Laurie Santos: How monkeys mirror human irrationality

198,212 views ・ 2010-07-29

TED


Please double-click on the English subtitles below to play the video.

Prevodilac: Ivana Korom Lektor: Sandra Gojic
00:17
I want to start my talk today with two observations
0
17260
2000
Svoj današnji govor želim da počnem dvema opaskama
00:19
about the human species.
1
19260
2000
u vezi sa ljudskom vrstom.
00:21
The first observation is something that you might think is quite obvious,
2
21260
3000
Za prvu možete pomisliti da je nešto sasvim očigledno,
00:24
and that's that our species, Homo sapiens,
3
24260
2000
a to je da je naša vrsta, Homo sapiens,
00:26
is actually really, really smart --
4
26260
2000
stvarno veoma, veoma pametna -
00:28
like, ridiculously smart --
5
28260
2000
kao, neverovatno pametna -
00:30
like you're all doing things
6
30260
2000
svi radite te stvari
00:32
that no other species on the planet does right now.
7
32260
3000
koje nijedna druga vrsta na planeti trenutno ne radi.
00:35
And this is, of course,
8
35260
2000
I ovo, naravno, nije
00:37
not the first time you've probably recognized this.
9
37260
2000
prvi put da ste ovo prepoznali.
00:39
Of course, in addition to being smart, we're also an extremely vain species.
10
39260
3000
Naravno, pored toga što smo pametni, mi smo i veoma sujetna vrsta.
00:42
So we like pointing out the fact that we're smart.
11
42260
3000
Tako da volimo da ističemo činjenicu da smo pametni.
00:45
You know, so I could turn to pretty much any sage
12
45260
2000
Znate, mogla bih da se okrenem bilo kom mudracu,
00:47
from Shakespeare to Stephen Colbert
13
47260
2000
od Šekspira do Stivena Kolbera
00:49
to point out things like the fact that
14
49260
2000
i pokažem naprimer činjenicu
00:51
we're noble in reason and infinite in faculties
15
51260
2000
da smo plemeniti umom, neograničeni po sposobnostima,
00:53
and just kind of awesome-er than anything else on the planet
16
53260
2000
i nekako više super od bilo čega drugog na planeti,
00:55
when it comes to all things cerebral.
17
55260
3000
kada se radi o stvarima s mozgom.
00:58
But of course, there's a second observation about the human species
18
58260
2000
Ali naravno, tu je druga opaska o ljudskoj vrsti
01:00
that I want to focus on a little bit more,
19
60260
2000
na koju želim više da se fokusiram,
01:02
and that's the fact that
20
62260
2000
a to je činjenica da
01:04
even though we're actually really smart, sometimes uniquely smart,
21
64260
3000
iako smo ustvari prilično pametni, ponekad jedinstveno,
01:07
we can also be incredibly, incredibly dumb
22
67260
3000
možemo biti i neverovatno, neverovatno glupi,
01:10
when it comes to some aspects of our decision making.
23
70260
3000
kada se radi o nekim aspektima donošenja odluka.
01:13
Now I'm seeing lots of smirks out there.
24
73260
2000
Vidim dosta usiljenih osmeha.
01:15
Don't worry, I'm not going to call anyone in particular out
25
75260
2000
Ne brinite, neću prozivati nikoga
01:17
on any aspects of your own mistakes.
26
77260
2000
za bilo koji deo vaših ličnih grešaka.
01:19
But of course, just in the last two years
27
79260
2000
Ali naravno, samo u poslednje dve godine
01:21
we see these unprecedented examples of human ineptitude.
28
81260
3000
vidimo nečuvene primere ljudske nesposobnosti.
01:24
And we've watched as the tools we uniquely make
29
84260
3000
I posmatramo kako nam se alati, koje smo napravili
01:27
to pull the resources out of our environment
30
87260
2000
za iskorišćavanje resursa iz okoline,
01:29
kind of just blow up in our face.
31
89260
2000
obijaju o glavu.
01:31
We've watched the financial markets that we uniquely create --
32
91260
2000
Posmatramo kako finansijska tržišta, koja pravimo -
01:33
these markets that were supposed to be foolproof --
33
93260
3000
ta tržišta koja bi trebalo da su otporna na gluposti -
01:36
we've watched them kind of collapse before our eyes.
34
96260
2000
posmatramo kako nam se ruše pred nosom.
01:38
But both of these two embarrassing examples, I think,
35
98260
2000
Ali mislim da oba ova sramotna primera
01:40
don't highlight what I think is most embarrassing
36
100260
3000
ne ističu ono što mislim da je najsramotnije
01:43
about the mistakes that humans make,
37
103260
2000
u vezi sa greškama koje ljudi prave,
01:45
which is that we'd like to think that the mistakes we make
38
105260
3000
a to je da bismo voleli da mislimo da su te greške
01:48
are really just the result of a couple bad apples
39
108260
2000
samo rezultat nekoliko pokvarenih jabuka,
01:50
or a couple really sort of FAIL Blog-worthy decisions.
40
110260
3000
nekoliko odluka koje zaslužuju da se objave na FAIL Blogu.
01:53
But it turns out, what social scientists are actually learning
41
113260
3000
Ali društveni naučnici otkrivaju
01:56
is that most of us, when put in certain contexts,
42
116260
3000
da će mnogi od nas, kad smo stavljeni u određeni kontekst,
01:59
will actually make very specific mistakes.
43
119260
3000
napraviti veoma određene greške.
02:02
The errors we make are actually predictable.
44
122260
2000
Greške koje činimo su predvidive.
02:04
We make them again and again.
45
124260
2000
Činimo ih iznova i iznova.
02:06
And they're actually immune to lots of evidence.
46
126260
2000
A one su imune na mnogo dokaza.
02:08
When we get negative feedback,
47
128260
2000
Kada dobijemo negativnu povratnu informaciju,
02:10
we still, the next time we're face with a certain context,
48
130260
3000
i dalje, i sledećeg puta kada se nađemo u takvoj situaciji
02:13
tend to make the same errors.
49
133260
2000
pravićemo iste greške.
02:15
And so this has been a real puzzle to me
50
135260
2000
Meni je ovo, kao nekome ko proučava ljudsku
02:17
as a sort of scholar of human nature.
51
137260
2000
prirodu, bila prava zagonetka.
02:19
What I'm most curious about is,
52
139260
2000
Najviše me zanima kako
02:21
how is a species that's as smart as we are
53
141260
3000
je jedna vrsta, tako pametna kao što smo mi,
02:24
capable of such bad
54
144260
2000
sposobna da pravi takve
02:26
and such consistent errors all the time?
55
146260
2000
loše i uporne greške?
02:28
You know, we're the smartest thing out there, why can't we figure this out?
56
148260
3000
Znate, mi smo najpametniji koji postoje, kako ne možemo ovo da ukapiramo?
02:31
In some sense, where do our mistakes really come from?
57
151260
3000
Na neki način, odakle naše greške stvarno dolaze?
02:34
And having thought about this a little bit, I see a couple different possibilities.
58
154260
3000
Pošto sam malo razmišljala o ovome, vidim dve mogućnosti.
02:37
One possibility is, in some sense, it's not really our fault.
59
157260
3000
Jedna mogućnost je da, na neki način, nismo mi krivi.
02:40
Because we're a smart species,
60
160260
2000
Pošto smo pametna vrsta,
02:42
we can actually create all kinds of environments
61
162260
2000
možemo da napravimo svakakva okruženja
02:44
that are super, super complicated,
62
164260
2000
koja su super, super komplikovana,
02:46
sometimes too complicated for us to even actually understand,
63
166260
3000
ponekad i previše komplikovana za razumevanje,
02:49
even though we've actually created them.
64
169260
2000
čak iako smo ih mi stvorili.
02:51
We create financial markets that are super complex.
65
171260
2000
Stvaramo finansijska tržišta koja su super-složena.
02:53
We create mortgage terms that we can't actually deal with.
66
173260
3000
Pravimo uslove za hipoteke s kojima baš ne možemo da izađemo na kraj.
02:56
And of course, if we are put in environments where we can't deal with it,
67
176260
3000
I naravno, ako se nađemo u okruženjima s kojima ne možemo da izađemo na kraj,
02:59
in some sense makes sense that we actually
68
179260
2000
na neki način ima smisla da
03:01
might mess certain things up.
69
181260
2000
ćemo možda zeznuti neke stvari.
03:03
If this was the case, we'd have a really easy solution
70
183260
2000
Da se radi o ovome, imali bismo veoma jednostavno rešenje
03:05
to the problem of human error.
71
185260
2000
za problem ljudske greške.
03:07
We'd actually just say, okay, let's figure out
72
187260
2000
Rekli bismo, okej, hajde da vidimo
03:09
the kinds of technologies we can't deal with,
73
189260
2000
s kakvim tehnologijama ne možemo da se izborimo,
03:11
the kinds of environments that are bad --
74
191260
2000
kakva okruženja su loša -
03:13
get rid of those, design things better,
75
193260
2000
otarasimo se njih, bolje osmislimo stvari,
03:15
and we should be the noble species
76
195260
2000
i bili bismo plemenita vrsta
03:17
that we expect ourselves to be.
77
197260
2000
kakva i očekujemo da smo.
03:19
But there's another possibility that I find a little bit more worrying,
78
199260
3000
Ali postoji još jedna mogućnost koja me više brine,
03:22
which is, maybe it's not our environments that are messed up.
79
202260
3000
a to je da možda nije naše okruženje komplikovano.
03:25
Maybe it's actually us that's designed badly.
80
205260
3000
Možda smo mi ti koji smo loše napravljeni.
03:28
This is a hint that I've gotten
81
208260
2000
To je ideja koju sam dobila
03:30
from watching the ways that social scientists have learned about human errors.
82
210260
3000
gledajući kako društvenjaci proučavaju ljudske greške.
03:33
And what we see is that people tend to keep making errors
83
213260
3000
I vidimo da ljudi imaju tendenciju da prave greške
03:36
exactly the same way, over and over again.
84
216260
3000
na potpuno isti način, iznova i iznova.
03:39
It feels like we might almost just be built
85
219260
2000
Kao da smo napravljeni da
03:41
to make errors in certain ways.
86
221260
2000
pravimo greške na određene načine.
03:43
This is a possibility that I worry a little bit more about,
87
223260
3000
O ovoj mogućnosti malo više brinem,
03:46
because, if it's us that's messed up,
88
226260
2000
jer ako smo mi zbrkani,
03:48
it's not actually clear how we go about dealing with it.
89
228260
2000
onda nije jasno kako to da rešimo.
03:50
We might just have to accept the fact that we're error prone
90
230260
3000
Možda moramo da prihvatimo činjenicu da grešimo
03:53
and try to design things around it.
91
233260
2000
i da pokušamo da se uskladimo s tim.
03:55
So this is the question my students and I wanted to get at.
92
235260
3000
To je pitanje na koje smo moji studenti i ja hteli da odgovorimo.
03:58
How can we tell the difference between possibility one and possibility two?
93
238260
3000
Kako da razlikujemo prvu i drugu mogućnost?
04:01
What we need is a population
94
241260
2000
Potrebna nam je populacija
04:03
that's basically smart, can make lots of decisions,
95
243260
2000
koja je dovoljno pametna, može da donosi razne odluke,
04:05
but doesn't have access to any of the systems we have,
96
245260
2000
ali nema pristupa sistemima kojima mi imamo,
04:07
any of the things that might mess us up --
97
247260
2000
bilo kojim stvarima koje nas mogu pobrkati -
04:09
no human technology, human culture,
98
249260
2000
ljudskoj tehnologiji, kulturi,
04:11
maybe even not human language.
99
251260
2000
možda čak ni jeziku.
04:13
And so this is why we turned to these guys here.
100
253260
2000
I zato smo se okrenuli ovim momcima.
04:15
These are one of the guys I work with. This is a brown capuchin monkey.
101
255260
3000
Ovo su neki od momaka s kojima radim. To je braon kapucin majmun.
04:18
These guys are New World primates,
102
258260
2000
To su primati Novog Sveta (Amerika),
04:20
which means they broke off from the human branch
103
260260
2000
što znači da su se odvojili od ljudi
04:22
about 35 million years ago.
104
262260
2000
pre oko 35 miliona godina.
04:24
This means that your great, great, great great, great, great --
105
264260
2000
To znači da je vaša pra, pra, pra, pra, pra, pra -
04:26
with about five million "greats" in there --
106
266260
2000
sa oko pet miliona "pra" -
04:28
grandmother was probably the same great, great, great, great
107
268260
2000
baka bila verovatno ista kao i pra, pra, pra, pra
04:30
grandmother with five million "greats" in there
108
270260
2000
baka, sa pet miliona "pra",
04:32
as Holly up here.
109
272260
2000
od Holi.
04:34
You know, so you can take comfort in the fact that this guy up here is a really really distant,
110
274260
3000
Znate, možete se utešiti da je ovaj momak veoma, veoma dalek,
04:37
but albeit evolutionary, relative.
111
277260
2000
iako evolutivni rođak.
04:39
The good news about Holly though is that
112
279260
2000
Dobra vest u vezi sa Holi je da
04:41
she doesn't actually have the same kinds of technologies we do.
113
281260
3000
ona nema iste vrste tehnologija koje mi imamo.
04:44
You know, she's a smart, very cut creature, a primate as well,
114
284260
3000
Znate, ona je pametno, veoma slatko stvorenje, takođe primat,
04:47
but she lacks all the stuff we think might be messing us up.
115
287260
2000
ali joj nedostaju stvari za koje mislimo da nas zbunjuju.
04:49
So she's the perfect test case.
116
289260
2000
Dakle ona je savršeni subjekat za test.
04:51
What if we put Holly into the same context as humans?
117
291260
3000
Šta ako bismo je stavili u iste situacije kao ljude?
04:54
Does she make the same mistakes as us?
118
294260
2000
Da li će praviti iste greške kao mi?
04:56
Does she not learn from them? And so on.
119
296260
2000
Neće li učiti iz njih? I tako dalje.
04:58
And so this is the kind of thing we decided to do.
120
298260
2000
To je stvar koju smo odlučili da uradimo.
05:00
My students and I got very excited about this a few years ago.
121
300260
2000
Bili smo vrlo uzbuđeni zbog toga pre nekoliko godina.
05:02
We said, all right, let's, you know, throw so problems at Holly,
122
302260
2000
Rekli smo, hajde da damo te probleme Holi
05:04
see if she messes these things up.
123
304260
2000
i vidimo da li će ona upropastiti stvari.
05:06
First problem is just, well, where should we start?
124
306260
3000
Prvi problem je, gde da počnemo?
