Laurie Santos: How monkeys mirror human irrationality

199,481 views ใƒป 2010-07-29

TED


์•„๋ž˜ ์˜๋ฌธ์ž๋ง‰์„ ๋”๋ธ”ํด๋ฆญํ•˜์‹œ๋ฉด ์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค.

๋ฒˆ์—ญ: Sunphil Ga ๊ฒ€ํ† : Seo Rim Kim
00:17
I want to start my talk today with two observations
0
17260
2000
์ธ๋ฅ˜์— ๊ด€ํ•œ ๋‘ ๊ด€์ฐฐ๊ณผ ํ•จ๊ป˜ ์ €์˜ ์ด์•ผ๊ธฐ๋กœ
00:19
about the human species.
1
19260
2000
์˜ค๋Š˜ ์‹œ์ž‘ํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค.
00:21
The first observation is something that you might think is quite obvious,
2
21260
3000
์ฒซ ๋ฒˆ์งธ ๊ด€์ฐฐ์€ ์—ฌ๋Ÿฌ๋ถ„๊ป˜์„œ ์ถ”์ธกํ•  ์ˆ˜ ์žˆ๋Š” ๊ฝค ์ด์ƒํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
00:24
and that's that our species, Homo sapiens,
3
24260
2000
๋ฐ”๋กœ ์šฐ๋ฆฌ์˜ ์ธ๋ฅ˜, ํ˜ธ๋ชจ ์‚ฌํ”ผ์—”์Šค๋Š”
00:26
is actually really, really smart --
4
26260
2000
์‹ค์ œ๋กœ ๋งค์šฐ ์˜๋ฆฌํ•˜๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค --
00:28
like, ridiculously smart --
5
28260
2000
์ •๋ง ๋ง๋„ ์•ˆ ๋˜๊ฒŒ ์˜๋ฆฌํ•˜์ฃ  --
00:30
like you're all doing things
6
30260
2000
๋งˆ์น˜ ์šฐ๋ฆฌ๊ฐ€ ํ•˜๋Š” ํ–‰๋™๊ณผ ๊ฐ™์ฃ 
00:32
that no other species on the planet does right now.
7
32260
3000
์ง€๊ตฌ์— ์žˆ๋Š” ๋‹ค๋ฅธ ์ข…์€ ์ง€๊ธˆ ๋‹น์žฅํ•  ์ˆ˜ ์—†๋Š” ๊ฒƒ๋“ค์ด์ฃ .
00:35
And this is, of course,
8
35260
2000
๋ฌผ๋ก  ์—ฌ๋Ÿฌ๋ถ„๊ป˜์„œ
00:37
not the first time you've probably recognized this.
9
37260
2000
์•„๋งˆ๋„ ์ด๊ฒƒ์„ ์ธ์‹ํ•˜๋Š” ๊ฒƒ์ด ์ฒ˜์Œ์€ ์•„๋‹™๋‹ˆ๋‹ค.
00:39
Of course, in addition to being smart, we're also an extremely vain species.
10
39260
3000
๋ฌผ๋ก , ์˜๋ฆฌํ•˜๋‹ค๋Š” ๊ฒƒ ์ด์™ธ์—, ์ธ๊ฐ„ ๋˜ํ•œ ์—ญ์‹œ ํ—›๋œ ์ข…์ž…๋‹ˆ๋‹ค.
00:42
So we like pointing out the fact that we're smart.
11
42260
3000
๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ๋Š” ์ธ๊ฐ„์ด ์˜๋ฆฌํ•˜๋‹ค๋Š” ์‚ฌ์‹ค์„ ์ง€์ ํ•˜๊ธฐ ์ข‹์•„ํ•ฉ๋‹ˆ๋‹ค.
00:45
You know, so I could turn to pretty much any sage
12
45260
2000
์•Œ๋‹ค์‹œํ”ผ, ์…ฐ์ต์Šคํ”ผ์–ด์—์„œ ์Šคํ‹ฐ๋ธ ์ฝœ๋ฒ ์–ด๊นŒ์ง€
00:47
from Shakespeare to Stephen Colbert
13
47260
2000
๊ฝค ๋งŽ์€ ํ˜„์ธ๋“ค๋กœ ๊ฐ€์„œ
00:49
to point out things like the fact that
14
49260
2000
์ธ๋ฅ˜๊ฐ€ ์ด์„ฑ์ ์œผ๋กœ ๊ณ ๊ท€ํ•˜๋ฉฐ,
00:51
we're noble in reason and infinite in faculties
15
51260
2000
ํ•™๋ฌธ์ ์œผ๋กœ ๋์ด ์—†๊ณ  ์ง€๊ตฌ์ƒ์— ์žˆ๋Š” ์–ด๋А ์ข…๋ณด๋‹ค
00:53
and just kind of awesome-er than anything else on the planet
16
53260
2000
๋†€๋ผ์šด ์ข…์ด๋ผ๋Š” ์‚ฌ์‹ค์„ ์ง€์ ํ•  ์ˆ˜ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค,
00:55
when it comes to all things cerebral.
17
55260
3000
๋Œ€๋‡Œ์˜ ์—ญ๋Ÿ‰์— ๊ด€ํ•ด์„œ ๋ง์ž…๋‹ˆ๋‹ค.
00:58
But of course, there's a second observation about the human species
18
58260
2000
ํ•˜์ง€๋งŒ ์ธ๋ฅ˜์— ๊ด€ํ•œ ๋‘ ๋ฒˆ์งธ ๊ด€์ฐฐ์ด ์žˆ์Šต๋‹ˆ๋‹ค
01:00
that I want to focus on a little bit more,
19
60260
2000
์ œ๊ฐ€ ์ข€ ๋” ์ง‘์ค‘ํ•˜๊ณ  ์‹ถ์€ ๋ถ€๋ถ„์ด์ฃ ,
01:02
and that's the fact that
20
62260
2000
๊ฒŒ๋‹ค๊ฐ€ ๊ทธ ์‚ฌ์‹ค์€
01:04
even though we're actually really smart, sometimes uniquely smart,
21
64260
3000
๋น„๋ก ์ธ๋ฅ˜๊ฐ€ ์ •๋ง๋กœ ๋‚จ๋‹ค๋ฅด๊ฒŒ ์˜๋ฆฌํ• ์ง€๋ผ๋„,
01:07
we can also be incredibly, incredibly dumb
22
67260
3000
์šฐ๋ฆฌ ๋˜ํ•œ ๋†€๋ž„์ •๋„๋กœ ๋ฉ์ฒญํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค
01:10
when it comes to some aspects of our decision making.
23
70260
3000
๋ช‡๋ช‡ ์˜์‚ฌ๊ฒฐ์ •์— ๊ด€ํ•ด์„œ ๋ง์ž…๋‹ˆ๋‹ค.
01:13
Now I'm seeing lots of smirks out there.
24
73260
2000
๊ณณ๊ณณ์— ๋น„์›ƒ๋Š” ๋ชจ์Šต์ด ๋งŽ์ด ๋ณด์ด๋„ค์š”.
01:15
Don't worry, I'm not going to call anyone in particular out
25
75260
2000
๊ฑฑ์ •๋งˆ์„ธ์š”, ํŠน๋ณ„ํ•˜๊ฒŒ ๋ˆ„๊ตฌ๋ฅผ ๋ถˆ๋Ÿฌ๋‚ด ๊ทธ์ ์„
01:17
on any aspects of your own mistakes.
26
77260
2000
ํ™•์ธํ•˜์ง€๋Š” ์•Š๊ฒ ์Šต๋‹ˆ๋‹ค.
01:19
But of course, just in the last two years
27
79260
2000
ํ•˜์ง€๋งŒ ์ง€๋‚œ 2๋…„ ์ „์—
01:21
we see these unprecedented examples of human ineptitude.
28
81260
3000
์šฐ๋ฆฌ ์—ฐ๊ตฌ์ง„์€ ์˜ˆ์ธกํ•˜์ง€ ๋ชปํ–ˆ๋˜ ์ธ๊ฐ„์˜ ๋ถ€์ ํ•ฉํ•œ ์‚ฌ๋ก€๋ฅผ ๊ด€์ฐฐ ํ–ˆ์Šต๋‹ˆ๋‹ค.
01:24
And we've watched as the tools we uniquely make
29
84260
3000
๊ทธ๋ฆฌ๊ณ  ์šฐ๋ฆฌ๋Š” ์šฐ๋ฆฌ์˜ ์กฐ๊ฑด์—์„œ ์–ป์„ ์ˆ˜ ์žˆ๋Š”
01:27
to pull the resources out of our environment
30
87260
2000
์ž์›์„ ๋Œ์–ด๋‚ด๊ธฐ ์œ„ํ•ด์„œ ํŠน๋ณ„ํ•˜๊ฒŒ ๋งŒ๋“ค์—ˆ๋˜ ๊ธฐ๊ตฌ๋“ค์ด
01:29
kind of just blow up in our face.
31
89260
2000
์™„์ „ํžˆ ์‹คํŒจ๋กœ ๋Œ์•„๊ฐ€๋Š” ๊ฒƒ์„ ๋ณด์•˜์Šต๋‹ˆ๋‹ค.
01:31
We've watched the financial markets that we uniquely create --
32
91260
2000
์šฐ๋ฆฌ๋Š” ์šฐ๋ฆฌ๊ฐ€ ๊ณ ์œ ํ•˜๊ฒŒ ๋งŒ๋“  ๊ธˆ์œต ์‹œ์žฅ์ด--
01:33
these markets that were supposed to be foolproof --
33
93260
3000
์ด ์‹œ์žฅ์€ ์‹คํŒจํ•  ์—ฌ์ง€๊ฐ€ ์—†์—ˆ์–ด์•ผ ํ–ˆ์—ˆ์Šต๋‹ˆ๋‹ค --
01:36
we've watched them kind of collapse before our eyes.
34
96260
2000
์šฐ๋ฆฌ ๋ˆˆ ์•ž์—์„œ ๊ฑฐ์˜ ๋ถ•๊ดดํ•˜๋Š” ๊ฒƒ์„ ๋ณด์•˜์Šต๋‹ˆ๋‹ค.
01:38
But both of these two embarrassing examples, I think,
35
98260
2000
ํ•˜์ง€๋งŒ ์ œ๊ฐ€ ์ƒ๊ฐํ•˜๊ธฐ์—๋Š” ์ด ์ฐฝํ”ผํ•œ ์˜ˆ ๋‘˜ ๋‹ค
01:40
don't highlight what I think is most embarrassing
36
100260
3000
์ธ๊ฐ„์ด ๋งŒ๋“œ๋Š” ์‹ค์ˆ˜ ์ค‘์—์„œ ๊ฐ€์žฅ ์ฐฝํ”ผํ•œ ๊ฒƒ์„
01:43
about the mistakes that humans make,
37
103260
2000
๋‹๋ณด์ด๊ฒŒ๋Š” ํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค,
01:45
which is that we'd like to think that the mistakes we make
38
105260
3000
์šฐ๋ฆฌ๋Š” ์ธ๊ฐ„์ด ๋งŒ๋“œ๋Š” ์‹ค์ˆ˜๊ฐ€ ์•”์ ์ธ ์กด์žฌ ํ˜น์€
01:48
are really just the result of a couple bad apples
39
108260
2000
์‹ค์ œ๋กœ ์žˆ๋Š” FAIL BLOG-๊ฐ€์น˜๊ฒฐ์ •(์ฝ”๋ฉ”๋”” ๋ธ”๋กœ๊ทธ ์‚ฌ์ดํŠธ)
01:50
or a couple really sort of FAIL Blog-worthy decisions.
40
110260
3000
์˜ ๊ฒฐ๊ณผ๋ผ๊ณ  ์ƒ๊ฐํ•˜๊ธฐ๋ฅผ ์›ํ•ฉ๋‹ˆ๋‹ค.
01:53
But it turns out, what social scientists are actually learning
41
113260
3000
ํ•˜์ง€๋งŒ ์‚ฌํšŒ ๊ณผํ•™์ž๋“ค์ด ์‹ค์ œ๋กœ ์–ป๊ณ  ์žˆ๋Š” ๊นจ๋‹ฌ์Œ์€
01:56
is that most of us, when put in certain contexts,
42
116260
3000
๋Œ€๋ถ€๋ถ„ ์šฐ๋ฆฌ ๋ชจ๋‘๊ฐ€ ํŠน์ • ์ƒํ™ฉ์— ์žˆ์„ ๋•Œ,
01:59
will actually make very specific mistakes.
43
119260
3000
์‹ค์ œ๋กœ ๋ถ„๋ช…ํ•œ ์‹ค์ˆ˜๋ฅผ ํ•˜๊ฒŒ ๋œ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
02:02
The errors we make are actually predictable.
44
122260
2000
์‹ค์ œ๋กœ, ์šฐ๋ฆฌ๊ฐ€ ํ•˜๋Š” ์‹ค์ˆ˜๋Š” ์˜ˆ์ธก ๊ฐ€๋Šฅํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
02:04
We make them again and again.
45
124260
2000
์‹ค์ˆ˜ํ•˜๊ณ  ์‹ค์ˆ˜๋ฅผ ๋ฐ˜๋ณตํ•˜์ฃ .
02:06
And they're actually immune to lots of evidence.
46
126260
2000
๋งŽ์€ ์ฆ๊ฑฐ๋“ค์— ์šฐ๋ฆฌ๋Š” ์‹ค์ œ๋กœ ๋ฉด์—ญ์ด ๋ฉ๋‹ˆ๋‹ค.
02:08
When we get negative feedback,
47
128260
2000
์šฐ๋ฆฌ๋Š” ๋ถ€์ •์ ์ธ ๊ฒฐ๊ณผ๋ฅผ ์–ป์—ˆ์„ ๋•Œ,
02:10
we still, the next time we're face with a certain context,
48
130260
3000
ํŠน์ • ์ƒํ™ฉ์— ๋‹ค์‹œ ์ง๋ฉดํ•  ๋•Œ ์—ฌ์ „ํžˆ,
02:13
tend to make the same errors.
49
133260
2000
๊ฐ™์€ ์‹ค์ˆ˜๋ฅผ ๋ฒ”ํ•˜๋Š” ๊ฒฝํ–ฅ์ด ์žˆ์Šต๋‹ˆ๋‹ค.
02:15
And so this has been a real puzzle to me
50
135260
2000
๊ทธ๋ž˜์„œ ์ €์—๊ฒŒ ์ด๋Ÿฐ ๊ฒฝํ–ฅ์€ ๋งค์šฐ ํ˜ผ๋ž€์Šค๋Ÿฌ์› ์Šต๋‹ˆ๋‹ค
02:17
as a sort of scholar of human nature.
51
137260
2000
๋งˆ์น˜ ์ธ๊ฐ„ ๋ณธ์„ฑ์˜ ์—ฐ๊ตฌ ๊ฐ™์•˜์ฃ .
02:19
What I'm most curious about is,
52
139260
2000
์ œ๊ฒŒ ๊ฐ€์žฅ ํฅ๋ฏธ๋กœ์šด ๊ฒƒ์€,
02:21
how is a species that's as smart as we are
53
141260
3000
์ธ๋ฅ˜์™€ ๊ฐ™์ด ์˜๋ฆฌํ•œ ํ•œ ์ข…์ด ์–ด๋–ป๊ฒŒ
02:24
capable of such bad
54
144260
2000
๋‚˜์œ ์Šต๊ด€์„ ๊ฐ€์ง€๊ณ  ์žˆ๊ณ 
02:26
and such consistent errors all the time?
55
146260
2000
๊ฐ™์€ ์‹ค์ˆ˜๋ฅผ ํ•ญ์ƒ ํ•  ์ˆ˜ ์žˆ์„๊นŒ? ์ž…๋‹ˆ๋‹ค.
02:28
You know, we're the smartest thing out there, why can't we figure this out?
56
148260
3000
์•Œ๋‹ค์‹œํ”ผ, ์šฐ๋ฆฌ๋Š” ๊ฐ€์žฅ ์˜๋ฆฌํ•œ ์ข… ์ž…๋‹ˆ๋‹ค, ์™œ ์šฐ๋ฆฌ๋Š” ์ด๊ฒƒ์„ ํ•ด๊ฒฐํ•  ์ˆ˜ ์—†์„๊นŒ์š”?
