืŸ ื‘ื—ื–ืจื” ืœืฆื•ืจื” ืžืžืฉื™ืช.
04:04
Did it answer the question?
94
244260
2000
ื”ืื ื”ืคื™ืชืจื•ืŸ ืขื•ื ื” ืขืœ ื”ื‘ืขื™ื”?
04:06
And also verify it -- crucial step.
95
246260
3000
ื•ื’ื ืœืืžืช ืื•ืชื• -- ืฆืขื“ ืงืจื™ื˜ื™.
04:10
Now here's the crazy thing right now.
96
250260
2000
ืื‘ืœ ื”ื ื” ื“ื‘ืจ ืื—ื“ ืœื ื”ื’ื™ื•ื ื™.
04:12
In math education,
97
252260
2000
ื‘ื”ื•ืจืืช ืžืชืžื˜ื™ืงื”,
04:14
we're spending about perhaps 80 percent of the time
98
254260
3000
ืื ื• ืžื‘ื–ื‘ื–ื™ื ืื•ืœื™ ื›-80 ืื—ื•ื– ืžื”ื–ืžืŸ
04:17
teaching people to do step three by hand.
99
257260
3000
ื‘ืœืœืžื“ ืื ืฉื™ื ืœื‘ืฆืข ืืช ื”ืฉืœื‘ ื”ืฉืœื™ืฉื™ ื‘ืขื–ืจืช ื™ื“ื™ื™ื.
04:20
Yet, that's the one step computers can do
100
260260
2000
ืื‘ืœ ื–ื”ื• ื‘ื“ื™ื•ืง ื”ืฉืœื‘ ืฉืžื—ืฉื‘ื™ื ื™ื›ื•ืœื™ื ืœื‘ืฆืขื•
04:22
better than any human after years of practice.
101
262260
3000
ื™ื•ืชืจ ื˜ื•ื‘ ืžื›ืœ ืื“ื ืฉืขื‘ืจ ืืคื™ืœื• ืฉื ื™ื ืฉืœ ื”ื›ืฉืจื”.
04:25
Instead, we ought to be using computers
102
265260
3000
ื‘ืžืงื•ื ื–ื”, ืื ื• ืžื•ื›ืจื—ื™ื ืœื”ืฉืชืžืฉ ื‘ืžื—ืฉื‘ื™ื
04:28
to do step three
103
268260
2000
ืœื‘ื™ืฆื•ืข ืฉืœื‘ ืฉืœื•ืฉ
04:30
and using the students to spend much more effort
104
270260
3000
ื•ืœื’ืจื•ื ืœืชืœืžื™ื“ื™ื ืœื”ืฉืงื™ืข ื”ืจื‘ื” ื™ื•ืชืจ ืžืืžืฅ
04:33
on learning how to do steps one, two and four --
105
273260
2000
ื‘ืœื™ืžื•ื“ ื›ื™ืฆื“ ืœื‘ืฆืข ืฉืœื‘ื™ื 1, 2 ื•-4 --
04:35
conceptualizing problems, applying them,
106
275260
3000
ืœืงืœื•ื˜ ื•ืœืชืคื•ืก ื‘ืขื™ื•ืช, ืœื™ื™ืฉื ืคื™ืชืจื•ื ื•ืช,
04:38
getting the teacher to run them through how to do that.
107
278260
3000
ืœื’ืจื•ื ืœืžื•ืจื™ื ืœื”ืขื‘ื™ืจื ื“ืจืš ื”ื”ืชื ืกื•ืช ืฉืœ ืขืฉื™ื™ืช ื”ื“ื‘ืจื™ื ื”ื "ืœ.
04:41
See, crucial point here:
108
281260
2000
ืชืจืื•, ื–ื•ื”ื™ ื ืงื•ื“ื” ืงืจื™ื˜ื™ืช:
04:43
math is not equal to calculating.
109
283260
2000
ืžืชืžื˜ื™ืงื”, ืื™ืŸ ืžืฉืžืขื•ืชื” ืจืง ื‘ื™ืฆื•ืข ื—ื™ืฉื•ื‘ื™ื.
04:45
Math is a much broader subject than calculating.
110
285260
3000
ืžืชืžื˜ื™ืงื” ื”ื™ื ื ื•ืฉื ื”ืจื‘ื” ื™ื•ืชืจ ืจื—ื‘ ืžืืฉืจ ื—ื™ืฉื•ื‘ื™ื.
04:48
Now it's understandable that this has all got intertwined
111
288260
3000
ื–ื” ื‘ืจื•ืจ ืฉื”ื›ืœ ื ืฉื–ืจ ื‘ื™ื—ื“
04:51
over hundreds of years.
112
291260
2000
ื‘ืžืฉืš ืžืื•ืช ืฉื ื™ื.
04:53
There was only one way to do calculating and that was by hand.
113
293260
3000
ื”ื™ืชื” ืจืง ื“ืจืš ืื—ืช ืœื‘ืฆืข ื—ื™ืฉื•ื‘ื™ื ื•ื–ื” ื”ื™ื” ื‘ืขื–ืจืช ื™ื“ื™ื™ื.
04:56
But in the last few decades
114
296260
2000
ืื‘ืœ ื‘ื›ืžื” ืขืฉื•ืจื™ื ืื—ืจื•ื ื™ื
04:58
that has totally changed.
115
298260
2000
ื–ื” ื”ืฉืชื ื” ืžืŸ ื”ื™ืกื•ื“.
05:00
We've had the biggest transformation of any ancient subject
116
300260
3000
ื‘ื’ืœืœ ื”ืžื—ืฉื‘ื™ื, ื”ืชืจื—ืฉื” ืืฆืœื ื• ื”ื˜ืจื ืกืคื•ืจืžืฆื™ื”
05:03
that I could ever imagine with computers.
117
303260
3000
ื”ื’ื“ื•ืœื” ื‘ื™ื•ืชืจ ื‘ื›ืœ ื ื•ืฉื ืžืกื•ืจืชื™ ืฉื ื™ืชืŸ ืœื”ืขืœื•ืช ืขืœ ื”ื“ืขืช.
05:07
Calculating was typically the limiting step,
118
307260
2000
ื—ื™ืฉื•ื‘ื™ื ื”ื™ื• ื‘ื“ืจืš-ื›ืœืœ ื”ืฉืœื‘ ื”ืžื’ื‘ื™ืœ,
05:09
and now often it isn't.
119
309260
2000
ื•ืจืง ืœืขื™ืชื™ื ืจื—ื•ืงื•ืช ื”ื ืœื.
05:11
So I think in terms of the fact that math
120
311260
2000
ืœื›ืŸ ืื ื™ ื—ื•ืฉื‘ ื‘ืžื•ื ื—ื™ื ื”ืงืฉื•ืจื™ื ื‘ืขื•ื‘ื“ื”
05:13
has been liberated from calculating.
121
313260
3000
ืฉืžืชืžื˜ื™ืงื” ื”ืฉืชื—ืจืจื” ืžื‘ื™ืฆื•ืข ื—ื™ืฉื•ื‘ื™ื.
05:16
But that math liberation didn't get into education yet.
122
316260
3000
ืื‘ืœ ื”ืฉื—ืจื•ืจ ืฉืœ ืžืชืžื˜ื™ืงื” ืœื ื—ื“ืจ ืขื“ื™ื™ืŸ ืœื—ื™ื ื•ืš.
05:19
See, I think of calculating, in a sense,
123
319260
2000
ืื ื™ ืžืกืชื›ืœ ืขืœ ื—ื™ืฉื•ื‘ื™ื, ื‘ืžื•ื‘ืŸ ืžืกื•ื™ื™ื,
05:21
as the machinery of math.
124
321260
2000
ื‘ืชื•ืจ ืžืชืžื˜ื™ืงื” ืžื™ื›ื ื™ืช.
05:23
It's the chore.
125
323260
2000
ืžืขืžืกื” ื™ื•ืžื™ืช ืฉืœ ืื™ืŸ-ื‘ืจื™ืจื”.
05:25
It's the thing you'd like to avoid if you can, like to get a machine to do.
126
325260
3000
ื–ื” ืžืฉื”ื• ืฉื”ื™ื™ื ื• ืจื•ืฆื™ื ืœื”ื™ืžื ืข ืžืžื ื• ืื ื™ื›ื•ืœื ื•, ืœืžืฉืœ ืขืœ-ื™ื“ื™ ืœืชืช ืœืžื›ื•ื ื•ืช ืœืขืฉื•ืช.
05:29
It's a means to an end, not an end in itself,
127
329260
3000
ื”ื—ื™ืฉื•ื‘ื™ื ื”ื ืืžืฆืขื™ ืœื”ื’ื™ืข ืœืžื˜ืจื”, ืœื ื”ืžื˜ืจื” ืขืฆืžื”.
05:34
and automation allows us
128
334260
2000
ื•ืื•ื˜ื•ืžืฆื™ื” ืžืืคืฉืจืช ืœื ื•
05:36
to have that machinery.
129
336260
2000
ืœื”ืฉื™ื’ ืืช ื”ืžื›ื•ื ื•ืช ื”ืœืœื•.
05:38
Computers allow us to do that --
130
338260
2000
ืžื—ืฉื‘ื™ื ืžืืคืฉืจื™ื ืœื ื• ืœื‘ืฆืข ื–ืืช.
