Laurie Santos: How monkeys mirror human irrationality

197,513 views ・ 2010-07-29

TED


請雙擊下方英文字幕播放視頻。

譯者: Lin Su-Wei(林書暐) 審譯者: Adrienne Lin
00:17
I want to start my talk today with two observations
0
17260
2000
我今天要跟各位分享有關人類這個物種的
00:19
about the human species.
1
19260
2000
2個觀察結果。
00:21
The first observation is something that you might think is quite obvious,
2
21260
3000
第一個發現,你可能會覺得這超明顯的,
00:24
and that's that our species, Homo sapiens,
3
24260
2000
我們這個物種,靈長類,
00:26
is actually really, really smart --
4
26260
2000
真的非常非常聰明,
00:28
like, ridiculously smart --
5
28260
2000
聰明的很誇張,
00:30
like you're all doing things
6
30260
2000
你現在可以做的所有事情,
00:32
that no other species on the planet does right now.
7
32260
3000
目前地球上沒有其他物種可以做的到。
00:35
And this is, of course,
8
35260
2000
當然,
00:37
not the first time you've probably recognized this.
9
37260
2000
這絕對不是你第一次聽到這件事。
00:39
Of course, in addition to being smart, we're also an extremely vain species.
10
39260
3000
當然,除了聰明,我們還是個非常自大的物種。
00:42
So we like pointing out the fact that we're smart.
11
42260
3000
所以我們才會講自己有多聰明。
00:45
You know, so I could turn to pretty much any sage
12
45260
2000
我可以講出一堆偉人的名字,
00:47
from Shakespeare to Stephen Colbert
13
47260
2000
從莎士比亞到史提芬-科伯(美國知名主持人)
00:49
to point out things like the fact that
14
49260
2000
點出這些事情就像在講說
00:51
we're noble in reason and infinite in faculties
15
51260
2000
我們有高貴的理性、無窮的能力,
00:53
and just kind of awesome-er than anything else on the planet
16
53260
2000
遠超過地球上任何生物的驚嘆成就。
00:55
when it comes to all things cerebral.
17
55260
3000
這一切都與大腦有關。
00:58
But of course, there's a second observation about the human species
18
58260
2000
第二個有關我們人類這個物種的發現,
01:00
that I want to focus on a little bit more,
19
60260
2000
我想要特別說明這一點,
01:02
and that's the fact that
20
62260
2000
這個發現就是
01:04
even though we're actually really smart, sometimes uniquely smart,
21
64260
3000
即使我們真的很聰明,有時候還會蹦出更聰明的人,
01:07
we can also be incredibly, incredibly dumb
22
67260
3000
但是當涉及某些領域的決策時,
01:10
when it comes to some aspects of our decision making.
23
70260
3000
我們仍然會做出極度荒謬的蠢事。
01:13
Now I'm seeing lots of smirks out there.
24
73260
2000
我發現有些人在偷笑。
01:15
Don't worry, I'm not going to call anyone in particular out
25
75260
2000
別擔心,我並不是在特別指名某某某
01:17
on any aspects of your own mistakes.
26
77260
2000
在某些領域方面的錯誤。
01:19
But of course, just in the last two years
27
79260
2000
不過,就在2年前,
01:21
we see these unprecedented examples of human ineptitude.
28
81260
3000
我就發現了一些人類史無前例的愚蠢行為。
01:24
And we've watched as the tools we uniquely make
29
84260
3000
我們用自己打造的獨特工具
01:27
to pull the resources out of our environment
30
87260
2000
從大自然裡挖出天然資源,
01:29
kind of just blow up in our face.
31
89260
2000
而我們正在自食這種行為的惡果。
01:31
We've watched the financial markets that we uniquely create --
32
91260
2000
我們也看過那我們特別建構的金融市場--
01:33
these markets that were supposed to be foolproof --
33
93260
3000
那個被認為是萬無一失的金融市場--
01:36
we've watched them kind of collapse before our eyes.
34
96260
2000
就這樣活生生的在我們眼前崩潰。
01:38
But both of these two embarrassing examples, I think,
35
98260
2000
我想,這2個令人尷尬的例子,
01:40
don't highlight what I think is most embarrassing
36
100260
3000
還並不是我心中
01:43
about the mistakes that humans make,
37
103260
2000
所認為最尷尬的人類行為,
01:45
which is that we'd like to think that the mistakes we make
38
105260
3000
我們可能都會覺得犯錯的來源是
01:48
are really just the result of a couple bad apples
39
108260
2000
壞蛋所做的偏差行為,
01:50
or a couple really sort of FAIL Blog-worthy decisions.
40
110260
3000
或「爆笑部落格(FAIL Blog)」裡張貼的那些行為。
01:53
But it turns out, what social scientists are actually learning
41
113260
3000
事實上,社會學家根據我們的行為做研究,
01:56
is that most of us, when put in certain contexts,
42
116260
3000
提出的相關研究顯示,
01:59
will actually make very specific mistakes.
43
119260
3000
人會犯一些特定的錯誤。
02:02
The errors we make are actually predictable.
44
122260
2000
其實我們所犯的錯都是可以預期的。
02:04
We make them again and again.
45
124260
2000
但我們卻讓它一而再的發生。
02:06
And they're actually immune to lots of evidence.
46
126260
2000
而且會對這種行為免疫。
02:08
When we get negative feedback,
47
128260
2000
當我們某個行為得到負面的回應時,
02:10
we still, the next time we're face with a certain context,
48
130260
3000
下一次當我們遇到同樣情形時,
02:13
tend to make the same errors.
49
133260
2000
我們還是會犯同樣的錯。
02:15
And so this has been a real puzzle to me
50
135260
2000
作為一個研究人類的學者,
02:17
as a sort of scholar of human nature.
51
137260
2000
這種現象真的讓我百思不得其解。
02:19
What I'm most curious about is,
52
139260
2000
而我最好奇的地方是,
02:21
how is a species that's as smart as we are
53
141260
3000
像我們這麼聰明的物種,
02:24
capable of such bad
54
144260
2000
怎麼會一直犯錯,
02:26
and such consistent errors all the time?
55
146260
2000
甚至犯同樣的錯?
02:28
You know, we're the smartest thing out there, why can't we figure this out?
56
148260
3000
我們是最聰明的物種,但為什麼我們找不出原因?
02:31
In some sense, where do our mistakes really come from?
57
151260
3000
在某種意義上,我們所犯的錯誤是從何而來?
02:34
And having thought about this a little bit, I see a couple different possibilities.
58
154260
3000
稍微思考一下後,我找出幾種可能性。
02:37
One possibility is, in some sense, it's not really our fault.
59
157260
3000
第一個可能性是,根本不是我們的錯。
02:40
Because we're a smart species,
60
160260
2000
因為我們是聰明的物種,
02:42
we can actually create all kinds of environments
61
162260
2000
我們能創造出各式各樣
02:44
that are super, super complicated,
62
164260
2000
非常複雜的體制,
02:46
sometimes too complicated for us to even actually understand,
63
166260
3000
即使是我們一手創造的,
02:49
even though we've actually created them.