02:31
In some sense, where do our mistakes really come from?
57
151260
3000
์–ด๋–ค ์˜๋ฏธ์—์„œ, ์šฐ๋ฆฌ์˜ ์‹ค์ˆ˜๋Š” ์–ด๋””์—์„œ ์˜ค๋Š” ๊ฒƒ์ผ๊นŒ์š”?
02:34
And having thought about this a little bit, I see a couple different possibilities.
58
154260
3000
์ด ์งˆ๋ฌธ์— ๋Œ€ํ•ด ์ƒ๊ฐํ•˜๊ณ , ์ดํ›„ ์ €๋Š” ๋‹ค๋ฅธ ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์•˜์Šต๋‹ˆ๋‹ค.
02:37
One possibility is, in some sense, it's not really our fault.
59
157260
3000
ํ•˜๋‚˜์˜ ๊ฐ€๋Šฅ์„ฑ์€ ์–ด๋–ค ์˜๋ฏธ์—์„œ ๋ดค์„ ๋•Œ ์šฐ๋ฆฌ์˜ ์‹ค์ˆ˜๊ฐ€ ์•„๋‹ˆ๋ผ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
02:40
Because we're a smart species,
60
160260
2000
์™œ๋ƒํ•˜๋ฉด ์ธ๋ฅ˜๋Š” ์˜๋ฆฌํ•œ ์ข…์ด๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค,
02:42
we can actually create all kinds of environments
61
162260
2000
์šฐ๋ฆฌ๋Š” ์‹ค์ œ๋กœ ์ •๋ง๋กœ ๋ณต์žกํ™˜ ํ™˜๊ฒฝ์„
02:44
that are super, super complicated,
62
164260
2000
๋งŒ๋“ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค,
02:46
sometimes too complicated for us to even actually understand,
63
166260
3000
๋•Œ๋•Œ๋กœ ์šฐ๋ฆฌ์—๊ฒŒ ๋„ˆ๋ฌด ๋ณต์žกํ•ด์„œ ์‹ค์ œ๋กœ ์ดํ•ดํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค,
02:49
even though we've actually created them.
64
169260
2000
๋น„๋ก ์šฐ๋ฆฌ๊ฐ€ ๊ทธ๊ฒƒ๋“ค์„ ๋งŒ๋“ค์—ˆ๋‹ค๊ณ  ํ• ์ง€๋ผ๋„ ๋ง์ž…๋‹ˆ๋‹ค.
02:51
We create financial markets that are super complex.
65
171260
2000
์šฐ๋ฆฌ๋Š” ๊ทน๋„๋กœ ๋ณต์žกํ•œ ๊ธˆ์œต์‹œ์žฅ์„ ๋งŒ๋“ญ๋‹ˆ๋‹ค, ๊ทธ๋ฆฌ๊ณ 
02:53
We create mortgage terms that we can't actually deal with.
66
173260
3000
๊ฑฐ๋ž˜ํ•  ์ˆ˜ ์—†๋Š” ๊ธˆ์œต ์กฐ์ • ์ฃผ๊ธฐ๋ฅผ ๋งŒ๋“ญ๋‹ˆ๋‹ค.
02:56
And of course, if we are put in environments where we can't deal with it,
67
176260
3000
๋ฌผ๋ก  ๋งŒ์•ฝ ๊ฑฐ๋ž˜ํ•  ์ˆ˜ ์—†๋Š” ์ƒํ™ฉ์˜ ํ™˜๊ฒฝ์— ์ฒ˜ํ–ˆ๋‹ค๋ฉด
02:59
in some sense makes sense that we actually
68
179260
2000
์–ด๋–ค ์˜๋ฏธ์—์„œ๋Š” ์‹ค์ œ๋กœ ์šฐ๋ฆฌ๊ฐ€ ๊ทธ ๋ฌธ์ œ๋ฅผ
03:01
might mess certain things up.
69
181260
2000
ํ•ด๊ฒฐํ•˜์ง€ ๋ชปํ•˜๋Š” ๊ฒƒ์ด ๋งž์Šต๋‹ˆ๋‹ค
03:03
If this was the case, we'd have a really easy solution
70
183260
2000
์ด ์ƒํ™ฉ์ด๋ผ๋ฉด, ๋ฌธ์ œ์— ๋Œ€ํ•œ ์‹ค์ˆ˜์— ๊ฐ„ํŽธํ•œ ํ•ด๊ฒฐ์ฑ…์„
03:05
to the problem of human error.
71
185260
2000
์–ป๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
03:07
We'd actually just say, okay, let's figure out
72
187260
2000
์‹ค์ œ๋กœ ์šฐ๋ฆฌ๋Š” ๋‹จ์ง€, '์ข‹์•„์š”
03:09
the kinds of technologies we can't deal with,
73
189260
2000
์šฐ๋ฆฌ๊ฐ€ ํ•ด๊ฒฐํ•  ์ˆ˜ ์—†๋Š” ๊ธฐ์ˆ ์ ์ธ ๋ถ€๋ถ„,
03:11
the kinds of environments that are bad --
74
191260
2000
๋‚˜์œ ํ™˜๊ฒฝ์˜ ์ข…๋ฅ˜์— ๋Œ€ํ•ด ์•Œ์•„๋ณด๊ณ ,
03:13
get rid of those, design things better,
75
193260
2000
์ด ๋ถ€๋ถ„๋“ค์„ ์ง€์›Œ๋ฒ„๋ฆฌ๊ณ , ๋ฌธ์ œ์ ์„ ์ข‹๊ฒŒ ๊ฐœ์„ ํ•ฉ์‹œ๋‹ค'๋ผ๊ณ  ๋งํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
03:15
and we should be the noble species
76
195260
2000
์ธ๋ฅ˜๋Š” ์Šค์Šค๋กœ ์˜ˆ์ƒํ•˜๊ณ ์ž ํ•˜๋Š”
03:17
that we expect ourselves to be.
77
197260
2000
๊ณ ๊ท€ํ•œ ์ข…์ด ๋˜์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
03:19
But there's another possibility that I find a little bit more worrying,
78
199260
3000
ํ•˜์ง€๋งŒ ์ œ๊ฐ€ ์ฐพ์€ ๋ช‡๋ช‡ ๊ฑฑ์ •์Šค๋Ÿฌ์šด ๋˜ ๋‹ค๋ฅธ ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ์Šต๋‹ˆ๋‹ค,
03:22
which is, maybe it's not our environments that are messed up.
79
202260
3000
์ด๊ฒƒ์€ ์šฐ๋ฆฌ๊ฐ€ ์ฒ˜ํ•œ ํ˜ผ๋ž€์Šค๋Ÿฌ์šด ํ™˜๊ฒฝ์€ ์•„๋‹™๋‹ˆ๋‹ค.
03:25
Maybe it's actually us that's designed badly.
80
205260
3000
์‹ค์ œ๋กœ ์ข‹์ง€ ์•Š๊ฒŒ ๋งŒ๋“ค์–ด์ง„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
03:28
This is a hint that I've gotten
81
208260
2000
์ด๊ฒƒ์€ ์ธ๊ฐ„์˜ ์‹ค์ˆ˜์— ๋Œ€ํ•ด
03:30
from watching the ways that social scientists have learned about human errors.
82
210260
3000
์‚ฌํšŒ๊ณผํ•™์ž๋“ค์ด ๊นจ๋‹ซ๊ฒŒ ๋œ ๋ฐฉ๋ฒ•์„ ๊ด€์ฐฐํ•˜๋ฉด์„œ ์–ป์€ ํžŒํŠธ์ž…๋‹ˆ๋‹ค.
03:33
And what we see is that people tend to keep making errors
83
213260
3000
์šฐ๋ฆฌ๊ฐ€ ์•Œ์•„๋‚ธ ๊ฒƒ์€ ์‚ฌ๋žŒ๋“ค์ด ์ง€์†์ ์œผ๋กœ ์‹ค์ˆ˜๋ฅผ ๋งŒ๋“œ๋Š” ๊ฒฝํ–ฅ์ด ์žˆ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค
03:36
exactly the same way, over and over again.
84
216260
3000
๋ถ„๋ช…ํ•˜๊ฒŒ ๊ฐ™์€ ๋ฐฉ๋ฒ•์œผ๋กœ, ๋ฐ˜๋ณต์ด ๋ฉ๋‹ˆ๋‹ค.
03:39
It feels like we might almost just be built
85
219260
2000
๋งˆ์น˜ ์ธ๊ฐ„์ด ํŠน์ •ํ•œ ๋ฐฉ๋ฒ•์œผ๋กœ ์‹ค์ˆ˜๋ฅผ ํ•˜๋„๋ก
03:41
to make errors in certain ways.
86
221260
2000
๋งŒ๋“ค์–ด์ง„ ๋А๋‚Œ์ด ๋“ญ๋‹ˆ๋‹ค.
03:43
This is a possibility that I worry a little bit more about,
87
223260
3000
์ด๊ฒƒ์ด ์ œ๊ฐ€ ์ข€๋” ์—ผ๋ คํ•˜๋Š” ๊ฐ€๋Šฅ์„ฑ์ž…๋‹ˆ๋‹ค,
03:46
because, if it's us that's messed up,
88
226260
2000
์™œ๋ƒํ•˜๋ฉด ๋งŒ์•ฝ์— ์šฐ๋ฆฌ๊ฐ€ ๋ฌธ์ œ๋ผ๋ฉด,
03:48
it's not actually clear how we go about dealing with it.
89
228260
2000
์šฐ๋ฆฌ๊ฐ€ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐ ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์€ ๋ถ„๋ช…ํ•˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
03:50
We might just have to accept the fact that we're error prone
90
230260
3000
์–ด์ฉŒ๋ฉด ์šฐ๋ฆฌ๋Š” ์šฐ๋ฆฌ์˜ ์‹ค์ˆ˜ํ•˜๋Š” ๊ฒฝํ–ฅ์„ ๋ฐ›์•„๋“ค์ด๊ณ 
03:53
and try to design things around it.
91
233260
2000
๊ทธ๊ฒƒ ์ฃผ์œ„๋กœ ๋งž์ถฐ๊ฐ€์•ผ ํ• ์ง€๋„ ๋ชจ๋ฆ…๋‹ˆ๋‹ค.
03:55
So this is the question my students and I wanted to get at.
92
235260
3000
๊ทธ๋ž˜์„œ ์ด ์งˆ๋ฌธ์— ๋Œ€ํ•œ ๋‹ต์ด ์ œ ํ•™์ƒ๋“ค๊ณผ ์ œ๊ฐ€ ์ฐพ๊ณ ์ž ํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
03:58
How can we tell the difference between possibility one and possibility two?
93
238260
3000
์šฐ๋ฆฌ๊ฐ€ ๊ฐ€์ • 1๊ณผ 2 ์‚ฌ์ด์—์„œ ์–ด๋–ป๊ฒŒ ์ฐจ์ด์ ์„ ๋งํ•  ์ˆ˜ ์žˆ์„๊นŒ์š”?
04:01
What we need is a population
94
241260
2000
์šฐ๋ฆฌ๊ฐ€ ํ•„์š”๋กœ ํ•œ ๊ฒƒ์€
04:03
that's basically smart, can make lots of decisions,
95
243260
2000
๊ธฐ๋ณธ์ ์œผ๋กœ ์˜๋ฆฌํ•˜๋ฉฐ, ๋งŽ์€ ๊ฒฐ์ •์„ ํ•  ์ˆ˜ ์žˆ๋Š” ํ•˜๋‚˜์˜ ์ธ๊ตฌ์ž…๋‹ˆ๋‹ค,
04:05
but doesn't have access to any of the systems we have,
96
245260
2000
ํ•˜์ง€๋งŒ ์šฐ๋ฆฌ๊ฐ€ ๊ฐ€์ง€๋Š” ์‹œ์Šคํ…œ์— ์ ‘๊ทผํ•  ์ˆ˜๋Š” ์—†์ฃ ,
04:07
any of the things that might mess us up --
97
247260
2000
๋’ค์ฃฝ๋ฐ•์ฃฝ์ธ ๊ฒƒ๋“ค์— ๋ง์ด์ฃ  --
04:09
no human technology, human culture,
98
249260
2000
์ธ๊ฐ„์˜ ๊ธฐ์ˆ , ๋ฌธํ™”๋„ ์•„๋‹ˆ๊ณ 
04:11
maybe even not human language.
99
251260
2000
์‹ฌ์ง€์–ด ์ธ๊ฐ„์˜ ์–ธ์–ด๋„ ์•„๋‹™๋‹ˆ๋‹ค.
04:13
And so this is why we turned to these guys here.
100
253260
2000
์ด๊ฒƒ์ด ์ด ์›์ˆญ์ด๋“ค์—๊ฒŒ ์™œ ์šฐ๋ฆฌ๊ฐ€ ๊ด€์‹ฌ์„ ๊ฐ€์กŒ๋Š”์ง€์˜ ์ด์œ ์ž…๋‹ˆ๋‹ค.
04:15
These are one of the guys I work with. This is a brown capuchin monkey.
101
255260
3000
์ด ์›์ˆญ์ด๋“ค ์ค‘ ํ•˜๋‚˜๋Š” ์ €์™€ ํ•จ๊ป˜ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•œ ๋…€์„์ž…๋‹ˆ๋‹ค. ๊ฐˆ์ƒ‰ ๊ผฌ๋ฆฌ๊ฐ๊ธฐ ์›์ˆญ์ด์ฃ .
04:18
These guys are New World primates,
102
258260
2000
์ด ์›์ˆญ์ด๋“ค์€ ์‹ ์„ธ๊ณ„์˜ ์˜์žฅ๋ฅ˜์ž…๋‹ˆ๋‹ค,
04:20
which means they broke off from the human branch
103
260260
2000
์ฆ‰ ๊ทธ๋“ค์€ ๋Œ€๋žต 3์ฒœ 5๋ฐฑ๋งŒ๋…„ ์ „์— ์ธ๋ฅ˜์˜ ๊ฐ€๊ณ„๋„์—์„œ
04:22
about 35 million years ago.
104
262260
2000
๋–จ์–ด์ ธ ๋‚˜๊ฐ”์—ˆ์ฃ .
04:24
This means that your great, great, great great, great, great --
105
264260
2000
์ฆ‰ ์—ฌ๋Ÿฌ๋ถ„์˜ ์ฆ์กฐ, ์ฆ์กฐ, ์ฆ์กฐ, ์ฆ์กฐ, ์ฆ์กฐ, ์ฆ์กฐ --
04:26
with about five million "greats" in there --
106
266260
2000
๋Œ€๋žต 5๋ฐฑ๋งŒ ๋…„์ „ ์ฆ์กฐ ์กฐ์ƒ์ด ์—ฌ๊ธฐ์— ์†ํ•ฉ๋‹ˆ๋‹ค --
04:28
grandmother was probably the same great, great, great, great
107
268260
2000
5๋ฐฑ๋งŒ ๋…„์ „ ์ฆ์กฐ ํ• ๋จธ๋‹ˆ๋Š” ์•„๋งˆ๋„ ๊ฐ™์€ ์ฆ์กฐ.....
04:30
grandmother with five million "greats" in there
108
270260
2000
ํ• ๋จธ๋‹ˆ์ž…๋‹ˆ๋‹ค, ์—ฌ๊ธฐ์žˆ๋Š” ํ™€๋ฆฌ์™€
04:32
as Holly up here.
109
272260
2000
๊ฐ™๋‹ค๋Š” ๋ง์ž…๋‹ˆ๋‹ค.
04:34
You know, so you can take comfort in the fact that this guy up here is a really really distant,
110
274260
3000
์•Œ๋‹ค์‹œํ”ผ, ์ด ์œ„์— ์žˆ๋Š” ์›์ˆญ์ด๋“ค์ด ์ •๋ง๋กœ ๋™ ๋–จ์–ด์ ธ ์žˆ๋‹ค๋Š” ์‚ฌ์‹ค์— ์•ˆ์‹ฌํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
04:37
but albeit evolutionary, relative.
111
277260
2000
์ง„ํ™”์ ์œผ๋กœ ์—ฐ๊ด€์ด ์žˆ์Œ์—๋„ ๋ง์ด์ง€์š”.