05:09
Because, you know, it's great for us, but bad for humans.
125
309260
2000
Jer, znate, dobro je za nas, loše za ljude.
05:11
We make a lot of mistakes in a lot of different contexts.
126
311260
2000
Mi pravimo mnogo grešaka u raznim situacijama.
05:13
You know, where are we actually going to start with this?
127
313260
2000
Znate, gde ćemo početi s ovim?
05:15
And because we started this work around the time of the financial collapse,
128
315260
3000
I pošto smo počeli u vreme finansijskog kraha,
05:18
around the time when foreclosures were hitting the news,
129
318260
2000
otprilike kada su stizale vesti o hipotekama,
05:20
we said, hhmm, maybe we should
130
320260
2000
rekli smo, hmm, možda bi trebalo
05:22
actually start in the financial domain.
131
322260
2000
da počnemo od finansijskog polja.
05:24
Maybe we should look at monkey's economic decisions
132
324260
3000
Da proučavamo majmunove ekonomske odluke
05:27
and try to see if they do the same kinds of dumb things that we do.
133
327260
3000
i vidimo da li će raditi iste glupe stvari kao mi.
05:30
Of course, that's when we hit a sort second problem --
134
330260
2000
Naravno, tada smo naišli na drugi problem -
05:32
a little bit more methodological --
135
332260
2000
više metodološke prirode -
05:34
which is that, maybe you guys don't know,
136
334260
2000
a to je, možda vi ne znate, ali
05:36
but monkeys don't actually use money. I know, you haven't met them.
137
336260
3000
majmuni zapravo ne koriste novac. Znam, niste ih upoznali.
05:39
But this is why, you know, they're not in the queue behind you
138
339260
2000
Ali upravo zato ne stoje u redu iza vas
05:41
at the grocery store or the ATM -- you know, they don't do this stuff.
139
341260
3000
u prodavnici ili na bankomatu - znate, oni ne rade ove stvari.
05:44
So now we faced, you know, a little bit of a problem here.
140
344260
3000
Tako smo se suočili sa malim problemom.
05:47
How are we actually going to ask monkeys about money
141
347260
2000
Kako ćemo da pitamo majmune o novcu,
05:49
if they don't actually use it?
142
349260
2000
ako ga oni ne koriste?
05:51
So we said, well, maybe we should just, actually just suck it up
143
351260
2000
Pa smo rekli da bismo možda mogli da
05:53
and teach monkeys how to use money.
144
353260
2000
naučimo majmune kako da koriste novac.
05:55
So that's just what we did.
145
355260
2000
I to smo uradili.
05:57
What you're looking at over here is actually the first unit that I know of
146
357260
3000
Ovde vidite prvi novčić za koji ja znam,
06:00
of non-human currency.
147
360260
2000
a koji nije ljudska valuta.
06:02
We weren't very creative at the time we started these studies,
148
362260
2000
Kad smo počinjali nismo bili mnogo kreativni
06:04
so we just called it a token.
149
364260
2000
pa smo zvali samo token.
06:06
But this is the unit of currency that we've taught our monkeys at Yale
150
366260
3000
Ali ovo je novac koji su majmuni na Jelu
06:09
to actually use with humans,
151
369260
2000
naučili da koriste sa ljudima,
06:11
to actually buy different pieces of food.
152
371260
3000
da kupuju različitu hranu.
06:14
It doesn't look like much -- in fact, it isn't like much.
153
374260
2000
Ne izgleda naročito - i nije ništa posebno.
06:16
Like most of our money, it's just a piece of metal.
154
376260
2000
Kao i većina našeg novca, to je parče metala.
06:18
As those of you who've taken currencies home from your trip know,
155
378260
3000
Kao što znaju oni koji sa putovanja nose novčiće kući,
06:21
once you get home, it's actually pretty useless.
156
381260
2000
kada stignete kući, oni su prilično beskorisni.
06:23
It was useless to the monkeys at first
157
383260
2000
U početku su bili beskorisni i majmunima,
06:25
before they realized what they could do with it.
158
385260
2000
pre nego što su shvatili šta s njima mogu.
06:27
When we first gave it to them in their enclosures,
159
387260
2000
Kada smo im ih prvi put dali, u njihovim kavezima,
06:29
they actually kind of picked them up, looked at them.
160
389260
2000
oni su ih uzeli, gledali.
06:31
They were these kind of weird things.
161
391260
2000
To su bile čudne stvari.
06:33
But very quickly, the monkeys realized
162
393260
2000
Ali ubrzo su majmuni shvatili
06:35
that they could actually hand these tokens over
163
395260
2000
da mogu da predaju ove tokene
06:37
to different humans in the lab for some food.
164
397260
3000
različitim ljudima u laboratoriji i dobiju hranu.
06:40
And so you see one of our monkeys, Mayday, up here doing this.
165
400260
2000
Vidite jednog od naših majmuna, Mejdej, kako to radi.
06:42
This is A and B are kind of the points where she's sort of a little bit
166
402260
3000
Ovo su momenti kada je pomalo zaintrigirana
06:45
curious about these things -- doesn't know.
167
405260
2000
ovim stvarima - ne zna.
06:47
There's this waiting hand from a human experimenter,
168
407260
2000
Tu je eksperimentatorova ruka koja čeka
06:49
and Mayday quickly figures out, apparently the human wants this.
169
409260
3000
i Mejdej brzo shvata da očigledno čovek želi ovo.
06:52
Hands it over, and then gets some food.
170
412260
2000
Predaje ga i dobija nešto hrane.
06:54
It turns out not just Mayday, all of our monkeys get good
171
414260
2000
Ispostavlja se da su Mejdej i
06:56
at trading tokens with human salesman.
172
416260
2000
svi naši majmuni dobri u razmeni tokena sa ljudima.
06:58
So here's just a quick video of what this looks like.
173
418260
2000
Evo kratkog snimka.
07:00
Here's Mayday. She's going to be trading a token for some food
174
420260
3000
Evo je Mejdej. Zameniće token za nešto hrane,
07:03
and waiting happily and getting her food.
175
423260
3000
veselo iščekuje i dobija hranu.
07:06
Here's Felix, I think. He's our alpha male; he's a kind of big guy.
176
426260
2000
Evo ga Felix, mislim. On je alfa mužjak; veliki momak.
07:08
But he too waits patiently, gets his food and goes on.
177
428260
3000
Ali i on strpljivo čeka, dobija hranu, odlazi.
07:11
So the monkeys get really good at this.
178
431260
2000
Dakle majmuni su postali dobri u ovome.
07:13
They're surprisingly good at this with very little training.
179
433260
3000
Iznenađujuće dobro, uz veoma malo obuke.
07:16
We just allowed them to pick this up on their own.
180
436260
2000
Dozvolili smo im da sami ovo nauče.
07:18
The question is: is this anything like human money?
181
438260
2000
Pitanje je: da li je ovo slično ljudskom novcu?
07:20
Is this a market at all,
182
440260
2000
Da li je ovo uopšte tržište,
07:22
or did we just do a weird psychologist's trick
183
442260
2000
ili smo samo uradili čudan trik psihologa,
07:24
by getting monkeys to do something,
184
444260
2000
naveli majmuna da uradi nešto,
07:26
looking smart, but not really being smart.
185
446260
2000
izgleda pametno, ali zapravo nije pametan?
07:28
And so we said, well, what would the monkeys spontaneously do
186
448260
3000
Hteli smo da vidimo šta bi majmuni spontano uradili
07:31
if this was really their currency, if they were really using it like money?
187
451260
3000
da je ovo stvarno njihova valuta, da stvarno koriste ovo kao novac?
07:34
Well, you might actually imagine them
188
454260
2000
Pa, možete da ih zamislite
07:36
to do all the kinds of smart things
189
456260
2000
da rade svakakve pametne stvari
07:38
that humans do when they start exchanging money with each other.
190
458260
3000
koje i ljudi rade kad počnu međusobno da razmenjuju novac.
07:41
You might have them start paying attention to price,
191
461260
3000
Mogu početi da obraćaju pažnju na cenu,
07:44
paying attention to how much they buy --
192
464260
2000
na to koliko kupuju -
07:46
sort of keeping track of their monkey token, as it were.
193
466260
3000
da vode računa o svom novcu.
07:49
Do the monkeys do anything like this?
194
469260
2000
Da li majmuni rade nešto ovakvo?
07:51
And so our monkey marketplace was born.
195
471260
3000
I tako je rođeno naše majmunsko tržište.
07:54
The way this works is that
196
474260
2000
Ovo funkcioniše tako što naši
07:56
our monkeys normally live in a kind of big zoo social enclosure.
197
476260
3000
majmuni uglavnom žive u velikom zoo okruženju.
07:59
When they get a hankering for some treats,
198
479260
2000
Kada požele neku poslasticu,
08:01
we actually allowed them a way out
199
481260
2000
dozvolimo im da izađu
08:03
into a little smaller enclosure where they could enter the market.
200
483260
2000
u manje okruženje odakle ulaze na tržište.
08:05
Upon entering the market --
201
485260
2000
Kada dođu tu -
08:07
it was actually a much more fun market for the monkeys than most human markets
202
487260
2000
to je bilo mnogo zanimljivije majmunima od mnogih ljudskih tržišta
08:09
because, as the monkeys entered the door of the market,
203
489260
3000
jer, kako majmuni uđu,
08:12
a human would give them a big wallet full of tokens
204
492260
2000
tako im jedan čovek da veliki novčanik pun tokena
08:14
so they could actually trade the tokens
205
494260
2000
da bi mogli da ih menjaju
08:16
with one of these two guys here --
206
496260
2000
sa jednim od ovih momaka -
08:18
two different possible human salesmen
207
498260
2000
tu su dva potencijalna ljudska prodavca
08:20
that they could actually buy stuff from.
208
500260
2000
od kojih mogu da kupe stvari.
08:22
The salesmen were students from my lab.
209
502260
2000
Prodavci su moji studenti.
08:24
They dressed differently; they were different people.
210
504260
2000
Obučeni su različito; to su različiti ljudi.
08:26
And over time, they did basically the same thing
211
506260
3000
I vremenom su radili istu stvar
08:29
so the monkeys could learn, you know,
212
509260
2000
da bi majmuni naučili, znate,
08:31
who sold what at what price -- you know, who was reliable, who wasn't, and so on.
213
511260
3000
ko šta prodaje po kojoj ceni - ko je pouzdan, ko nije itd.
08:34
And you can see that each of the experimenters
214
514260
2000
I vidite da svaki eksperimentator
08:36
is actually holding up a little, yellow food dish.
215
516260
3000
drži malu žutu posudu sa hranom,
08:39
and that's what the monkey can for a single token.
216
519260
2000
i to majmuni mogu dobiti za jedan token.
08:41
So everything costs one token,
217
521260
2000
Dakle sve košta jedan token,
08:43
but as you can see, sometimes tokens buy more than others,
218
523260
2000
ali kao što vidite, ponekad tokeni kupuju više,
08:45
sometimes more grapes than others.
219
525260
2000
nekad više grožđa nego drugi tokeni.
08:47
So I'll show you a quick video of what this marketplace actually looks like.
220
527260
3000
Pokazaću vam kratak video kako zapravo izgleda ovo tržište.
08:50
Here's a monkey-eye-view. Monkeys are shorter, so it's a little short.
221
530260
3000
Majmunova perspektiva. Oni su niži, pa je malo manje.
08:53
But here's Honey.
222
533260
2000
Evo je Hani.
08:55
She's waiting for the market to open a little impatiently.
223
535260
2000
Pomalo nestrpljivo čeka da se prodavnica otvori.
08:57
All of a sudden the market opens. Here's her choice: one grapes or two grapes.
224
537260
3000
Otvara se. Evo izbora: jedan grozd ili dva.
09:00
You can see Honey, very good market economist,
225
540260
2000
Vidite Hani, veoma dobar ekonomista,
09:02
goes with the guy who gives more.
226
542260
3000
bira onog ko daje više.
09:05
She could teach our financial advisers a few things or two.
227
545260
2000
Mogla bi da nauči naše finansijske savetnike nekim stvarima.
09:07
So not just Honey,
228
547260
2000
Ne samo ona,
09:09
most of the monkeys went with guys who had more.
229
549260
3000
većina majmuna ide kod momka koji daje više.
09:12
Most of the monkeys went with guys who had better food.
230
552260
2000
Većina njih ide kod onog ko ima bolju hranu.
09:14
When we introduced sales, we saw the monkeys paid attention to that.
231
554260
3000
Kad smo ubacili rasprodaju, majmuni su obratili pažnju na to.
09:17
They really cared about their monkey token dollar.
232
557260
3000
Bilo im je stalo do svog token dolara.
09:20
The more surprising thing was that when we collaborated with economists
233
560260
3000
Iznenadilo nas je kad smo u saradnji sa ekonomistima
09:23
to actually look at the monkeys' data using economic tools,
234
563260
3000
pregledali podatke majmuna koristeći ekonomske pokazatelje,
09:26
they basically matched, not just qualitatively,
235
566260
3000
oni su se poklapali, ne samo kvalitativno,
09:29
but quantitatively with what we saw
236
569260
2000
nego i kvantitativno s onim što smo videli
09:31
humans doing in a real market.
237
571260
2000
da ljudi rade na pravom tržištu.
09:33
So much so that, if you saw the monkeys' numbers,
238
573260
2000
Toliko da, da ste videli cifre majmuna,
09:35
you couldn't tell whether they came from a monkey or a human in the same market.
239
575260
3000
ne biste znali da li su od majmuna ili ljudi sa istog tržišta.
09:38
And what we'd really thought we'd done
240
578260
2000
I mislili smo da smo uspeli
09:40
is like we'd actually introduced something
241
580260
2000
da uvedemo nešto što,
09:42
that, at least for the monkeys and us,
242
582260
2000
bar za nas i za majmune
09:44
works like a real financial currency.
243
584260
2000
funkcioniše kao prava valuta.
09:46
Question is: do the monkeys start messing up in the same ways we do?
244
586260
3000
Pitanje: da li i majmuni počinju da greše kao i mi?
09:49
Well, we already saw anecdotally a couple of signs that they might.
245
589260
3000
Pa, već smo anegdotski videli nekoliko znakova da bi mogli.
09:52
One thing we never saw in the monkey marketplace
246
592260
2000
Jedna stvar koju nikad nismo videli kod majmuna
09:54
was any evidence of saving --
247
594260
2000
je dokaz o štednji -
09:56
you know, just like our own species.
248
596260
2000
znate, kao i kod naše vrste.
09:58
The monkeys entered the market, spent their entire budget
249
598260
2000
Majmuni uđu u prodavnicu, potroše sav budžet
10:00
and then went back to everyone else.
250
600260
2000
i onda odu do ostalih.
10:02
The other thing we also spontaneously saw,
251
602260
2000
Druga stvar koju smo spontano videli,
10:04
embarrassingly enough,
252
604260
2000
za postideti se,
10:06
is spontaneous evidence of larceny.
253
606260
2000
je spontani dokaz o krađi.
10:08
The monkeys would rip-off the tokens at every available opportunity --
254
608260
3000
Majmuni bi pokrali tokene prvom zgodnom prilikom -
10:11
from each other, often from us --
255
611260
2000
jedni od drugih, često od nas -
10:13
you know, things we didn't necessarily think we were introducing,
256
613260
2000
znate, videli smo da se dešavaju one
10:15
but things we spontaneously saw.
257
615260
2000
stvari koje nismo mislili da će se desiti.
10:17
So we said, this looks bad.
258
617260
2000
Rekli smo, ovo izgleda loše.
10:19
Can we actually see if the monkeys
259
619260
2000
Da li možemo da vidimo da li majmuni
10:21
are doing exactly the same dumb things as humans do?
260
621260
3000
rade iste glupe stvari kao i ljudi?
10:24
One possibility is just kind of let
261
624260
2000
Jedna mogućnost je da pustimo
10:26
the monkey financial system play out,
262
626260
2000
da se njihov finansijski sistem odvija,
10:28
you know, see if they start calling us for bailouts in a few years.
263
628260
2000
znate, da vidimo da li će nas zvati za kaucije posle nekoliko godina.
10:30
We were a little impatient so we wanted
264
630260
2000
Bili smo nestrpljivi pa smo želeli
10:32
to sort of speed things up a bit.
265
632260
2000
da nekako ubrzamo stvari.
10:34
So we said, let's actually give the monkeys
266
634260
2000
Rekli smo, hajde da damo majmunima
10:36
the same kinds of problems
267
636260
2000
iste vrste problema
10:38
that humans tend to get wrong
268
638260
2000
u kojima ljudi greše
10:40
in certain kinds of economic challenges,
269
640260
2000
u nekim ekonomskim izazovima,
10:42
or certain kinds of economic experiments.
270
642260
2000
ili nekim ekonomskim eksperimentima.
10:44
And so, since the best way to see how people go wrong
271
644260
3000
I pošto je najbolji način da vidimo kako ljudi greše
10:47
is to actually do it yourself,
272
647260
2000
to da i sami to uradimo,
10:49
I'm going to give you guys a quick experiment
273
649260
2000
daću vam jedan eksperiment
10:51
to sort of watch your own financial intuitions in action.
274
651260
2000
da vidite svoju finansijsku intuiciju u akciji.
10:53
So imagine that right now
275
653260
2000
Zamislite da sada
10:55
I handed each and every one of you
276
655260
2000
dam svakome od vas
10:57
a thousand U.S. dollars -- so 10 crisp hundred dollar bills.
277
657260
3000
hiljadu dolara - 10 šuškavih novčanica od 100 dolara.
11:00
Take these, put it in your wallet
278
660260
2000
Uzmite ih, stavite u novčanik
11:02
and spend a second thinking about what you're going to do with it.
279
662260
2000
i za sekund razmislite šta ćete s njima.
11:04
Because it's yours now; you can buy whatever you want.
280
664260
2000
Jer vaše su; možete kupiti šra god želite.
11:06
Donate it, take it, and so on.
281
666260
2000
Donirati ih, uzeti, itd.
11:08
Sounds great, but you get one more choice to earn a little bit more money.
282
668260
3000
Zvuči super, ali imate još jednu mogućnost da zaradite malo više para.
11:11
And here's your choice: you can either be risky,
283
671260
3000
Evo ga izbor: možete da rizikujete,
11:14
in which case I'm going to flip one of these monkey tokens.
284
674260
2000
u tom slučaju ću baciti jedan od ovih majmunskih tokena.
11:16
If it comes up heads, you're going to get a thousand dollars more.
285
676260
2000
Ako bude glava, dobićete još hiljadu dolara.
11:18
If it comes up tails, you get nothing.
286
678260
2000
Ako bude pismo, ne dobijate ništa.
11:20
So it's a chance to get more, but it's pretty risky.
287
680260
3000
Dakle, prilika da dobijete još, ali prilično rizična.
11:23
Your other option is a bit safe. Your just going to get some money for sure.
288
683260
3000
Druga opcija je sigurna. Sigurno ćete dobiti nešto novca.
11:26
I'm just going to give you 500 bucks.
289
686260
2000
Samo ću vam dati 500 dolara.
11:28
You can stick it in your wallet and use it immediately.
290
688260
3000
Možete ih strpati u novčanik i odmah iskoristiti.
11:31
So see what your intuition is here.
291
691260
2000
Da vidimo kako razmišljate.
11:33
Most people actually go with the play-it-safe option.
292
693260
3000
Većina ljudi se odluči za bezbednu opciju.
11:36
Most people say, why should I be risky when I can get 1,500 dollars for sure?
293
696260
3000
Većina kaže, zašto bih rizikovao, kada mogu sigurno da dobijem 1500 dolara?
11:39
This seems like a good bet. I'm going to go with that.
294
699260
2000
To zvuči kao dobra opcija, izabraću to.
11:41
You might say, eh, that's not really irrational.
295
701260
2000
Možda mislite da to nije baš iracionalno.
11:43
People are a little risk-averse. So what?
296
703260
2000
Ljudi se malo boje rizika. Pa šta?
11:45
Well, the "so what?" comes when start thinking
297
705260
2000
Pa, "pa šta?" nastupa kada počnemo da mislimo
11:47
about the same problem
298
707260
2000
o istom problemu
11:49
set up just a little bit differently.
299
709260
2000
postavljenom malo drugačije.
11:51
So now imagine that I give each and every one of you
300
711260
2000
Sada zamislite da svakome dam
11:53
2,000 dollars -- 20 crisp hundred dollar bills.
301
713260
3000
2000 dolara - 20 šuškavih novčanica od 100 dolara.
11:56
Now you can buy double to stuff you were going to get before.
302
716260
2000
Sada možete da kupite duplo više stvari nego pre.
11:58
Think about how you'd feel sticking it in your wallet.
303
718260
2000
Razmislite kako biste se osećali da ih stavite u novčanik.
12:00
And now imagine that I have you make another choice
304
720260
2000
I sada zamislite da vam dajem još jedan izbor.
12:02
But this time, it's a little bit worse.
305
722260
2000
Ali ovog puta, malo je gore.
12:04
Now, you're going to be deciding how you're going to lose money,
306
724260
3000
Sada ćete odlučivati kako ćete izgubiti novac,
12:07
but you're going to get the same choice.
307
727260
2000
ali dobićete isti izbor.
12:09
You can either take a risky loss --
308
729260
2000
Možete ili rizično da izgubite -
12:11
so I'll flip a coin. If it comes up heads, you're going to actually lose a lot.
309
731260
3000
baciću novčić. Ako bude glava, izgubićete mnogo.
12:14
If it comes up tails, you lose nothing, you're fine, get to keep the whole thing --
310
734260
3000
Ako bude pismo, ne gubite ništa, sve je ok, sve zadržavate -
12:17
or you could play it safe, which means you have to reach back into your wallet
311
737260
3000
ili idete na sigurno, što znači da iz novčanika izvadite
12:20
and give me five of those $100 bills, for certain.
312
740260
3000
i date mi pet tih novčanica od 100$, na sigurno.
12:23
And I'm seeing a lot of furrowed brows out there.
313
743260
3000
Vidim mnogo podignutih obrva.
12:26
So maybe you're having the same intuitions
314
746260
2000
Možda vam je intuicija ista kao
12:28
as the subjects that were actually tested in this,
315
748260
2000
subjektima koji su testirani u ovome,
12:30
which is when presented with these options,
316
750260
2000
a to je kad su suočeni sa ovim opcijama,
12:32
people don't choose to play it safe.
317
752260
2000
ljudi ne biraju da idu na sigurno.
12:34
They actually tend to go a little risky.
318
754260
2000
Imaju tendenciju da malo rizikuju.
12:36
The reason this is irrational is that we've given people in both situations
319
756260
3000
Ovo je iracionalno zbog toga što smo ljudima u obe situacije
12:39
the same choice.
320
759260
2000
dali isti izbor.
12:41
It's a 50/50 shot of a thousand or 2,000,
321
761260
3000
Šansa za 1000 ili 2000$ je 50-50,
12:44
or just 1,500 dollars with certainty.
322
764260
2000
ili samo sigurnih 1500$.
12:46
But people's intuitions about how much risk to take
323
766260
3000
Ali intuicija o tome koliko da se rizikuje
12:49
varies depending on where they started with.
324
769260
2000
varira u zavisnosti od početne pozicije.
12:51
So what's going on?
325
771260
2000
Šta se dešava?
12:53
Well, it turns out that this seems to be the result
326
773260
2000
Pa, ispostavlja se da je to rezultat
12:55
of at least two biases that we have at the psychological level.
327
775260
3000
najmanje dve pristrasnosti koje imamo na psihološkom nivou.
12:58
One is that we have a really hard time thinking in absolute terms.
328
778260
3000
Prvo, veoma nam je teško da razmišljamo u terminima apsolutnosti.
13:01
You really have to do work to figure out,
329
781260
2000
Stvarno treba da se potrudite da razumete,
13:03
well, one option's a thousand, 2,000;
330
783260
2000
pa, jedna opcija je hiljadu, 2000;
13:05
one is 1,500.
331
785260
2000
druga je 1500.
13:07
Instead, we find it very easy to think in very relative terms
332
787260
3000
Umesto toga, veoma nam je lako da mislimo veoma relativno,
13:10
as options change from one time to another.
333
790260
3000
kako se opcije menjaju vremenom.
13:13
So we think of things as, "Oh, I'm going to get more," or "Oh, I'm going to get less."
334
793260
3000
Tako razmišljamo, "O, dobiću više" ili "O, dobiću manje".
13:16
This is all well and good, except that
335
796260
2000
Ovo je sve lepo ali
13:18
changes in different directions
336
798260
2000
promene u različitim pravcima
13:20
actually effect whether or not we think
337
800260
2000
utiču na to da li mislimo da je
13:22
options are good or not.
338
802260
2000
opcija dobra ili nije.
13:24
And this leads to the second bias,
339
804260
2000
Ovo dovodi do druge sklonosti,
13:26
which economists have called loss aversion.
340
806260
2000
što ekonomisti zovu averzija prema gubitku.
13:28
The idea is that we really hate it when things go into the red.
341
808260
3000
Ideja je da mrzimo kada stvari uđu u crvenu zonu.
13:31
We really hate it when we have to lose out on some money.
342
811260
2000
Mrzimo kada treba da izgubimo nešto novca.
13:33
And this means that sometimes we'll actually
343
813260
2000
To znači da ćemo nekad promeniti
13:35
switch our preferences to avoid this.
344
815260
2000
izbore da bismo to izbegli.
13:37
What you saw in that last scenario is that
345
817260
2000
U poslednjem scenariju videli ste
13:39
subjects get risky
346
819260
2000
da su subjekti rizikovali
13:41
because they want the small shot that there won't be any loss.
347
821260
3000
jer žele malu šansu da neće ništa izgubiti.
13:44
That means when we're in a risk mindset --
348
824260
2000
To znači, kad razmišljamo o riziku -
13:46
excuse me, when we're in a loss mindset,
349
826260
2000
pardon, o gubitku,
13:48
we actually become more risky,
350
828260
2000
više rizikujemo,
13:50
which can actually be really worrying.
351
830260
2000
što može biti stvarno zabrinjavajuće.
13:52
These kinds of things play out in lots of bad ways in humans.
352
832260
3000
Ovakve stvari se završavaju na mnoge loše načine po ljude.
13:55
They're why stock investors hold onto losing stocks longer --
353
835260
3000
Zbog toga brokeri dugo pamte gubitke na berzi -
13:58
because they're evaluating them in relative terms.
354
838260
2000
jer ih procenjuju u relativnim odrednicama.
14:00
They're why people in the housing market refused to sell their house --
355
840260
2000
Zbog toga ljudi nisu želeli da prodaju svoje kuće -
14:02
because they don't want to sell at a loss.
356
842260
2000
jer ne žele da prodaju po manjoj ceni.
14:04
The question we were interested in
357
844260
2000
Zanimalo nas je da li
14:06
is whether the monkeys show the same biases.
358
846260
2000
majmuni pokazuju iste sklonosti.
14:08
If we set up those same scenarios in our little monkey market,
359
848260
3000
Ako postavimo iste scenarije u našim majmunskim tržištima,
14:11
would they do the same thing as people?
360
851260
2000
da li će uraditi iste stvari kao ljudi?
14:13
And so this is what we did, we gave the monkeys choices
361
853260
2000
Dali smo majmunima izbore,
14:15
between guys who were safe -- they did the same thing every time --
362
855260
3000
između momaka koji su sigurni - uvek rade istu stvar -
14:18
or guys who were risky --
363
858260
2000
i momaka koji su rizični -
14:20
they did things differently half the time.
364
860260
2000
svaki put rade nešto drugo.
14:22
And then we gave them options that were bonuses --
365
862260
2000
I onda smo im dali opcije bonusa -
14:24
like you guys did in the first scenario --
366
864260
2000
kao vama u prvom scenariju -
14:26
so they actually have a chance more,
367
866260
2000
tako da imaju još jednu šansu,
14:28
or pieces where they were experiencing losses --
368
868260
3000
ili delove gde očekuju gubitke -
14:31
they actually thought they were going to get more than they really got.
369
871260
2000
mislili su da će dobiti više nego što su stvarno dobili.
14:33
And so this is what this looks like.
370
873260
2000
To izgleda ovako.
14:35
We introduced the monkeys to two new monkey salesmen.
371
875260
2000
Predstavili smo im dva nova trgovca.
14:37
The guy on the left and right both start with one piece of grape,
372
877260
2000
Obojica počinju sa dva grozda,
14:39
so it looks pretty good.
373
879260
2000
tako da ovo izgleda prilično dobro.
14:41
But they're going to give the monkeys bonuses.
374
881260
2000
Ali oni će majmunima dati bonuse.
14:43
The guy on the left is a safe bonus.
375
883260
2000
Momak s leve strane je siguran bonus.
14:45
All the time, he adds one, to give the monkeys two.
376
885260
3000
Svo vreme, dodaje jedan, da majmunu da dva.
14:48
The guy on the right is actually a risky bonus.
377
888260
2000
Momak desno je rizični bonus.
14:50
Sometimes the monkeys get no bonus -- so this is a bonus of zero.
378
890260
3000
Ponekad majmun ne dobije bonus - to je bonus od nule.
14:53
Sometimes the monkeys get two extra.
379
893260
3000
Ponekad majmun dobije dva više.
14:56
For a big bonus, now they get three.
380
896260
2000
Za veliki bonus, dobije tri.
14:58
But this is the same choice you guys just faced.
381
898260
2000
Ali to je isti izbor koji je bio pred vama.
15:00
Do the monkeys actually want to play it safe
382
900260
3000
Da li majmuni žele da idu na sigurno
15:03
and then go with the guy who's going to do the same thing on every trial,
383
903260
2000
i onda idu kod momka koji uvek radi istu stvar,
15:05
or do they want to be risky
384
905260
2000
ili žele da rizikuju
15:07
and try to get a risky, but big, bonus,
385
907260
2000
i pokušaju da dobiju rizičan, veliki bonus,
15:09
but risk the possibility of getting no bonus.
386
909260
2000
ali i rizikuju da ga ne dobiju.
15:11
People here played it safe.
387
911260
2000
Ljudi su ovde išli na sigurno.
15:13
Turns out, the monkeys play it safe too.
388
913260
2000
Ispostavlja se da i majmuni idu na sigurno.
15:15
Qualitatively and quantitatively,
389
915260
2000
Kvalitativno i kvantitativno,
15:17
they choose exactly the same way as people,
390
917260
2000
biraju isti način kao i ljudi,
15:19
when tested in the same thing.
391
919260
2000
kada se testiraju u istoj stvari.
15:21
You might say, well, maybe the monkeys just don't like risk.
392
921260
2000
Možete pomisliti da majmuni ne vole rizik.
15:23
Maybe we should see how they do with losses.
393
923260
2000
Možda da vidimo kakvi su sa gubitkom.
15:25
And so we ran a second version of this.
394
925260
2000
Sproveli smo drugu verziju ovoga.
15:27
Now, the monkeys meet two guys
395
927260
2000
Sada majmuni upoznaju dva momka
15:29
who aren't giving them bonuses;
396
929260
2000
koji im ne daju bonuse;
15:31
they're actually giving them less than they expect.
397
931260
2000
daju im manje nego što oni očekuju.
15:33
So they look like they're starting out with a big amount.
398
933260
2000
Izgleda kao da počinju sa velikom sumom.
15:35
These are three grapes; the monkey's really psyched for this.
399
935260
2000
Evo tri grozda; majmun je baš uzbuđen zbog toga.
15:37
But now they learn these guys are going to give them less than they expect.
400
937260
3000
Ali sada saznaju da će im ovi momci dati manje od očekivanog.
15:40
They guy on the left is a safe loss.
401
940260
2000
Momak levo je siguran gubitak.
15:42
Every single time, he's going to take one of these away
402
942260
3000
Svaki put će skloniti jedan
15:45
and give the monkeys just two.
403
945260
2000
i dati majmunima samo dva.
15:47
the guy on the right is the risky loss.
404
947260
2000
Momak desno je rizični gubitak.
15:49
Sometimes he gives no loss, so the monkeys are really psyched,
405
949260
3000
Ponekad nema gubitka, majmuni su veoma uzbuđeni,
15:52
but sometimes he actually gives a big loss,
406
952260
2000
ali ponekad postoji veliki gubitak,
15:54
taking away two to give the monkeys only one.
407
954260
2000
odnosi dva i daje majmunima samo jedan.
15:56
And so what do the monkeys do?
408
956260
2000
I šta majmuni rade?
15:58
Again, same choice; they can play it safe
409
958260
2000
Opet, isti izbor; mogu da idu na sigurno
16:00
for always getting two grapes every single time,
410
960260
3000
i da uvek dobijaju dva grozda,
16:03
or they can take a risky bet and choose between one and three.
411
963260
3000
ili da rizikuju i biraju između jednog i tri.
16:06
The remarkable thing to us is that, when you give monkeys this choice,
412
966260
3000
Izvanredna stvar za nas je, kada date majmunima ovaj izbor,
16:09
they do the same irrational thing that people do.
413
969260
2000
oni rade istu iracionalnu stvar kao i ljudi.
16:11
They actually become more risky
414
971260
2000
Više rizikuju u zavisnosti od toga
16:13
depending on how the experimenters started.
415
973260
3000
kako je eksperiment počeo.
16:16
This is crazy because it suggests that the monkeys too
416
976260
2000
Ovo je ludo jer nagoveštava da i majmuni
16:18
are evaluating things in relative terms
417
978260
2000
procenjuju stvari relativno
16:20
and actually treating losses differently than they treat gains.
418
980260
3000
i drugačije tretiraju gubitke od dobitaka.
16:23
So what does all of this mean?
419
983260
2000
I šta sve ovo znači?
16:25
Well, what we've shown is that, first of all,
420
985260
2000
Pa, prvo, pokazali smo da
16:27
we can actually give the monkeys a financial currency,
421
987260
2000
možemo majmunima dati valutu
16:29
and they do very similar things with it.
422
989260
2000
i oni s njom čine vrlo slične stvari.
16:31
They do some of the smart things we do,
423
991260
2000
Rade neke pametne stvari kao mi,
16:33
some of the kind of not so nice things we do,
424
993260
2000
neke ne tako lepe stvari,
16:35
like steal it and so on.
425
995260
2000
kao što je krađa i slično.
16:37
But they also do some of the irrational things we do.
426
997260
2000
Ali takođe rade i neke iracionalne stvari kao mi.
16:39
They systematically get things wrong
427
999260
2000
Sistematično greše
16:41
and in the same ways that we do.
428
1001260
2000
i to na iste načine kao mi.
16:43
This is the first take-home message of the Talk,
429
1003260
2000
Prva poruka iz ovog govora koju želim da ponesete
16:45
which is that if you saw the beginning of this and you thought,
430
1005260
2000
je ako ste videli početak ovoga i pomislili,
16:47
oh, I'm totally going to go home and hire a capuchin monkey financial adviser.
431
1007260
2000
o, definitivno idem kući i zaposliću kapucin majmuna za finansijskog savetnika.
16:49
They're way cuter than the one at ... you know --
432
1009260
2000
Mnogo su slađi od onih ... znate -
16:51
Don't do that; they're probably going to be just as dumb
433
1011260
2000
Nemojte to da radite; biće verovatno jednako glupi
16:53
as the human one you already have.
434
1013260
3000
kao ljudi koje već imate.
16:56
So, you know, a little bad -- Sorry, sorry, sorry.
435
1016260
2000
Znate, pomalo loše - izvinite, izvinite, izvinite.
16:58
A little bad for monkey investors.
436
1018260
2000
Pomalo loše za majmune investitore.
17:00
But of course, you know, the reason you're laughing is bad for humans too.
437
1020260
3000
Ali naravno, razlog zašto se smejete je loš i za ljude.
17:03
Because we've answered the question we started out with.
438
1023260
3000
Jer odgovorili smo na pitanje s kojim smo počeli.
17:06
We wanted to know where these kinds of errors came from.
439
1026260
2000
Želeli smo da znamo odakle potiču ove greške.
17:08
And we started with the hope that maybe we can
440
1028260
2000
I počeli smo sa nadom da ćemo možda moći
17:10
sort of tweak our financial institutions,
441
1030260
2000
da podesimo naše finansijske institucije,
17:12
tweak our technologies to make ourselves better.
442
1032260
3000
da podesimo tehnologije, da bismo bili bolji.
17:15
But what we've learn is that these biases might be a deeper part of us than that.
443
1035260
3000
Ali naučili smo da su možda ove sklonosti možda dublje od toga.
17:18
In fact, they might be due to the very nature
444
1038260
2000
One zapravo mogu biti rezultat prirode
17:20
of our evolutionary history.
445
1040260
2000
naše evolucione istorije.
17:22
You know, maybe it's not just humans
446
1042260
2000
Znate, možda nisu samo ljudi
17:24
at the right side of this chain that's duncey.
447
1044260
2000
na ispravnoj strani ovog lanca luckasti.
17:26
Maybe it's sort of duncey all the way back.
448
1046260
2000
Možda je sve luckasto odavno.
17:28
And this, if we believe the capuchin monkey results,
449
1048260
3000
A to, ako verujemo rezultatima kapucin majmuna,
17:31
means that these duncey strategies
450
1051260
2000
znači da su te luckaste strategije
17:33
might be 35 million years old.
451
1053260
2000
možda stare 35 miliona godina.
17:35
That's a long time for a strategy
452
1055260
2000
To je mnogo vremena da bi se
17:37
to potentially get changed around -- really, really old.
453
1057260
3000
neka strategija promenila - veoma, veoma stara.
17:40
What do we know about other old strategies like this?
454
1060260
2000
Šta znamo o drugim starim strategijama poput ove?
17:42
Well, one thing we know is that they tend to be really hard to overcome.
455
1062260
3000
Pa, znamo da je veoma teško prevazići ih.
17:45
You know, think of our evolutionary predilection
456
1065260
2000
Znate, pomislite na našu evolutivnu predispoziciju
17:47
for eating sweet things, fatty things like cheesecake.
457
1067260
3000
da jedemo slatke stvari koje goje, kao tortu od sira.
17:50
You can't just shut that off.
458
1070260
2000
Ne možete to ignorisati.
17:52
You can't just look at the dessert cart as say, "No, no, no. That looks disgusting to me."
459
1072260
3000
Ne možete gledati kolica sa dezertima i reći, "Ne, ne, ne. To mi izgleda odvratno."
17:55
We're just built differently.
460
1075260
2000
Drugačije smo napravljeni.
17:57
We're going to perceive it as a good thing to go after.
461
1077260
2000
Videćemo to kao dobru stvar koju treba uzeti.
17:59
My guess is that the same thing is going to be true
462
1079260
2000
Pretpostavljam da isto važi i
18:01
when humans are perceiving
463
1081260
2000
kada ljudi opažaju
18:03
different financial decisions.
464
1083260
2000
različite finansijske odluke.
18:05
When you're watching your stocks plummet into the red,
465
1085260
2000
Kada gledate kako vam akcije tonu u crvenu zonu,
18:07
when you're watching your house price go down,
466
1087260
2000
kada vam cena kuće pada,
18:09
you're not going to be able to see that
467
1089260
2000
nećete moći to da vidite
18:11
in anything but old evolutionary terms.
468
1091260
2000
drugačije nego u starim evolutivnim terminima.
18:13
This means that the biases
469
1093260
2000
To znači da će biti veoma teško
18:15
that lead investors to do badly,
470
1095260
2000
prevazići sklonosti koje navode
18:17
that lead to the foreclosure crisis
471
1097260
2000
investitore da rade loše
18:19
are going to be really hard to overcome.
472
1099260
2000
i koje dovode do hipotekarne krize.
18:21
So that's the bad news. The question is: is there any good news?
473
1101260
2000
To su loše vesti. Pitanje je: ima li dobrih vesti?
18:23
I'm supposed to be up here telling you the good news.
474
1103260
2000
Trebalo bi da vam ovde govorim dobre vesti.
18:25
Well, the good news, I think,
475
1105260
2000
Pa, mislim da sam dobre
18:27
is what I started with at the beginning of the Talk,
476
1107260
2000
vesti dala na početku govora,
18:29
which is that humans are not only smart;
477
1109260
2000
a to je da ljudi nisu samo pametni;
18:31
we're really inspirationally smart
478
1111260
2000
mi smo inspirativno pametni
18:33
to the rest of the animals in the biological kingdom.
479
1113260
3000
ostalim životinjama iz biološkog kraljevstva.
18:36
We're so good at overcoming our biological limitations --
480
1116260
3000
Dobri smo u prevazilaženju svojih bioloških ograničenja -
18:39
you know, I flew over here in an airplane.
481
1119260
2000
znate, doletela sam ovamo avionom.
18:41
I didn't have to try to flap my wings.
482
1121260
2000
Nisam morala da probam da mlatim krilima.
18:43
I'm wearing contact lenses now so that I can see all of you.
483
1123260
3000
Nosim kontaktna sočiva da bih vas videla.
18:46
I don't have to rely on my own near-sightedness.
484
1126260
3000
Ne moram da se oslanjam na svoju kratkovidost.
18:49
We actually have all of these cases
485
1129260
2000
Ima mnogo slučajeva
18:51
where we overcome our biological limitations
486
1131260
3000
gde prevazilazimo naša biološka ograničenja
18:54
through technology and other means, seemingly pretty easily.
487
1134260
3000
tehnologijom i drugim sredstvima, naizgled prilično jednostavno.
18:57
But we have to recognize that we have those limitations.
488
1137260
3000
Ali moramo da prepoznamo da imamo ta ograničenja.
19:00
And here's the rub.
489
1140260
2000
A evo prepreke.
19:02
It was Camus who once said that, "Man is the only species
490
1142260
2000
Kami je jednom rekao da je "Čovek jedina vrsta
19:04
who refuses to be what he really is."
491
1144260
3000
koja odbija da bude ono što stvarno jeste".
19:07
But the irony is that
492
1147260
2000
Ali ironija je da
19:09
it might only be in recognizing our limitations
493
1149260
2000
možda samo prepoznavanjem naših ograničenja
19:11
that we can really actually overcome them.
494
1151260
2000
mi možemo da ih stvarno prevaziđemo.
19:13
The hope is that you all will think about your limitations,
495
1153260
3000
Nada je u tome da ćete svi razmisliti o svojim ograničenjima,
19:16
not necessarily as unovercomable,
496
1156260
3000
ne kao o nepremostivim,
19:19
but to recognize them, accept them
497
1159260
2000
ali prepoznati ih, prihvatiti ih,
19:21
and then use the world of design to actually figure them out.
498
1161260
3000
i onda iskoristiti sve da ih shvatite.
19:24
That might be the only way that we will really be able
499
1164260
3000
To je možda jedini način
19:27
to achieve our own human potential
500
1167260
2000
da dostignemo svoj ljudski potencijal
19:29
and really be the noble species we hope to all be.
501
1169260
3000
i stvarno budemo plemenita vrsta kako se nadamo.
19:32
Thank you.
502
1172260
2000
Hvala vam.
19:34
(Applause)
503
1174260
5000
(aplauz)
About this website

This site will introduce you to YouTube videos that are useful for learning English. You will see English lessons taught by top-notch teachers from around the world. Double-click on the English subtitles displayed on each video page to play the video from there. The subtitles scroll in sync with the video playback. If you have any comments or requests, please contact us using this contact form.

https://forms.gle/WvT1wiN1qDtmnspy7