64
169260
2000
有時候弄得太複雜,連自己都搞不懂。
02:51
We create financial markets that are super complex.
65
171260
2000
像是,我們創造了超複雜的金融市場。
02:53
We create mortgage terms that we can't actually deal with.
66
173260
3000
我們搞了一堆自己無法負荷的貸款條件。
02:56
And of course, if we are put in environments where we can't deal with it,
67
176260
3000
若我們真的身處在一個無法應付的體制中,
02:59
in some sense makes sense that we actually
68
179260
2000
某些時候
03:01
might mess certain things up.
69
181260
2000
我們也許會把情況弄得更加混亂。
03:03
If this was the case, we'd have a really easy solution
70
183260
2000
不過若真的情況一發不可收拾,
03:05
to the problem of human error.
71
185260
2000
我們有一種最簡易的通用解決方案。
03:07
We'd actually just say, okay, let's figure out
72
187260
2000
我們會這樣講,好吧,
03:09
the kinds of technologies we can't deal with,
73
189260
2000
既然已經無法應付這個情況,
03:11
the kinds of environments that are bad --
74
191260
2000
那讓我們來想點法子吧--
03:13
get rid of those, design things better,
75
193260
2000
這法子就是丟掉它們吧,去設計別的體制,
03:15
and we should be the noble species
76
195260
2000
這樣才能讓我們
03:17
that we expect ourselves to be.
77
197260
2000
成為自己期望的高貴物種。
03:19
But there's another possibility that I find a little bit more worrying,
78
199260
3000
那另一種可能性,反而讓我有點擔憂,
03:22
which is, maybe it's not our environments that are messed up.
79
202260
3000
也許不是體制亂不亂的問題。
03:25
Maybe it's actually us that's designed badly.
80
205260
3000
也許是我們人類本身就有缺陷。
03:28
This is a hint that I've gotten
81
208260
2000
這個徵兆,
03:30
from watching the ways that social scientists have learned about human errors.
82
210260
3000
是我從社會學家,研究人類犯錯的過程中得到的。
03:33
And what we see is that people tend to keep making errors
83
213260
3000
我們發現,人類傾向用同樣的方式犯錯
03:36
exactly the same way, over and over again.
84
216260
3000
而且會一而再、再而三的發生。
03:39
It feels like we might almost just be built
85
219260
2000
這感覺好像我們
03:41
to make errors in certain ways.
86
221260
2000
會在某些領域不斷犯錯。
03:43
This is a possibility that I worry a little bit more about,
87
223260
3000
這就是讓我擔心的另一項可能性,
03:46
because, if it's us that's messed up,
88
226260
2000
因為,若是我們本身就是無法捉摸,
03:48
it's not actually clear how we go about dealing with it.
89
228260
2000
那我們根本不知道要如何應對這樣的問題。
03:50
We might just have to accept the fact that we're error prone
90
230260
3000
我們只能接受自己傾向犯錯的事實,
03:53
and try to design things around it.
91
233260
2000
然後想出新方法來修補錯誤。
03:55
So this is the question my students and I wanted to get at.
92
235260
3000
這問題是我和我的學生想了解的。
03:58
How can we tell the difference between possibility one and possibility two?
93
238260
3000
所以究竟是可能性一還是可能性二?
04:01
What we need is a population
94
241260
2000
我們需要一個群體來實驗,
04:03
that's basically smart, can make lots of decisions,
95
243260
2000
這群體要夠聰明,可以做許多決策,
04:05
but doesn't have access to any of the systems we have,
96
245260
2000
但必須從未接觸過人為的系統,
04:07
any of the things that might mess us up --
97
247260
2000
沒接觸過會把我們搞瘋的體制,
04:09
no human technology, human culture,
98
249260
2000
沒有人類的技術、文化,
04:11
maybe even not human language.
99
251260
2000
甚至不用人類的語言。
04:13
And so this is why we turned to these guys here.
100
253260
2000
這就是為什麼我們會找上這群傢伙。
04:15
These are one of the guys I work with. This is a brown capuchin monkey.
101
255260
3000
這是我們其中一個伙伴,一隻褐色的僧帽猴。
04:18
These guys are New World primates,
102
258260
2000
牠們屬於新世界靈長類(註:根據演化分為新世界和舊世界),
04:20
which means they broke off from the human branch
103
260260
2000
牠們大約在3500萬年前
04:22
about 35 million years ago.
104
262260
2000
跟人類分開演化。
04:24
This means that your great, great, great great, great, great --
105
264260
2000
這意思就是說你的曾曾曾曾曾曾....祖父,
04:26
with about five million "greats" in there --
106
266260
2000
大概5百萬個曾;
04:28
grandmother was probably the same great, great, great, great
107
268260
2000
還有你的曾曾曾曾曾曾...祖母
04:30
grandmother with five million "greats" in there
108
270260
2000
大概5百萬個曾,
04:32
as Holly up here.
109
272260
2000
是跟畫面的荷莉出自同一物種。
04:34
You know, so you can take comfort in the fact that this guy up here is a really really distant,
110
274260
3000
各位請放寬心,這小傢伙跟我們幾乎是不同的,
04:37
but albeit evolutionary, relative.
111
277260
2000
即使我們在演化史上有深厚的關係。
04:39
The good news about Holly though is that
112
279260
2000
荷莉跟我們有完全不同的發展,
04:41
she doesn't actually have the same kinds of technologies we do.
113
281260
3000
這對牠而言也是個好消息。
04:44
You know, she's a smart, very cut creature, a primate as well,
114
284260
3000
牠很聰明,很可愛的小動物,屬於靈長類,
04:47
but she lacks all the stuff we think might be messing us up.
115
287260
2000
而且牠沒有那些我們自己都搞不懂的東西。
04:49
So she's the perfect test case.
116
289260
2000
看來是個不錯的實驗對象。
04:51
What if we put Holly into the same context as humans?
117
291260
3000
那我們該把荷莉放在人類的哪一個情境呢?
04:54
Does she make the same mistakes as us?
118
294260
2000
牠是否會跟我犯同樣的錯誤呢?
04:56
Does she not learn from them? And so on.
119
296260
2000
牠是否不會從經驗中學得教訓呢?
04:58
And so this is the kind of thing we decided to do.
120
298260
2000
這些都是我們想探討的問題。
05:00
My students and I got very excited about this a few years ago.
121
300260
2000
我們在好幾年前就對這實驗非常期待。
05:02
We said, all right, let's, you know, throw so problems at Holly,
122
302260
2000
我們想說丟給荷莉一些人類才有的問題,
05:04
see if she messes these things up.
123
304260
2000
看看牠會有什麼反應。
05:06
First problem is just, well, where should we start?
124
306260
3000
第一個問題來了,要從哪裡開始?
05:09
Because, you know, it's great for us, but bad for humans.
125
309260
2000
實驗對我們來說很好,但對人類就很難。
05:11
We make a lot of mistakes in a lot of different contexts.