04:39
The good news about Holly though is that
112
279260
2000
ํ™€๋ฆฌ์— ๋Œ€ํ•œ ๋ฐ˜๊ฐ€์šด ์†Œ์‹์€
04:41
she doesn't actually have the same kinds of technologies we do.
113
281260
3000
์‹ค์ œ๋กœ ์šฐ๋ฆฌ๊ฐ€ ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ™์€ ๊ธฐ์ˆ ์„ ๊ฐ€์งˆ ์ˆ˜๋Š” ์—†๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
04:44
You know, she's a smart, very cut creature, a primate as well,
114
284260
3000
์•Œ๋””์‹œํ”ผ, ๋งค์šฐ ์˜๋ฆฌํ•˜๋ฉฐ, ๋งค์šฐ ๊ท€์—ฌ์šด ์˜์žฅ๋ฅ˜์ž…๋‹ˆ๋‹ค,
04:47
but she lacks all the stuff we think might be messing us up.
115
287260
2000
ํ•˜์ง€๋งŒ ์šฐ๋ฆฌ๋ฅผ ํ˜ผ๋ž€์Šค๋Ÿฝ๊ฒŒ ํ•˜๋Š” ๋ชจ๋“  ๋ฌผ๊ฑด์—๋Š” ๊ฒฝํ—˜์ด ์—†์Šต๋‹ˆ๋‹ค.
04:49
So she's the perfect test case.
116
289260
2000
๊ทธ๋ž˜์„œ ํ™€๋ฆฌ๋Š” ์™„๋ฒฝํ•œ ์‹œํ—˜์  ์‚ฌ๋ก€๊ฐ€ ๋˜์ฃ .
04:51
What if we put Holly into the same context as humans?
117
291260
3000
์šฐ๋ฆฌ๊ฐ€ ๊ทธ๋“ค์„ ์ธ๊ฐ„์ฒ˜๋Ÿผ ๊ฐ™์€ ์ƒํ™ฉ์— ๋†“์œผ๋ฉด ์–ด๋–จ๊นŒ์š”?
04:54
Does she make the same mistakes as us?
118
294260
2000
์šฐ๋ฆฌ์ฒ˜๋Ÿผ ๊ฐ™์€ ์‹ค์ˆ˜๋ฅผ ํ• ๊นŒ์š”?
04:56
Does she not learn from them? And so on.
119
296260
2000
์‹ค์ˆ˜๋กœ ๋ถ€ํ„ฐ ๋ฐฐ์šฐ์ง€๋Š” ๋ชปํ• ๊นŒ์š”? ๊ธฐํƒ€ ๋“ฑ๋“ฑ์ด ์žˆ๊ฒ ์ฃ .
04:58
And so this is the kind of thing we decided to do.
120
298260
2000
์ด๊ฒƒ์ด ์šฐ๋ฆฌ๊ฐ€ ์‹คํ–‰ํ•˜๊ธฐ๋กœ ๊ฒฐ์ •ํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
05:00
My students and I got very excited about this a few years ago.
121
300260
2000
๋ช‡ ๋…„์ „, ์ œ ํ•™์ƒ๋“ค๊ณผ ์ €๋Š” ์ด๊ฒƒ์— ๋Œ€ํ•ด ๋งค์šฐ ํฅ๋ถ„ํ–ˆ์—ˆ์ฃ .
05:02
We said, all right, let's, you know, throw so problems at Holly,
122
302260
2000
์šฐ๋ฆฌ ์—ฐ๊ตฌ์ง„์€ ๋ฌธ์ œ๋ฅผ ๋˜์ ธ์ฃผ๊ณ  ํ™€๋ฆฌ๊ฐ€ ๊ทธ๊ฒƒ์„ ํ˜ผ๋ž€์Šค๋Ÿฝ๊ฒŒ ํ•˜๋Š”์ง€
05:04
see if she messes these things up.
123
304260
2000
์ง€์ผœ๋ณด๊ธฐ๋กœ ํ–ˆ์Šต๋‹ˆ๋‹ค.
05:06
First problem is just, well, where should we start?
124
306260
3000
์ฒซ ๋ฒˆ์งธ ๋ฌธ์ œ๋Š”, ์šฐ๋ฆฌ๊ฐ€ ์–ด๋””์„œ ์‹œ์ž‘ํ• ๊นŒ์š”,
05:09
Because, you know, it's great for us, but bad for humans.
125
309260
2000
์šฐ๋ฆฌ์—๊ฒŒ๋Š” ํ•™๋ฌธ์  ์ด๋“์ด์ง€๋งŒ, ์ธ๋ฅ˜์—๊ฒŒ๋Š” ๋ถ€์ •์  ์ธ์‹ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
05:11
We make a lot of mistakes in a lot of different contexts.
126
311260
2000
์ธ๋ฅ˜๋Š” ๋‹ค์–‘ํ•œ ์ƒํ™ฉ ์†์—์„œ ๋งŽ์€ ์‹ค์ˆ˜๋ฅผ ํ•ฉ๋‹ˆ๋‹ค.
05:13
You know, where are we actually going to start with this?
127
313260
2000
์ด ๋ฌธ์ œ๋ฅผ ์‹ค์ œ๋กœ ์–ด๋””์„œ ์‹œ์ž‘์„ ํ•ด์•ผ ๋ ๊นŒ์š”?
05:15
And because we started this work around the time of the financial collapse,
128
315260
3000
๊ธˆ์œต ๋ถ•๊ดด์˜ ์‹œ๊ฐ„ ๊ทธ๋ฆฌ๊ณ  ์–ธ์ œ ์œ ์งˆ์ฒ˜๋ถ„์ด ์ผ์œผํ‚ค๋Š” ์ƒˆ๋กœ์šด ์†Œ์‹์„ ๋‘˜๋Ÿฌ์‹ผ
05:18
around the time when foreclosures were hitting the news,
129
318260
2000
์—ฐ๊ตฌ๋ฅผ ์‹œ์ž‘ํ–ˆ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค,
05:20
we said, hhmm, maybe we should
130
320260
2000
์šฐ๋ฆฌ๋Š” ์‹ค์ œ๋กœ ์žฌ์ • ๋ฒ”์œ„์—์„œ
05:22
actually start in the financial domain.
131
322260
2000
์‹œ์ž‘ํ•ด์•ผ ๋œ๋‹ค๊ณ  ๊ฒฐ์ •ํ–ˆ์—ˆ์ฃ .
05:24
Maybe we should look at monkey's economic decisions
132
324260
3000
์›์ˆญ์ด์˜ ๊ฒฝ์ œ์  ๊ฒฐ์ •์„ ์ฃผ์‹œํ•˜๊ณ  ์šฐ๋ฆฌ๊ฐ€ ํ•˜๋Š” ๋ฐ”๋ณด๊ฐ™์€
05:27
and try to see if they do the same kinds of dumb things that we do.
133
327260
3000
์‹ค์ˆ˜๋ฅผ ํ•˜๋Š”์ง€ ๊ด€์ฐฐ์„ ์‹œ๋„ํ•ด์•ผ๋งŒ ํ•ฉ๋‹ˆ๋‹ค.
05:30
Of course, that's when we hit a sort second problem --
134
330260
2000
๋ฌผ๋ก , ์šฐ๋ฆฌ๊ฐ€ ๋‘๋ฒˆ์งธ ๋ฌธ์ œ๋ฅผ ์ผ์œผํ‚ฌ ๋•Œ --
05:32
a little bit more methodological --
135
332260
2000
์ด ๋ฌธ์ œ๋Š” ์ข€ ๋” ๋ฐฉ๋ฒ•๋ก ์ ์ธ ๊ฒƒ์ด์ฃ  --
05:34
which is that, maybe you guys don't know,
136
334260
2000
์ด๊ฒƒ์€ ์›์ˆญ์ด๊ฐ€ ์•Œ์ง€ ๋ชปํ•˜๋Š” ๊ฒƒ์ด์ฃ ,
05:36
but monkeys don't actually use money. I know, you haven't met them.
137
336260
3000
์‹ค์ œ๋กœ ์›์ˆญ์ด๋Š” ๋ˆ์„ ์‚ฌ์šฉํ•˜์ง€ ๋ชปํ•ฉ๋‹ˆ๋‹ค. ์—ฌ๋Ÿฌ๋ถ„๊ป˜์„œ ๊ทธ๋“ค์„ ๋งŒ๋‚˜์ง€ ์•Š์•˜๋‹ค๋Š” ๊ฒƒ์„ ์•Œ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
05:39
But this is why, you know, they're not in the queue behind you
138
339260
2000
ํ•˜์ง€๋งŒ ์ด๋Ÿฐ ์ด์œ ๋กœ ๊ทธ๋“ค์€ ์‹๋ฃŒํ’ˆ์  ํ˜น์€ ํ˜„๊ธˆ ์ž๋™ ์ธ์ถœ๊ธฐ ์ค„์—์„œ
05:41
at the grocery store or the ATM -- you know, they don't do this stuff.
139
341260
3000
์—ฌ๋Ÿฌ๋ถ„ ์•ž์— ์„œ์žˆ์ง€ ๋ชปํ•ฉ๋‹ˆ๋‹ค --์•Œ๋‹ค์‹œํ”ผ ๊ทธ๋“ค์€ ์ด ๋ฌผ๊ฑด๋“ค์„ ํ™œ์šฉํ•˜์ง€ ๋ชปํ•ฉ๋‹ˆ๋‹ค.
05:44
So now we faced, you know, a little bit of a problem here.
140
344260
3000
์—ฌ๊ธฐ์— ์žˆ๋Š” ์ž‘์€ ๋ฌธ์ œ์ ์— ์šฐ๋ฆฌ๋Š” ์ง๋ฉดํ–ˆ์—ˆ์ฃ .
05:47
How are we actually going to ask monkeys about money
141
347260
2000
์‹ค์ œ๋กœ ์›์ˆญ์ด๋“ค์ด ๋ˆ์„ ์‚ฌ์šฉํ•˜์ง€ ๋ชปํ•œ๋‹ค๋ฉด
05:49
if they don't actually use it?
142
349260
2000
์‹ค์ œ๋กœ ์–ด๋–ป๊ฒŒ ์›์ˆญ์ด์—๊ฒŒ ๋ˆ์— ๊ด€ํ•ด ๋ฌผ์–ด ๋ณผ๊นŒ์š”?
05:51
So we said, well, maybe we should just, actually just suck it up
143
351260
2000
๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ๋Š” ์‹ค์ œ๋กœ ๋ˆ์„ ๊ฐ€๊นŒ์ด ๊ฐ€์ ธ์™€ ์–ด๋–ป๊ฒŒ ์‚ฌ์šฉํ•˜๋Š”์ง€
05:53
and teach monkeys how to use money.
144
353260
2000
๊ฐ€๋ฅด์ณ์•ผ ๋œ๋‹ค๊ณ  ๊ฒฐ์ •ํ–ˆ์—ˆ์Šต๋‹ˆ๋‹ค.
05:55
So that's just what we did.
145
355260
2000
๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ๊ฐ€ ํ–‰ํ–ˆ๋˜ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
05:57
What you're looking at over here is actually the first unit that I know of
146
357260
3000
์ง€๊ธˆ ์—ฌ๊ธฐ์„œ ๋ณด๊ณ  ๊ณ„์‹  ๊ฒƒ์€ ์ฒซ ๋ฒˆ์งธ ๋„๊ตฌ์ž…๋‹ˆ๋‹ค, ์šฐ๋ฆฌ๊ฐ€ ์‚ฌ์šฉํ•˜๊ณ  ์žˆ๋Š”
06:00
of non-human currency.
147
360260
2000
ํ™”ํ๋Š” ์•„๋‹™๋‹ˆ๋‹ค.
06:02
We weren't very creative at the time we started these studies,
148
362260
2000
์šฐ๋ฆฌ๋Š” ์ด ์—ฐ๊ตฌ๋ฅผ ์‹œ์ž‘ํ•  ๋•Œ ์ƒˆ๋กœ์šด ๊ฒƒ์„ ์ฐพ์„ ์ˆ˜ ์—†์—ˆ์Šต๋‹ˆ๋‹ค,
06:04
so we just called it a token.
149
364260
2000
์ด ๋„๊ตฌ๋ฅผ ํ† ํฐ์ด๋ผ ํ–ˆ์—ˆ์ฃ .
06:06
But this is the unit of currency that we've taught our monkeys at Yale
150
366260
3000
์ด๊ฒƒ์€ ์˜ˆ์ผ ์—ฐ๊ตฌ์†Œ์—์„œ ์›์ˆญ์ด๋“ค์—๊ฒŒ ์ธ๊ฐ„๊ณผ ํ•จ๊ป˜ ์‚ฌ์šฉํ•ด
06:09
to actually use with humans,
151
369260
2000
๋‹ค๋ฅธ ๋Ÿ‰์˜ ์Œ์‹์„ ์–ป์„ ์ˆ˜ ์žˆ๋„๋ก
06:11
to actually buy different pieces of food.
152
371260
3000
๊ฐ€๋ฅด์ณ์ค€ ํ™”ํ ๋„๊ตฌ์ž…๋‹ˆ๋‹ค.
06:14
It doesn't look like much -- in fact, it isn't like much.
153
374260
2000
๋งŽ์•„ ๋ณด์ด์ง€๋Š” ์•Š์Šต๋‹ˆ๋‹ค - ์‚ฌ์‹ค, ๋งŽ์ง€๋„ ์•Š์ฃ .
06:16
Like most of our money, it's just a piece of metal.
154
376260
2000
๋Œ€๋ถ€๋ถ„์˜ ์šฐ๋ฆฌ๊ฐ€ ์‚ฌ์šฉํ•˜๋Š” ๋ˆ์ฒ˜๋Ÿผ, ๋‹จ์ง€ ํ•˜๋‚˜์˜ ๊ธˆ์†์ผ ๋ฟ์ž…๋‹ˆ๋‹ค.
06:18
As those of you who've taken currencies home from your trip know,
155
378260
3000
์—ฌ๋Ÿฌ๋ถ„ ์ค‘ ์—ฌํ–‰์—์„œ ์ƒˆ๋กœ์šด ํ™”ํ๋ฅผ ์–ป์œผ์‹  ๋ถ„์€ ์•„์‹œ์ฃ ,
06:21
once you get home, it's actually pretty useless.
156
381260
2000
์ง‘์—์„œ๋Š”, ์ด๊ฒƒ๋“ค์€ ์‹ค์ œ๋กœ ์“ธ๋ชจ๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค.
06:23
It was useless to the monkeys at first
157
383260
2000
์›์ˆญ์ด์—๊ฒŒ ํ† ํฐ์€ ์“ธ๋ชจ๊ฐ€ ์—†์—ˆ์Šต๋‹ˆ๋‹ค
06:25
before they realized what they could do with it.
158
385260
2000
๊ทธ๋“ค์ด ์ด๊ฒƒ์œผ๋กœ ๋ฌด์—‡์„ ํ•  ์ˆ˜ ์žˆ๋Š”์ง€ ๊นจ๋‹ซ๊ธฐ ์ „๊นŒ์ง€ ๋ง์ž…๋‹ˆ๋‹ค.
06:27
When we first gave it to them in their enclosures,
159
387260
2000
ํ™”ํ๋ฅผ ์›์ˆญ์ด๋“ค์—๊ฒŒ ๋‹ด์— ๊ฑด๋‚ด์—ˆ์„ ๋•Œ,
06:29
they actually kind of picked them up, looked at them.
160
389260
2000
๊ทธ๋“ค์€ ์‹ค์ œ๋กœ ๊ทธ๊ฒƒ์„ ์ง‘์–ด๋“ค์–ด, ์ž์„ธํžˆ ๋ณด์•˜์Šต๋‹ˆ๋‹ค.
06:31
They were these kind of weird things.
161
391260
2000
๊ทธ๋“ค์—๊ฒŒ ์ด์ƒํ•œ ๋ฌผ๊ฑด์ด์—ˆ์ฃ .
