Blaise Aguera y Arcas: Jaw-dropping Photosynth demo

46,175 views ・ 2007-06-26

TED


Tafadhali bofya mara mbili manukuu ya Kiingereza hapa chini ili kucheza video.

00:25
What I'm going to show you first, as quickly as I can,
0
25000
2548
Nitakachowaonyesha kwanza, haraka niwezavyo,
00:27
is some foundational work, some new technology
1
27572
3769
ni kazi ya msingi, katika teknolojia mpya
00:31
that we brought to Microsoft as part of an acquisition
2
31365
2611
ambayo tuliingiza Microsoft kama sehemu ya ununuzi wa kampuni
00:34
almost exactly a year ago.
3
34000
1821
takriban mwaka mmoja uliopita. Hii ni Seadragon.
00:35
This is Seadragon, and it's an environment
4
35845
2368
Na ni mfumo ambao unaweza, kwa karibu au mbali,
00:38
in which you can either locally or remotely interact
5
38237
2476
00:40
with vast amounts of visual data.
6
40737
2119
kujiunganisha na kufanyia kazi takwimu mbalimbali za picha.
00:43
We're looking at many, many gigabytes of digital photos here
7
43165
3404
Hapa tunaziangalia nyingi, katika kipimo cha picha cha gigabyte
00:46
and kind of seamlessly and continuously zooming in,
8
46593
2915
na bila kukatika na kwa kuendelea kukuza mfululizo,
00:49
panning through it, rearranging it in any way we want.
9
49532
2545
kulengesha kwenye kitu, kuirekebisha vile tutakavyo.
00:52
And it doesn't matter how much information we're looking at,
10
52389
3587
Bila kujali taarifa ngapi tunaziangalia,
00:56
how big these collections are or how big the images are.
11
56000
2976
zina ukubwa gani au nyingi kiasi gani.
00:59
Most of them are ordinary digital camera photos,
12
59000
2286
Nyingi kati yake ni picha za kawaida zilizopigwa na kamera za dijito,
01:01
but this one, for example, is a scan from the Library of Congress,
13
61310
3144
hii hapa, kwa mfano, ni kivuli cha picha kutoka Maktaba ya Bunge,
01:04
and it's in the 300 megapixel range.
14
64478
2818
na iko katika kipimo cha vipandepicha 300.
01:07
It doesn't make any difference
15
67320
1656
Haileti tofauti yeyote
01:09
because the only thing that ought to limit the performance of a system like this one
16
69000
4144
kwasababu kitu pekee kitakachoweza kuzuia ufanisi
wa mfumo kama huu ni idadi ya vipandepicha kwenye skrini yako
01:13
is the number of pixels on your screen at any given moment.
17
73168
2777
01:15
It's also very flexible architecture.
18
75969
1970
wakati wowote. Huu ni usanifu huria.
01:17
This is an entire book, so this is an example of non-image data.
19
77963
3727
Hiki ni kitabu kizima, mfano wa takwimu ambazo si picha.
01:21
This is "Bleak House" by Dickens.
20
81714
2787
Hiki ni Bleak House kilichoandikwa na Dickens. Kila safu ni sura.
01:24
Every column is a chapter.
21
84525
2784
01:27
To prove to you that it's really text, and not an image,
22
87333
3643
Kuwathibitishia kwamba haya ni maandishi, na siyo picha,
01:31
we can do something like so, to really show
23
91000
2048
tunaweza kufanya kama hivi, ili kuweza kuonyesha
01:33
that this is a real representation of the text; it's not a picture.
24
93072
3192
kuwa hiki ni kielelezo cha maandishi: na siyo picha.
01:36
Maybe this is an artificial way to read an e-book.
25
96288
2664
Labda hii ni njia nyingine ya kusoma kitabu cha nakala za elektroniki.
01:38
I wouldn't recommend it.
26
98976
1200
Siwezi kuipendekeza.
01:40
This is a more realistic case, an issue of The Guardian.
27
100200
2848
Huu ni mfano wa ukweli. Hili ni toleo la The Guardian.
01:43
Every large image is the beginning of a section.
28
103072
2286
Kila picha kubwa ni mwanzo wa sura.