05:40
and this is not a small problem by any means.
131
340260
3000
ื•ื–ื” ืœื ื“ื‘ืจ ื–ื ื™ื— ื‘ืฉื•ื ืื•ืคืŸ.
05:43
I estimated that, just today, across the world,
132
343260
3000
ืœืคื™ ื”ืขืจื›ืชื™, ืจืง ื”ื™ื•ื, ื‘ืจื—ื‘ื™ ื”ืขื•ืœื,
05:46
we spent about 106 average world lifetimes
133
346260
3000
ื‘ื–ื‘ื–ื ื• ื›-106 ืชื•ื—ืœื•ืช ื—ื™ื™ื ืžืžื•ืฆืขื•ืช
05:49
teaching people how to calculate by hand.
134
349260
3000
ื‘ืœืœืžื“ ืื ืฉื™ื ืœื‘ืฆืข ื—ื™ืฉื•ื‘ื™ื ื™ื“ื ื™ื™ื.
05:52
That's an amazing amount of human endeavor.
135
352260
3000
ื–ื•ื”ื™ ื›ืžื•ืช ืขืฆื•ืžื” ืฉืœ ืžืืžืฅ ืื ื•ืฉื™.
05:55
So we better be damn sure --
136
355260
2000
ืื– ื›ื“ืื™ ืœืขื–ืื–ืœ ืฉื ื”ื™ื” ื‘ื˜ื•ื—ื™ื --
05:57
and by the way, they didn't even have fun doing it, most of them --
137
357260
3000
ื•ื“ืจืš ืื’ื‘, ืจื•ื‘ื ืืคื™ืœื• ืœื ื ื”ื ื™ื ืœื‘ืฆืข ื–ืืช.
06:00
so we better be damn sure
138
360260
2000
ืœื›ืŸ ื›ื“ืื™ ืฉื ื”ื™ื” ื‘ื˜ื•ื—ื™ื ืœื’ืžืจื™
06:02
that we know why we're doing that
139
362260
2000
ืฉืื ื• ืžื‘ื™ื ื™ื ืžื“ื•ืข ืื ื• ืขื•ืฉื™ื ื–ืืช
06:04
and it has a real purpose.
140
364260
2000
ื•ืฉื™ืฉ ืœื–ื” ืžื˜ืจื” ืจืื•ื™ื”.
06:06
I think we should be assuming computers
141
366260
2000
ืื ื™ ืกื‘ื•ืจ ืฉืื ื• ืฆืจื™ื›ื™ื ืœื”ืฉืชืžืฉ ื‘ืžื—ืฉื‘ื™ื
06:08
for doing the calculating
142
368260
2000
ื›ื“ื™ ืœื‘ืฆืข ื—ื™ืฉื•ื‘ื™ื
06:10
and only doing hand calculations where it really makes sense to teach people that.
143
370260
3000
ื•ืœื‘ืฆืข ื—ื™ืฉื•ื‘ื™ื ื™ื“ื ื™ื™ื ืจืง ื”ื™ื›ืŸ ืฉื–ื” ื‘ืืžืช ื ืจืื” ื”ื’ื™ื•ื ื™ ืฉืื“ื ื™ืขืฉื” ืื•ืชื.
06:13
And I think there are some cases.
144
373260
2000
ื•ืื ื™ ื—ื•ืฉื‘ ืฉื™ืฉ ื›ืžื” ืžืงืจื™ื ื›ืืœื”.
06:15
For example: mental arithmetic.
145
375260
2000
ืœื“ื•ื’ืžื, ื—ื™ืฉื•ื‘ื™ื ื‘ืขืœ-ืคื”.
06:17
I still do a lot of that, mainly for estimating.
146
377260
3000
ืื ื™ ืขื“ื™ื™ืŸ ืžืจื‘ื” ืœืขืฉื•ืชื, ื‘ืขื™ืงืจ ื‘ืฉื‘ื™ืœ ืœื‘ืฆืข ืื•ืžื“ื ื™ื.
06:20
People say, "Is such and such true?"
147
380260
2000
ืื ืฉื™ื ืฉื•ืืœื™ื, ื”ืื ื“ื‘ืจ ื›ื–ื” ื•ื›ื–ื” ื ื›ื•ืŸ,
06:22
And I'll say, "Hmm, not sure." I'll think about it roughly.
148
382260
2000
ื•ืื ื™ ืขื•ื ื” ืฉืื ื™ ืœื ื‘ื˜ื•ื—. ืฉืื—ืฉื•ื‘ ืขืœ ื–ื” ื‘ืฆื•ืจื” ืžืงื•ืจื‘ืช.
06:24
It's still quicker to do that and more practical.
149
384260
2000
ื–ื” ืขื“ื™ื™ืŸ ืžื”ื™ืจ ื™ื•ืชืจ ื•ืžืขืฉื™ ื™ื•ืชืจ ืœื‘ืฆืข ื›ืš.
06:26
So I think practicality is one case
150
386260
2000
ืœื›ืŸ ืื ื™ ืกื‘ื•ืจ ืฉืžืขืฉื™ื•ืช ื”ื™ื ืžืงืจื” ืื—ื“
06:28
where it's worth teaching people by hand.
151
388260
2000
ืฉื‘ื• ืจืื•ื™ ืœืœืžื“ ืื ืฉื™ื ืœื”ืฉืชืžืฉ ื‘ื™ื“ื™ื™ื.
06:30
And then there are certain conceptual things
152
390260
2000
ื•ื™ืฉ ื’ื ื“ื‘ืจื™ื ื”ืงืฉื•ืจื™ื ื‘ืชืคื™ืกื”
06:32
that can also benefit from hand calculating,
153
392260
2000
ืฉืขืฉื•ื™ื™ื ืœื”ืจื•ื™ื— ืžื–ื” ืฉืขื•ืฉื™ื ื—ื™ืฉื•ื‘ื™ื ื™ื“ื ื™ื™ื,
06:34
but I think they're relatively small in number.
154
394260
2000
ืื‘ืœ ืื ื™ ื—ื•ืฉื‘ ืฉืžืกืคืจื ื™ื—ืกื™ืช ืงื˜ืŸ.
06:36
One thing I often ask about
155
396260
2000
ืื—ื“ ื”ื“ื‘ืจื™ื ืฉืื ื™ ืชืžื™ื“ ืžืชืขื ื™ื™ืŸ
06:38
is ancient Greek and how this relates.
156
398260
3000
ื”ื•ื ื”ื™ื•ื•ื ื™ื ื”ืงื“ื•ืžื™ื ื•ื›ื™ืฆื“ ื›ืœ ื–ื” ืžืชืงืฉืจ ืืœื™ื”ื.
06:41
See, the thing we're doing right now
157
401260
2000
ืชืจืื•, ืžื” ืฉืื ื• ืขื•ืฉื™ื ื›ื™ื•ื,
06:43
is we're forcing people to learn mathematics.
158
403260
2000
ื–ื” ืœื›ืคื•ืช ืขืœ ืื ืฉื™ื ืœืœืžื•ื“ ืžืชืžื˜ื™ืงื”.
06:45
It's a major subject.
159
405260
2000
ื–ื” ื ื•ืฉื ืžืจื›ื–ื™.
06:47
I'm not for one minute suggesting that, if people are interested in hand calculating
160
407260
3000
ืื™ื ื™ ืžืฆื™ืข ืืคื™ืœื• ืœืจื’ืข ืฉืื ืžื™ืฉื”ื• ืžืชืขื ื™ื™ืŸ ื‘ื—ื™ืฉื•ื‘ื™ื ื™ื“ื ื™ื™ื
06:50
or in following their own interests
161
410260
2000
ืื• ืจื•ืฆื” ืœื”ื™ืฉืืจ ื ืืžืŸ ืœืชื—ื•ืžื™ ื”ื”ืชืขื ื™ื™ื ื•ืช ืฉืœื•
06:52
in any subject however bizarre --
162
412260
2000
ื‘ื›ืœ ื ื•ืฉื ื•ืœื ืžืฉื ื” ืขื“ ื›ืžื” ื”ื•ื ืžื•ื–ืจ --
06:54
they should do that.
163
414260
2000
ืขืœื™ื• ืœืขืฉื•ืช ื–ืืช.
06:56
That's absolutely the right thing,
164
416260
2000
ื–ื” ื”ื“ื‘ืจ ืฉืœื’ืžืจื™ ื ื›ื•ืŸ ืœืขืฉื•ืช,
06:58
for people to follow their self-interest.
165
418260
2000
ื‘ืฉื‘ื™ืœ ืื ืฉื™ื ื”ื ืืžื ื™ื ืœืชื—ื•ืžื™ ื”ืชืขื ื™ื™ื ื•ืช ืฉืœื”ื.
07:00
I was somewhat interested in ancient Greek,
166
420260
2000
ืื ื™ ื”ืชืขื ื™ื™ื ืชื™ ืงืฆืช ื‘ื™ื•ื•ืŸ ื”ืขืชื™ืงื”,
07:02
but I don't think that we should force the entire population
167
422260
3000
ืื‘ืœ ืื ื™ ืœื ื—ื•ืฉื‘ ืฉืฆืจื™ืš ืœื›ืคื•ืช ืขืœ ื›ื•ืœื
07:05
to learn a subject like ancient Greek.