06:33
But very quickly, the monkeys realized
162
393260
2000
ํ•˜์ง€๋งŒ ๊ทธ๋“ค์€ ๋งค์šฐ ๋น ๋ฅด๊ฒŒ, ์ดํ•ดํ–ˆ์—ˆ์Šต๋‹ˆ๋‹ค
06:35
that they could actually hand these tokens over
163
395260
2000
์—ฐ๊ตฌ์†Œ์—์„œ ๋‹ค๋ฅธ ์‚ฌ๋žŒ๋“ค์—๊ฒŒ ํ† ํฐ์„ ๊ฑด๋‚ด์–ด
06:37
to different humans in the lab for some food.
164
397260
3000
์Œ์‹์„ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋ง์ž…๋‹ˆ๋‹ค.
06:40
And so you see one of our monkeys, Mayday, up here doing this.
165
400260
2000
๋ณด๊ณ  ๊ณ„์‹  ์›์ˆญ์ด๋“ค ์ค‘ ํ•œ ๋ช…์ธ ๋ฉ”์ด๋ฐ์ด๋Š”, ์—ฌ๊ธฐ์— ์˜ฌ๋ผ์™€ ์ด ํ™œ๋™์„ ํ•ฉ๋‹ˆ๋‹ค.
06:42
This is A and B are kind of the points where she's sort of a little bit
166
402260
3000
A ๊ทธ๋ฆฌ๊ณ  B๋Š” ๋ฉ”์ด๋ฐ์ด๊ฐ€ ํ† ํฐ์— ๊ด€ํ•ด ๋งค์šฐ ํ˜ธ๊ธฐ์‹ฌ์„ ๊ฐ€์ง€๋Š”
06:45
curious about these things -- doesn't know.
167
405260
2000
๋ถ€๋ถ„์ž…๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ์•Œ์ง€๋Š” ๋ชปํ•ฉ๋‹ˆ๋‹ค.
06:47
There's this waiting hand from a human experimenter,
168
407260
2000
ํ† ํฐ์„ ๊ธฐ๋‹ค๋ฆฌ๋Š” ์‹คํ—˜์ž์˜ ์†์ด ์žˆ์Šต๋‹ˆ๋‹ค,
06:49
and Mayday quickly figures out, apparently the human wants this.
169
409260
3000
๋ฉ”์ด๋ฐ์ด๋Š” ๋ถ„๋ช…ํ•˜๊ฒŒ ์ธ๊ฐ„์ด ํ† ํฐ์„ ์›ํ•œ๋‹ค๋Š” ๊ฒƒ์„ ๋น ๋ฅด๊ฒŒ ์•Œ์•„์ฐจ๋ฆฝ๋‹ˆ๋‹ค.
06:52
Hands it over, and then gets some food.
170
412260
2000
ํ† ํฐ์„ ๊ฑด๋‚ด๊ณ , ์Œ์‹์„ ์–ป์Šต๋‹ˆ๋‹ค.
06:54
It turns out not just Mayday, all of our monkeys get good
171
414260
2000
๋‹จ์ง€ ๋ฉ”์ด๋ฐ์ด๋งŒ์ด ์•„๋‹ˆ๋ผ, ๋ชจ๋“  ์›์ˆญ์ด๋“ค์€ ํŒ๋งค์› ์ธ๊ฐ„๊ณผ
06:56
at trading tokens with human salesman.
172
416260
2000
ํ† ํฐ์„ ๊ฑฐ๋ž˜ํ•˜๋Š”๋ฐ ๋Šฅ์ˆ™ํ•ฉ๋‹ˆ๋‹ค.
06:58
So here's just a quick video of what this looks like.
173
418260
2000
์—ฌ๊ธฐ ์ด ๊ฑฐ๋ž˜์— ๊ด€ํ•œ ๋น ๋ฅธ ์˜์ƒ์ด ์žˆ์Šต๋‹ˆ๋‹ค.
07:00
Here's Mayday. She's going to be trading a token for some food
174
420260
3000
๋ฉ”์ด๋ฐ์ด๋Š” ๋ช‡๋ช‡ ์Œ์‹์„ ์œ„ํ•ด ๊ฑฐ๋ž˜๋ฅผ ํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ 
07:03
and waiting happily and getting her food.
175
423260
3000
ํ–‰๋ณตํ•˜๊ฒŒ ๊ธฐ๋‹ค๋ฆฌ๋ฉฐ ์Œ์‹์„ ์–ป์Šต๋‹ˆ๋‹ค.
07:06
Here's Felix, I think. He's our alpha male; he's a kind of big guy.
176
426260
2000
์—ฌ๊ธฐ์žˆ๋Š” ํŽ ๋ฆญ์Šค๋Š” ์ œ๊ฐ€ ์ƒ๊ฐํ•˜๊ธฐ์— ์šฐ๋‘๋จธ๋ฆฌ ์ˆ˜์ปท์ž…๋‹ˆ๋‹ค, ๊ฐ€์žฅ ํฐ ๋†ˆ์ด์ฃ .
07:08
But he too waits patiently, gets his food and goes on.
177
428260
3000
๊ทธ๋Š” ๋งค์šฐ ๋ˆ๊ธฐ์žˆ๊ฒŒ ๊ธฐ๋‹ค๋””๋ผ ๊ทธ์˜ ์Œ์‹์„ ์–ป๊ณ  ์ง€๋‚˜๊ฐ‘๋‹ˆ๋‹ค.
07:11
So the monkeys get really good at this.
178
431260
2000
๊ฑฐ๋ž˜์— ์žˆ์–ด์„œ ๊ทธ๋“ค์€ ๋งค์šฐ ๋Šฅ์ˆ™ํ•ฉ๋‹ˆ๋‹ค.
07:13
They're surprisingly good at this with very little training.
179
433260
3000
๊ทธ๋“ค์€ ๋†€๋ž๊ฒŒ๋„ ๋งค์šฐ ๊ฐ„๋‹จํ•œ ์ด ํ›ˆ๋ จ์— ๋Šฅ์ˆ™ํ•ฉ๋‹ˆ๋‹ค.
07:16
We just allowed them to pick this up on their own.
180
436260
2000
๊ทธ๋“ค์—๊ฒŒ ์ด๊ฒƒ์„ ์Šค์Šค๋กœ ์ง‘๋„๋ก ํ—ˆ์šฉํ–ˆ์—ˆ์Šต๋‹ˆ๋‹ค.
07:18
The question is: is this anything like human money?
181
438260
2000
์งˆ๋ฌธ์€ ์‚ฌ๋žŒ์ด ์‚ฌ์šฉํ•˜๋Š” ๋ˆ๊ณผ ๊ณตํ†ต์ ์ด ๊ณผ์—ฐ ์žˆ์„๊นŒ์š”?
07:20
Is this a market at all,
182
440260
2000
์ด๊ฒƒ์ด ์ •๋ง๋กœ ์‹œ์žฅ์ผ๊นŒ์š”?,
07:22
or did we just do a weird psychologist's trick
183
442260
2000
ํ˜น์€ ์šฐ๋ฆฌ๊ฐ€ ๊ทธ์ € ๊ต๋ฌ˜ํ•œ ์‹ฌ๋ฆฌ์  ์†์ž„์ˆ˜๋ฅผ ์ด์šฉํ–ˆ๋‚˜? ์˜€์Šต๋‹ˆ๋‹ค.
07:24
by getting monkeys to do something,
184
444260
2000
๊ทธ๋“ค์—๊ฒŒ ๋ฌด์–ธ๊ฐ€๋ฅผ ์‹œํ‚ค๊ฑฐ๋‚˜,
07:26
looking smart, but not really being smart.
185
446260
2000
์‹ค์ œ๋กœ๋Š” ์˜๋ฆฌํ•˜์ง€ ์•Š์ง€๋งŒ ์˜๋ฆฌํ•˜๊ฒŒ ๋ณด์ž„์œผ๋กœ์„œ ๋ง์ž…๋‹ˆ๋‹ค.
07:28
And so we said, well, what would the monkeys spontaneously do
186
448260
3000
๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ๋Š” ๋‹ตํ–ˆ์—ˆ์ฃ , ์Œ, ์ด๊ฒƒ์ด ์‹ค์ œ๋กœ ๊ทธ๋“ค์˜ ํ™”ํ๊ฑฐ๋‚˜,
07:31
if this was really their currency, if they were really using it like money?
187
451260
3000
์‹ค์ œ ๋ˆ์ฒ˜๋Ÿผ ์‚ฌ์šฉํ•œ๋‹ค๋ฉด, ์ž๋ฐœ์ ์œผ๋กœ ๊ทธ๋“ค์ด ๋ฌด์—‡์„ ํ• ๊นŒ์š”?
07:34
Well, you might actually imagine them
188
454260
2000
์Œ, ์‹ค์ œ๋กœ ๊ทธ๋“ค์ด ์˜๋ฆฌํ•œ ํ–‰๋™์„
07:36
to do all the kinds of smart things
189
456260
2000
ํ•˜๋ฆฌ๋ผ ์—ฌ๋Ÿฌ๋ถ„๊ป˜์„œ ์˜ˆ์ƒํ• ์ง€ ๋ชจ๋ฆ…๋‹ˆ๋‹ค,
07:38
that humans do when they start exchanging money with each other.
190
458260
3000
๋ˆ์„ ๊ฑฐ๋ž˜ํ•˜๊ธฐ ์‹œ์ž‘ํ•  ๋•Œ ์ธ๊ฐ„์ด ํ•˜๋Š” ํ–‰๋™์ด์ง€์š”.
07:41
You might have them start paying attention to price,
191
461260
3000
์—ฌ๋Ÿฌ๋ถ„๊ป˜์„œ ๊ทธ๋“ค์—๊ฒŒ ๊ฐ€๊ฒฉ๊ณผ ์–ผ๋งˆ์— ๊ตฌ์ž…ํ• ์ง€
07:44
paying attention to how much they buy --
192
464260
2000
์ง‘์ค‘์‹œํ‚ฌ์ง€๋Š” ๋ชจ๋ฆ…๋‹ˆ๋‹ค -- ์ด ํ–‰๋™์€
07:46
sort of keeping track of their monkey token, as it were.
193
466260
3000
ํ† ํฐ์˜ ๊ฒฝ๋กœ๋ฅผ ์žˆ๋Š” ๊ทธ๋Œ€๋กœ ์œ ์ง€์‹œํ‚ต๋‹ˆ๋‹ค.
07:49
Do the monkeys do anything like this?
194
469260
2000
์ด๊ฒƒ๊ณผ ๊ฐ™์€ ๋ฌด์—‡๊ฐ€๋ฅผ ๊ทธ๋“ค์ด ์‚ฌ์šฉํ• ๊นŒ์š”?
07:51
And so our monkey marketplace was born.
195
471260
3000
์ด๋ ‡๊ฒŒ ์›์ˆญ์ด ์‹œ์žฅ์ด ํƒ„์ƒํ–ˆ์—ˆ์Šต๋‹ˆ๋‹ค.
07:54
The way this works is that
196
474260
2000
์ด ์‹คํ—˜ ๋ฐฉ๋ฒ•์€
07:56
our monkeys normally live in a kind of big zoo social enclosure.
197
476260
3000
์›์ˆญ์ด๋“ค์ด ๋ณดํ†ต ๋™๋ฌผ์› ์ฒ ์žฅ์—์„œ ์‚ด์•„๊ฐ€๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
07:59
When they get a hankering for some treats,
198
479260
2000
๊ทธ๋“ค์ด ๊ฐˆ๋งํ•˜๋Š” ๋ช‡๋ช‡ ๋Œ€์šฐ๋ฅผ ๋ฐ›์•˜์„ ๋•Œ,
08:01
we actually allowed them a way out
199
481260
2000
์‹ค์ œ๋กœ ๊ทธ๋“ค์—๊ฒŒ ์‹œ์žฅ์— ๋“ค์–ด์˜ฌ ์ˆ˜์žˆ๋Š”
08:03
into a little smaller enclosure where they could enter the market.
200
483260
2000
์ข€ ๋” ์ž‘์€ ์ฒ ์žฅ์œผ๋กœ ๋“ค์–ด์˜ค๋Š” ๊ฒƒ์„ ํ—ˆ์šฉํ–ˆ์—ˆ์Šต๋‹ˆ๋‹ค.
08:05
Upon entering the market --
201
485260
2000
์‹œ์žฅ์— ์ž…์žฅํ•˜๋Š” ๊ฒƒ์€ --
08:07
it was actually a much more fun market for the monkeys than most human markets
202
487260
2000
์‹ค์ œ๋กœ ์ธ๊ฐ„์˜ ์‹œ์žฅ๋ณด๋‹ค ๊ทธ๋“ค์˜ ์‹œ์žฅ์ด ํ›จ์”ฌ ๋” ํฅ๋ฏธ๋กญ์Šต๋‹ˆ๋‹ค
08:09
because, as the monkeys entered the door of the market,
203
489260
3000
์™œ๋ƒํ•˜๋ฉด, ๊ทธ๋“ค์ด ์‹œ์žฅ ๋ฌธ์— ๋“ค์–ด์™”์„ ๋•Œ,
08:12
a human would give them a big wallet full of tokens
204
492260
2000
์‚ฌ๋žŒ๋“ค์€ ๊ทธ๋“ค์—๊ฒŒ ํฐ ํ† ํฐ ์ง€๊ฐ‘์„ ์ฃผ์—ˆ์Šต๋‹ˆ๋‹ค
08:14
so they could actually trade the tokens
205
494260
2000
๊ทธ๋ž˜์„œ ๊ทธ๋“ค์ด ์‹ค์ œ๋กœ ํ† ํฐ์„
08:16
with one of these two guys here --
206
496260
2000
์—ฌ๊ธฐ์žˆ๋Š” ๋‘ ๋ช… ์ค‘ ํ•œ ๋ช…๊ณผ ๊ฑฐ๋ž˜๋ฅผ ํ•  ์ˆ˜ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค --
08:18
two different possible human salesmen
207
498260
2000
๋‹ค๋ฅธ ๋‘ ๊ฐ€๋Šฅ์„ฑ์˜ ํŒ๋งค์›์€
08:20
that they could actually buy stuff from.
208
500260
2000
์›์ˆญ์ด๋“ค์ด ์‹ค์ œ๋กœ ๊ทธ๋“ค๋กœ๋ถ€ํ„ฐ ๋ฌผ๊ฑด์„ ์‚ด ์ˆ˜ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
08:22
The salesmen were students from my lab.
209
502260
2000
์ด ํŒ๋งค์›์€ ์ œ ์—ฐ๊ตฌ์†Œ์˜ ํ•™์ƒ์ž…๋‹ˆ๋‹ค.
08:24
They dressed differently; they were different people.
210
504260
2000
๊ทธ๋“ค์€ ๋‹ค๋ฅด๊ฒŒ ์˜ท์„ ์ž…์—ˆ๊ณ , ๋‹ค๋ฅธ ์‚ฌ๋žŒ์ž…๋‹ˆ๋‹ค.
08:26
And over time, they did basically the same thing
211
506260
3000
์‹œ๊ฐ„์ด ์ง€๋‚˜๊ณ , ๊ทธ๋“ค์€ ๊ธฐ๋ณธ์ ์œผ๋กœ ๊ฐ™์€ ํ–‰๋™์„ ํ–ˆ์Šต๋‹ˆ๋‹ค
08:29
so the monkeys could learn, you know,
212
509260
2000
๊ทธ๋ž˜์„œ ํ•™์Šตํ•  ์ˆ˜ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค, ์•Œ๋‹ค์‹œํ”ผ,
08:31
who sold what at what price -- you know, who was reliable, who wasn't, and so on.
213
511260
3000
๋ˆ„๊ฐ€ ์–ผ๋งˆ์— ํŒ”์ง€๋ฅผ ๋ง์ž…๋‹ˆ๋‹ค, ๋ˆ„๊ฐ€ ๋ฏฟ์Œ์งํ•œ์ง€, ์•„๋‹Œ์ง€ ๊ทธ๋ฆฌ๊ณ  ๊ธฐํƒ€ ๋“ฑ๋“ฑ.
08:34
And you can see that each of the experimenters
214
514260
2000
๊ฐ๊ฐ์˜ ์‹คํ—˜์ž๋ฅผ ๋ณด์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
08:36
is actually holding up a little, yellow food dish.
