请双击下面的英文字幕来播放视频。
翻译人员: Wenjia Tang
校对人员: Tracie Chen
00:17
I want to start my talk today with two observations
0
17260
2000
我想以两个关于人类物种的现象
00:19
about the human species.
1
19260
2000
开始今天的话题
00:21
The first observation is something that you might think is quite obvious,
2
21260
3000
第一个现象也许你会觉得显而易见
00:24
and that's that our species, Homo sapiens,
3
24260
2000
这就是 我们的物种 智人
00:26
is actually really, really smart --
4
26260
2000
事实上非常非常的聪明
00:28
like, ridiculously smart --
5
28260
2000
聪明的无法形容
00:30
like you're all doing things
6
30260
2000
正如你们现在做的事情
00:32
that no other species on the planet does right now.
7
32260
3000
地球上其它任何物种都无法做到
00:35
And this is, of course,
8
35260
2000
而且 当然
00:37
not the first time you've probably recognized this.
9
37260
2000
这也许不是第一次你意识到这一点
00:39
Of course, in addition to being smart, we're also an extremely vain species.
10
39260
3000
当然 除了聪明意外 我们也是十分自负的物种
00:42
So we like pointing out the fact that we're smart.
11
42260
3000
因此我们喜欢指出我们聪明的这个事实
00:45
You know, so I could turn to pretty much any sage
12
45260
2000
要知道,我可以列举出如莎士比亚或者史蒂芬·考伯特
00:47
from Shakespeare to Stephen Colbert
13
47260
2000
这样的先哲
00:49
to point out things like the fact that
14
49260
2000
来指出一个事实,那就是
00:51
we're noble in reason and infinite in faculties
15
51260
2000
我们理性高贵、能力无穷,
00:53
and just kind of awesome-er than anything else on the planet
16
53260
2000
而且当需要动脑筋的时候
00:55
when it comes to all things cerebral.
17
55260
3000
是地球上最棒的。
00:58
But of course, there's a second observation about the human species
18
58260
2000
但是,当然我更希望将注意力更多的放在
01:00
that I want to focus on a little bit more,
19
60260
2000
人类的第二个现象上
01:02
and that's the fact that
20
62260
2000
而且事实上,
01:04
even though we're actually really smart, sometimes uniquely smart,
21
64260
3000
虽然我们真的非常聪明,有时候独一无二的聪明,
01:07
we can also be incredibly, incredibly dumb
22
67260
3000
我们有时也在制定决策的时候,
01:10
when it comes to some aspects of our decision making.
23
70260
3000
变得难以置信的愚蠢。
01:13
Now I'm seeing lots of smirks out there.
24
73260
2000
我看到在座的很多开始傻笑,
01:15
Don't worry, I'm not going to call anyone in particular out
25
75260
2000
不要担心,我不是来指出
01:17
on any aspects of your own mistakes.
26
77260
2000
你们中的任何一位犯的错误。
01:19
But of course, just in the last two years
27
79260
2000
但是,当然仅仅在过去的两年里,
01:21
we see these unprecedented examples of human ineptitude.
28
81260
3000
我们见证了许多前所未有的,足以证明人类的无能的例子。
01:24
And we've watched as the tools we uniquely make
29
84260
3000
我们见到了我们使用特制的工具,
01:27
to pull the resources out of our environment
30
87260
2000
将资源从环境中发掘出来,
01:29
kind of just blow up in our face.
31
89260
2000
就像突然从我们的脸上爆发一样。
01:31
We've watched the financial markets that we uniquely create --
32
91260
2000
我们也看到我们特意创造的,
01:33
these markets that were supposed to be foolproof --
33
93260
3000
本应该万无一失的金融市场,
01:36
we've watched them kind of collapse before our eyes.
34
96260
2000
在我们眼皮子底下轰然坍塌。
01:38
But both of these two embarrassing examples, I think,
35
98260
2000
但是,我想这两个令人尴尬的例子
01:40
don't highlight what I think is most embarrassing
36
100260
3000
并不是人类所犯错误里
01:43
about the mistakes that humans make,
37
103260
2000
最让人尴尬的。
01:45
which is that we'd like to think that the mistakes we make
38
105260
3000
我们可能更倾向于认为这些错误
01:48
are really just the result of a couple bad apples
39
108260
2000
更像几个烂苹果,
01:50
or a couple really sort of FAIL Blog-worthy decisions.
40
110260
3000
或者几个错误的值得在博客上宣扬的决定。
01:53
But it turns out, what social scientists are actually learning
41
113260
3000
但是事实上,社会科学家认为
01:56
is that most of us, when put in certain contexts,
42
116260
3000
当在一定的环境中,我们中的大多数人
01:59
will actually make very specific mistakes.
43
119260
3000
都会犯一些非常特定的错误。
02:02
The errors we make are actually predictable.
44
122260
2000
我们犯的这些错误实际上是可以预判的,
02:04
We make them again and again.
45
124260
2000
我们总是在犯同样的错误。
02:06
And they're actually immune to lots of evidence.
46
126260
2000
而且对很多证据视而不见。
02:08
When we get negative feedback,
47
128260
2000
当我们得到负面反馈的时候,
02:10
we still, the next time we're face with a certain context,
48
130260
3000
却总是在再次面对同样的情况时,
02:13
tend to make the same errors.
49
133260
2000
犯下同样的错误。
02:15
And so this has been a real puzzle to me
50
135260
2000
所以我觉得困惑:
02:17
as a sort of scholar of human nature.
51
137260
2000
作为研究人类天性的学者,
02:19
What I'm most curious about is,
52
139260
2000
我最好奇的是,
02:21
how is a species that's as smart as we are
53
141260
3000
我们作为一个如此聪明的种类,
02:24
capable of such bad
54
144260
2000
为何总是犯如此糟糕,
02:26
and such consistent errors all the time?
55
146260
2000
如此类似的错误呢?
02:28
You know, we're the smartest thing out there, why can't we figure this out?
56
148260
3000
你们知道,我们是最聪明的,为什么对这个问题得不到答案?
02:31
In some sense, where do our mistakes really come from?
57
151260
3000
从某种意义上来说,我们的错误到底从何而来?
02:34
And having thought about this a little bit, I see a couple different possibilities.
58
154260
3000
考虑一阵子之后,我感觉有一些不同的可能性。
02:37
One possibility is, in some sense, it's not really our fault.
59
157260
3000
第一种可能性就是在某种意义上,这的确不是我们的错。
02:40
Because we're a smart species,
60
160260
2000
因为我们是聪明的物种,
02:42
we can actually create all kinds of environments
61
162260
2000
我们事实上能创造出很多种
02:44
that are super, super complicated,
62
164260
2000
非常非常复杂的环境,
02:46
sometimes too complicated for us to even actually understand,
63
166260
3000
复杂到有时候我们都不能理解,
02:49
even though we've actually created them.
64
169260
2000
虽然是我们创造出来的。
02:51
We create financial markets that are super complex.
65
171260
2000
我们创造出了超级复杂的金融市场,
02:53
We create mortgage terms that we can't actually deal with.
66
173260
3000
和自己都不能应付的房屋贷款条款,
02:56
And of course, if we are put in environments where we can't deal with it,
67
176260
3000
而且当然,如果我们处于不能应付的环境中,
02:59
in some sense makes sense that we actually
68
179260
2000
在某种意义上,
03:01
might mess certain things up.
69
181260
2000
是我们自己把一些事情搞砸了。
03:03
If this was the case, we'd have a really easy solution
70
183260
2000
如果这样的话,我们可以很轻松的解决
03:05
to the problem of human error.
71
185260
2000
这些人为错误的问题。
03:07
We'd actually just say, okay, let's figure out
72
187260
2000
我们可以说,好吧,
03:09
the kinds of technologies we can't deal with,
73
189260
2000
让我们挑出我们不能对付的技术,
03:11
the kinds of environments that are bad --
74
191260
2000
还有那些糟糕的环境,
03:13
get rid of those, design things better,
75
193260
2000
抛弃它们,设计更好的东西,
03:15
and we should be the noble species
76
195260
2000
而且我们需要成为我们期待的
03:17
that we expect ourselves to be.
77
197260
2000
那种高尚的物种。
03:19
But there's another possibility that I find a little bit more worrying,
78
199260
3000
但是我更担心的是另外一个可能,
03:22
which is, maybe it's not our environments that are messed up.
79
202260
3000
那就是,也许不是糟糕的环境的问题,
03:25
Maybe it's actually us that's designed badly.
80
205260
3000
也许问题出在没有设计好的我们自己身上。
03:28
This is a hint that I've gotten
81
208260
2000
这是我从观察社会科学家对人类错误的理解
03:30
from watching the ways that social scientists have learned about human errors.
82
210260
3000
而得到的启发。
03:33
And what we see is that people tend to keep making errors
83
213260
3000
我觉察到人们会一次又一次地
03:36
exactly the same way, over and over again.
84
216260
3000
以同样的方式犯错误。
03:39
It feels like we might almost just be built
85
219260
2000
就好像是我们被造的时候,
03:41
to make errors in certain ways.
86
221260
2000
就设计好了会以某种方式犯错误。
03:43
This is a possibility that I worry a little bit more about,
87
223260
3000
这就是我更担心的可能,
03:46
because, if it's us that's messed up,
88
226260
2000
因为如果我们自己的原因,
03:48
it's not actually clear how we go about dealing with it.
89
228260
2000
那就更不清楚应该怎么应对它了。
03:50
We might just have to accept the fact that we're error prone
90
230260
3000
我们也许只能接受这个事实,那就是我们也会犯错误,
03:53
and try to design things around it.
91
233260
2000
在设计东西的过程中只能尽可能的避免这些错误。
03:55
So this is the question my students and I wanted to get at.
92
235260
3000
所以这就是我和我的学生都很关心的问题,
03:58
How can we tell the difference between possibility one and possibility two?
93
238260
3000
我们如何分辨这两种可能的不同呢?
04:01
What we need is a population
94
241260
2000
我们需要一个聪明的,
04:03
that's basically smart, can make lots of decisions,
95
243260
2000
能做许多决定,
04:05
but doesn't have access to any of the systems we have,
96
245260
2000
但是和我们的系统——也就是我们可能弄糟的任何东西
04:07
any of the things that might mess us up --
97
247260
2000
都互不相干,
04:09
no human technology, human culture,
98
249260
2000
没有人类的技术,人类的文化,
04:11
maybe even not human language.
99
251260
2000
可能甚至没有人类的语言的群体。
04:13
And so this is why we turned to these guys here.
100
253260
2000
这就是为什么我们研究他们。
04:15
These are one of the guys I work with. This is a brown capuchin monkey.
101
255260
3000
这是我的工作对象之一。它是棕色卷尾猴。
04:18
These guys are New World primates,
102
258260
2000
它们属于新世界灵长科,
04:20
which means they broke off from the human branch
103
260260
2000
也就是说它们在三千五百万年前
04:22
about 35 million years ago.
104
262260
2000
已经与人类得分支脱离了。
04:24
This means that your great, great, great great, great, great --
105
264260
2000
这样的话,你的曾曾曾。。。祖母
04:26
with about five million "greats" in there --
106
266260
2000
大概往上推1千万代,
04:28
grandmother was probably the same great, great, great, great
107
268260
2000
可能和在这里的霍利
04:30
grandmother with five million "greats" in there
108
270260
2000
往上推1千万代的曾曾曾。。。祖母
04:32
as Holly up here.
109
272260
2000
是相同的。
04:34
You know, so you can take comfort in the fact that this guy up here is a really really distant,
110
274260
3000
为此我们可以放心的说在这里的家伙和我们是真的真的很远的
04:37
but albeit evolutionary, relative.
111
277260
2000
虽然有进化的远亲。
04:39
The good news about Holly though is that
112
279260
2000
关于霍利的好消息是:
04:41
she doesn't actually have the same kinds of technologies we do.
113
281260
3000
她实际上没有我们一样的技术。
04:44
You know, she's a smart, very cut creature, a primate as well,
114
284260
3000
你们知道,她是聪明的,很可爱的小动物,也属于灵长类,
04:47
but she lacks all the stuff we think might be messing us up.
115
287260
2000
而且她没有那些我们自己都搞不懂的东西。
04:49
So she's the perfect test case.
116
289260
2000
所以她应该是比较合适的实验对象。
04:51
What if we put Holly into the same context as humans?
117
291260
3000
如果我们把霍利放在跟人类同样的情境里呢?
04:54
Does she make the same mistakes as us?
118
294260
2000
她会不会犯跟我们同样的错误?
04:56
Does she not learn from them? And so on.
119
296260
2000
她是不是不会从中吸取教训呢?等等。。。
04:58
And so this is the kind of thing we decided to do.
120
298260
2000
这些都是我们想探讨的问题。
05:00
My students and I got very excited about this a few years ago.
121
300260
2000
我和我的学生在好几年前就很期待这个实验。
05:02
We said, all right, let's, you know, throw so problems at Holly,
122
302260
2000
我们说,让我们丢给霍利一些人类才有的问题,
05:04
see if she messes these things up.
123
304260
2000
看看她有什么反应。
05:06
First problem is just, well, where should we start?
124
306260
3000
第一个问题就是,嗯,从哪儿开始呢?
05:09
Because, you know, it's great for us, but bad for humans.
125
309260
2000
因为实验对我们来说很好,但对人类来说就很难了。
05:11
We make a lot of mistakes in a lot of different contexts.
126
311260
2000
我们在不同的领域会犯不同的错误。
05:13
You know, where are we actually going to start with this?
127
313260
2000
所以,我们的实验到底要从哪儿开始呢?
05:15
And because we started this work around the time of the financial collapse,
128
315260
3000
正好实验开始的时候是在金融危机的时候,
05:18
around the time when foreclosures were hitting the news,
129
318260
2000
同时新闻也不停的报道抵押品回收的消息,
05:20
we said, hhmm, maybe we should
130
320260
2000
我们想,也许
05:22
actually start in the financial domain.
131
322260
2000
就从金融领域开始好了。
05:24
Maybe we should look at monkey's economic decisions
132
324260
3000
让我们来观察猴子在经济方面的决策,
05:27
and try to see if they do the same kinds of dumb things that we do.
133
327260
3000
看看他们是不是也犯跟我们一样的错误。
05:30
Of course, that's when we hit a sort second problem --
134
330260
2000
当然,第二个问题也就随之而来,
05:32
a little bit more methodological --
135
332260
2000
就是方法上的问题,
05:34
which is that, maybe you guys don't know,
136
334260
2000
各位可能不知道,
05:36
but monkeys don't actually use money. I know, you haven't met them.
137
336260
3000
猴子是不是用货币的。各位没跟猴子及出国。
05:39
But this is why, you know, they're not in the queue behind you
138
339260
2000
这就是为什么当你在杂货店或者提款机前面的时候,
05:41
at the grocery store or the ATM -- you know, they don't do this stuff.
139
341260
3000
没看到猴子排在你后面——他们才不做这种事情。
05:44
So now we faced, you know, a little bit of a problem here.
140
344260
3000
所以我们在这儿碰到一点麻烦,
05:47
How are we actually going to ask monkeys about money
141
347260
2000
如果猴子不用钱,
05:49
if they don't actually use it?
142
349260
2000
那要怎么让猴子开始用钱呢?
05:51
So we said, well, maybe we should just, actually just suck it up
143
351260
2000
我们就像,好吧,稍微忍耐一下,
05:53
and teach monkeys how to use money.
144
353260
2000
先从教猴子用钱开始。
05:55
So that's just what we did.
145
355260
2000
所以我们就照做了。
05:57
What you're looking at over here is actually the first unit that I know of
146
357260
3000
各位看到我手上拿的这个小东西
06:00
of non-human currency.
147
360260
2000
就是我知道的第一个非人类社会的货币的基本单位。
06:02
We weren't very creative at the time we started these studies,
148
362260
2000
我们在开始这项研究的时候没多少创意,
06:04
so we just called it a token.
149
364260
2000
所以暂时叫它代币。
06:06
But this is the unit of currency that we've taught our monkeys at Yale
150
366260
3000
我们在耶鲁大学教猴子们使用这些货币
06:09
to actually use with humans,
151
369260
2000
和人类做交易,
06:11
to actually buy different pieces of food.
152
371260
3000
用来买不同的水果。
06:14
It doesn't look like much -- in fact, it isn't like much.
153
374260
2000
它看起来不起眼,实际上也没什么价值。
06:16
Like most of our money, it's just a piece of metal.
154
376260
2000
和我们的货币系统一样,它使用金属做的。
06:18
As those of you who've taken currencies home from your trip know,
155
378260
3000
就像各位旅行后带回家的各种外币一样,
06:21
once you get home, it's actually pretty useless.
156
381260
2000
一旦你到家了,这钱也就没法用了。
06:23
It was useless to the monkeys at first
157
383260
2000
在猴子们了解能用这些代币做什么之前,
06:25
before they realized what they could do with it.
158
385260
2000
对它们来说这些东西也一点用都没有。
06:27
When we first gave it to them in their enclosures,
159
387260
2000
当我们第一次把这些代币放到猴笼里,
06:29
they actually kind of picked them up, looked at them.
160
389260
2000
它们捡了起来,看着这些代币。
06:31
They were these kind of weird things.
161
391260
2000
对它们来说是很奇怪的事情。
06:33
But very quickly, the monkeys realized
162
393260
2000
不过很快这些猴子就认识到,
06:35
that they could actually hand these tokens over
163
395260
2000
他们可以用这些代币
06:37
to different humans in the lab for some food.
164
397260
3000
跟实验室里不同的人换食物。
06:40
And so you see one of our monkeys, Mayday, up here doing this.
165
400260
2000
可以看到其中一只猴子,五月天,就正在做这件事情。
06:42
This is A and B are kind of the points where she's sort of a little bit
166
402260
3000
A图到B图是她 正对这些代币感到一点好奇,
06:45
curious about these things -- doesn't know.
167
405260
2000
因为她从来没见过这些东西。
06:47
There's this waiting hand from a human experimenter,
168
407260
2000
图C是实验人员正在伸出手等着,
06:49
and Mayday quickly figures out, apparently the human wants this.
169
409260
3000
五月天很快就意识到,显然人类想要这个代币。
06:52
Hands it over, and then gets some food.
170
412260
2000
她交出代币,然后就拿到一些食物。
06:54
It turns out not just Mayday, all of our monkeys get good
171
414260
2000
不只是五月天,
06:56
at trading tokens with human salesman.
172
416260
2000
实验室里所有的猴子都懂。
06:58
So here's just a quick video of what this looks like.
173
418260
2000
这里有个小短片,我们大家来看看发生了什么。
07:00
Here's Mayday. She's going to be trading a token for some food
174
420260
3000
这是五月天。她要用代币换食物,
07:03
and waiting happily and getting her food.
175
423260
3000
她开心的等啊等,然后也顺利的拿到了食物。
07:06
Here's Felix, I think. He's our alpha male; he's a kind of big guy.
176
426260
2000
这是Felix,猴子群的老大,是个大家伙。
07:08
But he too waits patiently, gets his food and goes on.
177
428260
3000
他也同样耐心的等到了食物的到来。
07:11
So the monkeys get really good at this.
178
431260
2000
所以猴子们对交易这件事挺在行。
07:13
They're surprisingly good at this with very little training.
179
433260
3000
只要很少一点训练他们就能表现得非常好。
07:16
We just allowed them to pick this up on their own.
180
436260
2000
我们只是放手让他们自己做选择。
07:18
The question is: is this anything like human money?
181
438260
2000
问题是:这跟人类的货币有什么关系?
07:20
Is this a market at all,
182
440260
2000
市场运作就是这样而已?
07:22
or did we just do a weird psychologist's trick
183
442260
2000
或者我们只是用一些奇特的心理手段,
07:24
by getting monkeys to do something,
184
444260
2000
引诱猴子们去做一些事情,
07:26
looking smart, but not really being smart.
185
446260
2000
看似聪明实际上却并不聪明的事情。
07:28
And so we said, well, what would the monkeys spontaneously do
186
448260
3000
所以我们想,如果这真是它们的货币,也真是像我们用钱那样用它,
07:31
if this was really their currency, if they were really using it like money?
187
451260
3000
猴子们会做什么样的自然反应?