168
425260
2000
ืœืœืžื•ื“ ื ื•ืฉื ื›ืžื• ื™ื•ื•ืŸ ื”ืขืชื™ืงื”.
07:07
I don't think it's warranted.
169
427260
2000
ืื™ื ื™ ืกื‘ื•ืจ ืฉื–ื” ื™ื”ื™ื” ืžื•ืฆื“ืง.
07:09
So I have this distinction between what we're making people do
170
429260
3000
ื›ืš ืฉืื ื™ ืžื‘ื—ื™ืŸ ื‘ื™ืŸ ืžื” ืฉืื ื• ืžืืœืฆื™ื ืื ืฉื™ื ืœืขืฉื•ืช
07:12
and the subject that's sort of mainstream
171
432260
2000
ื•ื”ื ื•ืฉื ืฉื”ื•ื ืžืขื™ืŸ ื–ืจื ืžืจื›ื–ื™
07:14
and the subject that, in a sense, people might follow with their own interest
172
434260
3000
ืœื‘ื™ืŸ ื”ื ื•ืฉื ืฉื”ื•ื ื‘ืžื•ื‘ืŸ ืžืกื•ื™ื™ื ืžื”ื•ื•ื” ืฉื˜ื— ื”ืชืขื ื™ื™ื ื•ืช ืคืจื˜ื™ ืฉืœ ืื ืฉื™ื
07:17
and perhaps even be spiked into doing that.
173
437260
2000
ืฉืื•ืœื™ ืืฃ ื ื”ื ื™ื ืœืขืฉื•ืช ื–ืืช.
07:19
So what are the issues people bring up with this?
174
439260
3000
ืื– ืžื”ืŸ ื”ื”ืฉื’ื•ืช ืฉืื ืฉื™ื ืžืขืœื™ื?
07:22
Well one of them is, they say, you need to get the basics first.
175
442260
3000
ืื—ืช ืžื”ืŸ ื”ื™ื ืฉื”ื ืื•ืžืจื™ื ืฉืื ื™ ืฆืจื™ืš ืชื—ื™ืœื” ืœื”ื ื—ื™ืœ ืืช ื”ื‘ืกื™ืก.
07:25
You shouldn't use the machine
176
445260
2000
ืืœ ืœืš ืœื”ืฉืชืžืฉ ื‘ืžื›ื•ื ื”
07:27
until you get the basics of the subject.
177
447260
2000
ืขื“ ืฉืืชื” ืชื•ืคืก ืืช ื™ืกื•ื“ื•ืช ื”ื ื•ืฉื.
07:29
So my usual question is, what do you mean by "basics?"
178
449260
3000
ืื– ืฉืืœืชื™ ื”ื—ื•ื–ืจืช ื”ื™ื, ืœืžื” ืืชื” ืžืชื›ื•ื•ืŸ ื‘ืื•ืžืจืš ื™ืกื•ื“ื•ืช?
07:32
Basics of what?
179
452260
2000
ื™ืกื•ื“ื•ืช ืฉืœ ืžื”?
07:34
Are the basics of driving a car
180
454260
2000
ื”ืื ื”ื™ืกื•ื“ื•ืช ืฉืœ ื ื”ื™ื’ื” ื‘ืžื›ื•ื ื™ืช
07:36
learning how to service it, or design it for that matter?
181
456260
3000
ื”ื ืœื“ืขืช ื›ื™ืฆื“ ืœืชื—ื–ืง ืื•ืชื”, ืื• ืœืชื›ื ืŸ ืื•ืชื”?
07:39
Are the basics of writing learning how to sharpen a quill?
182
459260
3000
ื”ืื ื”ื™ืกื•ื“ื•ืช ืฉืœ ื›ืชื™ื‘ื” ื”ื ืœื“ืขืช ื›ื™ืฆื“ ืœื—ื“ื“ ืืช ื”ืงื•ืœืžื•ืก?
07:43
I don't think so.
183
463260
2000
ืื™ื ื™ ืกื‘ื•ืจ ื›ืš.
07:45
I think you need to separate the basics of what you're trying to do
184
465260
3000
ืื ื™ ื—ื•ืฉื‘ ืฉืฆืจื™ืš ืœื”ืคืจื™ื“ ืืช ื”ื™ืกื•ื“ื•ืช ืฉืœ ืžื” ืฉืžื ืกื™ื ืœืขืฉื•ืช
07:48
from how it gets done
185
468260
2000
ืžืื™ืš ืฉื–ื” ื ืขืฉื”
07:50
and the machinery of how it gets done
186
470260
3000
ื•ืžื”ืืžืฆืขื™ื ืฉืœ ืื™ืš ืฉื–ื” ื ืขืฉื”.
07:54
and automation allows you to make that separation.
187
474260
3000
ื•ืื•ื˜ื•ืžืฆื™ื” ืžืืคืฉืจืช ืœื ื• ืœืขืฉื•ืช ืืช ื”ื”ืคืจื“ื”.
07:57
A hundred years ago, it's certainly true that to drive a car
188
477260
3000
ืœืคื ื™ ืžืื” ืฉื ื”, ื–ื” ื•ื“ืื™ ื”ื™ื” ื ื›ื•ืŸ ืฉื›ื“ื™ ืœื ื”ื•ื’ ื‘ืžื›ื•ื ื™ืช
08:00
you kind of needed to know a lot about the mechanics of the car
189
480260
2000
ื”ื™ื” ืฆืจื™ืš ืœื“ืขืช ื”ืจื‘ื” ืขืœ ื”ืžื›ื ื™ื–ื ืฉืœ ื”ืžื›ื•ื ื™ืช
08:02
and how the ignition timing worked and all sorts of things.
190
482260
3000
ื•ื›ื™ืฆื“ ืคื•ืขืœ ืชื™ื–ืžื•ืŸ ื”ื”ืฆืชื” ื•ื›ืœ ืžื™ื ื™ ื“ื‘ืจื™ื ืื—ืจื™ื.
08:06
But automation in cars
191
486260
2000
ืื‘ืœ ืื•ื˜ื•ืžืฆื™ื” ื‘ืžื›ื•ื ื™ื•ืช
08:08
allowed that to separate,
192
488260
2000
ืื™ืคืฉืจื” ืœื”ืคืจื™ื“ ื‘ื™ื ื™ื”ื,
08:10
so driving is now a quite separate subject, so to speak,
193
490260
3000
ื•ื›ืš ื ื”ื™ื’ื” ื”ื™ื ื›ื™ื•ื ื ื•ืฉื ื“ื™ ื ืคืจื“
08:13
from engineering of the car
194
493260
3000
ืžืชื›ื ื•ืŸ ื”ืžื›ื•ื ื™ืช
08:16
or learning how to service it.
195
496260
3000
ืื• ืžืœื™ืžื•ื“ ื›ื™ืฆื“ ืœื˜ืคืœ ื‘ื”.
08:20
So automation allows this separation
196
500260
2000
ื›ืš ืฉืื•ื˜ื•ืžืฆื™ื” ืžืืคืฉืจืช ื”ืคืจื“ื” ื–ื•
08:22
and also allows -- in the case of driving,
197
502260
2000
ื•ื’ื ืžืืคืฉืจืช -- ื‘ืžืงืจื” ืฉืœ ื ื”ื™ื’ื”,
08:24
and I believe also in the future case of maths --
198
504260
2000
ื•ืื ื™ ืžืืžื™ืŸ ืฉื’ื ื‘ืžืงืจื” ื”ืขืชื™ื“ื™ ืฉืœ ืžืชืžื˜ื™ืงื” --
08:26
a democratized way of doing that.
199
506260
2000
ืงื™ื•ื ืฉืœ ื“ืจืš ืžื•ืคืจื“ืช ืœืขืฉื•ืช ื–ืืช.
08:28
It can be spread across a much larger number of people
200
508260
2000
ื ื™ืชืŸ ืœื”ืคื™ืฆื” ื‘ื™ืŸ ืžืกืคืจ ื’ื“ื•ืœ ื‘ื”ืจื‘ื” ืฉืœ ืื ืฉื™ื
08:30
who can really work with that.
201
510260
3000
ืืฉืจ ืžืžืฉ ื™ื›ื•ืœื™ื ืœื”ืฉืชืžืฉ ื‘ื”.
08:33
So there's another thing that comes up with basics.
202
513260
2000
ื™ืฉ ื“ื‘ืจ ื ื•ืกืฃ ืฉืขื•ืœื” ื‘ื™ื—ื“ ืขื ื”ื™ืกื•ื“ื•ืช.
08:35
People confuse, in my view,
203
515260
2000
ืื ืฉื™ื ืžืชื‘ืœื‘ืœื™ื, ืœื“ืขืชื™,
08:37
the order of the invention of the tools
204
517260
3000
ื‘ื™ืŸ ืกื“ืจ ื”ืžืฆืืช ื”ื›ืœื™ื
08:40
with the order in which they should use them for teaching.
205
520260
3000
ืœื‘ื™ืŸ ื”ืกื“ืจ ืฉื‘ื• ื”ื ืืžื•ืจื™ื ืœื”ืฉืชืžืฉ ื‘ื”ื ืœื”ื•ืจืื”.
08:43
So just because paper was invented before computers,
206
523260
3000
ื›ืš, ืจืง ื‘ื’ืœืœ ืฉื ื™ื™ืจ ื”ื•ืžืฆื ืœืคื ื™ ืžื—ืฉื‘ื™ื,
08:46
it doesn't necessarily mean you get more to the basics of the subject
207
526260
3000
ืื™ืŸ ืคื™ืจื•ืฉ ื”ื“ื‘ืจ ืฉื™ื•ืจื“ื™ื ื™ื•ืชืจ ืœื™ืกื•ื“ ื”ืขื ื™ื™ืŸ
08:49
by using paper instead of a computer
208
529260
2000
ื‘ื›ืš ืฉืžืฉืชืžืฉื™ื ื‘ื ื™ื™ืจ ื‘ืžืงื•ื ื‘ืžื—ืฉื‘
08:51
to teach mathematics.
209
531260
2000
ื›ื“ื™ ืœืœืžื“ ืžืชืžื˜ื™ืงื”.
08:55
My daughter gave me a rather nice anecdote on this.
210
535260
3000
ื‘ืชื™ ืกื™ืคืงื” ืœื™ ืื ืงื“ื•ื˜ื” ื ื—ืžื“ื” ืœืขื ื™ื™ืŸ ื–ื”.
08:58
She enjoys making what she calls "paper laptops."
211
538260
3000
ื”ื™ื ืื•ื”ื‘ืช ืœื‘ื ื•ืช ืžื” ืฉื”ื™ื ืžื›ื ื” ืžื—ืฉื‘ื™ื ื ื™ื™ื“ื™ื ืžื ื™ื™ืจ.
09:01
(Laughter)
212
541260
2000
(ืฆื—ื•ืง)
09:03
So I asked her one day, "You know, when I was your age,
213
543260
2000
ืื– ืฉืืœืชื™ ืื•ืชื” ื™ื•ื ืื—ื“, "ืืช ื™ื•ื“ืขืช ืฉื›ืืฉืจ ื”ื™ื™ืชื™ ื‘ื’ื™ืœืš,
09:05
I didn't make these.
214
545260
2000
ืœื ืขืฉื™ืชื™ ื“ื‘ืจื™ื ื›ืืœื”.
09:07
Why do you think that was?"
215
547260
2000
ืžื“ื•ืข ืืช ื—ื•ืฉื‘ืช ืฉื›ืš ื”ื™ื”?"
09:09
And after a second or two, carefully reflecting,
216
549260
2000
ืœืื—ืจ ืฉื ื™ื” ืื• ืฉืชื™ื™ื ืฉืœ ืžื—ืฉื‘ื”,
09:11
she said, "No paper?"
217
551260
2000
ื”ื™ื ืืžืจื”, "ืื•ืœื™ ืœื ื”ื™ื” ื ื™ื™ืจ?"
09:13
(Laughter)
218
553260
5000
(ืฆื—ื•ืง)
09:19
If you were born after computers and paper,
219
559260
2000
ืœืžื™ ืฉื ื•ืœื“ ืœืื—ืจ ืžื—ืฉื‘ื™ื ื•ื ื™ื™ืจ,
09:21
it doesn't really matter which order you're taught with them in,
220
561260
3000
ืื™ืŸ ื–ื” ื‘ืืžืช ืžืฉื ื” ื‘ืื™ื–ื” ืกื“ืจ ืœืžื“ืช ืขืœื™ื”ื,
09:24
you just want to have the best tool.
221
564260
2000
ืืชื” ืจืง ืจื•ืฆื” ืืช ื”ื›ืœื™ ื”ื›ื™ ืžื•ืขื™ืœ.
09:26
So another one that comes up is "Computers dumb math down."
222
566260
3000
ืขื•ื“ ื˜ืขื ื” ืฉืขื•ืœื” ื”ื™ื "ืžื—ืฉื‘ื™ื ื”ื•ืคื›ื™ื ืžืชืžื˜ื™ืงื” ืœืคืฉื˜ื ื™ืช."
09:29
That somehow, if you use a computer,
223
569260
2000
ืฉืื™ื›ืฉื”ื•, ืื ืžืฉืชืžืฉื™ื ื‘ืžื—ืฉื‘,
09:31
it's all mindless button-pushing,
224
571260
2000
ื–ื” ื”ื›ืœ ืœื—ื™ืฆืช ื›ืคืชื•ืจื™ื ืœืœื ื—ืฉื™ื‘ื”,
09:33
but if you do it by hand,
225
573260
2000
ืื‘ืœ ืื ืขื•ืฉื™ื ืืช ื–ื” ื‘ืขื–ืจืช ื™ื“ื™ื™ื,
09:35
it's all intellectual.
226
575260
2000
ื–ื” ื”ื›ืœ ืื™ื ื˜ืœื™ื’ื ื˜ื™.
09:37
This one kind of annoys me, I must say.
227
577260
3000
ืื ื™ ืžื•ื›ืจื— ืœื•ืžืจ ืฉื˜ืขื ื” ื–ื• ืžืจื’ื™ื–ื” ืื•ืชื™.
09:40
Do we really believe
228
580260
2000
ื”ืื ืื ื• ื‘ืืžืช ืžืืžื™ื ื™ื
09:42
that the math that most people are doing in school
229
582260
2000
ืฉื”ืžืชืžื˜ื™ืงื” ืฉืจื•ื‘ ื”ืื ืฉื™ื ืœื•ืžื“ื™ื ื‘ื‘ื™ืช-ืกืคืจ
09:44
practically today
230
584260
2000
ื›ืคื™ ืฉื–ื” ื ืขืฉื” ื”ื™ื•ื,
09:46
is more than applying procedures
231
586260
2000
ื–ื” ื‘ืืžืช ื”ืจื‘ื” ื™ื•ืชืจ ืžื™ื™ืฉื•ื ืฉืœ ื”ืœื™ื›ื™ื
09:48
to problems they don't really understand, for reasons they don't get?
232
588260
3000
ืขืœ ื‘ืขื™ื•ืช ืฉื”ื ืœื ื‘ืืžืช ืžื‘ื™ื ื™ื, ืžืกื™ื‘ื•ืช ืฉื”ื ืœื ืงื•ืœื˜ื™ื?
09:51
I don't think so.
233
591260
2000
ืื™ื ื™ ืกื‘ื•ืจ ื›ืš.
09:53
And what's worse, what they're learning there isn't even practically useful anymore.
234
593260
3000
ื•ืžื” ืฉื™ื•ืชืจ ื’ืจื•ืข, ืžื” ืฉื”ื ืœื•ืžื“ื™ื ืฉื, ืืคื™ืœื• ื›ื‘ืจ ื—ืกืจ ืชื•ืขืœืช ืžืขืฉื™ืช.
09:56
Might have been 50 years ago, but it isn't anymore.
235
596260
3000
ืื•ืœื™ ื”ื™ืชื” ืœื–ื” ืชื•ืขืœืช ืœืคื ื™ 50 ืฉื ื”, ืื‘ืœ ื›ื‘ืจ ืœื ื™ื•ืชืจ.
09:59
When they're out of education, they do it on a computer.
236
599260
3000
ื›ืืฉืจ ื”ื ืžื—ื•ืฅ ืœืžืขืจื›ืช ื—ื™ื ื•ืš, ื”ื ืขื•ืฉื™ื ื–ืืช ื‘ืžื—ืฉื‘.
10:02
Just to be clear, I think computers can really help with this problem,
237
602260
3000
ืœืžืขืŸ ื”ืกืจ ืกืคืง, ืื ื™ ืกื‘ื•ืจ ืฉืžื—ืฉื‘ื™ื ื‘ืืžืช ื™ื›ื•ืœื™ื ืœืกื™ื™ืข ื‘ื‘ืขื™ื” ื”ื–ื•,
10:05
actually make it more conceptual.
238
605260
2000
ื‘ืขืฆื ืœื”ืคื•ืš ืื•ืชื” ืœื™ื•ืชืจ ืžื•ื—ืฉื™ืช.
10:07
Now, of course, like any great tool,
239
607260
2000
ื›ืžื•ื‘ืŸ ืฉื›ืžื• ื›ืœ ื›ืœื™ ื™ืขื™ืœ,
10:09
they can be used completely mindlessly,
240
609260
2000
ื ื™ืชืŸ ืœืขืฉื•ืช ื‘ื”ื ืฉื™ืžื•ืฉ ื‘ืœืชื™ ืžื•ืฉื›ืœ ืœื—ืœื•ื˜ื™ืŸ,
10:11
like turning everything into a multimedia show,
241
611260
3000
ื›ืžื• ืœื”ืคื•ืš ื”ื›ืœ ืœืžื•ืคืข ืžื•ืœื˜ื™ืžื“ื™ื”,
10:14
like the example I was shown of solving an equation by hand,
242
614260
3000
ื›ืžื• ื”ื“ื•ื’ืžื ืฉืจืื™ืชื™ ืขืœ ืคืชื™ืจืช ืžืฉื•ื•ืื” ื‘ืื•ืคืŸ ื™ื“ื ื™,
10:17
where the computer was the teacher --
243
617260
2000
ืฉื‘ื” ื”ืžื—ืฉื‘ ื”ื™ื” ื”ืžื•ืจื” --
10:19
show the student how to manipulate and solve it by hand.