215
516260
3000
๊ทธ๋“ค์€ ์ž‘์€ ๋…ธ๋ฝ์ƒ‰ ์Œ์‹ ์ ‘์‹œ๋ฅผ ๋“ค๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
08:39
and that's what the monkey can for a single token.
216
519260
2000
๊ทธ๊ฒƒ์ด ํ•˜๋‚˜์˜ ํ† ํฐ์œผ๋กœ ๊ฑฐ๋ž˜ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
08:41
So everything costs one token,
217
521260
2000
๋ชจ๋“  ๊ฒƒ์ด ํ† ํฐ ํ•˜๋‚˜์˜ ๋น„์šฉ์ด ๋“ญ๋‹ˆ๋‹ค,
08:43
but as you can see, sometimes tokens buy more than others,
218
523260
2000
ํ•˜์ง€๋งŒ ๋ณด์‹œ๋Š” ๊ฒƒ์ฒ˜๋Ÿผ, ๋•Œ๋•Œ๋กœ ํ† ํฐ์€ ๋‹ค๋ฅธ ๊ฒƒ๋ณด๋‹ค๋Š”
08:45
sometimes more grapes than others.
219
525260
2000
ํฌ๋„๋ฅผ ๊ตฌ์ž…ํ•˜๋Š”๋ฐ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.
08:47
So I'll show you a quick video of what this marketplace actually looks like.
220
527260
3000
๊ทธ๋ž˜์„œ ์ด ์‹œ์žฅ์ด ์–ด๋–ค์ง€ ๋น ๋ฅธ ์˜์ƒ์„ ํ†ตํ•ด ๋ณด์—ฌ๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค.
08:50
Here's a monkey-eye-view. Monkeys are shorter, so it's a little short.
221
530260
3000
์—ฌ๊ธฐ ์›์ˆญ์ด์˜ ๊ด€์ ์ž…๋‹ˆ๋‹ค. ์›์ˆญ์ด๋“ค์€ ์ž‘์Šต๋‹ˆ๋‹ค, ๋งค์šฐ ์ž‘์ฃ .
08:53
But here's Honey.
222
533260
2000
์—ฌ๊ธฐ ํ—ˆ๋‹ˆ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
08:55
She's waiting for the market to open a little impatiently.
223
535260
2000
์–˜๋Š” ์ฐธ์„์„ฑ ์žˆ๊ฒŒ ์‹œ์žฅ์ด ์—ด๋ฆฌ๊ธฐ๋ฅผ ๊ธฐ๋‹ค๋ฆฌ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
08:57
All of a sudden the market opens. Here's her choice: one grapes or two grapes.
224
537260
3000
ํ•ญ์ƒ ๊ฐ‘์ž๊ธฐ ์‹œ์žฅ์„ ์—ด์—ˆ์Šต๋‹ˆ๋‹ค. ์—ฌ๊ธฐ ์„ ํƒ์ด ์žˆ์Šต๋‹ˆ๋‹ค: ํ•˜๋‚˜์˜ ํฌ๋„์†ก์ด์™€ ๋‘ ๊ฐœ์˜ ํฌ๋„์†ก์ด์ฃ .
09:00
You can see Honey, very good market economist,
225
540260
2000
๋งค์šฐ ํ›Œ๋ฅญํ•œ ๊ฒฝ์ œํ•™์ž ํ—ˆ๋‹ˆ๋ฅผ ๋ณด์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค,
09:02
goes with the guy who gives more.
226
542260
3000
๊ทธ๋…€๋Š” ์ข€ ๋” ์ฃผ๋Š” ์‚ฌ๋žŒ์—๊ฒŒ ๊ฐ‘๋‹ˆ๋‹ค.
09:05
She could teach our financial advisers a few things or two.
227
545260
2000
์›์ˆญ์ด๋Š” ์šฐ๋ฆฌ์˜ ์žฌ์ • ์กฐ์–ธ์ž๋“ค์—๊ฒŒ ๋ช‡ ๊ฐ€์ง€ ๊ฐ€๋ฅด์นจ์„ ์ค„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
09:07
So not just Honey,
228
547260
2000
๋‹จ์ง€ ํ—ˆ๋‹ˆ๋งŒ์ด ์•„๋‹ˆ๋ผ,
09:09
most of the monkeys went with guys who had more.
229
549260
3000
๋Œ€๋ถ€๋ถ„์˜ ์›์ˆญ์ด๋“ค์ด ์ข€ ๋” ๋งŽ์ด ์ฃผ๋Š” ์‚ฌ๋žŒ์—๊ฒŒ ๊ฐ‘๋‹ˆ๋‹ค.
09:12
Most of the monkeys went with guys who had better food.
230
552260
2000
๋Œ€๋ถ€๋ถ„์˜ ์›์ˆญ์ด๋“ค์€ ๋” ๊ดœ์ฐฎ์€ ์Œ์‹์„ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ์‚ฌ๋žŒ์—๊ฒŒ ๊ฐ‘๋‹ˆ๋‹ค.
09:14
When we introduced sales, we saw the monkeys paid attention to that.
231
554260
3000
ํŒ๋งค๋ฅผ ์†Œ๊ฐœํ•  ๋•Œ, ์›์ˆญ์ด๋“ค์ด ๊ทธ๊ฒƒ์— ์ง‘์ค‘ํ•˜๋Š” ๊ฒƒ์„ ๋ณด์•˜์Šต๋‹ˆ๋‹ค.
09:17
They really cared about their monkey token dollar.
232
557260
3000
์‹ค์ œ๋กœ ๊ทธ๋“ค์€ ํ† ํฐ์— ๊ด€ํ•ด ๋งŽ์€ ๊ด€์‹ฌ์„ ๊ฐ€์กŒ์—ˆ์Šต๋‹ˆ๋‹ค.
09:20
The more surprising thing was that when we collaborated with economists
233
560260
3000
๋” ๋†€๋ผ์šด ๊ฒƒ์€ ๊ฒฝ์ œํ•™์ž๋“ค๊ณผ ํ˜‘๋ ฅํ•ด ๊ฒฝ์ œ์  ๋„๊ตฌ๋ฅผ ์‚ฌ์šฉํ•˜๋Š”
09:23
to actually look at the monkeys' data using economic tools,
234
563260
3000
์›์ˆญ์ด์˜ ์ •๋ณด๋ฅผ ๋ฐ”๋ผ ๋ณด์•˜์„ ๋•Œ,
09:26
they basically matched, not just qualitatively,
235
566260
3000
๊ทธ๋“ค์€ ๊ธฐ๋ณธ์ ์œผ๋กœ ์•Œ๋งž์•˜์—ˆ์ฃ , ๋‹จ์ง€ ์งˆ์ ์ผ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ,
09:29
but quantitatively with what we saw
236
569260
2000
์–‘์ ์ธ ๋ถ€๋ถ„๋„ ๋งž์•˜์Šต๋‹ˆ๋‹ค, ์ด๋Š” ์‹ค์ œ
09:31
humans doing in a real market.
237
571260
2000
์šฐ๋ฆฌ๊ฐ€ ๋ณด๋Š” ์‹œ์žฅ์—์„œ์˜ ์ธ๊ฐ„ ํ™œ๋™๊ณผ ๊ฐ™์•˜์Šต๋‹ˆ๋‹ค.
09:33
So much so that, if you saw the monkeys' numbers,
238
573260
2000
์›์ˆญ์ด๋“ค์˜ ์ˆซ์ž๋ฅผ ๋ณด์•˜๋‹ค๋ฉด, ์—ฌ๋Ÿฌ๋ถ„์€ ๊ทธ๋“ค์ด
09:35
you couldn't tell whether they came from a monkey or a human in the same market.
239
575260
3000
์ธ๊ฐ„์˜ ์‹œ์žฅ์—์„œ ์™”๋Š”์ง€, ์›์ˆญ์ด ์‹œ์žฅ์—์„œ ์™”๋Š”์ง€ ๋งํ•  ์ˆ˜ ์—†์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
09:38
And what we'd really thought we'd done
240
578260
2000
์šฐ๋ฆฌ๊ฐ€ ์ƒ๊ฐํ•œ ๊ฒฐ๊ณผ๋Š”
09:40
is like we'd actually introduced something
241
580260
2000
์‹ค์ œ๋กœ ์šฐ๋ฆฌ๊ฐ€ ์ ์–ด๋„ ์›์ˆญ์ด์™€ ์ธ๊ฐ„์—๊ฒŒ
09:42
that, at least for the monkeys and us,
242
582260
2000
์‹ค์ œ ํ™”ํ์ฒ˜๋Ÿผ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์„
09:44
works like a real financial currency.
243
584260
2000
์†Œ๊ฐœ์‹œ์ผœ ์ฃผ๋Š” ๊ฒƒ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค.
09:46
Question is: do the monkeys start messing up in the same ways we do?
244
586260
3000
์งˆ๋ฌธ์€: ๊ทธ๋“ค์ด ์šฐ๋ฆฌ๊ฐ€ ์ฒ˜ํ•œ ๊ฐ™์€ ์ƒํ™ฉ์—์„œ๋„ ํ˜ผ๋ž€์Šค๋Ÿฌ์›Œ ํ• ๊นŒ์š”?
09:49
Well, we already saw anecdotally a couple of signs that they might.
245
589260
3000
์Œ, ์šฐ๋ฆฌ๋Š” ์ด๋ฏธ ๊ทธ๋“ค์ด ์ง์ž‘ํ•˜๋Š” ๋‘ ๊ฐ€์ง€ ์‹ ํ˜ธ์„ ๋ณด์•˜์Šต๋‹ˆ๋‹ค.
09:52
One thing we never saw in the monkey marketplace
246
592260
2000
์›์ˆญ์ด ์‹œ์žฅ์—์„œ ์šฐ๋ฆฌ๊ฐ€ ๋ณด์ง€ ๋ชปํ•œ ํ•˜๋‚˜๋Š”
09:54
was any evidence of saving --
247
594260
2000
์ €์žฅ์˜ ์ฆ๊ฑฐ์ž…๋‹ˆ๋‹ค --
09:56
you know, just like our own species.
248
596260
2000
์•Œ๋‹ค์‹œํ”ผ, ์ธ๊ฐ„๊ณผ ๊ฐ™์ฃ .
09:58
The monkeys entered the market, spent their entire budget
249
598260
2000
์›์ˆญ์ด๋“ค์€ ์‹œ์žฅ์œผ๋กœ ๋“ค์–ด์™€์„œ, ๊ทธ๋“ค์˜ ์ „ ์ž์‚ฐ์„ ์†Œ๋น„ํ•˜๊ณ 
10:00
and then went back to everyone else.
250
600260
2000
๊ทธ ๋ฐ–์— ์žˆ๋Š” ๋ชจ๋‘์—๊ฒŒ ๋Œ์•„๊ฐ”์Šต๋‹ˆ๋‹ค.
10:02
The other thing we also spontaneously saw,
251
602260
2000
์šฐ๋ฆฌ๊ฐ€ ๋ณธ ๋‹ค๋ฅธ ํ•˜๋‚˜๋Š”,
10:04
embarrassingly enough,
252
604260
2000
์ž๋ฐœ์ ์ธ ๋ฒ”์ฃ„์˜ ์ฆ๊ฑฐ๊ฐ€,
10:06
is spontaneous evidence of larceny.
253
606260
2000
์ฐฝํ”ผํ•˜๊ฒŒ๋„ ์ถฉ๋ถ„ํ•˜๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
10:08
The monkeys would rip-off the tokens at every available opportunity --
254
608260
3000
๊ทธ๋“ค์€ ํ† ํฐ์„ ๋ชจ๋‘ ๋ฒ—๊ฒจ ๋ƒˆ์Šต๋‹ˆ๋‹ค, ๋งค์šฐ ์ ์ ˆํ•œ ๊ธฐํšŒ์— ๋ง์ž…๋‹ˆ๋‹ค --
10:11
from each other, often from us --
255
611260
2000
๊ฐ๊ฐ, ์ข…์ข… ์šฐ๋ฆฌ๋กœ๋ถ€ํ„ฐ ์˜ค๋Š” ๊ธฐํšŒ --
10:13
you know, things we didn't necessarily think we were introducing,
256
613260
2000
์•Œ๋‹ค์‹œํ”ผ, ์†Œ๊ฐœํ•˜๋Š” ๊ฒƒ์„ ํ•„์ˆ˜์ ์œผ๋กœ ์ƒ๊ฐํ•˜์ง€๋Š” ์•Š์•˜์Šต๋‹ˆ๋‹ค,
10:15
but things we spontaneously saw.
257
615260
2000
ํ•˜์ง€๋งŒ ์šฐ๋ฆฌ๋Š” ์ž๋ฐœ์ ์œผ๋กœ ๊ด€์ฐฐํ–ˆ์Šต๋‹ˆ๋‹ค.
10:17
So we said, this looks bad.
258
617260
2000
๊ทธ๋ž˜์„œ ๋‚˜์˜๊ฒŒ ๋ณด์ธ๋‹ค๊ณ  ๋‹ตํ–ˆ์ฃ .
10:19
Can we actually see if the monkeys
259
619260
2000
์‹ค์ œ๋กœ ๊ทธ๋“ค์ด ์ธ๊ฐ„์ด ํ•˜๋Š” ๊ฒƒ์ฒ˜๋Ÿผ
10:21
are doing exactly the same dumb things as humans do?
260
621260
3000
๋ฐ”๋ณด ๊ฐ™์€ ์˜ค๋ฅ˜๋ฅผ ๋ฒ”ํ•˜๋Š” ๊ฒƒ์„ ๊ด€์ฐฐ ํ•  ์ˆ˜ ์žˆ์„๊นŒ์š”?
10:24
One possibility is just kind of let
261
624260
2000
ํ•˜๋‚˜์˜ ๊ฐ€๋Šฅ์„ฑ์€ ๊ทธ๋“ค์—๊ฒŒ
10:26
the monkey financial system play out,
262
626260
2000
์žฌ์ • ์‹œ์Šคํ…œ์ด ์ €์ ˆ๋กœ ์ž‘๋™ํ•˜๊ฒŒ ๋†”๋‘๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
10:28
you know, see if they start calling us for bailouts in a few years.
263
628260
2000
๋ช‡ ๋…„ ์•ˆ์— ๊ทธ๋“ค์ด ์šฐ๋ฆฌ๋ฅผ ๋ถˆ๋Ÿฌ ๊ตฌ์ œํ•ด๋‹ฌ๋ผ๊ณ  ํ•˜๋Š”์ง€ ๋ณด๋Š”๊ฑฐ์ฃ .
10:30
We were a little impatient so we wanted
264
630260
2000
์šฐ๋ฆฌ๋Š” ์ฐธ์„์„ฑ์ด ์—†์—ˆ์Šค๋นˆ๋‹ค. ๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ๋Š”
10:32
to sort of speed things up a bit.
265
632260
2000
์—ฐ๊ตฌ์˜ ์†๋„๋ฅผ ์˜ฌ๋ฆฌ๊ธฐ๋ฅผ ์›ํ–ˆ์Šต๋‹ˆ๋‹ค.
10:34
So we said, let's actually give the monkeys
266
634260
2000
๊ทธ๋ž˜์„œ ์‹ค์ œ๋กœ ๊ทธ๋“ค์—๊ฒŒ ๊ฐ™์€ ์ƒํ™ฉ์„
10:36
the same kinds of problems
267
636260
2000
์ฃผ๊ธฐ๋กœ ๊ฒฐ์ •ํ–ˆ์Šต๋‹ˆ๋‹ค
10:38
that humans tend to get wrong
268
638260
2000
์‚ฌ๋žŒ๋“ค์€ ๋ถ„๋ช…ํ•˜๊ฒŒ ๊ฒฝ์ œ์  ๋„์ „,
10:40
in certain kinds of economic challenges,
269
640260
2000
๊ฒฝ์ œ์  ์‹คํ—˜์— ์ฒ˜ํ•  ๋•Œ
10:42
or certain kinds of economic experiments.
270
642260
2000
์‹ค์ˆ˜ํ•˜๋Š” ๊ฒฝํ–ฅ์ด ์žˆ์Šต๋‹ˆ๋‹ค.