01:45
And this really gives you the joy and the good experience
29
105382
2904
Hii inakupa raha na uzoefu mzuri
01:48
of reading the real paper version of a magazine or a newspaper,
30
108310
5183
wa kusoma tolea halisi la jarida au gazeti,
01:53
which is an inherently multi-scale kind of medium.
31
113517
2435
ambalo mara nyingi chombo cha habari chenye kina na mapana.
01:55
We've done something
32
115976
1000
Pia tumefanya kitu kidogo
01:57
with the corner of this particular issue of The Guardian.
33
117000
2976
kwenye kona ya toleo hili la The Guardian.
02:00
We've made up a fake ad that's very high resolution --
34
120000
2976
Tumetengeneza tangazo la uongo na ambalo liko katika kiwango cha juu sana --
02:03
much higher than in an ordinary ad --
35
123000
2198
kuliko ambavyo ungeweza kuona kwenye tangazo la kawaida --
02:05
and we've embedded extra content.
36
125222
1754
na tumeongezea vitu vya ziada.
02:07
If you want to see the features of this car, you can see it here.
37
127000
3048
Kama unataka kujua taarifa za undani wa gari hili, unaweza kuziona hapa.
02:10
Or other models, or even technical specifications.
38
130072
4180
Au miundo mingine, au hata maelezo ya kina ya kiufundi.
02:14
And this really gets at some of these ideas
39
134276
3315
Hii inaingia katika baadhi ya haya mawazo
02:17
about really doing away with those limits on screen real estate.
40
137615
4661
katika kuondokana na vikwazo vya ufanisi wa skrini
02:22
We hope that this means no more pop-ups
41
142300
2111
Tunatumaini kwamba hii ina maana kwamba hakutakuwa na vipeperushitovuti tena
02:24
and other rubbish like that -- shouldn't be necessary.
42
144435
2541
na taka nyingine kama hizo -- hazitakuwa muhimu.
02:27
Of course, mapping is one of those obvious applications
43
147000
2658
hakika, ramani zitakuwa moja ya matumizi muhimu ya
02:29
for a technology like this.
44
149682
1294
teknolojia kama hii
02:31
And this one I really won't spend any time on,
45
151000
2191
Na sitapoteza muda kwenye hili,
02:33
except to say that we have things to contribute to this field as well.
46
153215
3334
isipokuwa kwamba tuna vitu vya kuchangia katika eneo hili pia.
02:37
But those are all the roads in the U.S.
47
157213
1858
Lakini hizi zote ni barabara za Marekani
02:39
superimposed on top of a NASA geospatial image.
48
159095
4565
zilizowekwa juu ya picha za kijiografia za NASA
02:44
So let's pull up, now, something else.
49
164000
1976
Sasa hebu tuangalie kitu kingine.
02:46
This is actually live on the Web now; you can go check it out.
50
166000
2976
Hii ipo hewani kwenye mtando kwa sasa; unaweza kwenda na kuiangalia.
02:49
This is a project called Photosynth, which marries two different technologies.
51
169000
3704
Huu ni mradi unaoitwa Photosynth,
ambao unajumuisha teknolojia mbili tofauti.
02:52
One of them is Seadragon
52
172728
1248
Mojawapo ni Seadragon
02:54
and the other is some very beautiful computer-vision research
53
174000
2906
na nyingine ni ya utafiti wa kuona katika kompyuta
02:56
done by Noah Snavely, a graduate student at the University of Washington,
54
176930
3462
uliofanywa na Noah Snavely, mwanafunzi wa chuo kikuu cha Washington,
03:00
co-advised by Steve Seitz at U.W.
55
180416
1829
na kushauriwa na Steve Seitz hapo UW
03:02
and Rick Szeliski at Microsoft Research.
56
182269
1978
na Rick Szeliski katika kitengo cha utafiti cha Microsoft. Ushirikiano mzuri sana.
03:04
A very nice collaboration.
57
184271
1733
03:06
And so this is live on the Web. It's powered by Seadragon.
58
186412
3108
Kwa hiyo hii iko hewani kwenye mtandao. Na imewezeshwa na Seadragon.
03:09
You can see that when we do these sorts of views,
59
189544
2504
Unaweza kuona wakati tukifanya vielelezo hivi,
03:12
where we can dive through images
60
192072
1723
ambapo tunaweza kuzamia kwenye picha
03:13
and have this kind of multi-resolution experience.
61
193819
2334
na kuwa na aina hii ya kuweza kuona taswira mbalimbali.
03:16
But the spatial arrangement of the images here is actually meaningful.
62
196177
3799
Lakini hapa mpangalio wa mahusiano ya picha unaleta maana zaidi.
03:20
The computer vision algorithms have registered these images together
63
200000
3191
Miundonamba ya picha za kompyuta imezisajiri hizi picha pamoja,
03:23
so that they correspond to the real space in which these shots --
64
203215
3761
ili ziendane na sehemu halisi ambako picha hizi zilipigwa --
03:27
all taken near Grassi Lakes in the Canadian Rockies --
65
207000
3300
zote zilipigwa karibu na Ziwa Grassi huko Canadian Rockies --
03:30
all these shots were taken.
66
210324
1663
zilichukuliwa. Kwa hiyo unaona vipengee hapa
03:32
So you see elements here
67
212011
1467
03:33
of stabilized slide-show or panoramic imaging,
68
213502
6013
za vielelezopicha vilivyokamilika au picha za kupita.
03:39
and these things have all been related spatially.
69
219539
2437
na vitu hivi vyote vimehusianishwa pamoja.
03:42
I'm not sure if I have time to show you any other environments.
70
222000
3000
Sina uhakika kama nina muda wa kuwaonyesha taswira nyingine.
03:45
Some are much more spatial.
71
225024
1431
Kunamengine ambayo yanahusiana zaidi.
03:46
I would like to jump straight to one of Noah's original data-sets --
72
226479
3945
Nitaenda moja kwa moja kwenye moja ya seti za takwimu halisi za Noah --
03:50
this is from an early prototype that we first got working this summer --
73
230448
3552
na hii inatoka kwenye toleo la mfano la Photosynth ya awali
ambayo tuliipata wakati tukifanya kazi majira ya joto --
03:54
to show you what I think
74
234024
1894
kukuonyesha ninachokifikiria
03:55
is really the punch line behind the Photosynth technology,
75
235942
3838
ni mzaha tu wa teknolojia hii,
03:59
It's not necessarily so apparent
76
239804
1561
teknolojia ya Photosynth. Na si dhahiri sana
04:01
from looking at the environments we've put up on the website.
77
241389
2895
kwa kuangalia katika mfumo tuliouweka kwenye tovuti.
04:04
We had to worry about the lawyers and so on.
78
244308
2177
Ilibidi tuanze kuhofia juu ya wanasheria na mengineyo.
04:06
This is a reconstruction of Notre Dame Cathedral
79
246509
2301
Huu ni ujengwaji tena wa kanisa kuu la dayosisi ya Notre Dame
04:08
that was done entirely computationally from images scraped from Flickr.
80
248834
3457
ambao ulifanywa kwa kwakutumia kompyuta peke yake
kutoka kwenye picha zilizopatikana kwenye Flickr. Unaandika Notre Dame kwenye Flickr,
04:12
You just type Notre Dame into Flickr,
81
252315
2019
04:14
and you get some pictures of guys in T-shirts, and of the campus and so on.
82
254358
3854
na unapata picha za watu waliovaa T-shirts, na za eneo la chuo
na mengineyo. Na kati ya kila hizi pia za rangi ya chungwa zinawakilisha taswira
04:18
And each of these orange cones represents an image
83
258236
3146
04:21
that was discovered to belong to this model.
84
261406
3234
ambazo ziligunduliwa zinauhusiano na muundo huu.
04:26
And so these are all Flickr images,
85
266000
1976
Na hizi zote ni picha za Flickr,
04:28
and they've all been related spatially in this way.
86
268000
2976
na zote zimehusishwa kwa njia hii.
04:31
We can just navigate in this very simple way.
87
271000
2334
Na tunaweza kutembelea kwa njia hii rahisi.
04:35
(Applause)
88
275000
3920
(Makofi).
04:42
(Applause ends)
89
282557
1014
04:43
You know, I never thought that I'd end up working at Microsoft.
90
283595
2954
Unajua, sikufikiria kuwa nitakuja kufanya kazi Microsoft.
04:46
It's very gratifying to have this kind of reception here.
91
286573
3000
Ni faraja kubwa sana kupata mapokezi kama haya hapa.
04:49
(Laughter)
92
289597
3379
(Kicheko).
04:53
I guess you can see this is lots of different types of cameras:
93
293000
5048
Natumaini mnaweza kuona
hizi ni kamera nyingi tofauti:
04:58
it's everything from cell-phone cameras to professional SLRs,
94
298072
3161
ni kila kitu kutoka kwenye kamera za simu za mkononi mpaka kamera za kitaalam za SLRs,
05:01
quite a large number of them, stitched together in this environment.
95
301257
3191
ni nyingi, zikiwa pamoja
katika mfumo huu.
05:04
If I can find some of the sort of weird ones --
96
304472
2632
Na kama nitaweza, nitatafuta zile za ajabu.
05:08
So many of them are occluded by faces, and so on.
97
308000
3322
Nyingi zao zimezibwa kwa sura za watu, na mengineyo
05:12
Somewhere in here there is actually a series of photographs -- here we go.
98
312595
4277
Kati ya hapo kuna
mlolongo wa picha -- naam hapa.
05:16
This is actually a poster of Notre Dame that registered correctly.
99
316896
3301
Hii hakika ni picha ya Notre Dame ambayo imesajiliwa kwa usahihi.
05:20
We can dive in from the poster
100
320221
3216
Tunaweza kuingia ndani ya picha
05:23
to a physical view of this environment.
101
323461
3810
katika mazingira ya maumbile yake.
05:31
What the point here really is
102
331421
1866
Cha muhimu hapa ni nini tunaweza kufanya
05:33
is that we can do things with the social environment.
103
333311
2591
na mfumo huu. Hii ni kuchukua takwimu kutoka kwa kila mtu --
05:35
This is now taking data from everybody --
104
335926
3002
05:38
from the entire collective memory, visually, of what the Earth looks like --
105
338952
3871
kutoka katika mkusanyiko wa kumbukumbu
za taswira, namna dunia ilivyo --
05:42
and link all of that together.
106
342847
1749
na kuzijumuisha zote.
05:44
Those photos become linked, and they make something emergent
107
344620
2839
Picha zote zinaunganishwa pamoja,
na zinafanya kitu kutokea
05:47
that's greater than the sum of the parts.
108
347483
1953
ambacho ni kubwa zaidi ya jumla ya sehemu ndogondogo.
05:49
You have a model that emerges of the entire Earth.
109
349460
2356
Una mfano ambao unatokea katika dunia nzima.
05:51
Think of this as the long tail to Stephen Lawler's Virtual Earth work.
110
351840
4077
Fikiria hii ni kama mkia mrefu wa kazi za picha za dunia za Stephen Lawler.
05:55
And this is something that grows in complexity as people use it,
111
355941
3200
Na hiki kitu ambacho kinakua na kuongeza mchangamano
jinsi watu wanavyotumia, na faida yake inakuwa kubwa
05:59
and whose benefits become greater to the users as they use it.
112
359165
3811
kwa watumiaji jinsi wanavyotumia.
06:03
Their own photos are getting tagged with meta-data that somebody else entered.
113
363000
3692
Picha zao zinaunganishwa na meta-data
ambavyo mtu mwingine ameviingiza.
06:06
If somebody bothered to tag all of these saints
114
366716
3360
Kama kuna mtu angewaunganisha watakatifu hawa wote
06:10
and say who they all are, then my photo of Notre Dame Cathedral
115
370100
2953
na kusema wao ni akina nani, kwa hiyo picha yangu ya kanisa kuu la Notre Dame
06:13
suddenly gets enriched with all of that data,
116
373077
2098
ingeboreshwa na vielelezo hivyo vyote,
06:15
and I can use it as an entry point to dive into that space,
117
375199
2777
na ninaweza kuitumia kama njia ya kuingia katika sehemu hiyo,
06:18
into that meta-verse, using everybody else's photos,
118
378000
2681
katika takwimumaneno, kwa kutumia picha za watu wengine,
06:20
and do a kind of a cross-modal
119
380705
3301
na kufanya mwingiliano
06:24
and cross-user social experience that way.
120
384030
3751
na mwingiliano wa watumiaji kwa njia hiyo.
06:27
And of course, a by-product of all of that is immensely rich virtual models
121
387805
4171
Na kwa hakika, matokeo ya yote hayo
ni mifumo thabiti ya picha
06:32
of every interesting part of the Earth,
122
392000
1968
wa kila sehemu ya dunia, iliyokusanywa
06:33
collected not just from overhead flights and from satellite images
123
393992
4487
siyo tu kwa angani na kutoka kwenye picha za setilaiti
06:38
and so on, but from the collective memory.
124
398503
2052
na mengineyo, bali kutoka kwenye majumuisho ya kumbukumbu.
06:40
Thank you so much.
125
400579
1094
Asanteni sana.
06:41
(Applause)
126
401697
6863
(Makofi).
06:51
(Applause ends)
127
411967
1001
06:52
Chris Anderson: Do I understand this right?
128
412992
2326
Chris Anderson: Nimekuelewa? Kuwa programu yako itaruhusu,
06:55
What your software is going to allow,
129
415342
2497
06:57
is that at some point, really within the next few years,
130
417863
3476
kuwa, wakati fulani, katika kipindi cha miaka michache ijayo,
07:01
all the pictures that are shared by anyone across the world
131
421363
4235
picha zote zitakazokuwa zikigawanwa na mtu yeyote duniani
07:05
are going to link together?
132
425622
1561
zitaunganishwa pamoja?
07:07
BAA: Yes. What this is really doing is discovering,
133
427207
2387
BAA: Ndiyo. Kinachotokea hapa ni uvumbuzi.
07:09
creating hyperlinks, if you will, between images.
134
429618
2358
Inatengeneza viuongotovuti, kati ya picha.
07:12
It's doing that based on the content inside the images.
135
432000
2584
Na inafanya hivyo
ikitegemea yaliyomo ndani ya picha.
07:14
And that gets really exciting when you think about the richness
136
434608
3022
Hii inaleta msisimko zaidi ukifikiria kuhusu ubora
07:17
of the semantic information a lot of images have.
137
437654
2304
wa taarifa zilizomo kwenye picha hizo.
07:19
Like when you do a web search for images,
138
439982
1960
Kwa mfano ukiwa unatafuta picha kwenye mtandao,
07:21
you type in phrases,
139
441966
1245
unaandika vifungu vya maneno na maandishi katika ukurasa wa tovuti
07:23
and the text on the web page is carrying a lot of information
140
443235
2900
inabeba taarifa kuhusu picha hiyo ni ya nini.
07:26
about what that picture is of.
141
446159
1502
07:27
What if that picture links to all of your pictures?
142
447685
2391
Sasa, itakuwaje kama picha hiyo inaunganisha picha zako zote?
Hapo idadi ya miunganiko ya taarifa
07:30
The amount of semantic interconnection and richness
143
450100
2413
na idadi ya ubora ambao unakuja pamoja nayo
07:32
that comes out of that is really huge.
144
452537
1854
ni kubwa sana. Ni matokeo ya kiwango cha juu cha muungano wa mtandao.
07:34
It's a classic network effect.
145
454415
1449
07:35
CA: Truly incredible. Congratulations.
146
455888
2024
CA: Blaise, hii ni nzuri sana. Hongera.
BAA: Asante sana
Kuhusu tovuti hii

Tovuti hii itakuletea video za YouTube ambazo ni muhimu kwa kujifunza Kiingereza. Utaona masomo ya Kiingereza yanayofundishwa na walimu wa kiwango cha juu kutoka duniani kote. Bofya mara mbili kwenye manukuu ya Kiingereza yanayoonyeshwa kwenye kila ukurasa wa video ili kucheza video kutoka hapo. Manukuu yanasonga katika kusawazishwa na uchezaji wa video. Ikiwa una maoni au maombi yoyote, tafadhali wasiliana nasi kwa kutumia fomu hii ya mawasiliano.

https://forms.gle/WvT1wiN1qDtmnspy7