244
619260
3000
ื”ืžืจืื” ืœื™ืœื“ ื›ื™ืฆื“ ืœื‘ืฆืข ืžื ื™ืคื•ืœืฆื™ื” ื•ืœืคืชื•ืจ ื‘ืื•ืคืŸ ื™ื“ื ื™.
10:22
This is just nuts.
245
622260
2000
ื–ื” ื”ื›ืœ ืฉื˜ื•ื™ื•ืช.
10:24
Why are we using computers to show a student how to solve a problem by hand
246
624260
3000
ืžื“ื•ืข ืื ื• ืžืฉืชืžืฉื™ื ื‘ืžื—ืฉื‘ื™ื ืœื”ืจืื•ืช ืœืชืœืžื™ื“ื™ื ื›ื™ืฆื“ ืœืคืชื•ืจ ื‘ืขื™ื” ื‘ืขื–ืจืช ื™ื“ื™ื™ื,
10:27
that the computer should be doing anyway?
247
627260
2000
ื“ื‘ืจ ืฉื”ืžื—ืฉื‘ ืฆืจื™ืš ืœื‘ืฆืข ื‘ื›ืœ ืžืงืจื”?
10:29
All backwards.
248
629260
2000
ื”ื›ืœ ื”ืคื•ืš.
10:31
Let me show you
249
631260
2000
ื‘ืจืฉื•ืชื›ื ืืจืื” ืœื›ื
10:33
that you can also make problems harder to calculate.
250
633260
3000
ืฉื ื™ืชืŸ ืœื”ืคื•ืš ื‘ืขื™ื•ืช ืœื™ื•ืชืจ ืงืฉื•ืช ืžื‘ื—ื™ื ื” ื—ื™ืฉื•ื‘ื™ืช.
10:36
See, normally in school,
251
636260
2000
ื‘ืžืฆื‘ ืจื’ื™ืœ,
10:38
you do things like solve quadratic equations.
252
638260
3000
ืืชื ืคื•ืชืจื™ื ืžืฉื•ื•ืื•ืช ืจื™ื‘ื•ืขื™ื•ืช.
10:41
But you see, when you're using a computer,
253
641260
3000
ืื‘ืœ ื›ืืฉืจ ืžืฉืชืžืฉื™ื ื‘ืžื—ืฉื‘,
10:44
you can just substitute.
254
644260
4000
ื ื™ืชืŸ ืคืฉื•ื˜ ืœื”ื—ืœื™ืฃ ื•ืœื”ืคื•ืš ืื•ืชื” ืœืžืฉื•ื•ืื” ืžื”ืžืขืœื” ื”ืจื‘ื™ืขื™ืช;
10:48
You can make it a quartic equation. Make it kind of harder, calculating-wise.
255
648260
2000
ืœื™ื•ืชืจ ืงืฉื” ืžื‘ื—ื™ื ื” ื—ื™ืฉื•ื‘ื™ืช.
10:50
Same principles applied --
256
650260
2000
ืžื™ื•ืฉืžื™ื ืื•ืชื ืขืงืจื•ื ื•ืช --
10:52
calculations, harder.
257
652260
2000
ื—ื™ืฉื•ื‘ื™ื, ื™ื•ืชืจ ืงืฉื”.
10:54
And problems in the real world
258
654260
2000
ื•ื‘ืขื™ื•ืช ื‘ืขื•ืœื ื”ืžืžืฉื™
10:56
look nutty and horrible like this.
259
656260
2000
ื ืจืื•ืช ืžืฉื•ื’ืขื•ืช ื•ื ื•ืจืื™ื•ืช ื›ืžื• ื–ื•.
10:58
They've got hair all over them.
260
658260
2000
ื”ืŸ ืžื›ื•ืกื•ืช ื‘ืฉืขืจื•ืช ืœื›ืœ ืื•ืจื›ืŸ.
11:00
They're not just simple, dumbed-down things that we see in school math.
261
660260
3000
ื”ืŸ ืื™ื ืŸ ืืš ื•ืจืง ื“ื‘ืจื™ื ืคืฉื•ื˜ื™ื ื•ืžืคื•ืฉื˜ื™ื ื›ืžื• ืฉืจื•ืื™ื ื‘ืชืจื’ื™ืœื™ื ืฉืœ ื‘ืชื™-ืกืคืจ.
11:04
And think of the outside world.
262
664260
2000
ื•ืชื—ืฉื‘ื• ืขืœ ื”ืขื•ืœื ื‘ื—ื•ืฅ.
11:06
Do we really believe that engineering and biology
263
666260
2000
ื”ืื ืืชื ื‘ืืžืช ืžืืžื™ื ื™ื ืฉื”ื ื“ืกื” ื•ื‘ื™ื•ืœื•ื’ื™ื”
11:08
and all of these other things
264
668260
2000
ื•ื›ืœ ื”ื“ื‘ืจื™ื ื”ืื—ืจื™ื
11:10
that have so benefited from computers and maths
265
670260
2000
ืฉื›ืœ-ื›ืš ื”ืจื•ื™ื—ื• ืžืžื—ืฉื‘ื™ื ื•ืžืชืžื˜ื™ืงื”,
11:12
have somehow conceptually gotten reduced by using computers?
266
672260
3000
ืฉืชื“ืžื™ืชื ื ืคื’ืขื” ื‘ื’ืœืœ ืฉื”ืฉืชืžืฉื• ื‘ืžื—ืฉื‘ื™ื?
11:15
I don't think so -- quite the opposite.
267
675260
3000
ืื™ื ื™ ืกื‘ื•ืจ ื›ืš, ืืœื ืœื”ื™ืคืš.
11:18
So the problem we've really got in math education
268
678260
3000
ืœื›ืŸ ื”ื‘ืขื™ื” ื”ืืžื™ืชื™ืช ืฉื™ืฉ ืœื ื• ื‘ื”ื•ืจืืช ื”ืžืชืžื˜ื™ืงื”
11:21
is not that computers might dumb it down,
269
681260
3000
ื”ื™ื ืœื ืฉื”ืžื—ืฉื‘ื™ื ืขืœื•ืœื™ื ืœืคืฉื˜ ืื•ืชื”,
11:24
but that we have dumbed-down problems right now.
270
684260
3000
ืืœื ืฉืื ื—ื ื• ื›ื‘ืจ ืคื™ืฉื˜ื ื• ืืช ื”ื‘ืขื™ื•ืช.
11:27
Well, another issue people bring up
271
687260
2000
ืขื ื™ื™ืŸ ืื—ืจ ืฉืื ืฉื™ื ืžืขืœื™ื
11:29
is somehow that hand calculating procedures
272
689260
2000
ื”ื•ื ืฉื—ื™ืฉื•ื‘ ื™ื“ื ื™, ืื™ื›ืฉื”ื•
11:31
teach understanding.
273
691260
2000
ืžืฉืคืจ ื”ื‘ื ื”.
11:33
So if you go through lots of examples,
274
693260
2000
ื›ืš ืฉืื ืขื•ื‘ืจื™ื ืขืœ ื”ืจื‘ื” ื“ื•ื’ืžืื•ืช,
11:35
you can get the answer,
275
695260
2000
ื ื™ืชืŸ ืœื”ื’ื™ืข ืœืชืฉื•ื‘ื” --
11:37
you can understand how the basics of the system work better.
276
697260
3000
ืžื‘ื™ื ื™ื ื›ื™ืฆื“ ื”ืžืขืจื›ืช ืคื•ืขืœืช ื™ื•ืชืจ ื˜ื•ื‘ ื‘ื‘ืกื™ืกื”.
11:40
I think there is one thing that I think very valid here,
277
700260
3000
ืื ื™ ื—ื•ืฉื‘ ืฉื™ืฉ ื›ืืŸ ื“ื‘ืจ ืื—ื“ ื‘ืจ-ืชื•ืงืฃ,
11:43
which is that I think understanding procedures and processes is important.
278
703260
3000
ืฉื”ื•ื, ืื ื™ ื—ื•ืฉื‘, ืฉื”ื‘ื ืช ืคืจื•ืฆื“ื•ืจื•ืช ื•ืชื”ืœื™ื›ื™ื ื–ื” ื“ื‘ืจ ื—ืฉื•ื‘.
11:47
But there's a fantastic way to do that in the modern world.
279
707260
3000
ืื‘ืœ ื‘ืขื•ืœื ื”ืžื•ื“ืจื ื™ ื™ืฉื ื” ื“ืจืš ื ืคืœืื” ืœืขืฉื•ืช ื–ืืช.
11:50
It's called programming.
280
710260
3000
ื”ื™ื ื ืงืจืืช ืชื™ื›ื ื•ืช.
11:53
Programming is how most procedures and processes
281
713260
2000
ืชื™ื›ื ื•ืช ื–ื” ืื™ืš ืฉืจื•ื‘ ื”ืคืจื•ืฆื“ื•ืจื•ืช ื•ืชื”ืœื™ื›ื™ื
11:55
get written down these days,
282
715260
2000
ื ื›ืชื‘ื™ื ื‘ื™ืžื™ื ื• ืืœื”,
11:57
and it's also a great way
283
717260
2000
ื•ื–ื•ื”ื™ ื’ื ื“ืจืš ืžืฆื•ื™ื™ื ืช
11:59
to engage students much more
284
719260
2000
ืœื”ืขืกื™ืง ืืช ื”ืชืœืžื™ื“ื™ื ืขื•ื“ ื™ื•ืชืจ
12:01
and to check they really understand.
285
721260
2000
ื•ืœื‘ื“ื•ืง ืื ื”ื ื‘ืืžืช ืžื‘ื™ื ื™ื.
12:03
If you really want to check you understand math
286
723260
2000
ืื ืืชื ื‘ืืžืช ืจื•ืฆื™ื ืœื‘ื“ื•ืง ืฉืืชื ืžื‘ื™ื ื™ื ืžืชืžื˜ื™ืงื”
12:05
then write a program to do it.
287
725260
3000
ืื– ืชื›ืชื‘ื• ืชื•ื›ื ื™ืช ืฉืชืขืฉื” ื–ืืช.
12:08
So programming is the way I think we should be doing that.
288
728260
3000
ืœื›ืŸ ืื ื™ ืกื‘ื•ืจ ืฉืชื™ื›ื ื•ืช ื”ื™ื ื”ื“ืจืš ืœื‘ืฆืข ื–ืืช.
12:11
So to be clear, what I really am suggesting here
289
731260
2000
ืื– ื›ื“ื™ ืœื”ื‘ื”ื™ืจ, ืžื” ืฉืื ื™ ื‘ืขืฆื ืžืฆื™ืข ื›ืืŸ
12:13
is we have a unique opportunity
290
733260
2000
ื”ื•ื ืฉื™ืฉ ืœื ื• ื”ื–ื“ืžื ื•ืช ื™ื™ื—ื•ื“ื™ืช
12:15
to make maths both more practical
291
735260
2000
ืœื”ืคื•ืš ืžืชืžื˜ื™ืงื” ื”ืŸ ืœื™ื•ืชืจ ืžืขืฉื™ืช
12:17
and more conceptual, simultaneously.
292
737260
3000
ื•ื”ืŸ ืœื™ื•ืชืจ ืžื•ื—ืฉื™ืช, ื‘ื•-ื–ืžื ื™ืช.
12:20
I can't think of any other subject where that's recently been possible.
293
740260
3000
ืื ื™ ืœื ืžื•ืฆื ื ื•ืฉื ืื—ืจ ื›ืœืฉื”ื• ืฉืฉื ื–ื” ื”ืชืืคืฉืจ ืœืื—ืจื•ื ื”.
12:23
It's usually some kind of choice
294
743260
2000
ื‘ื“ืจืš-ื›ืœืœ ื–ื•ื”ื™ ื‘ื—ื™ืจื” ื›ืœืฉื”ื™
12:25
between the vocational and the intellectual.
295
745260
2000
ื‘ื™ืŸ ื”ืžืงืฆื•ืขื™ ืœืขื™ื•ื ื™.
12:27
But I think we can do both at the same time here.
296
747260
3000
ืื‘ืœ ืื ื™ ื—ื•ืฉื‘ ืฉื›ืืŸ ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ืฉื™ื’ ืืช ืฉื ื™ ื”ื“ื‘ืจื™ื.
12:32
And we open up so many more possibilities.
297
752260
3000
ื•ืื ื—ื ื• ืคื•ืชื—ื™ื ื‘ื–ื” ื›ืœ-ื›ืš ื”ืจื‘ื” ืืคืฉืจื•ื™ื•ืช.
12:35
You can do so many more problems.
298
755260
2000
ื ื™ืชืŸ ืœืคืชื•ืจ ื›ืœ-ื›ืš ื”ืจื‘ื” ื‘ืขื™ื•ืช ืื—ืจื•ืช.
12:37
What I really think we gain from this
299
757260
2000
ืžื” ืฉืœืคื™ ื“ืขืชื™ ืื ื—ื ื• ื‘ืืžืช ืžืฉื™ื’ื™ื ื‘ื–ื”
12:39
is students getting intuition and experience
300
759260
3000
ื”ื•ื ืฉืชืœืžื™ื“ื™ื ืจื•ื›ืฉื™ื ืื™ื ื˜ื•ืื™ืฆื™ื” ื•ื ื™ืกื™ื•ืŸ
12:42
in far greater quantities than they've ever got before.
301
762260
3000
ื‘ื›ืžื•ื™ื•ืช ื”ืจื‘ื” ื™ื•ืชืจ ื’ื“ื•ืœื•ืช ืžืžื” ืฉื”ื ืจื›ืฉื• ืื™-ืคืขื ื‘ืขื‘ืจ.
12:45
And experience of harder problems --
302
765260
2000
ื•ื”ืชื ืกื•ืช ื‘ื‘ืขื™ื•ืช ืงืฉื•ืช ื™ื•ืชืจ --
12:47
being able to play with the math, interact with it,
303
767260
2000
ืœื”ื™ื•ืช ืžืกื•ื’ืœื™ื ืœืชืžืจืŸ ืขื ื”ืžืชืžื˜ื™ืงื”, ืœืชืงืฉืจ ืื™ืชื”,
12:49
feel it.
304
769260
2000
ืœื—ื•ืฉ ืื•ืชื”.
12:51
We want people who can feel the math instinctively.
305
771260
3000
ืื ื• ืจื•ืฆื™ื ืื ืฉื™ื ืืฉืจ ืžืกื•ื’ืœื™ื ืœื—ื•ืฉ ืžืชืžื˜ื™ืงื” ื‘ืื•ืคืŸ ืื™ื ืกื˜ื™ื ืงื˜ื™ื‘ื™.
12:54
That's what computers allow us to do.
306
774260
3000
ื–ื” ืžื” ืฉื”ืžื—ืฉื‘ื™ื ืžืืคืฉืจื™ื ืœื ื• ืœืขืฉื•ืช.
12:57
Another thing it allows us to do is reorder the curriculum.
307
777260
3000
ื“ื‘ืจ ื ื•ืกืฃ ื”ื•ื ืฉื”ืžื—ืฉื‘ ืžืืคืฉืจ ืœื ื• ืœืขืจื•ืš ืžื—ื“ืฉ ืืช ืชื•ื›ื ื™ืช ื”ืœื™ืžื•ื“ื™ื.
13:00
Traditionally it's been by how difficult it is to calculate,
308
780260
2000
ืžืงื•ื‘ืœ ืžืกื•ืจืชื™ืช ืฉื–ื” ื ืขืฉื” ืœืคื™ ื“ืจื’ืช ื”ืงื•ืฉื™ ืฉืœ ื—ื™ืฉื•ื‘ื™ื,
13:02
but now we can reorder it
309
782260
2000
ืื‘ืœ ื›ืขืช ื ื™ืชืŸ ืœืขืจื•ืš ืื•ืชื” ืžื—ื“ืฉ
13:04
by how difficult it is to understand the concepts,
310
784260
2000
ืœืคื™ ื“ืจื’ืช ื”ืงื•ืฉื™ ืฉืœ ื”ื‘ื ืช ื”ืจืขื™ื•ื ื•ืช ื•ืžื•ืฉื’ื™ื,
13:06
however hard the calculating.
311
786260
2000
ืœื ืžืฉื ื” ืขื“ ื›ืžื” ืงืฉื™ื ื”ื—ื™ืฉื•ื‘ื™ื.
13:08
So calculus has traditionally been taught very late.
312
788260
3000
ื›ืš ืฉืžืกื•ืจืชื™ืช ืงืœืงื•ืœื•ืก ื ืœืžื“ ืžืื•ื“ ืžืื•ื—ืจ.
13:11
Why is this?
313
791260
2000
ืžื“ื•ืข ื–ื” ื›ืš?
13:13
Well, it's damn hard doing the calculations, that's the problem.
314
793260
3000
ื›ื™ ื–ื” ืžืื•ื“ ืงืฉื” ืœื‘ืฆืข ืืช ื”ื—ื™ืฉื•ื‘ื™ื, ื–ื• ื”ื‘ืขื™ื”.
13:17
But actually many of the concepts
315
797260
2000
ืื‘ืœ ืจื‘ื™ื ืžื”ืจืขื™ื•ื ื•ืช ื•ืžื•ืฉื’ื™ื
13:19
are amenable to a much younger age group.
316
799260
3000
ืงืœื™ื˜ื™ื ืืฆืœ ืงื‘ื•ืฆื•ืช ื’ื™ืœ ืฆืขื™ืจื•ืช ื‘ื”ืจื‘ื”.
13:22
This was an example I built for my daughter.
317
802260
3000
ื–ื• ื”ื™ืชื” ื“ื•ื’ืžื ืฉื‘ื ื™ืชื™ ืœื‘ืชื™.
13:25
And very, very simple.
318
805260
2000
ื•ืžืื•ื“ ืžืื•ื“ ืคืฉื•ื˜ื”.
13:28
We were talking about what happens
319
808260
2000
ื“ื ื ื• ืขืœ ืžื” ืฉืงื•ืจื”
13:30
when you increase the number of sides of a polygon
320
810260
2000
ื›ืืฉืจ ืžื’ื“ื™ืœื™ื ืืช ืžืกืคืจ ื”ืฆืœืขื•ืช ืฉืœ ืžืฆื•ืœืข
13:32
to a very large number.
321
812260
2000
ืœืžืกืคืจ ื’ื“ื•ืœ ืžืื•ื“.
13:36
And of course, it turns into a circle.
322
816260
2000
ื‘ืจื•ืจ ืฉื”ื•ื ื”ื•ืคืš ืœืžืขื’ืœ.
13:38
And by the way, she was also very insistent
323
818260
2000
ื•ื“ืจืš ืื’ื‘, ื”ื™ื ื’ื ืžืื•ื“ ื”ืชืขืงืฉื”
13:40
on being able to change the color,
324
820260
2000
ืœื”ื™ื•ืช ืžืกื•ื’ืœืช ืœืฉื ื•ืช ืืช ื”ืฆื‘ืข,
13:42
an important feature for this demonstration.
325
822260
3000
ืžืืคื™ื™ืŸ ื—ืฉื•ื‘ ืฉืœ ื”ื“ื’ืžื” ื–ื•.
13:46
You can see that this is a very early step
326
826260
3000
ื ื™ืชืŸ ืœืจืื•ืช ืฉื–ื” ืฉืœื‘ ืžืื•ื“ ืžื•ืงื“ื
13:49
into limits and differential calculus
327
829260
2000
ื‘ืงืœืงื•ืœื•ืก ื“ื™ืคืจื ืฆื™ืืœื™ ื•ื’ื‘ื•ืœื•ืช
13:51
and what happens when you take things to an extreme --
328
831260
3000
ื•ื‘ืžื” ืฉืงื•ืจื” ื›ืืฉืจ ืœื•ืงื—ื™ื ื“ื‘ืจื™ื ืืœ ืงื™ืฆื•ื ื™ื•ืชื --
13:54
and very small sides and a very large number of sides.
329
834260
2000
ืฆืœืขื•ืช ืžืื•ื“ ืงื˜ื ื•ืช ื•ืžืกืคืจ ื’ื“ื•ืœ ืžืื•ื“ ืฉืœ ืฆืœืขื•ืช.
13:56
Very simple example.
330
836260
2000
ื“ื•ื’ืžื ืžืื•ื“ ืคืฉื•ื˜ื”.
13:58
That's a view of the world
331
838260
2000
ื–ื”ื• ืžื‘ื˜ ืขืœ ื”ืขื•ืœื
14:00
that we don't usually give people for many, many years after this.
332
840260
3000
ืฉืื ื—ื ื• ื‘ื“ืจืš-ื›ืœืœ ืžื•ื ืขื™ื ืžืื ืฉื™ื ืœื”ืจื‘ื” ืฉื ื™ื ืื—ืจื™ ื–ื”.
14:03
And yet, that's a really important practical view of the world.
333
843260
3000
ืื‘ืœ ืขื ื–ืืช, ื–ื”ื• ืžื‘ื˜ ืžืขืฉื™ ื•ืžืฉืžืขื•ืชื™ ืืžื™ืชื™ ืขืœ ื”ืขื•ืœื.
14:06
So one of the roadblocks we have
334
846260
3000
ืื—ื“ ื”ืžื—ืกื•ืžื™ื ืฉืขื•ืžื“ื™ื ื‘ืคื ื™ื ื•
14:09
in moving this agenda forward
335
849260
3000
ื‘ื”ื ืขืช ืกื“ืจ-ื™ื•ื ื–ื” ื”ืœืื”
14:12
is exams.
336
852260
2000
ื”ืŸ ื‘ื—ื™ื ื•ืช.
14:14
In the end, if we test everyone by hand in exams,
337
854260
3000
ืื ื‘ืกื•ืฃ ื‘ื•ื—ื ื™ื ืืช ื›ื•ืœื ืขื ื—ื™ืฉื•ื‘ื™ื ื™ื“ื ื™ื™ื,
14:17
it's kind of hard to get the curricula changed
338
857260
3000
ื™ื”ื™ื” ืงืฉื” ืœืฉื ื•ืช ืืช ืชื•ื›ื ื™ืช ื”ืœื™ืžื•ื“ื™ื
14:20
to a point where they can use computers
339
860260
2000
ืœืžืฆื‘ ืฉื”ื ื™ื•ื›ืœื• ืœื”ืฉืชืžืฉ ื‘ืžื—ืฉื‘ื™ื
14:22
during the semesters.
340
862260
3000
ื‘ืžื”ืœืš ื”ืœื™ืžื•ื“ื™ื.
14:25
And one of the reasons it's so important --
341
865260
2000
ื•ืื—ืช ื”ืกื™ื‘ื•ืช ืฉื–ื” ื›ื” ื—ืฉื•ื‘ --
14:27
so it's very important to get computers in exams.
342
867260
3000
ืœื›ืŸ ื–ื” ืžืื•ื“ ื—ืฉื•ื‘ ืœื”ื›ื ื™ืก ืžื—ืฉื‘ื™ื ืœื‘ื—ื™ื ื•ืช.
14:30
And then we can ask questions, real questions,
343
870260
3000
ื•ืื– ื ื•ื›ืœ ืœืฉืื•ืœ ืฉืืœื•ืช, ืฉืืœื•ืช ืืžื™ืชื™ื•ืช,
14:33
questions like, what's the best life insurance policy to get? --
344
873260
3000
ืฉืืœื•ืช ื›ืžื•, ืžื”ื™ ืคื•ืœื™ืกืช ื‘ื™ื˜ื•ื— ื”ื—ื™ื™ื ื”ื˜ื•ื‘ื” ื‘ื™ื•ืชืจ ืฉื ื™ืชืŸ ืœื”ืฉื™ื’? --
14:36
real questions that people have in their everyday lives.
345
876260
3000
ืฉืืœื•ืช ืืžื™ืชื™ื•ืช ืฉื™ืฉ ืœืื ืฉื™ื ื‘ื—ื™ื™ ื”ื™ื•ืžื™ื•ื.
14:40
And you see, this isn't some dumbed-down model here.
346
880260
2000
ื•ืชื‘ื™ื ื•, ื–ื” ืœื ืื™ื–ื” ืžื•ื“ืœ ืคืฉื˜ื ื™ ื›ืืŸ.
14:42
This is an actual model where we can be asked to optimize what happens.
347
882260
3000
ื–ื”ื• ืžื•ื“ืœ ืžืžืฉื™ ื‘ื• ืื ื• ื™ื›ื•ืœื™ื ืœื”ืชื‘ืงืฉ ืœื™ื™ืขืœ ืœืžื›ืกื™ืžื•ื ืืช ืžื” ืฉืžืชืจื—ืฉ.
14:45
How many years of protection do I need?
348
885260
2000
ื›ืžื” ืฉื ื•ืช ื”ื’ื ื” ืื ื™ ืฆืจื™ืš?
14:47
What does that do to the payments
349
887260
2000
ืžื” ื–ื” ืขื•ืฉื” ืœืชืฉืœื•ืžื™ื
14:49
and to the interest rates and so forth?
350
889260
3000
ื•ืœืฉื™ืขื•ืจื™ ื”ืจื™ื‘ื™ืช ื•ื›ืš ื”ืœืื”?
14:52
Now I'm not for one minute suggesting it's the only kind of question
351
892260
3000
ืื‘ืœ ืื ื™ ืœื ืžืฆื™ืข ืืคื™ืœื• ืœืจื’ืข ืฉื–ื”ื• ืกื•ื’ ื”ืฉืืœื” ื”ื™ื—ื™ื“
14:55
that should be asked in exams,
352
895260
2000
ืฉื™ืฉ ืœืฉืื•ืœ ื‘ื‘ื—ื™ื ื•ืช,
14:57
but I think it's a very important type
353
897260
2000
ืื‘ืœ ืื ื™ ื—ื•ืฉื‘ ืฉื”ื™ื ืžื”ืกื•ื’ ื”ื—ืฉื•ื‘ ื‘ื™ื•ืชืจ
14:59
that right now just gets completely ignored
354
899260
3000
ืฉื›ื™ื•ื ืžืชืขืœืžื™ื ืžืžื ื” ืœื—ืœื•ื˜ื™ืŸ
15:02
and is critical for people's real understanding.
355
902260
3000
ื•ืฉื”ื™ื ืงืจื™ื˜ื™ืช ืœื™ืฆื™ืจืช ื”ื‘ื ื” ืืžื™ืชื™ืช ืืฆืœ ืื ืฉื™ื.
15:05
So I believe [there is] critical reform
356
905260
3000
ืœื›ืŸ ืื ื™ ืžืืžื™ืŸ ืฉืขืœื™ื ื• ืœื‘ืฆืข ืจืคื•ืจืžื” ืงืจื™ื˜ื™ืช
15:08
we have to do in computer-based math.
357
908260
2000
ื‘ืžืชืžื˜ื™ืงื” ืžื‘ื•ืกืกืช-ืžื—ืฉื‘.
15:10
We have got to make sure
358
910260
2000
ืขืœื™ื ื• ืœื”ื‘ื˜ื™ื—
15:12
that we can move our economies forward,
359
912260
3000
ืฉื ื”ื™ื” ืžืกื•ื’ืœื™ื ืœื”ื ื™ืข ืืช ื”ื›ืœื›ืœื•ืช ืฉืœื ื• ืงื“ื™ืžื”,
15:15
and also our societies,
360
915260
2000
ื•ื’ื ืืช ื”ื—ื‘ืจื” ืฉืœื ื•,
15:17
based on the idea that people can really feel mathematics.
361
917260
3000
ื‘ื”ืชื‘ืกืก ืขืœ ื”ืชืคื™ืกื” ืฉืื ืฉื™ื ื‘ืืžืช ืžืกื•ื’ืœื™ื ืœื—ื•ืฉ ืืช ื”ืžืชืžื˜ื™ืงื”.
15:22
This isn't some optional extra.
362
922260
3000
ืื™ืŸ ื–ื” ืœื•ืงืกื•ืก ืžื™ื•ืชืจ.
15:25
And the country that does this first
363
925260
2000
ื•ื”ืžื“ื™ื ื” ืฉืชืขืฉื” ื–ืืช ืจืืฉื•ื ื”
15:27
will, in my view, leapfrog others
364
927260
3000
ืชื“ืœื’ ืœื“ืขืชื™ ืžืขืœ ืื—ืจื•ืช
15:30
in achieving a new economy even,
365
930260
3000
ื‘ื—ืชื™ืจืชื” ืืœ ืขื‘ืจ ื›ืœื›ืœื” ื—ื“ืฉื”,
15:33
an improved economy,
366
933260
2000
ื›ืœื›ืœื” ืžืฉื•ืคืจืช,
15:35
an improved outlook.
367
935260
2000
ืžื‘ื˜ ื›ื•ืœืœ ืžืฉื•ืคืจ.
15:37
In fact, I even talk about us moving
368
937260
2000
ืœืžืขืฉื”, ืื ื™ ืืคื™ืœื• ืื•ืžืจ ืฉืื ื—ื ื•
15:39
from what we often call now the "knowledge economy"
369
939260
3000
ื ื ื•ืข ืžืžื” ืฉืื ื• ืžื›ื ื™ื ื”ื™ื•ื ื›ืœื›ืœืช ื”ื™ื“ืข
15:42
to what we might call a "computational knowledge economy,"
370
942260
3000
ืืœ ืžื” ืฉืื ื• ืขืฉื•ื™ื™ื ืœื›ื ื•ืช ื›ืœื›ืœืช ื™ื“ืข-ื—ื™ืฉื•ื‘ื™,
15:45
where high-level math is integral to what everyone does
371
945260
3000
ื‘ื” ืžืชืžื˜ื™ืงื” ื‘ืจืžื” ื’ื‘ื•ื”ื” ื”ื™ื ื—ืœืง ื‘ืœืชื™ ื ืคืจื“ ืžืžื” ืฉื›ืœ ืื—ื“ ืขื•ืฉื”
15:48
in the way that knowledge currently is.
372
948260
2000
ื‘ืื•ืชื• ืžืขืžื“ ืฉื”ื™ื“ืข ื ืžืฆื ื”ื™ื•ื.
15:50
We can engage so many more students with this,
373
950260
3000
ื ื•ื›ืœ ืœื”ืขืกื™ืง ื‘ื–ื” ื›ืœ-ื›ืš ื”ืจื‘ื” ืชืœืžื™ื“ื™ื,
15:53
and they can have a better time doing it.
374
953260
3000
ื•ื™ื›ื•ืœื” ืœื”ื™ื•ืช ืœื”ื ื™ื•ืชืจ ื”ื ืื” ื‘ืœืขืฉื•ืช ื–ืืช.
15:56
And let's understand:
375
956260
2000
ื•ืฆืจื™ืš ืœื”ื‘ื™ืŸ,
15:58
this is not an incremental sort of change.
376
958260
3000
ืฉื–ื” ืœื ืฉื™ื ื•ื™ ื‘ื’ื‘ื•ืœื•ืช ืฉืœ ืื•ืชื ืกื“ืจื™-ื’ื•ื“ืœ.
16:02
We're trying to cross the chasm here
377
962260
2000
ื›ืืŸ ืื ื—ื ื• ืžื ืกื™ื ืœื—ืฆื•ืช ืชื”ื•ื
16:04
between school math and the real-world math.
378
964260
2000
ื”ืคืจื•ืฉื” ื‘ื™ืŸ ืžืชืžื˜ื™ืงื” ืฉืœ ื‘ื™ืช-ืกืคืจ ืœืžืชืžื˜ื™ืงื” ืฉืœ ื”ืขื•ืœื ื”ืืžื™ืชื™.
16:06
And you know if you walk across a chasm,
379
966260
2000
ื•ืื ื• ื™ื•ื“ืขื™ื ืฉืื ื—ื•ืฆื™ื ืชื”ื•ื,
16:08
you end up making it worse than if you didn't start at all --
380
968260
3000
ื”ื•ืคื›ื™ื ืืช ื”ืžืฆื‘ ืœื™ื•ืชืจ ื’ืจื•ืข ืžืืฉืจ ืขื ืœื ื”ื™ื™ื ื• ื—ื•ืฆื™ื ื›ืœืœ --
16:11
bigger disaster.
381
971260
2000
ืืกื•ืŸ ื™ื•ืชืจ ื’ื“ื•ืœ.
16:13
No, what I'm suggesting
382
973260
2000
ืœื, ืžื” ืฉืื ื™ ืžืฆื™ืข
16:15
is that we should leap off,
383
975260
2000
ื”ื•ื ืฉืื ื—ื ื• ื ื ืชืจ,
16:17
we should increase our velocity
384
977260
2000
ืขืœื™ื ื• ืœื”ื’ื‘ื™ืจ ืžื”ื™ืจื•ืช
16:19
so it's high,
385
979260
2000
ืฉืชื”ื™ื” ื’ื‘ื•ื”ื”,
16:21
and we should leap off one side and go the other --
386
981260
3000
ื•ืื– ื ื ืชืจ ืžืฆื“ ืื—ื“ ืœืฆื“ ืฉื ื™ --
16:24
of course, having calculated our differential equation very carefully.
387
984260
3000
ื›ืžื•ื‘ืŸ ืื—ืจื™ ืฉื—ื™ืฉื‘ื ื• ื”ื™ื˜ื‘ ืืช ื”ืžืฉื•ื•ืื” ื”ื“ื™ืคืจื ืฆื™ืืœื™ืช ืฉืœื ื•.
16:27
(Laughter)
388
987260
2000
(ืฆื—ื•ืง)
16:29
So I want to see
389
989260
2000
ืื– ืื ื™ ืจื•ืฆื” ืœืจืื•ืช
16:31
a completely renewed, changed math curriculum
390
991260
2000
ืชื•ื›ื ื™ืช ืœื™ืžื•ื“ื™ ืžืชืžื˜ื™ืงื” ืžื—ื•ื“ืฉืช ื•ืฉื•ื ื” ืœื—ืœื•ื˜ื™ืŸ
16:33
built from the ground up,
391
993260
2000
ืืฉืจ ื ื‘ื ืชื” ืžืŸ ื”ื™ืกื•ื“,
16:35
based on computers being there,
392
995260
2000
ื”ืžืชื‘ืกืกืช ืขืœ ื”ื™ืžืฆืื•ืชื ืฉืœ ืžื—ืฉื‘ื™ื,
16:37
computers that are now ubiquitous almost.
393
997260
2000
ืžื—ืฉื‘ื™ื ื”ื ืžืฆืื™ื ื”ื™ื•ื ื›ืžืขื˜ ื‘ื›ืœ ืžืงื•ื.
16:39
Calculating machines are everywhere
394
999260
2000
ืžื›ื•ื ื•ืช ื—ื™ืฉื•ื‘ ื ืžืฆืื•ืช ื‘ื›ืœ ืžืงื•ื
16:41
and will be completely everywhere in a small number of years.
395
1001260
3000
ื•ืชื”ื™ื™ื ื” ื‘ื›ืœ ืžืงื•ื ื‘ืชื•ืš ืžืกืคืจ ืžื•ืขื˜ ืฉืœ ืฉื ื™ื.
16:44
Now I'm not even sure if we should brand the subject as math,
396
1004260
4000
ืขื›ืฉื™ื• ืื ื™ ืืคื™ืœื• ืœื ื‘ื˜ื•ื— ืื ืขืœื™ื ื• ืœืชื™ื™ื’ ืืช ื”ื ื•ืฉื ื‘ืชื•ืจ ืžืชืžื˜ื™ืงื”,
16:48
but what I am sure is
397
1008260
2000
ืื‘ืœ ืžื” ืฉืื ื™ ื‘ื˜ื•ื— ื‘ื• ื”ื•ื
16:50
it's the mainstream subject of the future.
398
1010260
2000
ืฉื–ื”ื• ื ื•ืฉื ืžืŸ ื”ื–ืจื ื”ืžืจื›ื–ื™ ืฉืœ ื”ืขืชื™ื“.
16:53
Let's go for it,
399
1013260
3000
ื”ื‘ื” ื ืœืš ืขืœ ื–ื”.
16:56
and while we're about it,
400
1016260
2000
ื•ื‘ืขื•ื“ื ื• ืžืชืงืจื‘ื™ื ืืœื™ื•,
16:58
let's have a bit of fun,
401
1018260
2000
ื‘ื•ืื• ื ื”ื ื” ืงืฆืช,
17:00
for us, for the students and for TED here.
402
1020260
3000
ืื ื—ื ื•, ื”ืชืœืžื™ื“ื™ื ื•ืžืฉืชืชืคื™ TED ืคื”.
17:03
Thanks.
403
1023260
2000
ืชื•ื“ื”.
17:05
(Applause)
404
1025260
7000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7