10:44
And so, since the best way to see how people go wrong
271
644260
3000
๊ทธ๋ž˜์„œ ์–ด๋–ป๊ฒŒ ์‚ฌ๋žŒ๋“ค์ด ์‹ค์ˆ˜ํ•˜๋Š”์ง€ ๊ด€์ฐฐํ•˜๋Š” ๊ฐ€์žฅ ์ข‹์€ ๋ฐฉ๋ฒ•์€
10:47
is to actually do it yourself,
272
647260
2000
์‹ค์ œ๋กœ ์Šค์Šค๋กœ ํ•ด๋ณด๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค,
10:49
I'm going to give you guys a quick experiment
273
649260
2000
์—ฌ๋Ÿฌ๋ถ„๊ป˜ ๋น ๋ฅธ ์‹คํ—˜์„ ๋ณด์—ฌ๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค
10:51
to sort of watch your own financial intuitions in action.
274
651260
2000
์—ฌ๋Ÿฌ๋ถ„ ์Šค์Šค๋กœ์˜ ์žฌ์ • ์ง๊ด€ ํ–‰๋™์„ ๊ด€์ฐฐํ•˜๊ธฐ ์œ„ํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
10:53
So imagine that right now
275
653260
2000
์ง€๊ธˆ ๋‹น์žฅ ์ œ๊ฐ€
10:55
I handed each and every one of you
276
655260
2000
์—ฌ๋Ÿฌ๋ถ„์—๊ฒŒ ๊ฐ๊ฐ $1,000๋ฅผ ๊ฑด๋‚ด์—ˆ๋‹ค๊ณ 
10:57
a thousand U.S. dollars -- so 10 crisp hundred dollar bills.
277
657260
3000
์ƒ์ƒ ํ•ด๋ณด์„ธ์š” -- ๋ง‰ ๋‚˜์˜จ 10์žฅ์˜ 100๋‹ฌ๋Ÿฌ ์ง€ํ์ž…๋‹ˆ๋‹ค.
11:00
Take these, put it in your wallet
278
660260
2000
์ด๊ฒƒ์„ ์ง‘์–ด, ์ง€๊ฐ‘์— ๋„ฃ๊ณ 
11:02
and spend a second thinking about what you're going to do with it.
279
662260
2000
์ด ๋ˆ์œผ๋กœ ๋ฌด์—‡์„ ํ• ์ง€ ์ž ์‹œ ์ƒ๊ฐํ•ด๋ณด์„ธ์š”.
11:04
Because it's yours now; you can buy whatever you want.
280
664260
2000
๋ˆ์€ ์ด์ œ ์—ฌ๋Ÿฌ๋ถ„ ๊ฒƒ์ด๋ฉฐ, ์›ํ•˜๋Š” ๋ชจ๋“  ๊ฒƒ์„ ๊ตฌ์ž…ํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
11:06
Donate it, take it, and so on.
281
666260
2000
๊ธฐ์ฆํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๊ฐ€์งˆ ์ˆ˜ ์žˆ์ฃ , ๊ธฐํƒ€ ๋“ฑ๋“ฑ.
11:08
Sounds great, but you get one more choice to earn a little bit more money.
282
668260
3000
ํ›Œ๋ฅญํ•˜์ฃ , ํ•˜์ง€๋งŒ ์ข€ ๋” ๋งŽ์€ ๋ˆ์„ ๋ฒŒ๊ธฐ ์œ„ํ•ด ์„ ํƒ์„ ํ•ฉ๋‹ˆ๋‹ค.
11:11
And here's your choice: you can either be risky,
283
671260
3000
๊ทธ๋ฆฌ๊ณ  ์—ฌ๊ธฐ ์„ ํƒ์ด ์žˆ์Šต๋‹ˆ๋‹ค: ์œ„ํ—˜ํ•ด์งˆ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค,
11:14
in which case I'm going to flip one of these monkey tokens.
284
674260
2000
์ œ๊ฐ€ ์›์ˆญ์ด ํ† ํฐ ์ค‘ ํ•˜๋‚˜๋ฅผ ํŠ€๊ฒผ์„ ๋•Œ ๋ง์ด์ฃ .
11:16
If it comes up heads, you're going to get a thousand dollars more.
285
676260
2000
์•ž๋ฉด์ด ๋‚˜์˜จ๋‹ค๋ฉด $1,000๋ฅผ ์–ป๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
11:18
If it comes up tails, you get nothing.
286
678260
2000
๋’ค๊ฐ€ ๋‚˜์˜จ๋‹ค๋ฉด, ์•„๋ฌด๊ฒƒ๋„ ์–ป์ง€ ๋ชปํ•˜์ฃ .
11:20
So it's a chance to get more, but it's pretty risky.
287
680260
3000
๋ˆ์„ ๋” ๋ฒŒ์ˆ˜ ์žˆ๋Š” ์ฐฌ์Šค์ž…๋‹ˆ๋‹ค, ํ•˜์ง€๋งŒ ๊ฝค ์œ„ํ—˜ํ•ฉ๋‹ˆ๋‹ค.
11:23
Your other option is a bit safe. Your just going to get some money for sure.
288
683260
3000
๋‹ค๋ฅธ ์‚ฌํ•ญ์€ ์กฐ๊ธˆ ์•ˆ์ „ํ•ฉ๋‹ˆ๋‹ค. ๋‹จ์ง€ ๋ถ„๋ช…ํ•˜๊ฒŒ ๊ฐ™์€ ๊ธˆ์•ก์„ ์–ป๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
11:26
I'm just going to give you 500 bucks.
289
686260
2000
์—ฌ๋Ÿฌ๋ถ„๊ป˜ $500๋ฅผ ๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค.
11:28
You can stick it in your wallet and use it immediately.
290
688260
3000
์ง€๊ฐ‘์— ๋„ฃ์œผ์‹ค ์ˆ˜ ์žˆ๊ณ , ๋ฐ”๋กœ ์‚ฌ์šฉํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
11:31
So see what your intuition is here.
291
691260
2000
์—ฌ๋Ÿฌ๋ถ„์˜ ์ง๊ด€์ด ๋ฌด์—‡์ธ์ง€ ๋ณด์„ธ์š”.
11:33
Most people actually go with the play-it-safe option.
292
693260
3000
๋Œ€๋ถ€๋ถ„์˜ ์‚ฌ๋žŒ๋“ค์ด ์‹ค์ œ๋กœ ์•ˆ์ „ํ•œ ์‚ฌํ•ญ์„ ์„ ํƒํ•ฉ๋‹ˆ๋‹ค.
11:36
Most people say, why should I be risky when I can get 1,500 dollars for sure?
293
696260
3000
๊ทธ๋ฆฌ๊ณ  ๋งํ•˜์ฃ , 1,500$๋ฅผ ํ™•์‹คํžˆ ์–ป์„ ๋•Œ ์™œ ์ œ๊ฐ€ ์œ„ํ—˜์„ ๊ฐ์ˆ˜ํ•ด์•ผ ํ•ฉ๋‹ˆ๊นŒ?
11:39
This seems like a good bet. I'm going to go with that.
294
699260
2000
์ข‹์€ ๋‚ด๊ธฐ์ฒ˜๋Ÿผ ๋ณด์ด๋„ค์š”. ๊ทธ๊ฒƒ์œผ๋กœ ํ•˜์ฃ .
11:41
You might say, eh, that's not really irrational.
295
701260
2000
์•„๋งˆ๋„ ์—ฌ๋Ÿฌ๋ถ„๊ป˜์„œ, "๊ทธ๊ฑด ๊ทธ๋ฆฌ ๋น„ํ•ฉ๋ฆฌ์ ์ด์ง€ ์•Š๋„ค์š”"๋ผ๊ณ  ๋งํ•˜์‹ค์ง€ ๋ชจ๋ฆ…๋‹ˆ๋‹ค.
11:43
People are a little risk-averse. So what?
296
703260
2000
์‚ฌ๋žŒ๋“ค์€ ๋Œ€๋ถ€๋ถ„ ์œ„ํ—˜ ๊ฐ์ˆ˜๋ฅผ ์กฐ๊ธˆ ์‹ซ์–ดํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋ž˜์„œ์š”?
11:45
Well, the "so what?" comes when start thinking
297
705260
2000
์Œ, ์ƒ๊ด€ ์—†๋‹ค๋Š” ๊ฒƒ์€ ์•ฝ๊ฐ์˜ ๋ณ€ํ™”๋ฅผ ์ค€
11:47
about the same problem
298
707260
2000
๊ฐ™์€ ๋ฌธ์ œ์— ๋Œ€ํ•ด
11:49
set up just a little bit differently.
299
709260
2000
์ƒ๊ฐํ•˜๊ธฐ ์‹œ์ž‘ํ•  ๋•Œ ์˜ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
11:51
So now imagine that I give each and every one of you
300
711260
2000
๊ทธ๋ž˜์„œ ์ง€๊ธˆ ์ œ๊ฐ€ ์—ฌ๋Ÿฌ๋ถ„์—๊ฒŒ ๊ฐœ๋ณ„์ ์œผ๋กœ $2,000๋ฅผ
11:53
2,000 dollars -- 20 crisp hundred dollar bills.
301
713260
3000
์ค€๋‹ค๊ณ  ์ƒ์ƒํ•˜์„ธ์š” -- ๋ง‰ ๋‚˜์˜จ $100 20์žฅ์ด์ฃ .
11:56
Now you can buy double to stuff you were going to get before.
302
716260
2000
์ด์ œ ์ „์— ์—ฌ๋Ÿฌ๋ถ„๊ผ์„œ ์–ป์—ˆ๋˜ ๊ฒƒ์„ ๋‘ ๊ฐœ๋‚˜ ๊ตฌ์ž…ํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
11:58
Think about how you'd feel sticking it in your wallet.
303
718260
2000
์ง€๊ฐ‘์— ๋„ฃ์—ˆ์„ ๋•Œ ์–ด๋–ค ๊ธฐ๋ถ„์ด ๋“œ๋Š”์ง€ ์ƒ๊ฐํ•˜์„ธ์š”.
12:00
And now imagine that I have you make another choice
304
720260
2000
๊ทธ๋ฆฌ๊ณ  ์ œ๊ฐ€ ๋‹ค๋ฅธ ์„ ํƒ์„ ๊ถŒํ•˜๋Š” ๊ฒƒ์„ ์ƒ์ƒํ•˜์„ธ์š”
12:02
But this time, it's a little bit worse.
305
722260
2000
ํ•˜์ง€๋งŒ ์ด๋ฒˆ์—๋Š”, ์•ฝ๊ฐ„ ์ข€ ๋” ๋‚˜์˜์ฃ .
12:04
Now, you're going to be deciding how you're going to lose money,
306
724260
3000
์ด์ œ, ์–ด๋–ป๊ฒŒ ๋ˆ์„ ์žƒ๊ฒŒ ๋˜๋Š”์ง€ ๊ฒฐ์ •ํ•˜์‹œ๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค, ํ•˜์ง€๋งŒ
12:07
but you're going to get the same choice.
307
727260
2000
๊ฐ™์€ ๋ˆ์„ ์–ป๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
12:09
You can either take a risky loss --
308
729260
2000
๋ˆ์„ ์žƒ๊ฒŒ ๋˜๋Š” ์œ„ํ—˜์„ ๊ฐ€์งˆ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค --
12:11
so I'll flip a coin. If it comes up heads, you're going to actually lose a lot.
309
731260
3000
๊ทธ๋ž˜์„œ ๋™์ „์„ ๋˜์ง€๊ฒ ์Šต๋‹ˆ๋‹ค. ์•ž๋ฉด์ด ๋‚˜์˜ค๋ฉด, ๋งŽ์€ ๋ˆ์„ ์žƒ๊ฒŒ ๋ ๊ฒ๋‹ˆ๋‹ค.
12:14
If it comes up tails, you lose nothing, you're fine, get to keep the whole thing --
310
734260
3000
๋’ท๋ฉด์ด ๋‚˜์˜ค๋‹ค๋ฉด, ์•„๋ฌด ๊ฒƒ๋„ ์žƒ์ง€ ์•Š์Šต๋‹ˆ๋‹ค, ๋ˆ์„ ๋ชจ๋‘ ๊ฐ–๊ฒŒ ๋ฉ๋‹ˆ๋‹ค --
12:17
or you could play it safe, which means you have to reach back into your wallet
311
737260
3000
ํ˜น์€ ์•ˆ์ „ํ•˜๊ฒŒ ํ•˜์‹ค ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค ์ฆ‰, ์ง€๊ฐ‘์—์„œ ๋‹ค์‹œ $500๋ฅผ
12:20
and give me five of those $100 bills, for certain.
312
740260
3000
์ €์—๊ฒŒ ์ฃผ์–ด์•ผ๋งŒ ํ•ฉ๋‹ˆ๋‹ค. ์•ˆ์ „ํ•˜๊ฒŒ ํ•˜๊ธฐ ์œ„ํ•ด์„œ์ฃ .
12:23
And I'm seeing a lot of furrowed brows out there.
313
743260
3000
๊ณณ๊ณณ์— ์ฐก๊ทธ๋ฆฌ๋Š” ํ‘œ์ •์ด ๋ณด์ด๋„ค์š”.
12:26
So maybe you're having the same intuitions
314
746260
2000
์•„๋งˆ๋„ ์—ฌ๋Ÿฌ๋ถ„๊ป˜์„œ ๊ฐ™์€ ์ง๊ด€์„ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค
12:28
as the subjects that were actually tested in this,
315
748260
2000
์ง๊ฐ์œผ๋กœ ๊ฒ€์ฆ๋œ ์š”์ธ์ž…๋‹ˆ๋‹ค,
12:30
which is when presented with these options,
316
750260
2000
์ด๊ฒƒ์€ ์ด ์‚ฌํ•ญ๋“ค๊ณผ ์‹œ์—ฐ๋˜์—ˆ์„ ๋•Œ,
12:32
people don't choose to play it safe.
317
752260
2000
์‚ฌ๋žŒ๋“ค์€ ์•ˆ์ „ํ•˜๊ฒŒ ์„ ํƒํ•˜์ง€ ๋ชปํ•ฉ๋‹ˆ๋‹ค.
12:34
They actually tend to go a little risky.
318
754260
2000
๊ทธ๋“ค์€ ์‹ค์ œ๋กœ ์œ„ํ—˜์„ ์ˆ˜๋ฐ˜ํ•˜๋Š” ๊ฒฝํ–ฅ์ด ์žˆ์Šต๋‹ˆ๋‹ค.
12:36
The reason this is irrational is that we've given people in both situations
319
756260
3000
๋ถˆํ•ฉ๋ฆฌํ•œ ์ด์œ ๋Š” ์šฐ๋ฆฌ๊ฐ€ ์‚ฌ๋žŒ๋“ค์—๊ฒŒ ๋‘ ์ƒํ™ฉ์—์„œ ๊ฐ™์€ ์„ ํƒ์„
12:39
the same choice.
320
759260
2000
์ฃผ์—ˆ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
12:41
It's a 50/50 shot of a thousand or 2,000,
321
761260
3000
์ด๊ฒƒ์€ 50% ๋Œ€ 50%, 1,000๋‹ฌ๋Ÿฌ ํ˜น์€ 2,000๋‹ฌ๋Ÿฌ,
12:44
or just 1,500 dollars with certainty.
322
764260
2000
ํ˜น์€ 1,500$๋Š” ํ™•์‹คํžˆ ์–ป๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค..
12:46
But people's intuitions about how much risk to take
323
766260
3000
ํ•˜์ง€๋งŒ ์–ผ๋งˆ๋‚˜ ๋งŽ์€ ์œ„ํ—˜์„ ๊ฐ์ˆ˜ํ•˜๋Š”์ง€์— ๊ด€ํ•œ ์ง๊ด€์€
12:49
varies depending on where they started with.
324
769260
2000
๋‹ค์–‘ํ•˜๋ฉฐ ์–ด๋””์„œ ์‹œ์ž‘ํ•˜๋А๋ƒ์— ๋‹ฌ๋ ค์žˆ์Šต๋‹ˆ๋‹ค.
12:51
So what's going on?
325
771260
2000
์–ด๋–ป๊ฒŒ ์ง„ํ–‰๋˜๋Š”๊ฑธ๊นŒ์š”?
12:53
Well, it turns out that this seems to be the result
326
773260
2000
์šฐ๋ฆฌ๊ฐ€ ๊ฐ–๊ณ  ์žˆ๋Š” ์‹ฌ๋ฆฌ์  ์ˆ˜์ค€์—์„œ์˜ ์ ์–ด๋„
12:55
of at least two biases that we have at the psychological level.
327
775260
3000
2๊ฐœ์˜ ํŽธ๊ฒฌ์— ์˜ํ•œ ๊ฒฐ๊ณผ๋กœ ํŒ๋ช…๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
12:58
One is that we have a really hard time thinking in absolute terms.
328
778260
3000
ํ•˜๋‚˜๋Š” ์‹ค์ œ๋กœ ์ ˆ๋Œ€์ ์ธ ์กฐ๊ฑด๋“ค๋กœ์„œ ์ƒ๊ฐํ•˜๋Š”๋ฐ ์–ด๋ ค์›€์„ ๊ฒช์Šต๋‹ˆ๋‹ค.
13:01
You really have to do work to figure out,
329
781260
2000
์™„์ „ํžˆ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋…ธ๋ ฅ์„ ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
13:03
well, one option's a thousand, 2,000;
330
783260
2000
์Œ, ํ•˜๋‚˜์˜ ์˜ต์…˜์€ 2,000;
13:05
one is 1,500.
331
785260
2000
ํ•˜๋‚˜๋Š” 1,500.
13:07
Instead, we find it very easy to think in very relative terms
332
787260
3000
๋Œ€์‹ ์—, ์šฐ๋ฆฌ๋Š” ๊ด€๋ จ ๊ธฐ๊ฐ„์— ์‰ฝ๊ฒŒ ์ƒ๊ฐํ•˜๋Š” ๋ฒ•์„ ์ฐพ์•˜์Šต๋‹ˆ๋‹ค
13:10
as options change from one time to another.
333
790260
3000
์‚ฌํ•ญ์ด ํ•˜๋‚˜์—์„œ ๋‹ค๋ฅธ ๊ฒƒ์œผ๋กœ ๋ฐ”๋€” ๋•Œ ๋ง์ž…๋‹ˆ๋‹ค.
13:13
So we think of things as, "Oh, I'm going to get more," or "Oh, I'm going to get less."
334
793260
3000
๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ๋Š” ์ด๊ฒƒ์„, "์ข€ ๋” ์–ป์„๊ฑฐ์•ผ, ํ˜น์€ "์ ๊ฒŒ ์–ป์„ ๊ฑฐ์•ผ"๋ผ๊ณ  ์ƒ๊ฐํ–ˆ์Šต๋‹ˆ๋‹ค.
13:16
This is all well and good, except that
335
796260
2000
๋ชจ๋“  ๊ฒƒ์ด ๊ดœ์ฐฎ๊ณ  ์ข‹์•˜์Šต๋‹ˆ๋‹ค, ์˜ˆ์™ธ๊ฐ€ ์žˆ๋‹ค๋ฉด
13:18
changes in different directions
336
798260
2000
๋‹ค๋ฅธ ๋ฐฉํ–ฅ์—์„œ์˜ ๋ณ€ํ™”๊ฐ€ ์‹ค์ œ๋กœ
13:20
actually effect whether or not we think
337
800260
2000
์šฐ๋ฆฌ๊ฐ€ ์ƒ๊ฐํ•˜๋Š” ์‚ฌํ•ญ์˜ ์„ ํ˜ธ๋„์—
13:22
options are good or not.
338
802260
2000
์˜ํ–ฅ์„ ๋ฏธ์ณค์Šต๋‹ˆ๋‹ค.
13:24
And this leads to the second bias,
339
804260
2000
๊ทธ๋ฆฌ๊ณ  ์ด ์‚ฌ์‹ค์€ ๋‘๋ฒˆ์งธ๋กœ ์ด๋•๋‹ˆ๋‹ค,
13:26
which economists have called loss aversion.
340
806260
2000
๊ฒฝ์ œํ•™์ž๋“ค์ด ์†์‹ค ๊ธฐํ”ผ๋ผ๊ณ  ํ•˜๋Š” ๊ฒƒ์ด์ฃ .
13:28
The idea is that we really hate it when things go into the red.
341
808260
3000
์ด ์•„์ด๋””์–ด๋Š” ์šฐ๋ฆฌ๊ฐ€ ์ƒํ™ฉ์ด ์•ˆ ์ข‹์•„์งˆ ๋•Œ, ์†์‹ค์„ ์ •๋ง๋กœ ์‹ซ์–ดํ•œ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
13:31
We really hate it when we have to lose out on some money.
342
811260
2000
์šฐ๋ฆฌ๋Š” ๋ˆ์„ ์žƒ์—ˆ์„ ๋•Œ ์ •๋ง๋กœ ๊ทธ ์ƒํ™ฉ์„ ์‹ซ์–ดํ•ฉ๋‹ˆ๋‹ค.
13:33
And this means that sometimes we'll actually
343
813260
2000
์ฆ‰ ์šฐ๋ฆฌ๋Š” ๋•Œ๋•Œ๋กœ ์ด๊ฒƒ์„ ํšŒํ”ผํ•˜๊ธฐ ์œ„ํ•ด
13:35
switch our preferences to avoid this.
344
815260
2000
์‹ค์ œ๋กœ ์šฐ๋ฆฌ์˜ ์„ ํ˜ธํ•˜๋Š” ๊ฒƒ๋“ค์„ ๋ฐ”๊ฟ‰๋‹ˆ๋‹ค.
13:37
What you saw in that last scenario is that
345
817260
2000
์ด ๋งˆ์ง€๋ง‰ ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ ๋ณด์‹  ๊ฒƒ์€
13:39
subjects get risky
346
819260
2000
์œ„ํ—˜์˜ ์ˆ˜๋ฐ˜์ž…๋‹ˆ๋‹ค
13:41
because they want the small shot that there won't be any loss.
347
821260
3000
์™œ๋ƒํ•˜๋ฉด ์†์‹ค์ด ๋˜์ง€ ์•Š๋Š” ์ž‘์€ ์ฃผ์‚ฌ๋ฅผ ์›ํ•˜๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
13:44
That means when we're in a risk mindset --
348
824260
2000
์ด ๋ง์€ ์šฐ๋ฆฌ๊ฐ€ ์œ„ํ—˜ ํ•œ ๊ฐ€์šด๋ฐ ์žˆ์„ ๋•Œ--
13:46
excuse me, when we're in a loss mindset,
349
826260
2000
์‹ค๋ก€ํ•ฉ๋‹ˆ๋‹ค, ์šฐ๋ฆฌ๊ฐ€ ์œ„ํ—˜ ํ•œ ๊ฐ€์šด๋ฐ์— ์žˆ์„ ๋•Œ,
13:48
we actually become more risky,
350
828260
2000
์šฐ๋ฆฌ๋ฅผ ์ข€ ๋” ๊ฑฑ์ • ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š”
13:50
which can actually be really worrying.
351
830260
2000
์œ„ํ—˜์— ์ฒ˜ํ•ด์ง„๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
13:52
These kinds of things play out in lots of bad ways in humans.
352
832260
3000
์ด๋Ÿฐํ•œ ๊ฒƒ๋“ค์€ ์ธ๊ฐ„์˜ ๋‚˜์œ ๋ฐฉ๋ฒ•์„ ์†Œ์ง„์‹œํ‚ต๋‹ˆ๋‹ค.
13:55
They're why stock investors hold onto losing stocks longer --
353
835260
3000
๊ทธ๊ฒƒ๋“ค์€ ์ฃผ์‹ ํˆฌ์ž์ž๋“ค์ด ์™œ ์†์‹ค์„ ์˜ค๋žซ๋™์•ˆ ๊ฐ€์ง€๊ณ  ์žˆ๋Š”์ง€์˜ ์ด์œ ์ž…๋‹ˆ๋‹ค --
13:58
because they're evaluating them in relative terms.
354
838260
2000
์™œ๋ƒํ•˜๋ฉด ๊ทธ๋“ค์€ ๊ทธ๊ฒƒ๋“ค์„ ์ƒ๋Œ€์ ์ธ ๊ธฐ๊ฐ„์œผ๋กœ ํ‰๊ฐ€๋ฅผ ํ•˜๊ณ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
14:00
They're why people in the housing market refused to sell their house --
355
840260
2000
๊ทธ๊ฒƒ๋“ค์€ ์ฃผํƒ ์‹œ์žฅ์— ์žˆ๋Š” ์‚ฌ๋žŒ๋“ค์ด ์™œ ๊ทธ๋“ค์˜ ์ง‘ ํŒ๋งค๋ฅผ ๊ฑฐ์ ˆํ•˜๋Š” ์ด์œ ์ž…๋‹ˆ๋‹ค --
14:02
because they don't want to sell at a loss.
356
842260
2000
๊ทธ๋“ค์€ ๋‚ฎ์€ ๊ฐ€๊ฒฉ์— ํŒ”๊ณ  ์‹ถ์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
14:04
The question we were interested in
357
844260
2000
์šฐ๋ฆฌ๊ฐ€ ํฅ๋ฏธ๋ฅผ ๊ฐ€์ง„ ์งˆ๋ฌธ์€ ์›์ˆญ์ด๋“ค์ด
14:06
is whether the monkeys show the same biases.
358
846260
2000
๊ฐ™์€ ๊ด€์ ์„ ๋ณด์—ฌ ์ฃผ๋Š”์ง€ ์˜€์Šต๋‹ˆ๋‹ค.
14:08
If we set up those same scenarios in our little monkey market,
359
848260
3000
์ž‘์€ ์›์ˆญ์ด ์‹œ์žฅ์— ๊ฐ™์€ ์‹œ๋‚˜๋ฆฌ์˜ค๋Š” ๋งŒ๋“ ๋‹ค๋ฉด,
14:11
would they do the same thing as people?
360
851260
2000
๊ทธ๋“ค์ด ์‚ฌ๋žŒ์ฒ˜๋Ÿผ ๊ฐ™์€ ๋ฐ˜์‘์„ ๋ณด์ผ๊นŒ์š”?
14:13
And so this is what we did, we gave the monkeys choices
361
853260
2000
๊ทธ๋ž˜์„œ ์ด๊ฒƒ์ด ์šฐ๋ฆฌ๊ฐ€ ํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค, ๊ทธ๋“ค์—๊ฒŒ ์„ ํƒ์„ ์ฃผ์—ˆ์Šต๋‹ˆ๋‹ค
14:15
between guys who were safe -- they did the same thing every time --
362
855260
3000
์•ˆ์ „ํ•œ ์‚ฌ๋žŒ๊ณผ -- ๊ทธ๋“ค์€ ๋งค์ผ ๊ฐ™์€ ๋ฐ˜์‘์„ ํ•ฉ๋‹ˆ๋‹ค --
14:18
or guys who were risky --
363
858260
2000
์œ„ํ—˜์„ ์ˆ˜๋ฐ˜ํ•œ ์‚ฌ๋žŒ์‚ฌ์ด์—์„œ ๋ง์ž…๋‹ˆ๋‹ค
14:20
they did things differently half the time.
364
860260
2000
-- ๊ทธ๋“ค์€ ๋ฐ˜์€ ๋‹ค๋ฅธ ํ–‰๋™์„ ํ•ฉ๋‹ˆ๋‹ค --
14:22
And then we gave them options that were bonuses --
365
862260
2000
๊ทธ๋ฆฌ๊ณ  ๊ทธ๋“ค์—๊ฒŒ ๋ณด๋„ˆ์Šค ์˜ต์…˜์„ ์ฃผ์—ˆ์Šต๋‹ˆ๋‹ค --
14:24
like you guys did in the first scenario --
366
864260
2000
์ฒซ ๋ฒˆ์งธ ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ ์—ฌ๋Ÿฌ๋ถ„์ด ํ–ˆ๋˜ ๊ฒƒ์ฒ˜๋Ÿผ ๋ง์ด์ฃ  --
14:26
so they actually have a chance more,
367
866260
2000
๊ทธ๋ž˜์„œ ๊ทธ๋“ค์€ ์‹ค์ œ๋กœ ์ข€ ๋” ๋งŽ์€ ๊ธฐํšŒ
14:28
or pieces where they were experiencing losses --
368
868260
3000
ํ˜น์€ ์†์‹ค์„ ๊ฒฝํ—˜ํ•˜๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค --
14:31
they actually thought they were going to get more than they really got.
369
871260
2000
์‹ค์ œ๋กœ ๊ทธ๋“ค์€ ๊ฐ€์ง„ ๊ฒƒ๋ณด๋‹ค ์ข€ ๋” ๊ฐ€์งˆ ๊ฒƒ์ด๋ผ๊ณ  ์ƒ๊ฐํ–ˆ์—ˆ์Šต๋‹ˆ๋‹ค
14:33
And so this is what this looks like.
370
873260
2000
๋ณด์‹œ๋Š” ๋ฐ”์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.
14:35
We introduced the monkeys to two new monkey salesmen.
371
875260
2000
์šฐ๋ฆฌ๋Š” ์›์ˆญ์ด๋“ค์—๊ฒŒ ๋‘ ๋ช…์˜ ์ƒˆ๋กœ์šด ํŒ๋งค์›์„ ์†Œ๊ฐœ์‹œ์ผœ ์ฃผ์—ˆ์Šต๋‹ˆ๋‹ค.
14:37
The guy on the left and right both start with one piece of grape,
372
877260
2000
์ขŒ์ธก, ์šฐ์ธก์— ์žˆ๋Š” ๋‚จ์ž ๋‘˜ ๋‹ค ํ•˜๋‚˜์˜ ํฌ๋„๋กœ ์‹œ์ž‘ํ–ˆ์Šต๋‹ˆ๋‹ค,
14:39
so it looks pretty good.
373
879260
2000
๊ฝค ๊ดœ์ฐฎ์•„ ๋ณด์ž…๋‹ˆ๋‹ค.
14:41
But they're going to give the monkeys bonuses.
374
881260
2000
๊ทธ๋“ค์€ ์›์ˆญ์ด๋“ค์—๊ฒŒ ๋ณด๋„ˆ์Šค๋ฅผ ์ง€๊ธ‰ํ•ฉ๋‹ˆ๋‹ค.
14:43
The guy on the left is a safe bonus.
375
883260
2000
์ขŒ์ธก์— ์žˆ๋Š” ๋‚จ์„ฑ์€ ์•ˆ์ „ํ•œ ๋ณด๋„ˆ์Šค์ž…๋‹ˆ๋‹ค.
14:45
All the time, he adds one, to give the monkeys two.
376
885260
3000
ํ•ญ์ƒ, ๊ทธ๋Š” ํ•˜๋‚˜๋ฅผ ์ถ”๊ฐ€ํ•ด ๊ทธ๋“ค์—๊ฒŒ ๋‘ ๊ฐœ๋ฅผ ์ค๋‹ˆ๋‹ค.
14:48
The guy on the right is actually a risky bonus.
377
888260
2000
์šฐ์ธก์— ์žˆ๋Š” ๋‚จ์ž๋Š” ์‹ค์ œ๋กœ ์œ„ํ—˜์ด ๋”ฐ๋ฅธ ๋ณด๋„ˆ์Šค์ž…๋‹ˆ๋‹ค.
14:50
Sometimes the monkeys get no bonus -- so this is a bonus of zero.
378
890260
3000
๋•Œ๋•Œ๋กœ ๊ทธ๋“ค์€ ๋ณด๋„ˆ์Šค๋ฅผ ๋ฐ›์ง€ ๋ชปํ•ฉ๋‹ˆ๋‹ค -- ๊ทธ๋ž˜์„œ ๋ณด๋„ˆ์Šค๊ฐ€ 0์ž…๋‹ˆ๋‹ค.
14:53
Sometimes the monkeys get two extra.
379
893260
3000
๋•Œ๋•Œ๋กœ ๊ทธ๋“ค์€ 2๊ฐœ์˜ ์—ฌ๋ถ„์„ ๋ฐ›์Šต๋‹ˆ๋‹ค.
14:56
For a big bonus, now they get three.
380
896260
2000
ํฐ ๋ณด๋„ˆ์Šค ๋•Œ๋ฌธ์—, ๊ทธ๋“ค์€ 3๊ฐœ๋ฅผ ๊ฐ€์ง‘๋‹ˆ๋‹ค.
14:58
But this is the same choice you guys just faced.
381
898260
2000
ํ•˜์ง€๋งŒ ์ด๊ฒƒ์€ ์—ฌ๋Ÿฌ๋ถ„๊ป˜์„œ ์ง๋ฉดํ–ˆ๋˜ ์„ ํƒ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค.
15:00
Do the monkeys actually want to play it safe
382
900260
3000
๊ทธ๋“ค์€ ์‹ค์ œ๋กœ ์•ˆ์ „ํ•˜๊ฒŒ ์„ ํƒํ•˜๊ณ  ๋งค ์‹œํ—˜์—์„œ
15:03
and then go with the guy who's going to do the same thing on every trial,
383
903260
2000
๊ฐ™์€ ๋ฐ˜์‘์„ ๋ณด์ด๋Š” ๋‚จ์ž๋ฅผ ๋”ฐ๋ฅด๋ฉฐ, ํ˜น์€ ํฐ ๋ณด๋„ˆ์Šค๊ฐ€ ์—†๋Š”
15:05
or do they want to be risky
384
905260
2000
์œ„ํ—˜ ๊ฐ€๋Šฅ์„ฑ์ด ์•„๋‹Œ
15:07
and try to get a risky, but big, bonus,
385
907260
2000
์œ„ํ—˜์„ ์–ป์œผ๋ ค
15:09
but risk the possibility of getting no bonus.
386
909260
2000
์‹œ๋„ํ•ฉ๋‹ˆ๋‹ค.
15:11
People here played it safe.
387
911260
2000
์—ฌ๊ธฐ์žˆ๋Š” ์‚ฌ๋žŒ๋“ค์€ ์•ˆ์ „ํ•œ ๊ฒƒ์„ ํƒํ•ฉ๋‹ˆ๋‹ค.
15:13
Turns out, the monkeys play it safe too.
388
913260
2000
๊ทธ๋“ค ์—ญ์‹œ ๊ฐ™์€ ์„ ํƒ์„ ํ•œ๋‹ค๊ณ  ํŒ๋ช…๋์Šต๋‹ˆ๋‹ค.
15:15
Qualitatively and quantitatively,
389
915260
2000
์งˆ์ ์œผ๋กœ ๊ทธ๋ฆฌ๊ณ  ์–‘์ ์œผ๋กœ
15:17
they choose exactly the same way as people,
390
917260
2000
๊ทธ๋“ค์€ ์‚ฌ๋žŒ๋“ค์ฒ˜๋Ÿผ ๊ฐ™์€ ๋ฐฉ๋ฒ•์„ ์„ ํƒํ•ฉ๋‹ˆ๋‹ค,
15:19
when tested in the same thing.
391
919260
2000
๊ฐ™์€ ์ƒํ™ฉ์— ๊ฒ€์ฆ ๋˜์—ˆ์„ ๋•Œ ๋ง์ž…๋‹ˆ๋‹ค.
15:21
You might say, well, maybe the monkeys just don't like risk.
392
921260
2000
์—ฌ๋Ÿฌ๋ถ„๊ป˜์„œ, ์Œ, ์•„๋งˆ๋„ ์›์ˆญ์ด๋“ค์ด ์œ„ํ—˜์„ ์‹ซ์–ดํ•œ๋‹ค๊ณ  ๋งํ• ์ง€๋„ ๋ชจ๋ฆ…๋‹ˆ๋‹ค.
15:23
Maybe we should see how they do with losses.
393
923260
2000
์–ด์ฉŒ๋ฉด ์šฐ๋ฆฌ๋Š” ์–ด๋–ป๊ฒŒ ๊ทธ๋“ค์ด ์†ํ•ด๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š”์ง€ ๋ด์•ผ ํ• ์ง€๋„ ๋ชจ๋ฆ…๋‹ˆ๋‹ค.
15:25
And so we ran a second version of this.
394
925260
2000
๊ทธ๋ž˜์„œ ๋‘๋ฒˆ ์งธ ๋ฒ„์ „์„ ์‹คํ–‰ํ–ˆ์Šต๋‹ˆ๋‹ค.
15:27
Now, the monkeys meet two guys
395
927260
2000
์ง€๊ธˆ, ๊ทธ๋“ค์€ ๋‘ ๋‚จ์ž๋ฅผ ๋งŒ๋‚ฉ๋‹ˆ๋‹ค
15:29
who aren't giving them bonuses;
396
929260
2000
๋‘˜ ๋‹ค ๋ณด๋„ˆ์Šค๋ฅผ ์ง€๊ธ‰ํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค;
15:31
they're actually giving them less than they expect.
397
931260
2000
๊ทธ ๋‘˜์€ ์˜ˆ์ƒํ•˜๋Š” ๊ฒƒ๋ณด๋‹ค ์กฐ๊ธˆ ๊ทธ๋“ค์—๊ฒŒ ์ง€๊ธ‰ํ•ฉ๋‹ˆ๋‹ค.
15:33
So they look like they're starting out with a big amount.
398
933260
2000
์ด๋ ‡๊ฒŒ ๊ทธ๋“ค์€ ํฐ ๊ธˆ์•ก๊ณผ ํ•จ๊ป˜ ์‹œ์ž‘ํ•˜๋Š” ๊ฒƒ์ฒ˜๋Ÿผ ๋ณด์ž…๋‹ˆ๋‹ค.
15:35
These are three grapes; the monkey's really psyched for this.
399
935260
2000
3๊ฐœ์˜ ํฌ๋„์†ก์ด์ž…๋‹ˆ๋‹ค; ๊ทธ๋“ค์€ ์ •๋ง๋กœ ์ด ์ฒ˜์‚ฌ์— ํ˜ผ๋ž€์Šค๋Ÿฌ์›Œ ํ–ˆ์—ˆ์Šต๋‹ˆ๋‹ค.
15:37
But now they learn these guys are going to give them less than they expect.
400
937260
3000
ํ•˜์ง€๋งŒ ์ง€๊ธˆ ๊ทธ๋“ค์€ ์ด ๋‘ ๋‚จ์„ฑ์ด ์˜ˆ์ƒํ•˜๋Š” ๊ฒƒ ๋ณด๋‹ค ์กฐ๊ธˆ ์ค€๋‹ค๋Š” ๊ฒƒ์„ ๋ฐฐ์›๋‹ˆ๋‹ค.
15:40
They guy on the left is a safe loss.
401
940260
2000
์ขŒ์ธก์— ์žˆ๋Š” ๋‚จ์„ฑ์€ ์•ˆ์ „ํ•œ ์†์‹ค์ž…๋‹ˆ๋‹ค.
15:42
Every single time, he's going to take one of these away
402
942260
3000
๋งค ์ˆœ๊ฐ„, ๊ทธ๋Š” ํ•˜๋‚˜๋งŒ์„ ๋นผ๊ฐ‘๋‹ˆ๋‹ค ๊ทธ๋ฆฌ๊ณ 
15:45
and give the monkeys just two.
403
945260
2000
๊ทธ๋“ค์—๊ฒŒ ๋‘ ๊ฐœ๋ฅผ ์ค๋‹ˆ๋‹ค.
15:47
the guy on the right is the risky loss.
404
947260
2000
์šฐ์ธก์— ์žˆ๋Š” ๋‚จ์„ฑ์€ ์œ„ํ—˜์ด ๋”ฐ๋ฅธ ์†์‹ค์ž…๋‹ˆ๋‹ค.
15:49
Sometimes he gives no loss, so the monkeys are really psyched,
405
949260
3000
๋•Œ๋•Œ๋กœ ๊ทธ๋Š” ์†์‹ค์„ ์ฃผ์ง€ ์•Š์Šต๋‹ˆ๋‹ค, ๊ทธ๋ž˜์„œ ๊ทธ๋“ค์ด ๋งค์šฐ ํ˜ผ๋ž€์Šค๋Ÿฌ์›Œํ–ˆ์—ˆ์ฃ ,
15:52
but sometimes he actually gives a big loss,
406
952260
2000
ํ•˜์ง€๋งŒ ๋•Œ๋•Œ๋กœ ๊ทธ๋Š” ์‹ค์ œ๋กœ ํฐ ์†์‹ค์„ ์ค๋‹ˆ๋‹ค,
15:54
taking away two to give the monkeys only one.
407
954260
2000
๋‘ ๊ฐœ๋ฅผ ๋บ๊ณ  ๊ทธ๋“ค์—๊ฒŒ ํ•˜๋‚˜๋ฅผ ๊ฑด๋‚ด์ค๋‹ˆ๋‹ค.
15:56
And so what do the monkeys do?
408
956260
2000
์›์ˆญ์ด๋“ค์ด ์–ด๋–ค ์„ ํƒ์„ ํ• ๊นŒ์š”?
15:58
Again, same choice; they can play it safe
409
958260
2000
๋‹ค์‹œ, ๊ฐ™์€ ์„ ํƒ; ๊ทธ๋“ค์€ ๋งค ์ˆœ๊ฐ„
16:00
for always getting two grapes every single time,
410
960260
3000
ํ•ญ์ƒ ๋‘ ๊ฐœ์˜ ํฌ๋„๋ฅผ ์–ป๊ธฐ ์œ„ํ•ด ์•ˆ์ „ํ•˜๊ฒŒ ์„ ํƒ ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค,
16:03
or they can take a risky bet and choose between one and three.
411
963260
3000
ํ˜น์€ ์œ„ํ—˜ ๋ถ€๋‹ด์ด ์žˆ๋Š” 3 ๊ฐœ์™€ 1 ๊ฐœ ์‚ฌ์ด์—์„œ ์„ ํƒํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
16:06
The remarkable thing to us is that, when you give monkeys this choice,
412
966260
3000
์šฐ๋ฆฌ์—๊ฒŒ ๋ˆˆ์— ๋ˆ ๊ฒƒ์€ ์šฐ๋ฆฌ๊ฐ€ ์ด ์„ ํƒ์„ ๊ทธ๋“ค์—๊ฒŒ ์ฃผ์—ˆ์„ ๋•Œ,
16:09
they do the same irrational thing that people do.
413
969260
2000
๊ทธ๋“ค์€ ์‚ฌ๋žŒ๋“ค์ด ํ•˜๋Š” ๋น„ํ•ฉ๋ฆฌ์ ์ธ ์„ ํƒ์„ ํ•œ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
16:11
They actually become more risky
414
971260
2000
๊ทธ๋“ค์€ ์‹ค์ œ๋กœ ์ข€ ๋” ์œ„ํ—˜ํ•ด์ง‘๋‹ˆ๋‹ค
16:13
depending on how the experimenters started.
415
973260
3000
๊ทธ ์œ„ํ—˜์€ ์–ด๋–ป๊ฒŒ ์‹คํ—˜์„ ์‹œ์ž‘ํ•ด์•ผ ํ•˜๋Š”์ง€์— ๋‹ฌ๋ ธ์žˆ์Šต๋‹ˆ๋‹ค.
16:16
This is crazy because it suggests that the monkeys too
416
976260
2000
์ด๊ฒƒ์€ ๋ฌด๋ถ„๋ณ„ํ•œ ์‹คํ—˜์ž…๋‹ˆ๋‹ค. ์™œ๋ƒํ•˜๋ฉด ์›์ˆญ์ด๋“ค์ด ์ƒ๋Œ€์  ๊ธฐ๊ฐ„์œผ๋กœ
16:18
are evaluating things in relative terms
417
978260
2000
ํ‰๊ฐ€๋ฅผ ํ•˜๊ณ  ์‹ค์ œ๋กœ ์–ป๋Š” ๊ฒƒ๋ณด๋‹ค
16:20
and actually treating losses differently than they treat gains.
418
980260
3000
๋‹ค๋ฅด๊ฒŒ ์†์‹ค์„ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋„๋ก ๊ถŒํ•˜๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
16:23
So what does all of this mean?
419
983260
2000
์ด ๋ชจ๋“  ์ƒํ™ฉ์ด ๋ฌด์—‡์„ ์˜๋ฏธํ• ๊นŒ์š”?
16:25
Well, what we've shown is that, first of all,
420
985260
2000
์Œ, ์šฐ๋ฆฌ๊ฐ€ ์ง€๊ธˆ๊นŒ์ง€ ๋ณด์—ฌ์ค€ ๊ฒƒ์€, ๋ฌด์—‡๋ณด๋‹ค๋„,
16:27
we can actually give the monkeys a financial currency,
421
987260
2000
์‹ค์ œ๋กœ ์›์ˆญ์ด๋“ค์—๊ฒŒ ์žฌ์ • ํ™”ํ๋ฅผ ์ค„ ์ˆ˜ ์žˆ๊ณ  ์ด๊ฒƒ๊ณผ ํ•จ๊ป˜
16:29
and they do very similar things with it.
422
989260
2000
๊ทธ๋“ค์ด ํ•˜๋Š” ๊ฒฝ์ œ์  ํ™œ๋™์„ ํ•œ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
16:31
They do some of the smart things we do,
423
991260
2000
๊ทธ๋“ค์€ ์šฐ๋ฆฌ๊ฐ€ ํ•˜๋Š” ์˜๋ฆฌํ•œ ํ™œ๋™์„ ํ•ฉ๋‹ˆ๋‹ค,
16:33
some of the kind of not so nice things we do,
424
993260
2000
๊ทธ๋ ‡์ง€ ์•Š๋Š” ๊ฒƒ๋„ ํ•ฉ๋‹ˆ๋‹ค,
16:35
like steal it and so on.
425
995260
2000
ํ›”์น˜๋Š” ํ–‰๋™๊ณผ ๊ฐ™์€ ๊ฒƒ์ด์ฃ .
16:37
But they also do some of the irrational things we do.
426
997260
2000
ํ•˜์ง€๋งŒ ๊ทธ๋“ค์€ ๋˜ํ•œ ์šฐ๋ฆฌ๊ฐ€ ํ•˜๋Š” ๋น„ํ•ฉ๋ฆฌ์ ์ธ ์„ ํƒ์„ ํ•ฉ๋‹ˆ๋‹ค.
16:39
They systematically get things wrong
427
999260
2000
๊ทธ๋“ค์€ ์ฒด๊ณ„์ ์œผ๋กœ ์‹ค์ˆ˜ํ•ฉ๋‹ˆ๋‹ค. ์šฐ๋ฆฌ๊ฐ€
16:41
and in the same ways that we do.
428
1001260
2000
์ฒ˜ํ•œ ๊ฐ™์€ ๋ฐฉ๋ฒ•์—์„œ ๋ง์ž…๋‹ˆ๋‹ค.
16:43
This is the first take-home message of the Talk,
429
1003260
2000
์ด๊ฒƒ์ด ๊ฐ•์—ฐ์˜ ์ฒซ ๋ฒˆ์งธ ๋ฉ”์„ธ์ง€์ž…๋‹ˆ๋‹ค,
16:45
which is that if you saw the beginning of this and you thought,
430
1005260
2000
์—ฌ๋Ÿฌ๋ถ„๊ป˜์„œ ์‹œ์ž‘ ๋ถ€๋ถ„์„ ๋ณด์•˜๋‹ค๋ฉด, ์ „์ ์œผ๋กœ ์˜ค, ์ง‘์— ๊ฐ€์„œ
16:47
oh, I'm totally going to go home and hire a capuchin monkey financial adviser.
431
1007260
2000
๊ผฌ๋ฆฌ ๊ฐ๋Š” ์›์ˆญ์ด ์žฌ์ • ์กฐ์–ธ๊ฐ€๋ฅผ ๊ณ ์šฉํ• ๊ฑฐ์•ผ๋ผ๊ณ  ์ƒ๊ฐํ•˜์…จ์„ ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
16:49
They're way cuter than the one at ... you know --
432
1009260
2000
๊ทธ๋“ค์€ ๋‹ค๋ฅธ ์–ด๋””์— ์žˆ๋Š” ๋ˆ„๊ตฌ๋ณด๋‹ค ๋” ๊ท€์—ฝ์Šต๋‹ˆ๋‹ค --
16:51
Don't do that; they're probably going to be just as dumb
433
1011260
2000
๊ทธ๋ ‡๊ฒŒ ํ•˜์ง€๋งˆ์„ธ์š”; ