Laurie Santos: How monkeys mirror human irrationality

198,212 views ・ 2010-07-29

TED


Dvaput kliknite na engleske titlove ispod za reprodukciju videozapisa.

Prevoditelj: Senzos Osijek Recezent: Tilen Pigac - EFZG
00:17
I want to start my talk today with two observations
0
17260
2000
Započet ću govor s dva opažanja
00:19
about the human species.
1
19260
2000
o ljudskoj rasi.
00:21
The first observation is something that you might think is quite obvious,
2
21260
3000
Prvo opažanje je nešto što ćete misliti da je očito,
00:24
and that's that our species, Homo sapiens,
3
24260
2000
a govori o tome kako je naša vrsta Homo sapiens
00:26
is actually really, really smart --
4
26260
2000
vrlo vrlo pametna –
00:28
like, ridiculously smart --
5
28260
2000
smiješno pametna –
00:30
like you're all doing things
6
30260
2000
svi radite stvari
00:32
that no other species on the planet does right now.
7
32260
3000
koje druge vrste na ovom planetu ne rade.
00:35
And this is, of course,
8
35260
2000
A ovo sigurno
00:37
not the first time you've probably recognized this.
9
37260
2000
niste prvi put spoznali.
00:39
Of course, in addition to being smart, we're also an extremely vain species.
10
39260
3000
Uz to što smo pametni, također smo i jako tašti.
00:42
So we like pointing out the fact that we're smart.
11
42260
3000
Volimo ukazivati na činjenicu da smo jako pametni.
00:45
You know, so I could turn to pretty much any sage
12
45260
2000
Mogu pokazati bilo koju sagu od
00:47
from Shakespeare to Stephen Colbert
13
47260
2000
Shakespearea do Stephena Colberta
00:49
to point out things like the fact that
14
49260
2000
i ukazati stvari poput činjenice da
00:51
we're noble in reason and infinite in faculties
15
51260
2000
smo plemeniti u razumu i neograničenih sposobnosti
00:53
and just kind of awesome-er than anything else on the planet
16
53260
2000
i da smo fenomenalniji od svega na planetu
00:55
when it comes to all things cerebral.
17
55260
3000
kada su u pitanju sve moždane stvari.
00:58
But of course, there's a second observation about the human species
18
58260
2000
Naravno, postoji drugo opažanje o ljudskoj rasi
01:00
that I want to focus on a little bit more,
19
60260
2000
na kojeg bi se više usredotočila,
01:02
and that's the fact that
20
62260
2000
i činjenica je,
01:04
even though we're actually really smart, sometimes uniquely smart,
21
64260
3000
iako smo zapravo jako pametni, nekada jedinstveno pametni,
01:07
we can also be incredibly, incredibly dumb
22
67260
3000
možemo biti i nevjerojatno, nevjerojatno glupi
01:10
when it comes to some aspects of our decision making.
23
70260
3000
u nekim aspektima donošenja odluka.
01:13
Now I'm seeing lots of smirks out there.
24
73260
2000
Vidim mnogo zlobnih smješkanja.
01:15
Don't worry, I'm not going to call anyone in particular out
25
75260
2000
Ne brinite, neću prozvati nikoga posebno
01:17
on any aspects of your own mistakes.
26
77260
2000
zbog bilo kojeg aspekta vaših vlastitih grešaka.
01:19
But of course, just in the last two years
27
79260
2000
Naravno, u protekle dvije godine
01:21
we see these unprecedented examples of human ineptitude.
28
81260
3000
vidjeli smo ove presedanske primjere ljudske nesposobnosti.
01:24
And we've watched as the tools we uniquely make
29
84260
3000
Gledamo kako alati koje jedinstveno koristimo kako bismo
01:27
to pull the resources out of our environment
30
87260
2000
izvukli sredstva iz našeg okoliša,
01:29
kind of just blow up in our face.
31
89260
2000
eksplodiraju nama u lice.
01:31
We've watched the financial markets that we uniquely create --
32
91260
2000
Gledali smo financijska tržišta koje stvaramo –
01:33
these markets that were supposed to be foolproof --
33
93260
3000
tržišta koja bi trebala biti sigurna –
01:36
we've watched them kind of collapse before our eyes.
34
96260
2000
gledali smo kako nam se ruše pred očima.
01:38
But both of these two embarrassing examples, I think,
35
98260
2000
Za oba ova sramotna primjera, mislim,
01:40
don't highlight what I think is most embarrassing
36
100260
3000
ono što mislim je najsramotnije
01:43
about the mistakes that humans make,
37
103260
2000
o pogrešci koju ljudi čine
01:45
which is that we'd like to think that the mistakes we make
38
105260
3000
a to je da želimo misliti da su pogreške koje učinimo
01:48
are really just the result of a couple bad apples
39
108260
2000
samo rezultat nekoliko loših jabuka
01:50
or a couple really sort of FAIL Blog-worthy decisions.
40
110260
3000
ili nekoliko loših odluka dostojnih blogova.
01:53
But it turns out, what social scientists are actually learning
41
113260
3000
Ispada da ono što socijalni znanstvenici uče
01:56
is that most of us, when put in certain contexts,
42
116260
3000
je kako većina nas, kada je stavljena u određeni kontekst,
01:59
will actually make very specific mistakes.
43
119260
3000
napravit će zapravo specifične pogreške.
02:02
The errors we make are actually predictable.
44
122260
2000
Greške koje radimo su zapravo predvidljive.
02:04
We make them again and again.
45
124260
2000
Radimo ih opet i opet.
02:06
And they're actually immune to lots of evidence.
46
126260
2000
Imune su na mnoge dokaze.
02:08
When we get negative feedback,
47
128260
2000
Kada dobijemo negativnu kritiku,
02:10
we still, the next time we're face with a certain context,
48
130260
3000
još uvijek, idući put kad smo suočeni s određenim kontekstom,
02:13
tend to make the same errors.
49
133260
2000
radimo iste greške.
02:15
And so this has been a real puzzle to me
50
135260
2000
Ovo je bila prava zagonetka za mene
02:17
as a sort of scholar of human nature.
51
137260
2000
kao učenjaka o ljudskoj prirodi.
02:19
What I'm most curious about is,
52
139260
2000
Najviše sam znatiželjna o tome
02:21
how is a species that's as smart as we are
53
141260
3000
kako je vrsta koja je pametna kao mi,
02:24
capable of such bad
54
144260
2000
sposobna za tako loše
02:26
and such consistent errors all the time?
55
146260
2000
i tako dosljedne pogreške cijelo vrijeme?
02:28
You know, we're the smartest thing out there, why can't we figure this out?
56
148260
3000
Znate, najpametniji smo, zašto ne možemo ovo shvatiti?
02:31
In some sense, where do our mistakes really come from?
57
151260
3000
U neku ruku, odakle naše pogreške zapravo dolaze?
02:34
And having thought about this a little bit, I see a couple different possibilities.
58
154260
3000
Razmišljajući o ovome, vidim nekoliko različitih mogućnosti.
02:37
One possibility is, in some sense, it's not really our fault.
59
157260
3000
Jedna mogućnost jest, u neku ruku, da nije zapravo naša krivnja.
02:40
Because we're a smart species,
60
160260
2000
Jer smo pametna vrsta,
02:42
we can actually create all kinds of environments
61
162260
2000
možemo stvoriti svakakve okoline
02:44
that are super, super complicated,
62
164260
2000
koje su super, super komplicirane,
02:46
sometimes too complicated for us to even actually understand,
63
166260
3000
nekada previše komplicirane za nas da bismo shvatili,
02:49
even though we've actually created them.
64
169260
2000
iako smo ih stvorili.
02:51
We create financial markets that are super complex.
65
171260
2000
Stvaramo financijska tržišta koja su jako komplicirana.
02:53
We create mortgage terms that we can't actually deal with.
66
173260
3000
Stvaramo uvjete za kredite s kojima se zapravo ne možemo nositi.
02:56
And of course, if we are put in environments where we can't deal with it,
67
176260
3000
Naravno, ako smo stavljeni u okoliš u kojem se ne možemo snaći,
02:59
in some sense makes sense that we actually
68
179260
2000
u neku ruku je logično da ćemo
03:01
might mess certain things up.
69
181260
2000
pogriješiti u nekim stvarima.
03:03
If this was the case, we'd have a really easy solution
70
183260
2000
Ako je u tome stvar, imamo jako lagano riješenje
03:05
to the problem of human error.
71
185260
2000
za problem ljudske greške.
03:07
We'd actually just say, okay, let's figure out
72
187260
2000
Rekli bismo, ok, hajdemo shvatiti
03:09
the kinds of technologies we can't deal with,
73
189260
2000
vrste tehnologija s kojima se ne znamo nositi,
03:11
the kinds of environments that are bad --
74
191260
2000
koji su okoliši loši –
03:13
get rid of those, design things better,
75
193260
2000
riješimo se tih, dizajniramo stvari bolje,
03:15
and we should be the noble species
76
195260
2000
i bili bismo plemenita vrsta
03:17
that we expect ourselves to be.
77
197260
2000
za kakvu se smatramo.
03:19
But there's another possibility that I find a little bit more worrying,
78
199260
3000
Ali postoji druga mogućnost koju smatram malo više zabrinjavajućom,
03:22
which is, maybe it's not our environments that are messed up.
79
202260
3000
a to je da možda naši okoliši nisu zeznuti.
03:25
Maybe it's actually us that's designed badly.
80
205260
3000
Možda smo mi loše dizajnirani.
03:28
This is a hint that I've gotten
81
208260
2000
Ovo je nagovještaj koji sam dobila
03:30
from watching the ways that social scientists have learned about human errors.
82
210260
3000
gledajući načine na koje socijalni znanstvenici uče o ljudskim pogreškama.
03:33
And what we see is that people tend to keep making errors
83
213260
3000
Vidimo da ljudi i dalje čine greške
03:36
exactly the same way, over and over again.
84
216260
3000
na jednake načine, opet i opet.
03:39
It feels like we might almost just be built
85
219260
2000
Čini se kao da smo možda izgrađeni
03:41
to make errors in certain ways.
86
221260
2000
tako da činimo greške na određeni način.
03:43
This is a possibility that I worry a little bit more about,
87
223260
3000
To je mogućnost oko koje se brinem malo više,
03:46
because, if it's us that's messed up,
88
226260
2000
jer, ako smo mi zbrkani,
03:48
it's not actually clear how we go about dealing with it.
89
228260
2000
nije baš jasno kako ćemo se nositi s tim.
03:50
We might just have to accept the fact that we're error prone
90
230260
3000
Morat ćemo prihvatiti činjenicu da smo skloni pogreškama
03:53
and try to design things around it.
91
233260
2000
i pokušati dizajnirati stvari oko toga.
03:55
So this is the question my students and I wanted to get at.
92
235260
3000
Ovo je pitanje koje smo moji studenti i ja htjeli riješiti.
03:58
How can we tell the difference between possibility one and possibility two?
93
238260
3000
Kako možemo odrediti razliku između prve i druge mogućnosti?
04:01
What we need is a population
94
241260
2000
Trebamo populaciju
04:03
that's basically smart, can make lots of decisions,
95
243260
2000
koja je pametna, može donositi puno odluka,
04:05
but doesn't have access to any of the systems we have,
96
245260
2000
ali nema pristupa nijednom sustavu kojeg imamo,
04:07
any of the things that might mess us up --
97
247260
2000
bilo kojoj stvari koja nas može zeznuti –
04:09
no human technology, human culture,
98
249260
2000
nikava ljudska tehnologija, ljudska kultura,
04:11
maybe even not human language.
99
251260
2000
možda čak ni ljudski jezik.
04:13
And so this is why we turned to these guys here.
100
253260
2000
Pa smo se okrenuli ovim tipovima ovdje.
04:15
These are one of the guys I work with. This is a brown capuchin monkey.
101
255260
3000
Ovo je jedan tip s kojim radim. Ovo je smeđi kapucin.
04:18
These guys are New World primates,
102
258260
2000
Ovo su primati Novoga svijeta,
04:20
which means they broke off from the human branch
103
260260
2000
što znači da su prekinuli s ljudskom granom
04:22
about 35 million years ago.
104
262260
2000
prije 35 milijuna godina.
04:24
This means that your great, great, great great, great, great --
105
264260
2000
To znači da je vaša pra pra pra pra pra pra –
04:26
with about five million "greats" in there --
106
266260
2000
uz još oko pet milijuna "pra" --
04:28
grandmother was probably the same great, great, great, great
107
268260
2000
baka, bila vjerojatno ista pra pra pra pra
04:30
grandmother with five million "greats" in there
108
270260
2000
baka uz još pet milijuna "pra",
04:32
as Holly up here.
109
272260
2000
kao i Hollyina.
04:34
You know, so you can take comfort in the fact that this guy up here is a really really distant,
110
274260
3000
Stoga vam može biti utješna činjenica da je ovaj tip zapravo stvarno daleki,
04:37
but albeit evolutionary, relative.
111
277260
2000
iako evolucijski, rođak.
04:39
The good news about Holly though is that
112
279260
2000
Dobre vijesti o Holly su da
04:41
she doesn't actually have the same kinds of technologies we do.
113
281260
3000
ona nema iste vrste tehnologije poput nas.
04:44
You know, she's a smart, very cut creature, a primate as well,
114
284260
3000
Znate, pametna je, odvojeno biće, primat također,
04:47
but she lacks all the stuff we think might be messing us up.
115
287260
2000
ali fale joj sve stvari za koje mislimo da bi nas mogle zeznuti.
04:49
So she's the perfect test case.
116
289260
2000
Ona je savršen testni primjerak.
04:51
What if we put Holly into the same context as humans?
117
291260
3000
Što ako stavimo Holly u isti kontekst kao ljude?
04:54
Does she make the same mistakes as us?
118
294260
2000
Hoće li učiniti iste greške kao mi?
04:56
Does she not learn from them? And so on.
119
296260
2000
Hoće li naučiti iz njih? I tako dalje.
04:58
And so this is the kind of thing we decided to do.
120
298260
2000
Ovo je nešto što smo odlučili napraviti.
05:00
My students and I got very excited about this a few years ago.
121
300260
2000
Moji studenti i ja smo bili vrlo uzbuđeni oko toga prije par godina.
05:02
We said, all right, let's, you know, throw so problems at Holly,
122
302260
2000
Rekli smo, u redu, hajdemo, znate, baciti par problema na Holly,
05:04
see if she messes these things up.
123
304260
2000
da vidimo hoće li uprskati.
05:06
First problem is just, well, where should we start?
124
306260
3000
Prvi problem je, gdje da počnemo?
05:09
Because, you know, it's great for us, but bad for humans.
125
309260
2000
Jer, dobro je za nas, ali loše za ljude.
05:11
We make a lot of mistakes in a lot of different contexts.
126
311260
2000
Radimo mnogo grešaka u mnogo različitih konteksta.
05:13
You know, where are we actually going to start with this?
127
313260
2000
Znate, gdje ćemo zapravo početi s ovim?
05:15
And because we started this work around the time of the financial collapse,
128
315260
3000
I pošto smo započeli s ovim radom u vrijeme financijske krize,
05:18
around the time when foreclosures were hitting the news,
129
318260
2000
kada su gubici prava bili glavne vijesti,
05:20
we said, hhmm, maybe we should
130
320260
2000
rekli smo, hm, možda bismo mogli
05:22
actually start in the financial domain.