126
311260
2000
因為我們在各種不同領域會犯不同的錯誤。
05:13
You know, where are we actually going to start with this?
127
313260
2000
所以,我們的實驗到底要從哪裡開始?
05:15
And because we started this work around the time of the financial collapse,
128
315260
3000
正好實驗開始時是在次貸風暴的時候,
05:18
around the time when foreclosures were hitting the news,
129
318260
2000
同時新聞也不斷的報導抵押品回收的消息,
05:20
we said, hhmm, maybe we should
130
320260
2000
我們想,也許
05:22
actually start in the financial domain.
131
322260
2000
就從金融的領域開始好了。
05:24
Maybe we should look at monkey's economic decisions
132
324260
3000
讓我們來觀察猴子在經濟方面的決策,
05:27
and try to see if they do the same kinds of dumb things that we do.
133
327260
3000
看看牠們是不是也會犯跟我們一樣的錯誤。
05:30
Of course, that's when we hit a sort second problem --
134
330260
2000
當然,第二個問題就隨之而來,
05:32
a little bit more methodological --
135
332260
2000
就是有關教學的問題,
05:34
which is that, maybe you guys don't know,
136
334260
2000
各位可能不知道,
05:36
but monkeys don't actually use money. I know, you haven't met them.
137
336260
3000
猴子是不使用貨幣的。因為各位沒跟猴子接觸過。
05:39
But this is why, you know, they're not in the queue behind you
138
339260
2000
這就是為什麼當你在雜貨店或是在提款機前面時,
05:41
at the grocery store or the ATM -- you know, they don't do this stuff.
139
341260
3000
沒看過猴子排在你後面,牠們才不會做這種事情。
05:44
So now we faced, you know, a little bit of a problem here.
140
344260
3000
所以猴子不用錢這件事算是個問題。
05:47
How are we actually going to ask monkeys about money
141
347260
2000
若猴子不用錢,
05:49
if they don't actually use it?
142
349260
2000
那要怎樣讓猴子開始用錢?
05:51
So we said, well, maybe we should just, actually just suck it up
143
351260
2000
我們就想,好吧,稍微忍耐一下,
05:53
and teach monkeys how to use money.
144
353260
2000
先從教猴子用錢開始。
05:55
So that's just what we did.
145
355260
2000
所以教學就開始了。
05:57
What you're looking at over here is actually the first unit that I know of
146
357260
3000
各位看到我手上拿的這個
06:00
of non-human currency.
147
360260
2000
就是非人類貨幣的基本單位。
06:02
We weren't very creative at the time we started these studies,
148
362260
2000
我們在做這項研究的時候沒什麼創意,
06:04
so we just called it a token.
149
364260
2000
所以我們都叫它代幣。
06:06
But this is the unit of currency that we've taught our monkeys at Yale
150
366260
3000
我們在耶魯大學教猴子使用這些貨幣
06:09
to actually use with humans,
151
369260
2000
和人類做交易,
06:11
to actually buy different pieces of food.
152
371260
3000
教他們用來買不同種的水果。
06:14
It doesn't look like much -- in fact, it isn't like much.
153
374260
2000
看起來不起眼,也沒什麼價值
06:16
Like most of our money, it's just a piece of metal.
154
376260
2000
就像我們的硬幣一樣,用金屬做的。
06:18
As those of you who've taken currencies home from your trip know,
155
378260
3000
就像各位旅行後帶回家的各種外幣,
06:21
once you get home, it's actually pretty useless.
156
381260
2000
一但你回到家,這錢就沒辦法用了。
06:23
It was useless to the monkeys at first
157
383260
2000
在猴子們了解能用代幣做什麼之前,
06:25
before they realized what they could do with it.
158
385260
2000
對猴子來說這東西一點用也沒有。
06:27
When we first gave it to them in their enclosures,
159
387260
2000
當我們首次把代幣放到籠子裏面時,
06:29
they actually kind of picked them up, looked at them.
160
389260
2000
牠們撿了起來,看著這些代幣。
06:31
They were these kind of weird things.
161
391260
2000
這對牠們來說是很怪的東西。
06:33
But very quickly, the monkeys realized
162
393260
2000
不過很快的,猴子們很快的就瞭解到
06:35
that they could actually hand these tokens over
163
395260
2000
牠們可以用這些代幣
06:37
to different humans in the lab for some food.
164
397260
3000
跟實驗室裡的人換食物。
06:40
And so you see one of our monkeys, Mayday, up here doing this.
165
400260
2000
可以看到其中一隻猴子,五月天,就正在做這件事。
06:42
This is A and B are kind of the points where she's sort of a little bit
166
402260
3000
A圖到B圖是牠正對這些代幣感到一點好奇,
06:45
curious about these things -- doesn't know.
167
405260
2000
因為牠從來沒看過代幣。
06:47
There's this waiting hand from a human experimenter,
168
407260
2000
圖C是實驗人員伸出手在等著,
06:49
and Mayday quickly figures out, apparently the human wants this.
169
409260
3000
五月天很快的就懂了,看起來人類是想要這個代幣。
06:52
Hands it over, and then gets some food.
170
412260
2000
牠交出代幣,然後就拿到一些食物了。
06:54
It turns out not just Mayday, all of our monkeys get good
171
414260
2000
不只是五月天,
06:56
at trading tokens with human salesman.
172
416260
2000
實驗室裡所有的猴子都懂。
06:58
So here's just a quick video of what this looks like.
173
418260
2000
下面一個小短片讓大家看看這情形。
07:00
Here's Mayday. She's going to be trading a token for some food
174
420260
3000
牠是五月天。牠將使用代幣換食物,
07:03
and waiting happily and getting her food.
175
423260
3000
牠開心的等待,之後也順利拿到食物。
07:06
Here's Felix, I think. He's our alpha male; he's a kind of big guy.
176
426260
2000
牠是菲力,猴子群的老大,是個大傢伙。
07:08
But he too waits patiently, gets his food and goes on.
177
428260
3000
但也同樣耐心的等待食物的到來。
07:11
So the monkeys get really good at this.
178
431260
2000
可見猴子們對交易這件事挺在行的。
07:13
They're surprisingly good at this with very little training.
179
433260
3000
只需要一點點訓練牠們的表現就意外的好。
07:16
We just allowed them to pick this up on their own.
180
436260
2000
我們只是放手讓牠們自己做選擇。
07:18
The question is: is this anything like human money?
181
438260
2000
這時候的問題就是:這像人類的貨幣使用情形媽?
07:20
Is this a market at all,
182
440260
2000
市場運作就是這樣而已?
07:22
or did we just do a weird psychologist's trick
183
442260
2000
或是我們應該用奇特的心理手段
07:24
by getting monkeys to do something,
184
444260
2000
引誘猴子們去做一些事情,
07:26
looking smart, but not really being smart.
185
446260
2000
看似聰明又不用很聰明的事情。
07:28
And so we said, well, what would the monkeys spontaneously do
186
448260
3000
所以我們想,如果這真是牠們的貨幣,用起來真的像錢,
07:31
if this was really their currency, if they were really using it like money?