07:34
Well, you might actually imagine them
188
454260
2000
各位可以想象一下,
07:36
to do all the kinds of smart things
189
456260
2000
当他们开始用货币彼此做交易的时候,
07:38
that humans do when they start exchanging money with each other.
190
458260
3000
就是他们开始做类似人类做的聪明事情了。
07:41
You might have them start paying attention to price,
191
461260
3000
他们会开始注意到价格,
07:44
paying attention to how much they buy --
192
464260
2000
注意到该用多少价格去买,
07:46
sort of keeping track of their monkey token, as it were.
193
466260
3000
而且记住这些猴子币的使用情况。
07:49
Do the monkeys do anything like this?
194
469260
2000
看看猴子们是否做了这些事情呢?
07:51
And so our monkey marketplace was born.
195
471260
3000
于是我们的猴子市集诞生了。
07:54
The way this works is that
196
474260
2000
它是这样运作的:
07:56
our monkeys normally live in a kind of big zoo social enclosure.
197
476260
3000
我们让猴子生活在一种类似动物园的透明笼子里,
07:59
When they get a hankering for some treats,
198
479260
2000
当它们表现出想要做交易的时候,
08:01
we actually allowed them a way out
199
481260
2000
我们会让它们
08:03
into a little smaller enclosure where they could enter the market.
200
483260
2000
转移到一个可以进入“市场”的透明笼子里。
08:05
Upon entering the market --
201
485260
2000
一进入这个市场——
08:07
it was actually a much more fun market for the monkeys than most human markets
202
487260
2000
这个市场可比人类的市场有趣多了,
08:09
because, as the monkeys entered the door of the market,
203
489260
3000
因为,当猴子一进入这个市场,
08:12
a human would give them a big wallet full of tokens
204
492260
2000
人们会给他们一个装满代币的钱包,
08:14
so they could actually trade the tokens
205
494260
2000
它们可以用代币
08:16
with one of these two guys here --
206
496260
2000
和画面中的其中一个人做交易,
08:18
two different possible human salesmen
207
498260
2000
2个不同的销售员,
08:20
that they could actually buy stuff from.
208
500260
2000
猴子们可以从他们那儿买到不同的东西。
08:22
The salesmen were students from my lab.
209
502260
2000
这两位是我实验室里的学生。
08:24
They dressed differently; they were different people.
210
504260
2000
他们穿着不同的衣服。
08:26
And over time, they did basically the same thing
211
506260
3000
在一段时间内,销售员会一直做同样的事情,
08:29
so the monkeys could learn, you know,
212
509260
2000
所以猴子们就能意识到
08:31
who sold what at what price -- you know, who was reliable, who wasn't, and so on.
213
511260
3000
谁卖什么价格,谁比较可靠等等之类的事情。
08:34
And you can see that each of the experimenters
214
514260
2000
各位能看到这2位销售员
08:36
is actually holding up a little, yellow food dish.
215
516260
3000
都拿着一个小小的黄色食物盘,
08:39
and that's what the monkey can for a single token.
216
519260
2000
猴子可以用一个代币买盘子里的东西。
08:41
So everything costs one token,
217
521260
2000
其实每样东西都值一个代币,
08:43
but as you can see, sometimes tokens buy more than others,
218
523260
2000
但有时候一个代币可以买到比较多的东西,
08:45
sometimes more grapes than others.
219
525260
2000
也就是买到比较多的葡萄。
08:47
So I'll show you a quick video of what this marketplace actually looks like.
220
527260
3000
让我给大家演示一下这个猴子市集的运作情况。
08:50
Here's a monkey-eye-view. Monkeys are shorter, so it's a little short.
221
530260
3000
这是从猴子的视角拍的,所以比较低。
08:53
But here's Honey.
222
533260
2000
她是小可爱。
08:55
She's waiting for the market to open a little impatiently.
223
535260
2000
她有点不耐烦的等着市场开张。
08:57
All of a sudden the market opens. Here's her choice: one grapes or two grapes.
224
537260
3000
然后市场开张了,她有2个选择:买1个葡萄或者2个葡萄。
09:00
You can see Honey, very good market economist,
225
540260
2000
各位可以发现小可爱是个很棒的市场经济学家,
09:02
goes with the guy who gives more.
226
542260
3000
她跟卖较多葡萄的人做交易了。
09:05
She could teach our financial advisers a few things or two.
227
545260
2000
她可以给我们的财务学教授上课了。
09:07
So not just Honey,
228
547260
2000
不只是小可爱,
09:09
most of the monkeys went with guys who had more.
229
549260
3000
大多数的猴子都会跟卖较多葡萄的人做交易。
09:12
Most of the monkeys went with guys who had better food.
230
552260
2000
大多数的猴子都会跟有较好食物的人交易。
09:14
When we introduced sales, we saw the monkeys paid attention to that.
231
554260
3000
开始与猴子做买卖猴,我们发现猴子会专注在这件事情上。
09:17
They really cared about their monkey token dollar.
232
557260
3000
他们会在意猴子币的真正价值。
09:20
The more surprising thing was that when we collaborated with economists
233
560260
3000
最令人惊讶的是,当我们开始与经济学家合作,
09:23
to actually look at the monkeys' data using economic tools,
234
563260
3000
使用经济工具分析猴子的数据的时候,
09:26
they basically matched, not just qualitatively,
235
566260
3000
不管是在定性研究上,
09:29
but quantitatively with what we saw
236
569260
2000
还是在定量研究上,
09:31
humans doing in a real market.
237
571260
2000
他们的使用方式与我们人类在市场上做的一样。
09:33
So much so that, if you saw the monkeys' numbers,
238
573260
2000
以至于在定量研究中,
09:35
you couldn't tell whether they came from a monkey or a human in the same market.
239
575260
3000
你根本没法分辨这些数据结果是人类的还是猴子的。
09:38
And what we'd really thought we'd done
240
578260
2000
我们已经成功做到
09:40
is like we'd actually introduced something
241
580260
2000
引介给猴子一些东西,
09:42
that, at least for the monkeys and us,
242
582260
2000
至少猴子与我们
09:44
works like a real financial currency.
243
584260
2000
将代币运作得跟金融货币差不多。
09:46
Question is: do the monkeys start messing up in the same ways we do?
244
586260
3000
另一个问题是:猴子会不会跟我们一样把这个制度搞乱?
09:49
Well, we already saw anecdotally a couple of signs that they might.
245
589260
3000
其实我们也观察到一些现象。
09:52
One thing we never saw in the monkey marketplace
246
592260
2000
第一,在猴子市场中我们没发现到
09:54
was any evidence of saving --
247
594260
2000
任何储蓄的证据,
09:56
you know, just like our own species.
248
596260
2000
没发现像我们人一样的储蓄行为。
09:58
The monkeys entered the market, spent their entire budget
249
598260
2000
猴子来到市场,会把所有钱花光,
10:00
and then went back to everyone else.
250
600260
2000
然后再跳回猴群里。
10:02
The other thing we also spontaneously saw,
251
602260
2000
我们同时也发现另一件事,
10:04
embarrassingly enough,
252
604260
2000
非常尴尬,
10:06
is spontaneous evidence of larceny.
253
606260
2000
就是自发性的盗窃行为。
10:08
The monkeys would rip-off the tokens at every available opportunity --
254
608260
3000
猴子不放过任何机会来偷代币,
10:11
from each other, often from us --
255
611260
2000
偷同伴的、偷我们的。
10:13
you know, things we didn't necessarily think we were introducing,
256
613260
2000
这些都是我们不认为介绍给了猴子们的行为,
10:15
but things we spontaneously saw.
257
615260
2000
但是我们还是同时看到了这种行为。
10:17
So we said, this looks bad.
258
617260
2000
这看起来很糟糕。
10:19
Can we actually see if the monkeys
259
619260
2000
我们是否能够看到
10:21
are doing exactly the same dumb things as humans do?
260
621260
3000
猴子们做出跟人类一样愚蠢的事情?
10:24
One possibility is just kind of let
261
624260
2000
有个方法是先创立猴子金融市场,
10:26
the monkey financial system play out,
262
626260
2000
然后再让这个市场停摆,
10:28
you know, see if they start calling us for bailouts in a few years.
263
628260
2000
不过,这样做实验可能得等上好几年。
10:30
We were a little impatient so we wanted
264
630260
2000
我们有点等不及,
10:32
to sort of speed things up a bit.
265
632260
2000
所以让实验进行得快一点。
10:34
So we said, let's actually give the monkeys
266
634260
2000
我们就像,那就让这些小猴子们
10:36
the same kinds of problems
267
636260
2000
面对一些问题,
10:38
that humans tend to get wrong
268
638260
2000
这些问题是人类经常会犯错的
10:40
in certain kinds of economic challenges,
269
640260
2000
一些经济议题,或者
10:42
or certain kinds of economic experiments.
270
642260
2000
一些经济方面的实验。
10:44
And so, since the best way to see how people go wrong
271
644260
3000
想要了解人类是怎么犯错的,
10:47
is to actually do it yourself,
272
647260
2000
最直接的方式就是自己做一次。
10:49
I'm going to give you guys a quick experiment
273
649260
2000
所以我给大家一个小实验,
10:51
to sort of watch your own financial intuitions in action.
274
651260
2000
请各位用你的财务直觉来回答。
10:53
So imagine that right now
275
653260
2000
请各位现在想象一下,
10:55
I handed each and every one of you
276
655260
2000
我给现场每个人各1千美金,
10:57
a thousand U.S. dollars -- so 10 crisp hundred dollar bills.
277
657260
3000
10张百元钞票成一捆的1千美金。
11:00
Take these, put it in your wallet
278
660260
2000
把它放进你的皮夹里,
11:02
and spend a second thinking about what you're going to do with it.
279
662260
2000
花点时间想想你要拿这笔钱做什么。
11:04
Because it's yours now; you can buy whatever you want.
280
664260
2000
这是你的钱,你可以用它买任何想要的东西。
11:06
Donate it, take it, and so on.
281
666260
2000
捐出去,花掉,怎么都行。
11:08
Sounds great, but you get one more choice to earn a little bit more money.
282
668260
3000
听起来不错吧?不过再给你另一个机会,让你能拿1千美金以上的钱。
11:11
And here's your choice: you can either be risky,
283
671260
3000
第一种选择:冒险拿多一些,
11:14
in which case I'm going to flip one of these monkey tokens.
284
674260
2000
我用丢猴子代币来决定这个选择的结果。
11:16
If it comes up heads, you're going to get a thousand dollars more.
285
676260
2000
如果代币是正面,你可以多得1千美金。
11:18
If it comes up tails, you get nothing.
286
678260
2000
如果是背面,那你一分钱都不能多得。
11:20
So it's a chance to get more, but it's pretty risky.
287
680260
3000
有机会拿到比较多,但是要冒点风险。
11:23
Your other option is a bit safe. Your just going to get some money for sure.
288
683260
3000
而另一个比较安全的选择:让你再拿一笔确切的金额。
11:26
I'm just going to give you 500 bucks.
289
686260
2000
不过只能拿500美金。
11:28
You can stick it in your wallet and use it immediately.
290
688260
3000
你可以把这笔钱放进皮夹或者马上花掉。
11:31
So see what your intuition is here.
291
691260
2000
你的直觉决定好了吗?
11:33
Most people actually go with the play-it-safe option.
292
693260
3000
大部分的人会选择不冒险的选项。
11:36
Most people say, why should I be risky when I can get 1,500 dollars for sure?
293
696260
3000
这些人想说,我确定能拿1500美金,干嘛还要去冒险?
11:39
This seems like a good bet. I'm going to go with that.
294
699260
2000
这似乎是一个不错的选择,我选这个。
11:41
You might say, eh, that's not really irrational.
295
701260
2000
各位也许觉得这样选没错啊,
11:43
People are a little risk-averse. So what?
296
703260
2000
人是风险趋避者,有问题吗?
11:45
Well, the "so what?" comes when start thinking
297
705260
2000
人是不是风险趋避者的问题,
11:47
about the same problem
298
707260
2000
请思考过另一个类似问题后,
11:49
set up just a little bit differently.
299
709260
2000
再作判断。
11:51
So now imagine that I give each and every one of you
300
711260
2000
现在再想象一下,我现在给各位2千美金,
11:53
2,000 dollars -- 20 crisp hundred dollar bills.
301
713260
3000
20张百元钞票成一捆。
11:56
Now you can buy double to stuff you were going to get before.
302
716260
2000
你刚刚想买的物品可以多买一倍。
11:58
Think about how you'd feel sticking it in your wallet.
303
718260
2000
想想这笔钱在皮夹里的感觉。
12:00
And now imagine that I have you make another choice
304
720260
2000
现在,选择的一刻又来了,
12:02
But this time, it's a little bit worse.
305
722260
2000
但这次,条件比较糟糕。
12:04
Now, you're going to be deciding how you're going to lose money,
306
724260
3000
因为你将决定“失去金钱”的方式,
12:07
but you're going to get the same choice.
307
727260
2000
一样要从中做个选择。
12:09
You can either take a risky loss --
308
729260
2000
第一个选择是有风险的损失——
12:11
so I'll flip a coin. If it comes up heads, you're going to actually lose a lot.
309
731260
3000
一样用丢硬币,如果是正面,你会损失1千美金。
12:14
If it comes up tails, you lose nothing, you're fine, get to keep the whole thing --
310
734260
3000
如果是反面,你1毛都不用丢,2千美金好好放着。
12:17
or you could play it safe, which means you have to reach back into your wallet
311
737260
3000
或者可以不冒险,也就是说你乖乖把皮夹拿出来,
12:20
and give me five of those $100 bills, for certain.
312
740260
3000
然后给我5张100元钞票。
12:23
And I'm seeing a lot of furrowed brows out there.
313
743260
3000
我看到很多人眉头紧缩哦。
12:26
So maybe you're having the same intuitions
314
746260
2000
测试各位的这个问题,
12:28
as the subjects that were actually tested in this,
315
748260
2000
也许各位有着同样直觉的答案,
12:30
which is when presented with these options,
316
750260
2000
当这些选项摊开给大家选择时,
12:32
people don't choose to play it safe.
317
752260
2000
人们不会选安全的方案,
12:34
They actually tend to go a little risky.
318
754260
2000
而会选择冒险。
12:36
The reason this is irrational is that we've given people in both situations
319
756260
3000
明明是有着同样选择的2种情境下,
12:39
the same choice.
320
759260
2000
后者竟然变得不太理智。
12:41
It's a 50/50 shot of a thousand or 2,000,
321
761260
3000
拿到1000或2000元的机会各50%,
12:44
or just 1,500 dollars with certainty.
322
764260
2000
或者100%拿到1500元。
12:46
But people's intuitions about how much risk to take
323
766260
3000
而人们对于风险多寡的直觉,
12:49
varies depending on where they started with.
324
769260
2000
居然是来自一开始手上有多少筹码来决定。
12:51
So what's going on?
325
771260
2000
这是怎么回事?
12:53
Well, it turns out that this seems to be the result
326
773260
2000
嗯,这答案来自
12:55
of at least two biases that we have at the psychological level.
327
775260
3000
我们心理层面上的2项偏误。
12:58
One is that we have a really hard time thinking in absolute terms.
328
778260
3000
一个是我们没有足够的时间去计算绝对价值。
13:01
You really have to do work to figure out,
329
781260
2000
你应该要找时间好好考虑清楚,
13:03
well, one option's a thousand, 2,000;
330
783260
2000
一个选择是拿1000或2000,
13:05
one is 1,500.
331
785260
2000
一个是拿1500.
13:07
Instead, we find it very easy to think in very relative terms
332
787260
3000
相反的,如果选项改成相对价值的话,
13:10
as options change from one time to another.
333
790260
3000
就比较容易理清了。
13:13
So we think of things as, "Oh, I'm going to get more," or "Oh, I'm going to get less."
334
793260
3000
选项改成:“拿到更多”或“拿比较少”。
13:16
This is all well and good, except that
335
796260
2000
这样的话很好,只不过
13:18
changes in different directions
336
798260
2000
稍微改变一下手法,
13:20
actually effect whether or not we think
337
800260
2000
就会影响我们对于
13:22
options are good or not.
338
802260
2000
选项是好是坏的观感。
13:24
And this leads to the second bias,
339
804260
2000
这会引出第二项偏误,
13:26
which economists have called loss aversion.
340
806260
2000
经济学家称此为“损失规避”。
13:28
The idea is that we really hate it when things go into the red.
341
808260
3000
也就是说,我们会非常讨厌任何损失。
13:31
We really hate it when we have to lose out on some money.
342
811260
2000
我们会极度不愿意失去任何金钱。
13:33
And this means that sometimes we'll actually
343
813260
2000
这就意味着我们会转移我们的偏好
13:35
switch our preferences to avoid this.
344
815260
2000
来避免任何损失。
13:37
What you saw in that last scenario is that
345
817260
2000
刚刚在第二个情境里面,
13:39
subjects get risky
346
819260
2000
人们会选择冒险,
13:41
because they want the small shot that there won't be any loss.
347
821260
3000
因为不想放过任何“零损失”的机会。
13:44
That means when we're in a risk mindset --
348
824260
2000
这也点出了我们对于风险的心态——
13:46
excuse me, when we're in a loss mindset,
349
826260
2000
当我们进入“损失规避”模式时,
13:48
we actually become more risky,
350
828260
2000
我们会变得更喜欢风险,
13:50
which can actually be really worrying.
351
830260
2000
这就是最令人担心的部分。
13:52
These kinds of things play out in lots of bad ways in humans.
352
832260
3000
人类的负面行为也因此而暴露出来。
13:55
They're why stock investors hold onto losing stocks longer --
353
835260
3000
也是为什么股票投资者会死抱着不断下跌的股票,
13:58
because they're evaluating them in relative terms.
354
838260
2000
因为他们用相对价值来计算后得到的结论。
14:00
They're why people in the housing market refused to sell their house --
355
840260
2000
这也是为什么房市里的投资客不愿意卖掉房子,
14:02
because they don't want to sell at a loss.
356
842260
2000
因为他们不想要房子贬值的时候卖掉。
14:04
The question we were interested in
357
844260
2000
我们感兴趣的是
14:06
is whether the monkeys show the same biases.
358
846260
2000
猴子们是否也有同样的偏误。
14:08
If we set up those same scenarios in our little monkey market,
359
848260
3000
若我们在猴子市场里设计同样的问题,
14:11
would they do the same thing as people?
360
851260
2000
他们是否会表现出跟人一样的行为?
14:13
And so this is what we did, we gave the monkeys choices
361
853260
2000
所以我们让猴子在两个销售员间做选择,
14:15
between guys who were safe -- they did the same thing every time --
362
855260
3000
一个是安全的交易者,他会一直拿出同样的商品量;
14:18
or guys who were risky --
363
858260
2000
另一位是有风险的交易者,
14:20
they did things differently half the time.
364
860260
2000
他有一半的时间会拿出不同商品。
14:22
And then we gave them options that were bonuses --
365
862260
2000
我们提供有红利的选项——
14:24
like you guys did in the first scenario --
366
864260
2000
就像刚才的第一情境——
14:26
so they actually have a chance more,
367
866260
2000
因此猴子们同样也有机会拿到更多,
14:28
or pieces where they were experiencing losses --
368
868260
3000
或者碰到一些损失,
14:31
they actually thought they were going to get more than they really got.
369
871260
2000
实际上他们会觉得自己会拿到比较多的葡萄。
14:33
And so this is what this looks like.
370
873260
2000
这是实验的情景。
14:35
We introduced the monkeys to two new monkey salesmen.
371
875260
2000
我们将2为新的销售员介绍给猴子们。
14:37
The guy on the left and right both start with one piece of grape,
372
877260
2000
左边和右边一开始都是拿出1粒葡萄,
14:39
so it looks pretty good.
373
879260
2000
看起来很公平。
14:41
But they're going to give the monkeys bonuses.
374
881260
2000
但是这2位会给猴子们一些红利。
14:43
The guy on the left is a safe bonus.
375
883260
2000
左边提供的是安全红利。
14:45
All the time, he adds one, to give the monkeys two.
376
885260
3000
从头到尾,他会多给猴子1粒葡萄。
14:48
The guy on the right is actually a risky bonus.
377
888260
2000
右边的是提供风险红利。
14:50
Sometimes the monkeys get no bonus -- so this is a bonus of zero.
378
890260
3000
有时候猴子拿不到任何红利,所以他不会多拿任何葡萄。
14:53
Sometimes the monkeys get two extra.
379
893260
3000
但有时候猴子能多拿2粒葡萄。
14:56
For a big bonus, now they get three.
380
896260
2000
很棒的红利,所以猴子能一次拿3粒葡萄。
14:58
But this is the same choice you guys just faced.
381
898260
2000
这跟刚刚给各位的实验内容是一样的。
15:00
Do the monkeys actually want to play it safe
382
900260
3000
那么,猴子是会去选择有安全红利的交易,
15:03
and then go with the guy who's going to do the same thing on every trial,
383
903260
2000
就是那位每次交易都会提供同样东西的人;
15:05
or do they want to be risky
384
905260
2000
或者,他们会去选有风险的红利。
15:07
and try to get a risky, but big, bonus,
385
907260
2000
虽然要冒点险,有可能拿不到任何红利,
15:09
but risk the possibility of getting no bonus.
386
909260
2000
但是如果能拿到就赚翻了。
15:11
People here played it safe.
387
911260
2000
人类倾向选择安全的做法。
15:13
Turns out, the monkeys play it safe too.
388
913260
2000
结果,没想到猴子也会选择安全的一方。
15:15
Qualitatively and quantitatively,
389
915260
2000
在定性和定量研究里,
15:17
they choose exactly the same way as people,
390
917260
2000
在同样的测试内容中,
15:19
when tested in the same thing.
391
919260
2000
猴子与人类有一致的行为反应。
15:21
You might say, well, maybe the monkeys just don't like risk.
392
921260
2000
各位也许会觉得,可能是因为猴子不喜欢冒险。
15:23
Maybe we should see how they do with losses.
393
923260
2000
那么让我们来看看猴子面对损失时的行为。
15:25
And so we ran a second version of this.
394
925260
2000
于是我们就做了第二个版本的实验。
15:27
Now, the monkeys meet two guys
395
927260
2000
现在,猴子们会面对这两个销售员,
15:29
who aren't giving them bonuses;
396
929260
2000
他们不会再给猴子红利了;
15:31
they're actually giving them less than they expect.
397
931260
2000
他们会拿走猴子们预期的葡萄数。
15:33
So they look like they're starting out with a big amount.
398
933260
2000
所以他们一开始就拿出较多的葡萄。
15:35
These are three grapes; the monkey's really psyched for this.
399
935260
2000
一开始就拿出3粒葡萄:这是猴子最想看到的情形。
15:37
But now they learn these guys are going to give them less than they expect.
400
937260
3000
不过他们发现,这两个家伙会给比预期少的数量。
15:40
They guy on the left is a safe loss.
401
940260
2000
左边这位,他提供固定的损失量。
15:42
Every single time, he's going to take one of these away
402
942260
3000
每次他都会固定少给猴子一粒葡萄,
15:45
and give the monkeys just two.
403
945260
2000
也就是只给他们2粒。
15:47
the guy on the right is the risky loss.
404
947260
2000
右边这位提供有风险的损失量。
15:49
Sometimes he gives no loss, so the monkeys are really psyched,
405
949260
3000
有时候一个都不会少,完全符合猴子预期,
15:52
but sometimes he actually gives a big loss,
406
952260
2000
但有时候他会拿走更多,
15:54
taking away two to give the monkeys only one.
407
954260
2000
也就是只给猴子一粒葡萄。
15:56
And so what do the monkeys do?
408
956260
2000
猴子们会怎么决定?
15:58
Again, same choice; they can play it safe
409
958260
2000
和刚才一样,他们可以做保险的交易,
16:00
for always getting two grapes every single time,
410
960260
3000
每次交易都拿固定的2粒葡萄,
16:03
or they can take a risky bet and choose between one and three.
411
963260
3000
或者做有风险的交易,拿1粒或者3粒。
16:06
The remarkable thing to us is that, when you give monkeys this choice,
412
966260
3000
最让我们关注的是,当猴子们面对这个选择时,
16:09
they do the same irrational thing that people do.
413
969260
2000
他们表现出跟人类一样的非理性行为。
16:11
They actually become more risky
414
971260
2000
根据实验的起始条件,
16:13
depending on how the experimenters started.
415
973260
3000
猴子们变得倾向冒险。
16:16
This is crazy because it suggests that the monkeys too
416
976260
2000
这真是太不可思议了,
16:18
are evaluating things in relative terms
417
978260
2000
因为猴子居然也用相对价值来评估,
16:20
and actually treating losses differently than they treat gains.
418
980260
3000
而且在面对损失和面对收获时有着非常不同的行为。
16:23
So what does all of this mean?
419
983260
2000
这给我们什么启示?
16:25
Well, what we've shown is that, first of all,
420
985260
2000
我们先做归纳。首先,
16:27
we can actually give the monkeys a financial currency,
421
987260
2000
我们给猴子一种财务货币,
16:29
and they do very similar things with it.
422
989260
2000
然后教它们一些简单的交易行为,
16:31
They do some of the smart things we do,
423
991260
2000
它们会做出跟人类一样聪明的事情,
16:33
some of the kind of not so nice things we do,
424
993260
2000
也会做跟人类一样不太好的事情,
16:35
like steal it and so on.
425
995260
2000
比如偷钱之类的。
16:37
But they also do some of the irrational things we do.
426
997260
2000
同事它们也会做出跟人类一样非理性的行为。
16:39
They systematically get things wrong
427
999260
2000
它们有条理地做出错误行为,
16:41
and in the same ways that we do.
428
1001260
2000
跟我们如出一辙。
16:43
This is the first take-home message of the Talk,
429
1003260
2000
今天我想给各位的第一个结论,
16:45
which is that if you saw the beginning of this and you thought,
430
1005260
2000
如果你只听到开头的部分,你可能会想——
16:47
oh, I'm totally going to go home and hire a capuchin monkey financial adviser.
431
1007260
2000
我回家后真该雇佣一只卷尾猴当我的财务大臣。
16:49
They're way cuter than the one at ... you know --
432
1009260
2000
这家伙的可爱程度超过家里的那位。。。
16:51
Don't do that; they're probably going to be just as dumb
433
1011260
2000
但你可千万别这么做,因为这些猴子的糊涂程度
16:53
as the human one you already have.
434
1013260
3000
跟你家里的那位差不多。
16:56
So, you know, a little bad -- Sorry, sorry, sorry.
435
1016260
2000
这有点遗憾。各位听我说,
16:58
A little bad for monkey investors.
436
1018260
2000
请猴子来当投资客不太好。
17:00
But of course, you know, the reason you're laughing is bad for humans too.
437
1020260
3000
当然,偷笑的各位也觉得人一样不善于当投资客。
17:03
Because we've answered the question we started out with.
438
1023260
3000
这问题的答案在刚才就已经证明给大家看了。
17:06
We wanted to know where these kinds of errors came from.
439
1026260
2000
而我们为了想了解这些错误从何而来,
17:08
And we started with the hope that maybe we can
440
1028260
2000
就抱着某些希望,像是
17:10
sort of tweak our financial institutions,
441
1030260
2000
在某种程度上调整我们的金融机构,
17:12
tweak our technologies to make ourselves better.
442
1032260
3000
或调整我们的财务方法让自己过得更好。
17:15
But what we've learn is that these biases might be a deeper part of us than that.
443
1035260
3000
但我们已经了解到其实这两种偏误已经深深地影响了我们。
17:18
In fact, they might be due to the very nature
444
1038260
2000
事实上,这些偏误之所以会影响我们这么深,
17:20
of our evolutionary history.
445
1040260
2000
是因为它们老早就深植在我们的进化过程中。
17:22
You know, maybe it's not just humans
446
1042260
2000
各位,也许笨蛋不只是
17:24
at the right side of this chain that's duncey.
447
1044260
2000
图中这进化链中最右边的人类,
17:26
Maybe it's sort of duncey all the way back.
448
1046260
2000
也许变笨蛋的来源是从古早就有了。
17:28
And this, if we believe the capuchin monkey results,
449
1048260
3000
如果我们相信这些针对猴子的实验结果,
17:31
means that these duncey strategies
450
1051260
2000
也就表示我们承认这种愚蠢对策,
17:33
might be 35 million years old.
451
1053260
2000
早在3500万年前就出现了。
17:35
That's a long time for a strategy
452
1055260
2000
这存在已久的对策
17:37
to potentially get changed around -- really, really old.
453
1057260
3000
已经默默地影响我们很久。
17:40
What do we know about other old strategies like this?
454
1060260
2000
我们对这类的对策了解多少?
17:42
Well, one thing we know is that they tend to be really hard to overcome.
455
1062260
3000
我们了解的其中一个事实就是,我们很难去改变它。
17:45
You know, think of our evolutionary predilection
456
1065260
2000
想一想我们最先进化的部分
17:47
for eating sweet things, fatty things like cheesecake.
457
1067260
3000
就是懂得吃甜食、高脂肪的食物,如芝士蛋糕。
17:50
You can't just shut that off.
458
1070260
2000
你没办法闭嘴不吃。
17:52
You can't just look at the dessert cart as say, "No, no, no. That looks disgusting to me."
459
1072260
3000
你没办法对着装满推车的点心说:“我才不吃,这些令我作呕。”
17:55
We're just built differently.
460
1075260
2000
但人与人之间存在着差异性。
17:57
We're going to perceive it as a good thing to go after.
461
1077260
2000
我们会追求自己认为好的事物。
17:59
My guess is that the same thing is going to be true
462
1079260
2000
所以我推测
18:01
when humans are perceiving
463
1081260
2000
人们对于财务上的决策
18:03
different financial decisions.
464
1083260
2000
也会有不同的认知见解。
18:05
When you're watching your stocks plummet into the red,
465
1085260
2000
你会傻愣愣地看持有的股票价格直线下降,
18:07
when you're watching your house price go down,
466
1087260
2000
或者看着自己持有的不动产贬值,
18:09
you're not going to be able to see that
467
1089260
2000
而你不会去注意到事情的真相,
18:11
in anything but old evolutionary terms.
468
1091260
2000
因为我们与生俱来就是有这样的行为。
18:13
This means that the biases
469
1093260
2000
这种心理上的偏差
18:15
that lead investors to do badly,
470
1095260
2000
会让投资者做出糟糕的决定,
18:17
that lead to the foreclosure crisis
471
1097260
2000
所以像这次的次贷危机
18:19
are going to be really hard to overcome.
472
1099260
2000
就变得很难去避免。
18:21
So that's the bad news. The question is: is there any good news?
473
1101260
2000
听起来都是坏消息,哪有没有好消息呢?
18:23
I'm supposed to be up here telling you the good news.
474
1103260
2000
我这里是有一些好消息告诉各位。
18:25
Well, the good news, I think,
475
1105260
2000
我想这个好消息就是,
18:27
is what I started with at the beginning of the Talk,
476
1107260
2000
就如同我在今天开头时所说,
18:29
which is that humans are not only smart;
477
1109260
2000
人类不只是聪明而已;
18:31
we're really inspirationally smart
478
1111260
2000
我们比起生物界里的其它动物,
18:33
to the rest of the animals in the biological kingdom.
479
1113260
3000
都要聪明许多。
18:36
We're so good at overcoming our biological limitations --
480
1116260
3000
我们非常擅长克服我们先天上的不足——
18:39
you know, I flew over here in an airplane.
481
1119260
2000
就像我是搭飞机来这里,
18:41
I didn't have to try to flap my wings.
482
1121260
2000
我不需要把手当翅膀拍动来飞。
18:43
I'm wearing contact lenses now so that I can see all of you.
483
1123260
3000
我带着隐形眼镜就能看清楚各位,
18:46
I don't have to rely on my own near-sightedness.
484
1126260
3000
不需要依赖我这双大近视的眼睛。
18:49
We actually have all of these cases
485
1129260
2000
我们有这么多例子
18:51
where we overcome our biological limitations
486
1131260
3000
都是用科技或其它方式来突破我们生物限制的事实,
18:54
through technology and other means, seemingly pretty easily.
487
1134260
3000
让一切看起来是这么简单。
18:57
But we have to recognize that we have those limitations.
488
1137260
3000
但我们也必须了解自己的极限在哪里,
19:00
And here's the rub.
489
1140260
2000
而这是最难的地方。
19:02
It was Camus who once said that, "Man is the only species
490
1142260
2000
就像卡谬曾说,
19:04
who refuses to be what he really is."
491
1144260
3000
“人是唯一搞不清楚自己是什么的物种。”
19:07
But the irony is that
492
1147260
2000
讽刺的是
19:09
it might only be in recognizing our limitations
493
1149260
2000
我们得知道人类的极限在哪儿,
19:11
that we can really actually overcome them.
494
1151260
2000
才能克服它们。
19:13
The hope is that you all will think about your limitations,
495
1153260
3000
希望各位都能意识到自己的极限在哪儿,
19:16
not necessarily as unovercomable,
496
1156260
3000
它并不是不可逾越的,
19:19
but to recognize them, accept them
497
1159260
2000
了解它,接受它,
19:21
and then use the world of design to actually figure them out.
498
1161260
3000
然后发展出让世人更了解人类极限的工具。
19:24
That might be the only way that we will really be able
499
1164260
3000
想要能激发出人类潜力,
19:27
to achieve our own human potential
500
1167260
2000
同时成为那种我们心里想成为的高贵物种,
19:29
and really be the noble species we hope to all be.
501
1169260
3000
这也许是唯一的办法。
19:32
Thank you.
502
1172260
2000
谢谢各位。
19:34
(Applause)
503
1174260
5000
(掌声)
New videos
关于本网站
这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。