131
322260
2000
početi u financijskoj domeni.
05:24
Maybe we should look at monkey's economic decisions
132
324260
3000
Možda bismo mogli vidjeti donošenje ekonomskih odluka
05:27
and try to see if they do the same kinds of dumb things that we do.
133
327260
3000
u majmuna i pokušati vidjeti rade li iste glupe stvari kao i mi.
05:30
Of course, that's when we hit a sort second problem --
134
330260
2000
Naravno, tada smo udarili u drugi problem –
05:32
a little bit more methodological --
135
332260
2000
više metodologijski –
05:34
which is that, maybe you guys don't know,
136
334260
2000
možda ne znate,
05:36
but monkeys don't actually use money. I know, you haven't met them.
137
336260
3000
ali majmuni zapravo ne koriste novac. Znam, niste ih upoznali.
05:39
But this is why, you know, they're not in the queue behind you
138
339260
2000
Ali zato, znate, nisu u redu iza vas
05:41
at the grocery store or the ATM -- you know, they don't do this stuff.
139
341260
3000
u trgovini ili na bankomatu – znate, oni ne rade te stvari.
05:44
So now we faced, you know, a little bit of a problem here.
140
344260
3000
Sada smo suočeni s malim problemom.
05:47
How are we actually going to ask monkeys about money
141
347260
2000
Kako ćemo pitati majmune o novcu
05:49
if they don't actually use it?
142
349260
2000
ako ga oni zapravo ne koriste?
05:51
So we said, well, maybe we should just, actually just suck it up
143
351260
2000
Rekli smo, možda bismo samo
05:53
and teach monkeys how to use money.
144
353260
2000
trebali naučiti majmune kako se koristo novac.
05:55
So that's just what we did.
145
355260
2000
To smo i napravili.
05:57
What you're looking at over here is actually the first unit that I know of
146
357260
3000
Ovo što gledate ovdje je zapravo prva grupa znanih
06:00
of non-human currency.
147
360260
2000
ne-ljudskih valuta.
06:02
We weren't very creative at the time we started these studies,
148
362260
2000
Nismo bili jako kreativni u to vrijeme kada smo počeli studiju,
06:04
so we just called it a token.
149
364260
2000
pa smo ih nazvali žetonima.
06:06
But this is the unit of currency that we've taught our monkeys at Yale
150
366260
3000
Ali naše majmune na Yale-u smo naučili
06:09
to actually use with humans,
151
369260
2000
da koriste ovu valutu zajedno s ljudima,
06:11
to actually buy different pieces of food.
152
371260
3000
zapravo da kupe različite vrste hrane.
06:14
It doesn't look like much -- in fact, it isn't like much.
153
374260
2000
Ne izgleda kao puno – zapravo, nije puno.
06:16
Like most of our money, it's just a piece of metal.
154
376260
2000
Kao većina našeg novca, samo je komad metala.
06:18
As those of you who've taken currencies home from your trip know,
155
378260
3000
Vi koji ste ponijeli valute kući sa nekog putovanja znate,
06:21
once you get home, it's actually pretty useless.
156
381260
2000
jednom kad dođete kući, zapravo su beskorisne.
06:23
It was useless to the monkeys at first
157
383260
2000
Bilo je beskorisno i majmunima
06:25
before they realized what they could do with it.
158
385260
2000
dok nisu shvatili što mogu s njom.
06:27
When we first gave it to them in their enclosures,
159
387260
2000
Kada smo im prvi put dali u njihovom ograđenom prostoru,
06:29
they actually kind of picked them up, looked at them.
160
389260
2000
zapravo su ih podigli i gledali u njih.
06:31
They were these kind of weird things.
161
391260
2000
Bile su to nekakve čudne stvari.
06:33
But very quickly, the monkeys realized
162
393260
2000
Ali ubrzo, majmuni su shvatili
06:35
that they could actually hand these tokens over
163
395260
2000
da mogu dati te žetone
06:37
to different humans in the lab for some food.
164
397260
3000
različitim ljudima u laboratoriju u zamjenu za hranu.
06:40
And so you see one of our monkeys, Mayday, up here doing this.
165
400260
2000
Vidite ovdje jednog našeg majmuna, Maydaya, kako radi to.
06:42
This is A and B are kind of the points where she's sort of a little bit
166
402260
3000
A i B su točke gdje je ona malo
06:45
curious about these things -- doesn't know.
167
405260
2000
znatiželjna oko tih stvari – ne zna.
06:47
There's this waiting hand from a human experimenter,
168
407260
2000
Ovdje je ruka ljudskog istraživača koja čeka,
06:49
and Mayday quickly figures out, apparently the human wants this.
169
409260
3000
i Mayday je brzo shvatila, očito čovjek želi to.
06:52
Hands it over, and then gets some food.
170
412260
2000
Preda mu žeton i dobije neku hranu.
06:54
It turns out not just Mayday, all of our monkeys get good
171
414260
2000
Ispalo je da ne samo Mayday, već svi su naši majmuni postali dobri
06:56
at trading tokens with human salesman.
172
416260
2000
u trgovanju žetonima sa ljudskim trgovcima.
06:58
So here's just a quick video of what this looks like.
173
418260
2000
Evo kratki video kako je to izgledalo.
07:00
Here's Mayday. She's going to be trading a token for some food
174
420260
3000
Ovo je Mayday. Ona će zamijeniti žeton za hranu
07:03
and waiting happily and getting her food.
175
423260
3000
i sretno čekati i dobiti hranu.
07:06
Here's Felix, I think. He's our alpha male; he's a kind of big guy.
176
426260
2000
Ovo je Felix. Mislim. On je naš alfa mužjak; dosta je velik.
07:08
But he too waits patiently, gets his food and goes on.
177
428260
3000
Ali i on čeka strpljivo, dobije hranu i ode.
07:11
So the monkeys get really good at this.
178
431260
2000
Majmuni su postali jako dobri u ovome.
07:13
They're surprisingly good at this with very little training.
179
433260
3000
Iznenađujuće su dobri u ovome sa jako malo treninga.
07:16
We just allowed them to pick this up on their own.
180
436260
2000
Dopustili smo im da to pohvataju sami.
07:18
The question is: is this anything like human money?
181
438260
2000
Pitanje je: je li to slično ljudskom novcu?
07:20
Is this a market at all,
182
440260
2000
Je li to uopće tržište,
07:22
or did we just do a weird psychologist's trick
183
442260
2000
ili smo uradili čudni psihološki trik
07:24
by getting monkeys to do something,
184
444260
2000
s tim što smo natjerali majmune da urade nešto,
07:26
looking smart, but not really being smart.
185
446260
2000
izgledaju pametno, ali da nisu zapravo pametni.
07:28
And so we said, well, what would the monkeys spontaneously do
186
448260
3000
Rekli smo, što bi majmuni spontano napravili
07:31
if this was really their currency, if they were really using it like money?
187
451260
3000
da je ovo njihova valuta, ako bi ju zaista koristili kao novac?
07:34
Well, you might actually imagine them
188
454260
2000
Možete ih zapravo zamisliti kako
07:36
to do all the kinds of smart things
189
456260
2000
rade sve pametne stvari
07:38
that humans do when they start exchanging money with each other.
190
458260
3000
kao i ljudi kada zamjenuju novac međusobno.
07:41
You might have them start paying attention to price,
191
461260
3000
Možda bi počeli opažati cijenu
07:44
paying attention to how much they buy --
192
464260
2000
ili koliko će kupiti -
07:46
sort of keeping track of their monkey token, as it were.
193
466260
3000
pratiti gdje je njihov majmunski žeton.
07:49
Do the monkeys do anything like this?
194
469260
2000
Rade li majmuni nešto slično tome?
07:51
And so our monkey marketplace was born.
195
471260
3000
I tako je rođeno naše tržište za majmune.
07:54
The way this works is that
196
474260
2000
Način na koji to radi je da
07:56
our monkeys normally live in a kind of big zoo social enclosure.
197
476260
3000
naši majmuni normalno žive u velikom ograđenom prostoru u zoološkom.
07:59
When they get a hankering for some treats,
198
479260
2000
Kada su imali žudnju za nekim poslasticama,
08:01
we actually allowed them a way out
199
481260
2000
dopustili smo im da uđu
08:03
into a little smaller enclosure where they could enter the market.
200
483260
2000
u malo manji ograđeni prostor u kojem su mogli ući na tržnicu.
08:05
Upon entering the market --
201
485260
2000
Ulazeći na tržište –
08:07
it was actually a much more fun market for the monkeys than most human markets
202
487260
2000
bilo je to mnogo zabavnije tržište za majmune nego većina ljudskih tržišta,
08:09
because, as the monkeys entered the door of the market,
203
489260
3000
jer kad su majmuni ušli na tržište,
08:12
a human would give them a big wallet full of tokens
204
492260
2000
čovjek bi im dao hrpu žetona
08:14
so they could actually trade the tokens
205
494260
2000
kako bi mogli mijenjati žetone
08:16
with one of these two guys here --
206
496260
2000
sa dva čovjeka tamo –
08:18
two different possible human salesmen
207
498260
2000
dva različita ljudska trgovca
08:20
that they could actually buy stuff from.
208
500260
2000
od kojih su zapravo mogli kupiti stvari.
08:22
The salesmen were students from my lab.
209
502260
2000
Trgovci su bili studenti iz laboratorija.
08:24
They dressed differently; they were different people.
210
504260
2000
Različito su se obukli; bili su različiti ljudi.
08:26
And over time, they did basically the same thing
211
506260
3000
Nakon nekog vremena, radili su jednaku stvar
08:29
so the monkeys could learn, you know,
212
509260
2000
kako bi majmuni mogli naučiti
08:31
who sold what at what price -- you know, who was reliable, who wasn't, and so on.
213
511260
3000
tko je prodao što po kojoj cijeni – znate, tko je bio pouzdan, tko nije, i tako dalje.
08:34
And you can see that each of the experimenters
214
514260
2000
Možete vidjeti kako je većina istraživača
08:36
is actually holding up a little, yellow food dish.
215
516260
3000
držala malu žutu posudu za hranu.
08:39
and that's what the monkey can for a single token.
216
519260
2000
I to je sve što majmun može dobiti za jedan žeton.
08:41
So everything costs one token,
217
521260
2000
Sve košta jedan žeton,
08:43
but as you can see, sometimes tokens buy more than others,
218
523260
2000
ali kao što možete vidjeti, nekada neki žetoni kupe mnogo više nego ostali,
08:45
sometimes more grapes than others.
219
525260
2000
nekada mnogo više zrna grožđa nego ostali.
08:47
So I'll show you a quick video of what this marketplace actually looks like.
220
527260
3000
Dakle, pokazat ću vam kratak video o tome kako zaista izgleda ovo tržište.
08:50
Here's a monkey-eye-view. Monkeys are shorter, so it's a little short.
221
530260
3000
Ovako to vidi majmun. Majmuni su niži, dakle malo je niži.
08:53
But here's Honey.
222
533260
2000
Ali ovdje je Honey.
08:55
She's waiting for the market to open a little impatiently.
223
535260
2000
Ona nestrpljivo čeka da se dućan otvori.
08:57
All of a sudden the market opens. Here's her choice: one grapes or two grapes.
224
537260
3000
Odjednom, dućan se otvara. Ovo je njen izbor: jedan grozd ili dva grozda.
09:00
You can see Honey, very good market economist,
225
540260
2000
Možete vidjeti Honey, veoma dobru ekonomisticu tržišta
09:02
goes with the guy who gives more.
226
542260
3000
sa čovjekom koji daje više.
09:05
She could teach our financial advisers a few things or two.
227
545260
2000
Mogla bi naučiti naše financijske savjetnike nekim stvarima.
09:07
So not just Honey,
228
547260
2000
Dakle, ne samo Honey,
09:09
most of the monkeys went with guys who had more.
229
549260
3000
nego većina majmuna je otišla s onim koji je imao više.
09:12
Most of the monkeys went with guys who had better food.
230
552260
2000
Većina majmuna je otišla s onima koji su imali bolju hranu.
09:14
When we introduced sales, we saw the monkeys paid attention to that.
231
554260
3000
Kad smo predstavili rasprodaje, vidjeli smo da su majmuni obratili pažnju na to.
09:17
They really cared about their monkey token dollar.
232
557260
3000
Zaista su pazili na njihove majmunske dolare u obliku žetona.
09:20
The more surprising thing was that when we collaborated with economists
233
560260
3000
Iznenađujuće je bilo to što kada smo surađivali sa ekonomistima
09:23
to actually look at the monkeys' data using economic tools,
234
563260
3000
da zapravo pogledamo podatke koristeći ekonomske alate,
09:26
they basically matched, not just qualitatively,
235
566260
3000
oni su se zapravo podudarali, ne samo kvalitativno,
09:29
but quantitatively with what we saw
236
569260
2000
već kvantitativno s onim što smo vidjeli
09:31
humans doing in a real market.
237
571260
2000
da ljudi rade na pravoj tržnici.
09:33
So much so that, if you saw the monkeys' numbers,
238
573260
2000
Čak toliko da kada ste vidjeli rezultate majmuna,
09:35
you couldn't tell whether they came from a monkey or a human in the same market.
239
575260
3000
niste mogli reći da li su to rezultati majmuna ili rezultati čovjeka na istom tržištu.
09:38
And what we'd really thought we'd done
240
578260
2000
I ono što smo zaista mislili da smo učinili
09:40
is like we'd actually introduced something
241
580260
2000
je to da smo zaista predstavili nešto,
09:42
that, at least for the monkeys and us,
242
582260
2000
što barem za majmune i nas,
09:44
works like a real financial currency.
243
584260
2000
izgleda kao prava financijska valuta.
09:46
Question is: do the monkeys start messing up in the same ways we do?
244
586260
3000
Pitanje je: da li majmuni počinju brljati na isti način kao i mi?
09:49
Well, we already saw anecdotally a couple of signs that they might.
245
589260
3000
Pa, već smo vidjeli nekoliko zabavnih primjera koji idu tome u prilog.
09:52
One thing we never saw in the monkey marketplace
246
592260
2000
Jedna stvar koju nismo nikada vidjeli na majmunskoj tržnici
09:54
was any evidence of saving --
247
594260
2000
je ta da nema nikakvog dokaza o štednji –
09:56
you know, just like our own species.
248
596260
2000
znate, kao što to radi naša vrsta.
09:58
The monkeys entered the market, spent their entire budget
249
598260
2000
Majmuni uđu na tržnicu, potroše sav svoj budžet
10:00
and then went back to everyone else.
250
600260
2000
i onda se vrate svima ostalima.
10:02
The other thing we also spontaneously saw,
251
602260
2000
Druga stvar koju smo također spontano vidjeli,
10:04
embarrassingly enough,
252
604260
2000
dovoljno sramotno,
10:06
is spontaneous evidence of larceny.
253
606260
2000
je spontani dokaz o razbojništvu.
10:08
The monkeys would rip-off the tokens at every available opportunity --
254
608260
3000
Majmuni bi otkinuli žetone u svakoj raspoloživoj prilici –
10:11
from each other, often from us --
255
611260
2000
jedan od drugog, često od nas –
10:13
you know, things we didn't necessarily think we were introducing,
256
613260
2000
znate, stvari za koje nismo nužno mislili da predstavljamo,
10:15
but things we spontaneously saw.
257
615260
2000
ali stvari koje smo spontano vidjeli.
10:17
So we said, this looks bad.
258
617260
2000
Zatim smo rekli, ovo izgleda loše.
10:19
Can we actually see if the monkeys
259
619260
2000
Možemo li zaista vidjeti kako majmuni
10:21
are doing exactly the same dumb things as humans do?
260
621260
3000
rade totalno iste glupe stvari kao i ljudi?
10:24
One possibility is just kind of let
261
624260
2000
Jedna mogućnost je da nekako pustimo
10:26
the monkey financial system play out,
262
626260
2000
da se majmunski financijski sistem odigra,
10:28
you know, see if they start calling us for bailouts in a few years.
263
628260
2000
znate, da vidimo da li bi nas zvali za nekoliko godina da ih izbavimo iz zatvora uz jamčevinu.
10:30
We were a little impatient so we wanted
264
630260
2000
Bili smo pomalo nestrpljivi pa smo željeli
10:32
to sort of speed things up a bit.
265
632260
2000
nekako ubrzati stvari.
10:34
So we said, let's actually give the monkeys
266
634260
2000
Pa smo rekli, hajdemo zaista dati majmunima
10:36
the same kinds of problems
267
636260
2000
istu vrstu problema
10:38
that humans tend to get wrong
268
638260
2000
u kojoj ljudi znaju pogriješiti
10:40
in certain kinds of economic challenges,
269
640260
2000
u određenim vrstama ekonomskih izazova
10:42
or certain kinds of economic experiments.
270
642260
2000
ili određenim vrstama ekonomskih eksperimenata.
10:44
And so, since the best way to see how people go wrong
271
644260
3000
I tako, s obzirom da je najbolji način da vidimo kako ljudi griješe
10:47
is to actually do it yourself,
272
647260
2000
taj da to zapravo učinite sami,
10:49
I'm going to give you guys a quick experiment
273
649260
2000
dat ću vam brzi eksperiment
10:51
to sort of watch your own financial intuitions in action.
274
651260
2000
kako bi vidjeli vlastite financijske ustanove na djelu.
10:53
So imagine that right now
275
653260
2000
Dakle, zamislite da sam upravo sada
10:55
I handed each and every one of you
276
655260
2000
svakome od vas dala
10:57
a thousand U.S. dollars -- so 10 crisp hundred dollar bills.
277
657260
3000
tisuću američkih dolara – dakle 10 svježih novčanica od sto dolara.
11:00
Take these, put it in your wallet
278
660260
2000
Uzmite ih, stavite u novčanik
11:02
and spend a second thinking about what you're going to do with it.
279
662260
2000
i na sekundu pomislite što ćete učiniti s njima.
11:04
Because it's yours now; you can buy whatever you want.
280
664260
2000
Zato što je to sada vaše, možete kupiti što god poželite.
11:06
Donate it, take it, and so on.
281
666260
2000
Donirajte ih, uzmite ih i tako dalje.
11:08
Sounds great, but you get one more choice to earn a little bit more money.
282
668260
3000
Zvuči odlično, ali dobili ste još jedan izbor da bi zaradili još više novaca.
11:11
And here's your choice: you can either be risky,
283
671260
3000
I evo vašeg izbora: možete riskirati,
11:14
in which case I'm going to flip one of these monkey tokens.
284
674260
2000
a u tom slučaju bacit ću jedan od ovih majmunskih žetona.
11:16
If it comes up heads, you're going to get a thousand dollars more.
285
676260
2000
Ako se okrene glava, dobit ćete tisuću dolara više.
11:18
If it comes up tails, you get nothing.
286
678260
2000
Ako se okrene pismo, nećete dobiti ništa.
11:20
So it's a chance to get more, but it's pretty risky.
287
680260
3000
Dakle, to je šansa da dobijete više, ali je prilično riskantna.
11:23
Your other option is a bit safe. Your just going to get some money for sure.
288
683260
3000
Vaša druga opcija je malo sigurnija. Sigurno ćete dobiti nešto novaca.
11:26
I'm just going to give you 500 bucks.
289
686260
2000
Dat ću vam samo 500 dolara.
11:28
You can stick it in your wallet and use it immediately.
290
688260
3000
Možete ih pospremiti u novčanik i odmah upotrijebiti.
11:31
So see what your intuition is here.
291
691260
2000
Pa vidite kuda vas vodi intuicija.
11:33
Most people actually go with the play-it-safe option.
292
693260
3000
Većina ljudi zapravo uzme opciju igranja na sigurno.
11:36
Most people say, why should I be risky when I can get 1,500 dollars for sure?
293
696260
3000
Većina ljudi kaže, zašto bih riskirao kad mogu sigurno dobiti 1.500 dolara?
11:39
This seems like a good bet. I'm going to go with that.
294
699260
2000
To izgleda kao dobra oklada. Izabrat ću tu.
11:41
You might say, eh, that's not really irrational.
295
701260
2000
Mogli biste reći, eh, to nije baš iracionalno.
11:43
People are a little risk-averse. So what?
296
703260
2000
Ljudi nekako nisu skloni riziku. Pa što?
11:45
Well, the "so what?" comes when start thinking
297
705260
2000
Pa, to „pa što“ dolazi kad krenemo razmišljati
11:47
about the same problem
298
707260
2000
o istom problemu
11:49
set up just a little bit differently.
299
709260
2000
na malo drugačiji način.
11:51
So now imagine that I give each and every one of you
300
711260
2000
Sad zamislite da svakome od vas
11:53
2,000 dollars -- 20 crisp hundred dollar bills.
301
713260
3000
dam 2.000 dolara – 20 svježih novčanica od sto dolara.
11:56
Now you can buy double to stuff you were going to get before.
302
716260
2000
Sada možete kupiti duplo više stvari nego prije.
11:58
Think about how you'd feel sticking it in your wallet.
303
718260
2000
Razmislite o tome kako bi ih bilo pospremiti u novčanik.
12:00
And now imagine that I have you make another choice
304
720260
2000
I sad zamislite kako morate učiniti još jedan izbor.
12:02
But this time, it's a little bit worse.
305
722260
2000
Ali ovaj put je malo gori.
12:04
Now, you're going to be deciding how you're going to lose money,
306
724260
3000
Sada ćete odlučiti kako ćete izgubiti novac,
12:07
but you're going to get the same choice.
307
727260
2000
ali ćete dobiti isti izbor.
12:09
You can either take a risky loss --
308
729260
2000
Možete ili odabrati riskantan gubitak –
12:11
so I'll flip a coin. If it comes up heads, you're going to actually lose a lot.
309
731260
3000
bacanje novčića. Ako se okrene glava, zaista ćete mnogo izgubiti.
12:14
If it comes up tails, you lose nothing, you're fine, get to keep the whole thing --
310
734260
3000
Ako se okrene pismo, ne gubite ništa, dobro ste, možete sve zadržati –
12:17
or you could play it safe, which means you have to reach back into your wallet
311
737260
3000
ili možete igrati na sigurno, što znači da morate posegnuti u svoj novčanik
12:20
and give me five of those $100 bills, for certain.
312
740260
3000
i svakako mi dati pet tih novčanica od 100 dolara.
12:23
And I'm seeing a lot of furrowed brows out there.
313
743260
3000
I sad vidim ovdje mnogo namrštenih lica.
12:26
So maybe you're having the same intuitions
314
746260
2000
Dakle, možda imate istu intuiciju
12:28
as the subjects that were actually tested in this,
315
748260
2000
kao i subjekti koji su zaista bili testirani,
12:30
which is when presented with these options,
316
750260
2000
a to je da kada se iznesu ove opcije,
12:32
people don't choose to play it safe.
317
752260
2000
ljudi ne izaberu igranje na sigurno.
12:34
They actually tend to go a little risky.
318
754260
2000
Zapravo imaju tendenciju da idu na rizik.
12:36
The reason this is irrational is that we've given people in both situations
319
756260
3000
Razlog zbog kojeg je ovo iracionalno je taj što smo ljudima u obje situacije
12:39
the same choice.
320
759260
2000
dali isti izbor.
12:41
It's a 50/50 shot of a thousand or 2,000,
321
761260
3000
To je pola-pola šansa za tisuću ili 2.000,
12:44
or just 1,500 dollars with certainty.
322
764260
2000
ili samo sigurnih 1.500.
12:46
But people's intuitions about how much risk to take
323
766260
3000
Ali ljudska intuicija o tome koliko riskirati
12:49
varies depending on where they started with.
324
769260
2000
ovisi o tome sa koliko su započeli.
12:51
So what's going on?
325
771260
2000
Dakle, što se događa?
12:53
Well, it turns out that this seems to be the result
326
773260
2000
Izgleda da je to rezultat
12:55
of at least two biases that we have at the psychological level.
327
775260
3000
najmanje dvije predrasude koje imamo na psihološkoj razini.
12:58
One is that we have a really hard time thinking in absolute terms.
328
778260
3000
Jedna je ta da nam je zaista teško razmišljati o apsolutnom iznosu.
13:01
You really have to do work to figure out,
329
781260
2000
Zaista morate raditi da bi shvatili,
13:03
well, one option's a thousand, 2,000;
330
783260
2000
pa, jedna opcija je tisuću, 2.000;
13:05
one is 1,500.
331
785260
2000
jedna je 1.500.
13:07
Instead, we find it very easy to think in very relative terms
332
787260
3000
Umjesto toga, veoma nam je lako razmišljati u veoma relativnim iznosima
13:10
as options change from one time to another.
333
790260
3000
kao opcije mijenjanja jednog vremena za drugo.
13:13
So we think of things as, "Oh, I'm going to get more," or "Oh, I'm going to get less."
334
793260
3000
Dakle, razmišljamo stvari poput ovih, „Oh, dobit ću više“ ili „Oh, dobit ću manje."
13:16
This is all well and good, except that
335
796260
2000
Sve ovo je dobro i u redu, osim toga
13:18
changes in different directions
336
798260
2000
što se promjene u različitim smjerovima
13:20
actually effect whether or not we think
337
800260
2000
zapravo odražavaju na temelju toga da li smatramo
13:22
options are good or not.
338
802260
2000
da li su opcije dobre ili loše.
13:24
And this leads to the second bias,
339
804260
2000
A to vodi do druge predrasude
13:26
which economists have called loss aversion.
340
806260
2000
koju ekonomisti zovu averzija gubitka.
13:28
The idea is that we really hate it when things go into the red.
341
808260
3000
Pomisao je ta da zaista mrzimo kad stvari odu u crveno.
13:31
We really hate it when we have to lose out on some money.
342
811260
2000
Mi zaista mrzimo kad moramo izgubiti na novcu.
13:33
And this means that sometimes we'll actually
343
813260
2000
A to znači da ponekad zaista
13:35
switch our preferences to avoid this.
344
815260
2000
zamjenimo naše prioritete da bi to izbjegli.
13:37
What you saw in that last scenario is that
345
817260
2000
Ovo što ste vidjeli u zadnjem scenariju je to
13:39
subjects get risky
346
819260
2000
da subjekti idu na rizik
13:41
because they want the small shot that there won't be any loss.
347
821260
3000
zato što žele imati malu šansu kako neće biti ikakvih gubitaka.
13:44
That means when we're in a risk mindset --
348
824260
2000
To znači da kada smo u riskantnom stanju uma –
13:46
excuse me, when we're in a loss mindset,
349
826260
2000
oprostite, kada smo u stanju uma za gubitak,
13:48
we actually become more risky,
350
828260
2000
zapravo postajemo mnogo više skloniji riziku,
13:50
which can actually be really worrying.
351
830260
2000
što zaista može biti zabrinjavajuće.
13:52
These kinds of things play out in lots of bad ways in humans.
352
832260
3000
Ovakve stvari za ljude na mnogo načina ispadnu loše.
13:55
They're why stock investors hold onto losing stocks longer --
353
835260
3000
Eto zašto burzovni ulagači duže drže gubitničke dionice –
13:58
because they're evaluating them in relative terms.
354
838260
2000
zato što ih procjenjuju u relativnim uvjetima.
14:00
They're why people in the housing market refused to sell their house --
355
840260
2000
Eto zašto ljudi na stambenom tržištu odbijaju prodati svoje kuće –
14:02
because they don't want to sell at a loss.
356
842260
2000
zato što ih ne žele prodati s gubitkom.
14:04
The question we were interested in
357
844260
2000
Pitanje koje nas je zanimalo je
14:06
is whether the monkeys show the same biases.
358
846260
2000
da li majmuni pokazuju iste predrasude.
14:08
If we set up those same scenarios in our little monkey market,
359
848260
3000
Ako postavimo iste scenarije na našoj maloj majmunskoj tržinici,
14:11
would they do the same thing as people?
360
851260
2000
hoće li učiniti iste stvari kao i ljudi?
14:13
And so this is what we did, we gave the monkeys choices
361
853260
2000
I evo što smo učinili, dali smo majmunima izbor
14:15
between guys who were safe -- they did the same thing every time --
362
855260
3000
između tipova koji su sigurni – učinili su istu stvar svaki put –
14:18
or guys who were risky --
363
858260
2000
ili tipova koji su riskantni –
14:20
they did things differently half the time.
364
860260
2000
radili su različite stvari pola vremena.
14:22
And then we gave them options that were bonuses --
365
862260
2000
I onda smo im dali opcije koje su bile bonusi –
14:24
like you guys did in the first scenario --
366
864260
2000
kao što ste vi učinili u prvom scenariju –
14:26
so they actually have a chance more,
367
866260
2000
a oni zapravo imaju šansu više,
14:28
or pieces where they were experiencing losses --
368
868260
3000
ili komadiće u kojima su doživjeli gubitke –
14:31
they actually thought they were going to get more than they really got.
369
871260
2000
oni su zaista mislili da će dobiti više no što su zaista dobili.
14:33
And so this is what this looks like.
370
873260
2000
I evo kako to izgleda.
14:35
We introduced the monkeys to two new monkey salesmen.
371
875260
2000
Predstavili smo majmunima dva nova majmuna prodavača.
14:37
The guy on the left and right both start with one piece of grape,
372
877260
2000
Tip s lijeva i s desna su počeli s jednim komadom grožđa,
14:39
so it looks pretty good.
373
879260
2000
pa to izgleda relativno dobro.
14:41
But they're going to give the monkeys bonuses.
374
881260
2000
Ali počet će davati bonuse majmunima.
14:43
The guy on the left is a safe bonus.
375
883260
2000
Tip na lijevoj strani je siguran bonus.
14:45
All the time, he adds one, to give the monkeys two.
376
885260
3000
Svo vrijeme, on dodaje jedan, da bi dao majmunima dva.
14:48
The guy on the right is actually a risky bonus.
377
888260
2000
Tip s desne strane je zapravo rizičan bonus.
14:50
Sometimes the monkeys get no bonus -- so this is a bonus of zero.
378
890260
3000
Ponekad majmuni ne dobiju bonus – dakle ovo je nula bonus.
14:53
Sometimes the monkeys get two extra.
379
893260
3000
Ponekad majmuni dobiju dva više.
14:56
For a big bonus, now they get three.
380
896260
2000
Za veliki bonus, sad dobiju tri.
14:58
But this is the same choice you guys just faced.
381
898260
2000
Ali to je isti bonus s kojim ste se vi maloprije suočili.
15:00
Do the monkeys actually want to play it safe
382
900260
3000
Žele li majmuni zapravo igrati na sigurno i
15:03
and then go with the guy who's going to do the same thing on every trial,
383
903260
2000
otići do tipa koji će učiniti istu stvar u svakom iskušenju
15:05
or do they want to be risky
384
905260
2000
ili žele ići na rizik
15:07
and try to get a risky, but big, bonus,
385
907260
2000
i pokušati dobiti riskantan, ali veliki bonus
15:09
but risk the possibility of getting no bonus.
386
909260
2000
s time da je šansa da ne dobiju nikakav bonus.
15:11
People here played it safe.
387
911260
2000
Ljudi su ovdje igrali na sigurno.
15:13
Turns out, the monkeys play it safe too.
388
913260
2000
Ispada da i majmuni također igraju na sigurno.
15:15
Qualitatively and quantitatively,
389
915260
2000
Kvalitativno i kvantitativno,
15:17
they choose exactly the same way as people,
390
917260
2000
izabrali su točno isti način kao i ljudi
15:19
when tested in the same thing.
391
919260
2000
kad ih se testiralo za istu stvar.
15:21
You might say, well, maybe the monkeys just don't like risk.
392
921260
2000
Mogli biste reći, pa možda majmuni jednostavno ne vole rizik.
15:23
Maybe we should see how they do with losses.
393
923260
2000
Možda bismo trebali vidjeti kako reagiraju s gubicima.
15:25
And so we ran a second version of this.
394
925260
2000
I onda smo napravili drugu verziju ovog.
15:27
Now, the monkeys meet two guys
395
927260
2000
Sada, majmuni upoznaju dva tipa
15:29
who aren't giving them bonuses;
396
929260
2000
koji im ne daju bonuse;
15:31
they're actually giving them less than they expect.
397
931260
2000
zapravo im daju manje no što očekuju.
15:33
So they look like they're starting out with a big amount.
398
933260
2000
Dakle, izgleda kao da počinju s velikom količinom.
15:35
These are three grapes; the monkey's really psyched for this.
399
935260
2000
Ovo su tri grozda.; majmun je zaista uzbuđen zbog ovoga.
15:37
But now they learn these guys are going to give them less than they expect.
400
937260
3000
Ali sada su naučili da će im ovi tipovi dati manje no što očekuju.
15:40
They guy on the left is a safe loss.
401
940260
2000
Tip s lijeve strane je siguran gubitak.
15:42
Every single time, he's going to take one of these away
402
942260
3000
Svaki put će jedan uzeti i
15:45
and give the monkeys just two.
403
945260
2000
dati majmunima samo dva.
15:47
the guy on the right is the risky loss.
404
947260
2000
Tip s desne strane je riskantan gubitak.
15:49
Sometimes he gives no loss, so the monkeys are really psyched,
405
949260
3000
Ponekad nema gubitka, pa su majmuni zaista uzbuđeni,
15:52
but sometimes he actually gives a big loss,
406
952260
2000
ali ponekad zaista napravi veliki gubitak,
15:54
taking away two to give the monkeys only one.
407
954260
2000
uzimajući dva i dajući majmunima samo jedan.
15:56
And so what do the monkeys do?
408
956260
2000
I što majmuni rade?
15:58
Again, same choice; they can play it safe
409
958260
2000
Opet, isti izbor; mogu igrati na sigurno
16:00
for always getting two grapes every single time,
410
960260
3000
dobivajući dva grozda svaki put
16:03
or they can take a risky bet and choose between one and three.
411
963260
3000
ili mogu riskirati i birati između jednog i tri.
16:06
The remarkable thing to us is that, when you give monkeys this choice,
412
966260
3000
Nevjerojatna činjenica za nas je da kada majmunima date ovaj izbor,
16:09
they do the same irrational thing that people do.
413
969260
2000
oni naprave istu iracionalnu stvar kao i ljudi.
16:11
They actually become more risky
414
971260
2000
Zapravo postanu skloniji riziku
16:13
depending on how the experimenters started.
415
973260
3000
ovisno o tome kako su eksperimentatori započeli.
16:16
This is crazy because it suggests that the monkeys too
416
976260
2000
To je suludo zato što insinuira da i majmuni također
16:18
are evaluating things in relative terms
417
978260
2000
procjenjuju stvari u relativnim uvjetima
16:20
and actually treating losses differently than they treat gains.
418
980260
3000
i zapravo tretiraju gubitke drugačije nego što tretiraju dobitke.
16:23
So what does all of this mean?
419
983260
2000
I što sve ovo znači?
16:25
Well, what we've shown is that, first of all,
420
985260
2000
Pa, kao što smo pokazali, prije svega,
16:27
we can actually give the monkeys a financial currency,
421
987260
2000
zaista bismo mogli dati majmunima financijsku valutu
16:29
and they do very similar things with it.
422
989260
2000
i oni bi s time učinili veoma slično.
16:31
They do some of the smart things we do,
423
991260
2000
Rade neke pametne stvari kao i mi,
16:33
some of the kind of not so nice things we do,
424
993260
2000
neke ne tako lijepe stvari kao i mi,
16:35
like steal it and so on.
425
995260
2000
poput krađe i tome slično.
16:37
But they also do some of the irrational things we do.
426
997260
2000
Ali oni također rade i neke iracionalne stvari kao i mi.
16:39
They systematically get things wrong
427
999260
2000
Oni sustavno rade stvari krivo i
16:41
and in the same ways that we do.
428
1001260
2000
na isti način kao i mi.
16:43
This is the first take-home message of the Talk,
429
1003260
2000
Ovo je prva poruka za ponijeti kući s govora,
16:45
which is that if you saw the beginning of this and you thought,
430
1005260
2000
a to je da ako ste gledali početak i pomislili,
16:47
oh, I'm totally going to go home and hire a capuchin monkey financial adviser.
431
1007260
2000
oh, totalno ću otići kući i zaposliti majmuna kapucina kao financijskog savjetnika.
16:49
They're way cuter than the one at ... you know --
432
1009260
2000
Mnogo su slađi nego oni u... znate –
16:51
Don't do that; they're probably going to be just as dumb
433
1011260
2000
Nemojte to učiniti; vjerojatno će biti jednako glup
16:53
as the human one you already have.
434
1013260
3000
kao i čovjek kojeg već imate.
16:56
So, you know, a little bad -- Sorry, sorry, sorry.
435
1016260
2000
Dakle, znate, malo loše – oprostite, oprostite, oprostite.
16:58
A little bad for monkey investors.
436
1018260
2000
Malo loše za majmuna ulagača.
17:00
But of course, you know, the reason you're laughing is bad for humans too.
437
1020260
3000
Ali naravno, znate, razlog zbog kojeg se smijete je također loš i za ljude.
17:03
Because we've answered the question we started out with.
438
1023260
3000
Zato što smo odgovorili na pitanje s kojim smo počeli.
17:06
We wanted to know where these kinds of errors came from.
439
1026260
2000
Željeli smo znati odakle su došle ovakve greške.
17:08
And we started with the hope that maybe we can
440
1028260
2000
I krenuli smo s nadom da bi možda mogli
17:10
sort of tweak our financial institutions,
441
1030260
2000
unaprijediti naše financijske ustanove,
17:12
tweak our technologies to make ourselves better.
442
1032260
3000
unaprijediti našu tehnologiju kako bi nam bilo bolje.
17:15
But what we've learn is that these biases might be a deeper part of us than that.
443
1035260
3000
Ali ono što smo naučili je to da bi ove predrasude mogle biti dublji dio nas od ovoga.
17:18
In fact, they might be due to the very nature
444
1038260
2000
Zapravo, možda su oni nastali tbog same prirode
17:20
of our evolutionary history.
445
1040260
2000
naše evolucijske povijesti.
17:22
You know, maybe it's not just humans
446
1042260
2000
Znate, možda nisu samo ljudi
17:24
at the right side of this chain that's duncey.
447
1044260
2000
na pravoj strani ovog lanca koji je glupav.
17:26
Maybe it's sort of duncey all the way back.
448
1046260
2000
Možda je nekako glupo skroz otpočetka.
17:28
And this, if we believe the capuchin monkey results,
449
1048260
3000
A ovo, ako vjerujemo rezultatima kapucina,
17:31
means that these duncey strategies
450
1051260
2000
znači da bi ove glupave strategije
17:33
might be 35 million years old.
451
1053260
2000
mogle biti stare 35 milijuna godina.
17:35
That's a long time for a strategy
452
1055260
2000
To je puno vremena za strategiju
17:37
to potentially get changed around -- really, really old.
453
1057260
3000
da se promijeni - stvarno, stvarno puno.
17:40
What do we know about other old strategies like this?
454
1060260
2000
Što znamo o ostalim starim strategijama poput ove?
17:42
Well, one thing we know is that they tend to be really hard to overcome.
455
1062260
3000
Pa, jedna stvar koju znamo je da znaju biti zaista teške za savladati.
17:45
You know, think of our evolutionary predilection
456
1065260
2000
Znate, razmislite o našem evolucijskom predizboru
17:47
for eating sweet things, fatty things like cheesecake.
457
1067260
3000
za jedenjem slatkih stvari, onih koje debljaju poput torte od sira.
17:50
You can't just shut that off.
458
1070260
2000
Ne možete to samo tako isključiti.
17:52
You can't just look at the dessert cart as say, "No, no, no. That looks disgusting to me."
459
1072260
3000
Ne možete samo tako pogledati u košaricu s desertima i reći „Ne, ne, ne. To mi odvratno izgleda.“
17:55
We're just built differently.
460
1075260
2000
Jednostavno smo drugačije napravljeni.
17:57
We're going to perceive it as a good thing to go after.
461
1077260
2000
Sagledati ćemo to kao dobru stvar.
17:59
My guess is that the same thing is going to be true
462
1079260
2000
Pretpostavljam da će ista stvar biti istinita
18:01
when humans are perceiving
463
1081260
2000
kada ljudi sagledavaju
18:03
different financial decisions.
464
1083260
2000
financijske odluke.
18:05
When you're watching your stocks plummet into the red,
465
1085260
2000
Kada gledate svoje dionice kako prelaze u crveno,
18:07
when you're watching your house price go down,
466
1087260
2000
kada gledate kako vam se spušta cijena kuće,
18:09
you're not going to be able to see that
467
1089260
2000
nećete moći biti u stanju to vidjeti
18:11
in anything but old evolutionary terms.
468
1091260
2000
nikako drugačije nego u starim evolucijskim terminima.
18:13
This means that the biases
469
1093260
2000
To znači da predrasude
18:15
that lead investors to do badly,
470
1095260
2000
koje vode ulagače da učine nešto loše,
18:17
that lead to the foreclosure crisis
471
1097260
2000
da vode krizu poništenja prava na oslobođenje od hipoteke,
18:19
are going to be really hard to overcome.
472
1099260
2000
to će biti teško nadjačati.
18:21
So that's the bad news. The question is: is there any good news?
473
1101260
2000
I to su loše vijesti. Pitanje je: ima li uopće dobrih vijesti?
18:23
I'm supposed to be up here telling you the good news.
474
1103260
2000
Trebala bih biti ovdje i govoriti vam dobre vijesti.
18:25
Well, the good news, I think,
475
1105260
2000
Pa, dobre vijesti, mislim,
18:27
is what I started with at the beginning of the Talk,
476
1107260
2000
su one s kojima sam počela na početku govora,
18:29
which is that humans are not only smart;
477
1109260
2000
a to je da ljudi nisu samo pametni;
18:31
we're really inspirationally smart
478
1111260
2000
mi smo zaista nadahnuto pametni
18:33
to the rest of the animals in the biological kingdom.
479
1113260
3000
s obzirom na ostale životinje u biološkom carstvu.
18:36
We're so good at overcoming our biological limitations --
480
1116260
3000
Toliko smo dobri u prevladavanju naših bioloških granica –
18:39
you know, I flew over here in an airplane.
481
1119260
2000
znate, doletjela sam ovdje zrakoplovom.
18:41
I didn't have to try to flap my wings.
482
1121260
2000
Nisam trebala pokušati zamahnuti krilima.
18:43
I'm wearing contact lenses now so that I can see all of you.
483
1123260
3000
Nosim kontaktne leće sada kako bih vas mogla vidjeti.
18:46
I don't have to rely on my own near-sightedness.
484
1126260
3000
Ne moram se osloniti na svoju vlastitu kratkovidnost.
18:49
We actually have all of these cases
485
1129260
2000
Zapravo imamo mnogo ovakvih primjera
18:51
where we overcome our biological limitations
486
1131260
3000
gdje smo nadvladali naše biološke granice
18:54
through technology and other means, seemingly pretty easily.
487
1134260
3000
kroz tehnologiju i ostalim načinima, naizgled relativno lako.
18:57
But we have to recognize that we have those limitations.
488
1137260
3000
Ali moramo prepoznati da imamo te granice.
19:00
And here's the rub.
489
1140260
2000
I tu je kvaka.
19:02
It was Camus who once said that, "Man is the only species
490
1142260
2000
Camus je jednom rekao, „Čovjek je jedina vrsta
19:04
who refuses to be what he really is."
491
1144260
3000
koja odbija biti ono što zaista je.“
19:07
But the irony is that
492
1147260
2000
Ali ironija je da bi
19:09
it might only be in recognizing our limitations
493
1149260
2000
jedino prepoznavanjem naših granica
19:11
that we can really actually overcome them.
494
1151260
2000
mogli ih zaista nadvladati.
19:13
The hope is that you all will think about your limitations,
495
1153260
3000
Nada je da ćete svi razmisliti o svojim granicama,
19:16
not necessarily as unovercomable,
496
1156260
3000
ne nužno kao o nesavladivima,
19:19
but to recognize them, accept them
497
1159260
2000
ali prepoznati ih, prihvatiti ih
19:21
and then use the world of design to actually figure them out.
498
1161260
3000
i onda upotrijebiti svijet dizajna da ih zaista shvatimo.
19:24
That might be the only way that we will really be able
499
1164260
3000
To bi mogao biti jedini način na koji ćemo zaista moći
19:27
to achieve our own human potential
500
1167260
2000
postići vlastiti ljudski potencijal
19:29
and really be the noble species we hope to all be.
501
1169260
3000
i zaista biti plemenita vrsta kakvom se svi nadamo da jesmo.
19:32
Thank you.
502
1172260
2000
Hvala vam.
19:34
(Applause)
503
1174260
5000
(Pljesak)
O ovoj web stranici

Ova stranica će vas upoznati s YouTube videozapisima koji su korisni za učenje engleskog jezika. Vidjet ćete lekcije engleskog koje vode vrhunski profesori iz cijelog svijeta. Dvaput kliknite na engleske titlove prikazane na svakoj video stranici da biste reproducirali video s tog mjesta. Titlovi se pomiču sinkronizirano s reprodukcijom videozapisa. Ako imate bilo kakvih komentara ili zahtjeva, obratite nam se putem ovog obrasca za kontakt.

https://forms.gle/WvT1wiN1qDtmnspy7