187
451260
3000
猴子會做有怎樣的自然反應?
07:34
Well, you might actually imagine them
188
454260
2000
各位可以想像一下,
07:36
to do all the kinds of smart things
189
456260
2000
當牠們開始用貨幣彼此做交易的時候
07:38
that humans do when they start exchanging money with each other.
190
458260
3000
就是開始作聰明人會做的事了。
07:41
You might have them start paying attention to price,
191
461260
3000
牠們會開始注意到價格,
07:44
paying attention to how much they buy --
192
464260
2000
注意到該用多少價格去買,
07:46
sort of keeping track of their monkey token, as it were.
193
466260
3000
可以說是追蹤猴子幣的使用情形。
07:49
Do the monkeys do anything like this?
194
469260
2000
看看猴子們是否有做這些事情了呢?
07:51
And so our monkey marketplace was born.
195
471260
3000
猴子市集誕生了。
07:54
The way this works is that
196
474260
2000
這運作的方式如下,
07:56
our monkeys normally live in a kind of big zoo social enclosure.
197
476260
3000
我們讓猴子們生活在一個類似動物園的透明籠子裡。
07:59
When they get a hankering for some treats,
198
479260
2000
當牠們表現出想要做交易的時候,
08:01
we actually allowed them a way out
199
481260
2000
我們會讓牠們
08:03
into a little smaller enclosure where they could enter the market.
200
483260
2000
移轉到一個可以進入市場的透明箱子裡。
08:05
Upon entering the market --
201
485260
2000
一進入這個市場---
08:07
it was actually a much more fun market for the monkeys than most human markets
202
487260
2000
這個市場可比人類的市場有趣多了,
08:09
because, as the monkeys entered the door of the market,
203
489260
3000
因為,當猴子一進入這市場,
08:12
a human would give them a big wallet full of tokens
204
492260
2000
人類會給牠們一個裝滿代幣的錢包,
08:14
so they could actually trade the tokens
205
494260
2000
牠們可以用代幣
08:16
with one of these two guys here --
206
496260
2000
和畫面中的其中一個人做交易,
08:18
two different possible human salesmen
207
498260
2000
2個不同的銷售員,
08:20
that they could actually buy stuff from.
208
500260
2000
猴子們可以從他們身上買到不同東西。
08:22
The salesmen were students from my lab.
209
502260
2000
這2位是我實驗室裡的學生。
08:24
They dressed differently; they were different people.
210
504260
2000
不同人穿著不同衣服。
08:26
And over time, they did basically the same thing
211
506260
3000
隨著時間推移,銷售人員會一直做同樣的事情,
08:29
so the monkeys could learn, you know,
212
509260
2000
所以猴子就能學習到
08:31
who sold what at what price -- you know, who was reliable, who wasn't, and so on.
213
511260
3000
誰賣的是什麼價格,誰比較可靠等等之類的事情。
08:34
And you can see that each of the experimenters
214
514260
2000
各位能看到這2位銷售人員
08:36
is actually holding up a little, yellow food dish.
215
516260
3000
都拿著一個小小的黃色食物盤,
08:39
and that's what the monkey can for a single token.
216
519260
2000
猴子可以用一個代幣買盤子裡的東西。
08:41
So everything costs one token,
217
521260
2000
其實每個商品都是價值一個代幣,
08:43
but as you can see, sometimes tokens buy more than others,
218
523260
2000
但有時候一個代幣可以買到比較多的東西,
08:45
sometimes more grapes than others.
219
525260
2000
也就是買到比較多的葡萄。
08:47
So I'll show you a quick video of what this marketplace actually looks like.
220
527260
3000
讓我給各位看看這個猴子市集的運作情形。
08:50
Here's a monkey-eye-view. Monkeys are shorter, so it's a little short.
221
530260
3000
這是從猴子的視點來錄製,所以比較矮。
08:53
But here's Honey.
222
533260
2000
牠是小可愛。
08:55
She's waiting for the market to open a little impatiently.
223
535260
2000
她有點不耐煩的等待市場開張。
08:57
All of a sudden the market opens. Here's her choice: one grapes or two grapes.
224
537260
3000
突然間市場開張了,牠有2個選擇:買1個葡萄或2個葡萄。
09:00
You can see Honey, very good market economist,
225
540260
2000
各位可以發現小可愛是個很棒的市場經濟學家,
09:02
goes with the guy who gives more.
226
542260
3000
牠跟賣較多葡萄的人做交易了。
09:05
She could teach our financial advisers a few things or two.
227
545260
2000
牠可以幫我們的財務學教授上課了。
09:07
So not just Honey,
228
547260
2000
不只是小可愛,
09:09
most of the monkeys went with guys who had more.
229
549260
3000
大多數的猴子都會跟葡萄較多的人做交易。
09:12
Most of the monkeys went with guys who had better food.
230
552260
2000
大多數的猴子都會跟持有較好食物的人交易。
09:14
When we introduced sales, we saw the monkeys paid attention to that.
231
554260
3000
開始與猴子作買賣後,我們發現猴子會專注在這件事情上。
09:17
They really cared about their monkey token dollar.
232
557260
3000
牠們會在意猴子幣的真正價值。
09:20
The more surprising thing was that when we collaborated with economists
233
560260
3000
最令人驚訝的是,當我們開始與經濟學家合作
09:23
to actually look at the monkeys' data using economic tools,
234
563260
3000
觀察猴子使用經濟工具的情形時,
09:26
they basically matched, not just qualitatively,
235
566260
3000
不管是在質性研究上,
09:29
but quantitatively with what we saw
236
569260
2000
還是在量性研究上,
09:31
humans doing in a real market.
237
571260
2000
牠們的使用情形與我們人類在市場上做的一樣。
09:33
So much so that, if you saw the monkeys' numbers,
238
573260
2000
以至於在量性的研究上,
09:35
you couldn't tell whether they came from a monkey or a human in the same market.
239
575260
3000
你根本沒辦法分辨出這數據結果是人類的還是猴子的。
09:38
And what we'd really thought we'd done
240
578260
2000
我們已經成功做到
09:40
is like we'd actually introduced something
241
580260
2000
引介給猴子一些東西,
09:42
that, at least for the monkeys and us,
242
582260
2000
至少猴子與我們
09:44
works like a real financial currency.
243
584260
2000
將代幣運作的跟金融貨幣差不多。
09:46
Question is: do the monkeys start messing up in the same ways we do?
244
586260
3000
另一個問題是:猴子會不會跟我們用一樣的方法把這制度搞亂?
09:49
Well, we already saw anecdotally a couple of signs that they might.
245
589260
3000
其實我們有觀察到一些現象。
09:52
One thing we never saw in the monkey marketplace
246
592260
2000
第一,在猴子市場中我們沒發現到
09:54
was any evidence of saving --
247
594260
2000
任何儲蓄的證據,
09:56
you know, just like our own species.
248
596260
2000
沒發現像我們人一樣的儲蓄行為。
09:58
The monkeys entered the market, spent their entire budget
249
598260
2000
猴子進入市場後,會把所有錢花光,
10:00
and then went back to everyone else.
250
600260
2000
然後再跳回猴群中。
10:02
The other thing we also spontaneously saw,
251
602260
2000
我們自然而然的發現另一件事,
10:04
embarrassingly enough,
252
604260
2000
非常尷尬,
10:06
is spontaneous evidence of larceny.
253
606260
2000
就是自發性的竊盜行為。
10:08
The monkeys would rip-off the tokens at every available opportunity --
254
608260
3000
猴子會用任何機會來偷代幣,
10:11
from each other, often from us --
255
611260
2000
偷同伴的、偷我們的。
10:13
you know, things we didn't necessarily think we were introducing,
256
613260
2000
我沒有必要在這方面做太多著墨,
10:15
but things we spontaneously saw.
257
615260
2000
但是我們看到了這個行為。
10:17
So we said, this looks bad.
258
617260
2000
這看起來很糟糕。
10:19
Can we actually see if the monkeys
259
619260
2000
我們是否能夠看到
10:21
are doing exactly the same dumb things as humans do?
260
621260
3000
猴子們做出跟人類一樣愚蠢的事情?
10:24
One possibility is just kind of let
261
624260
2000
有個方法是先創立猴子金融市場,
10:26
the monkey financial system play out,
262
626260
2000
然後再讓這個市場停擺,
10:28
you know, see if they start calling us for bailouts in a few years.
263
628260
2000
不過,這樣做實驗可能得耗上好幾年。
10:30
We were a little impatient so we wanted
264
630260
2000
我們有點等不及,
10:32
to sort of speed things up a bit.
265
632260
2000
所以我們讓實驗進行的快一點。
10:34
So we said, let's actually give the monkeys
266
634260
2000
我們就想,那就給這些小猴子們
10:36
the same kinds of problems
267
636260
2000
面對一些問題,
10:38
that humans tend to get wrong
268
638260
2000
這些問題是人類經常會犯錯的
10:40
in certain kinds of economic challenges,
269
640260
2000
一些經濟議題,或是
10:42
or certain kinds of economic experiments.
270
642260
2000
一些經濟的試驗。
10:44
And so, since the best way to see how people go wrong
271
644260
3000
想要了解人類是怎麼犯錯的,
10:47
is to actually do it yourself,
272
647260
2000
最棒的方式就是自己做一次。
10:49
I'm going to give you guys a quick experiment
273
649260
2000
所以我要給各位一個小試驗,
10:51
to sort of watch your own financial intuitions in action.
274
651260
2000
請各位用你的財務直覺來回答。
10:53
So imagine that right now
275
653260
2000
請各位現在想像一下,
10:55
I handed each and every one of you
276
655260
2000
我給現場每個人各1千美金,
10:57
a thousand U.S. dollars -- so 10 crisp hundred dollar bills.
277
657260
3000
用10張百元鈔票成一捆的1千美金。
11:00
Take these, put it in your wallet
278
660260
2000
把它放進你的皮夾裡
11:02
and spend a second thinking about what you're going to do with it.
279
662260
2000
花點時間想想你要拿這筆錢做什麼。
11:04
Because it's yours now; you can buy whatever you want.
280
664260
2000
這是你的錢了,你可以買任何想要的東西。
11:06
Donate it, take it, and so on.
281
666260
2000
捐出去,花掉,隨便你。
11:08
Sounds great, but you get one more choice to earn a little bit more money.
282
668260
3000
不錯吧?不過再給你另一個機會,讓你能拿1千美金以上的錢。
11:11
And here's your choice: you can either be risky,
283
671260
3000
第一種選擇:冒個險拿多一些,
11:14
in which case I'm going to flip one of these monkey tokens.
284
674260
2000
我用丟猴子代幣來決定這個選擇的結果 。
11:16
If it comes up heads, you're going to get a thousand dollars more.
285
676260
2000
如果代幣出現頭像,你可以多得1000美金。
11:18
If it comes up tails, you get nothing.
286
678260
2000
如果出現字面,你就只有本金。
11:20
So it's a chance to get more, but it's pretty risky.
287
680260
3000
有機會拿到比較多,但是要冒點風險。
11:23
Your other option is a bit safe. Your just going to get some money for sure.
288
683260
3000
而另一個較安全的選擇:讓你再拿一筆確切的金額。
11:26
I'm just going to give you 500 bucks.
289
686260
2000
不過只能拿500美金。
11:28
You can stick it in your wallet and use it immediately.
290
688260
3000
你可以把這筆錢放在皮夾或是馬上花掉。
11:31
So see what your intuition is here.
291
691260
2000
你的直覺決定好了嗎?
11:33
Most people actually go with the play-it-safe option.
292
693260
3000
大部分的人會選擇不冒險的選項。
11:36
Most people say, why should I be risky when I can get 1,500 dollars for sure?
293
696260
3000
這些人想說,我確定能拿1500美金幹麻還要去冒險?
11:39
This seems like a good bet. I'm going to go with that.
294
699260
2000
這似乎是一個不錯的選擇,我選這個。
11:41
You might say, eh, that's not really irrational.
295
701260
2000
各位也許覺得這樣選沒錯阿,
11:43
People are a little risk-averse. So what?
296
703260
2000
人是風險趨避者,有問題嗎?
11:45
Well, the "so what?" comes when start thinking
297
705260
2000
人是不是風險趨避者的問題,
11:47
about the same problem
298
707260
2000
請思考過另一個相似問題後,
11:49
set up just a little bit differently.
299
709260
2000
再來做判斷。
11:51
So now imagine that I give each and every one of you
300
711260
2000
現在再想像一下,我現在給各位2000美金,
11:53
2,000 dollars -- 20 crisp hundred dollar bills.
301
713260
3000
20張百元鈔票成一捆。
11:56
Now you can buy double to stuff you were going to get before.
302
716260
2000
你剛剛想買的物品可以多買一倍。
11:58
Think about how you'd feel sticking it in your wallet.
303
718260
2000
想想這筆錢在皮夾裡的感覺。
12:00
And now imagine that I have you make another choice
304
720260
2000
現在,選擇的一刻又來了,
12:02
But this time, it's a little bit worse.
305
722260
2000
但這次,條件比較糟糕。
12:04
Now, you're going to be deciding how you're going to lose money,
306
724260
3000
因為你將決定"失去金錢"的方式,
12:07
but you're going to get the same choice.
307
727260
2000
一樣要從中做個選擇。
12:09
You can either take a risky loss --
308
729260
2000
第一個選擇是有風險的損失--
12:11
so I'll flip a coin. If it comes up heads, you're going to actually lose a lot.
309
731260
3000
一樣用丟硬幣,出現頭像,你會損失1000美金。
12:14
If it comes up tails, you lose nothing, you're fine, get to keep the whole thing --
310
734260
3000
如果出現反面,你1毛都不用丟,2000美金好好放著。
12:17
or you could play it safe, which means you have to reach back into your wallet
311
737260
3000
或是不冒險,也就是說你乖乖把皮夾拿出來,
12:20
and give me five of those $100 bills, for certain.
312
740260
3000
然後給我5張100元鈔票。
12:23
And I'm seeing a lot of furrowed brows out there.
313
743260
3000
我看到很多人眉頭深鎖著喔。
12:26
So maybe you're having the same intuitions
314
746260
2000
測試各位的這個問題,
12:28
as the subjects that were actually tested in this,
315
748260
2000
也許各位有著同樣直覺的答案,
12:30
which is when presented with these options,
316
750260
2000
當這些選項攤開給大家選擇時,
12:32
people don't choose to play it safe.
317
752260
2000
人們不會選安全的方案,
12:34
They actually tend to go a little risky.
318
754260
2000
而會選擇冒險。
12:36
The reason this is irrational is that we've given people in both situations
319
756260
3000
明明是有著同樣選擇的2種情境下,
12:39
the same choice.
320
759260
2000
後者竟然變得喜歡風險。
12:41
It's a 50/50 shot of a thousand or 2,000,
321
761260
3000
拿到1000或2000元的機會各50%,
12:44
or just 1,500 dollars with certainty.
322
764260
2000
或是100%拿到1500元。
12:46
But people's intuitions about how much risk to take
323
766260
3000
而人們對於風險多寡的直覺
12:49
varies depending on where they started with.
324
769260
2000
居然是來自一開始手上有多少籌碼來決定。
12:51
So what's going on?
325
771260
2000
這是怎麼回事?
12:53
Well, it turns out that this seems to be the result
326
773260
2000
恩,這答案來自
12:55
of at least two biases that we have at the psychological level.
327
775260
3000
我們心裡層面上的2項偏誤。
12:58
One is that we have a really hard time thinking in absolute terms.
328
778260
3000
一個是我們沒有足夠的時間去計算絕對價值。
13:01
You really have to do work to figure out,
329
781260
2000
你應該要找時間好好考慮清楚,
13:03
well, one option's a thousand, 2,000;
330
783260
2000
一個選擇是拿1000或2000,
13:05
one is 1,500.
331
785260
2000
一個是拿1500。
13:07
Instead, we find it very easy to think in very relative terms
332
787260
3000
相反的,如果選項改成相對價值的話,
13:10
as options change from one time to another.
333
790260
3000
就比較容易釐清了。
13:13
So we think of things as, "Oh, I'm going to get more," or "Oh, I'm going to get less."
334
793260
3000
選項改成:"拿到更多"或"拿比較少"。
13:16
This is all well and good, except that
335
796260
2000
這樣的話很好,只不過
13:18
changes in different directions
336
798260
2000
稍微改變一下手法,
13:20
actually effect whether or not we think
337
800260
2000
就會影響我們對於
13:22
options are good or not.
338
802260
2000
選項是好是壞的觀感。
13:24
And this leads to the second bias,
339
804260
2000
這會引導出第二項偏誤,
13:26
which economists have called loss aversion.
340
806260
2000
經濟學家稱這個為"損失趨避"(loss aversion)。
13:28
The idea is that we really hate it when things go into the red.
341
808260
3000
這概念是說,我們會非常討厭任何損失。
13:31
We really hate it when we have to lose out on some money.
342
811260
2000
我們會極度不願意失去任何金錢。
13:33
And this means that sometimes we'll actually
343
813260
2000
這點指出我們會轉移我們的偏好
13:35
switch our preferences to avoid this.
344
815260
2000
來避免任何損失。
13:37
What you saw in that last scenario is that
345
817260
2000
剛剛再第二個情境裏面
13:39
subjects get risky
346
819260
2000
人們會選擇冒險,
13:41
because they want the small shot that there won't be any loss.
347
821260
3000
因為不想放過任何"零損失"的機會。
13:44
That means when we're in a risk mindset --
348
824260
2000
這也點出了我們對於風險的心態---
13:46
excuse me, when we're in a loss mindset,
349
826260
2000
當我們進入"避免損失"的模式時,
13:48
we actually become more risky,
350
828260
2000
我們會變得更喜歡風險,
13:50
which can actually be really worrying.
351
830260
2000
這就是最令人擔憂的部份。
13:52
These kinds of things play out in lots of bad ways in humans.
352
832260
3000
人類的負面行為也因此而暴露出來。
13:55
They're why stock investors hold onto losing stocks longer --
353
835260
3000
也是為什麼股票投資者會死抱著不斷下跌的股票,
13:58
because they're evaluating them in relative terms.
354
838260
2000
因為他們用相對價值來計算後得到的結論。
14:00
They're why people in the housing market refused to sell their house --
355
840260
2000
這也是為什麼房市裡的投資客不願意賣掉房子,
14:02
because they don't want to sell at a loss.
356
842260
2000
因為他們不想要房子貶值的時候賣掉。
14:04
The question we were interested in
357
844260
2000
我們感興趣的問題是
14:06
is whether the monkeys show the same biases.
358
846260
2000
猴子們是否也會有同樣的偏誤。
14:08
If we set up those same scenarios in our little monkey market,
359
848260
3000
若我們設計同樣的問題在猴子市場裡,
14:11
would they do the same thing as people?
360
851260
2000
他們是否會做出跟人一樣的行為?
14:13
And so this is what we did, we gave the monkeys choices
361
853260
2000
所以我們讓猴子在2個傢伙之間做選擇,
14:15
between guys who were safe -- they did the same thing every time --
362
855260
3000
一位是安全的交易者,他會一直拿出同樣的商品量;
14:18
or guys who were risky --
363
858260
2000
另一位是有風險的交易者,
14:20
they did things differently half the time.
364
860260
2000
他有一半的時間會拿出不同商品。
14:22
And then we gave them options that were bonuses --
365
862260
2000
我們提供有紅利的選項---
14:24
like you guys did in the first scenario --
366
864260
2000
就像剛剛的第一情境---
14:26
so they actually have a chance more,
367
866260
2000
因此猴子們同樣也有機會拿到更多,
14:28
or pieces where they were experiencing losses --
368
868260
3000
或是嚐到一些損失,
14:31
they actually thought they were going to get more than they really got.
369
871260
2000
實際上牠們會覺得自己會拿到比較多的葡萄。
14:33
And so this is what this looks like.
370
873260
2000
這是實驗的模樣。
14:35
We introduced the monkeys to two new monkey salesmen.
371
875260
2000
我們將2位新的猴子銷售員引介給猴子們。
14:37
The guy on the left and right both start with one piece of grape,
372
877260
2000
左邊和右邊一開始都是拿出1粒葡萄,
14:39
so it looks pretty good.
373
879260
2000
看起來很公平。
14:41
But they're going to give the monkeys bonuses.
374
881260
2000
但是這2位會給猴子一些紅利。
14:43
The guy on the left is a safe bonus.
375
883260
2000
左邊提供的是安全紅利。
14:45
All the time, he adds one, to give the monkeys two.
376
885260
3000
從頭到尾,他會多給猴子1粒葡萄。
14:48
The guy on the right is actually a risky bonus.
377
888260
2000
右邊的是提供風險紅利。
14:50
Sometimes the monkeys get no bonus -- so this is a bonus of zero.
378
890260
3000
有時候猴子拿不到任何紅利,所以牠不會多拿任何葡萄。
14:53
Sometimes the monkeys get two extra.
379
893260
3000
但有時候猴子能多拿2粒葡萄。
14:56
For a big bonus, now they get three.
380
896260
2000
很棒的紅利,所以猴子能一次拿3粒葡萄。
14:58
But this is the same choice you guys just faced.
381
898260
2000
這跟剛剛給各位的實驗內容是一樣的。
15:00
Do the monkeys actually want to play it safe
382
900260
3000
那麼,猴子是會去選擇有安全紅利的交易,
15:03
and then go with the guy who's going to do the same thing on every trial,
383
903260
2000
就是那位每次交易都會提供同樣東西的人;
15:05
or do they want to be risky
384
905260
2000
或是,牠們會去選有風險的紅利
15:07
and try to get a risky, but big, bonus,
385
907260
2000
雖然要冒點險,有可能拿不到任何紅利,
15:09
but risk the possibility of getting no bonus.
386
909260
2000
但是若能拿到就賺翻了。
15:11
People here played it safe.
387
911260
2000
人類傾向選擇安全的一方。
15:13
Turns out, the monkeys play it safe too.
388
913260
2000
結果,沒想到猴子也會選擇安全的一方。
15:15
Qualitatively and quantitatively,
389
915260
2000
在質性研究和量化研究裡,
15:17
they choose exactly the same way as people,
390
917260
2000
在同樣的測試內容下,
15:19
when tested in the same thing.
391
919260
2000
猴子與人類有一致的行為反應。
15:21
You might say, well, maybe the monkeys just don't like risk.
392
921260
2000
各位也許會覺得,也許是因為猴子不喜歡冒險。
15:23
Maybe we should see how they do with losses.
393
923260
2000
也許我們應該看看猴子面對損失時的行為。
15:25
And so we ran a second version of this.
394
925260
2000
所以我們就做了第二種版本的實驗。
15:27
Now, the monkeys meet two guys
395
927260
2000
現在,猴子們會面對這2個傢伙,
15:29
who aren't giving them bonuses;
396
929260
2000
他們不會再給猴子紅利了;
15:31
they're actually giving them less than they expect.
397
931260
2000
他們會給拿走猴子預期的葡萄數。
15:33
So they look like they're starting out with a big amount.
398
933260
2000
所以他們一開始就拿出較多的葡萄。
15:35
These are three grapes; the monkey's really psyched for this.
399
935260
2000
一開始就拿出3粒葡萄;這是猴子最想看到的情形。
15:37
But now they learn these guys are going to give them less than they expect.
400
937260
3000
不過他們發現,這2個傢伙會給予比預期還少的數量。
15:40
They guy on the left is a safe loss.
401
940260
2000
左邊這位,他提供固定的損失量。
15:42
Every single time, he's going to take one of these away
402
942260
3000
每次他都會固定少給猴子一粒葡萄,
15:45
and give the monkeys just two.
403
945260
2000
也就是只給他們2粒。
15:47
the guy on the right is the risky loss.
404
947260
2000
右邊這位提供有風險的損失量。
15:49
Sometimes he gives no loss, so the monkeys are really psyched,
405
949260
3000
有時候一個都不會少,完全符合猴子期待,
15:52
but sometimes he actually gives a big loss,
406
952260
2000
但有時候他會拿走很多,
15:54
taking away two to give the monkeys only one.
407
954260
2000
也就是只給猴子1粒葡萄。
15:56
And so what do the monkeys do?
408
956260
2000
猴子們會怎麼決定?
15:58
Again, same choice; they can play it safe
409
958260
2000
跟剛才一樣,牠們可以作保險的交易,
16:00
for always getting two grapes every single time,
410
960260
3000
每次交易都拿固定的2粒葡萄,
16:03
or they can take a risky bet and choose between one and three.
411
963260
3000
或是做有風險的交易,拿1粒或拿3粒。
16:06
The remarkable thing to us is that, when you give monkeys this choice,
412
966260
3000
最值得我們注意的是,當提供給猴子們這種選擇時,
16:09
they do the same irrational thing that people do.
413
969260
2000
牠們出現跟人類同樣非理性的行為。
16:11
They actually become more risky
414
971260
2000
根據實驗人員的起始條件
16:13
depending on how the experimenters started.
415
973260
3000
猴子們變得傾向冒險。
16:16
This is crazy because it suggests that the monkeys too
416
976260
2000
這真是太瘋狂了,
16:18
are evaluating things in relative terms
417
978260
2000
因為猴子居然也用相對價值來評估,
16:20
and actually treating losses differently than they treat gains.
418
980260
3000
而且在面對損失和面對獲得之間有著非常不同的行為。
16:23
So what does all of this mean?
419
983260
2000
這帶來什麼啟示?
16:25
Well, what we've shown is that, first of all,
420
985260
2000
我們先做歸納,首先,
16:27
we can actually give the monkeys a financial currency,
421
987260
2000
我們給予猴子一種財務貨幣,
16:29
and they do very similar things with it.
422
989260
2000
然後教牠們做一些簡單的交易行為。
16:31
They do some of the smart things we do,
423
991260
2000
牠們會做出跟人類一樣聰明的事情,
16:33
some of the kind of not so nice things we do,
424
993260
2000
也會做出跟人類一樣不太好的事情,
16:35
like steal it and so on.
425
995260
2000
像是偷錢之類的。
16:37
But they also do some of the irrational things we do.
426
997260
2000
同時牠們也會做出跟人類一樣非理性的行為。
16:39
They systematically get things wrong
427
999260
2000
他們有條理地做出錯誤行為,
16:41
and in the same ways that we do.
428
1001260
2000
就跟我們一樣。
16:43
This is the first take-home message of the Talk,
429
1003260
2000
今天演講中給各位的第一個結論,
16:45
which is that if you saw the beginning of this and you thought,
430
1005260
2000
如果你只聽到開頭的部份,你可能會想--
16:47
oh, I'm totally going to go home and hire a capuchin monkey financial adviser.
431
1007260
2000
我回家後真該雇用一隻僧帽猴當我的財務大臣。
16:49
They're way cuter than the one at ... you know --
432
1009260
2000
這傢伙的可愛程度遠超家裡的那位...
16:51
Don't do that; they're probably going to be just as dumb
433
1011260
2000
但你可千萬別這麼做,因為這些猴子的糊塗程度
16:53
as the human one you already have.
434
1013260
3000
跟你家裡的那位差不多。
16:56
So, you know, a little bad -- Sorry, sorry, sorry.
435
1016260
2000
這是有點糟糕的..各位聽我說一下。
16:58
A little bad for monkey investors.
436
1018260
2000
請猴子來當投資客不太好。
17:00
But of course, you know, the reason you're laughing is bad for humans too.
437
1020260
3000
當然,各位笑的點在於人一樣不擅於當投資客。
17:03
Because we've answered the question we started out with.
438
1023260
3000
這問題的答案在剛才就已經證明給大家看了。
17:06
We wanted to know where these kinds of errors came from.
439
1026260
2000
而我們為了想了解這些錯誤從何而來,
17:08
And we started with the hope that maybe we can
440
1028260
2000
就抱著某些希望,像是
17:10
sort of tweak our financial institutions,
441
1030260
2000
在某種程度上調整我們的金融機構,
17:12
tweak our technologies to make ourselves better.
442
1032260
3000
或調整我們的財務手法使自己過的更好。
17:15
But what we've learn is that these biases might be a deeper part of us than that.
443
1035260
3000
但我們已經了解到其實這2種偏誤會深深的影響我們。
17:18
In fact, they might be due to the very nature
444
1038260
2000
事實上,這些偏誤會影響我們這麼深,
17:20
of our evolutionary history.
445
1040260
2000
因為它們在老早就深植在我們的進化過程中。
17:22
You know, maybe it's not just humans
446
1042260
2000
各位,也許笨蛋不只是
17:24
at the right side of this chain that's duncey.
447
1044260
2000
圖中這進化鏈中最右邊的人類,
17:26
Maybe it's sort of duncey all the way back.
448
1046260
2000
也許變笨蛋的來源是從古早就有了。
17:28
And this, if we believe the capuchin monkey results,
449
1048260
3000
若我們相信這些針對猴子的實驗結果,
17:31
means that these duncey strategies
450
1051260
2000
也就表示我們承認這種愚蠢對策
17:33
might be 35 million years old.
451
1053260
2000
早在3500萬年前就出現了。
17:35
That's a long time for a strategy
452
1055260
2000
這存在已久的對策
17:37
to potentially get changed around -- really, really old.
453
1057260
3000
已經默默的影響我們很久。
17:40
What do we know about other old strategies like this?
454
1060260
2000
我們對這類的對策了解多少?
17:42
Well, one thing we know is that they tend to be really hard to overcome.
455
1062260
3000
我們了解的其中一項事實就是,我們很難去改變它。
17:45
You know, think of our evolutionary predilection
456
1065260
2000
想一想我們最先進化的部份
17:47
for eating sweet things, fatty things like cheesecake.
457
1067260
3000
就是懂得吃甜食、高油脂的食物,如起士蛋糕。
17:50
You can't just shut that off.
458
1070260
2000
你沒辦法閉嘴不吃。
17:52
You can't just look at the dessert cart as say, "No, no, no. That looks disgusting to me."
459
1072260
3000
你沒辦法對著裝滿推車的點心說:"我才不吃,這些令我作嘔。"
17:55
We're just built differently.
460
1075260
2000
但人與人之間存在著差異性。
17:57
We're going to perceive it as a good thing to go after.
461
1077260
2000
我們會追求自己認為好的事物。
17:59
My guess is that the same thing is going to be true
462
1079260
2000
所以我推測
18:01
when humans are perceiving
463
1081260
2000
人們對於財務上的決策
18:03
different financial decisions.
464
1083260
2000
也會有不同的認知見解。
18:05
When you're watching your stocks plummet into the red,
465
1085260
2000
你會傻愣愣地看持有的股票價格直線下墜,
18:07
when you're watching your house price go down,
466
1087260
2000
或是看著自己持有的不動產貶值,
18:09
you're not going to be able to see that
467
1089260
2000
而你不會去注意到事情的真相,
18:11
in anything but old evolutionary terms.
468
1091260
2000
因為我們與生俱來就是有這樣的行為。
18:13
This means that the biases
469
1093260
2000
這種心理上的偏差
18:15
that lead investors to do badly,
470
1095260
2000
會讓投資者做出糟糕的決定,
18:17
that lead to the foreclosure crisis
471
1097260
2000
所以像這次的次貸危機
18:19
are going to be really hard to overcome.
472
1099260
2000
就變得很難去避免。
18:21
So that's the bad news. The question is: is there any good news?
473
1101260
2000
聽起來都是壞消息。那有沒有好消息呢?
18:23
I'm supposed to be up here telling you the good news.
474
1103260
2000
我這裡是有一些好消息告訴各位。
18:25
Well, the good news, I think,
475
1105260
2000
我想這個好消息就是,
18:27
is what I started with at the beginning of the Talk,
476
1107260
2000
就如同我在演講時的開頭就說的,
18:29
which is that humans are not only smart;
477
1109260
2000
人類不只是聰明而已;
18:31
we're really inspirationally smart
478
1111260
2000
我們比起生物界裡的其他動物,
18:33
to the rest of the animals in the biological kingdom.
479
1113260
3000
都要聰明許多。
18:36
We're so good at overcoming our biological limitations --
480
1116260
3000
我們非常擅長克服我們先天上的不足---
18:39
you know, I flew over here in an airplane.
481
1119260
2000
就像我是搭飛機來這裡。
18:41
I didn't have to try to flap my wings.
482
1121260
2000
我不需要把手當翅膀拍動來飛。
18:43
I'm wearing contact lenses now so that I can see all of you.
483
1123260
3000
我帶著隱形眼鏡才能清楚看見各位。
18:46
I don't have to rely on my own near-sightedness.
484
1126260
3000
不需要依賴我這雙大近視的眼睛。
18:49
We actually have all of these cases
485
1129260
2000
我們有這麼多例子
18:51
where we overcome our biological limitations
486
1131260
3000
都是用科技或其他方式來突破我們生物限制的事實,
18:54
through technology and other means, seemingly pretty easily.
487
1134260
3000
讓一切看起來是這麼簡單。
18:57
But we have to recognize that we have those limitations.
488
1137260
3000
但我們也必須了解自己的極限在哪裡,
19:00
And here's the rub.
489
1140260
2000
而這是最難的地方。
19:02
It was Camus who once said that, "Man is the only species
490
1142260
2000
就像卡謬曾說(1957年諾貝爾文學獎得主):
19:04
who refuses to be what he really is."
491
1144260
3000
"人是唯一搞不清楚自己是什麼的物種。"
19:07
But the irony is that
492
1147260
2000
諷刺的是
19:09
it might only be in recognizing our limitations
493
1149260
2000
我們得知道人類的極限在哪,
19:11
that we can really actually overcome them.
494
1151260
2000
才能克服它們。
19:13
The hope is that you all will think about your limitations,
495
1153260
3000
希望各位都能意識到自己的極限在哪,
19:16
not necessarily as unovercomable,
496
1156260
3000
它並不是不可逾越,
19:19
but to recognize them, accept them
497
1159260
2000
了解它,接受它,
19:21
and then use the world of design to actually figure them out.
498
1161260
3000
然後發展出讓世人更了解人類極限的工具。
19:24
That might be the only way that we will really be able
499
1164260
3000
想要能激發出人類潛力
19:27
to achieve our own human potential
500
1167260
2000
同時成為那種我們心裡所想達成的高貴物種,
19:29
and really be the noble species we hope to all be.
501
1169260
3000
這也許是唯一的辦法。
19:32
Thank you.
502
1172260
2000
謝謝各位。
19:34
(Applause)
503
1174260
5000
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7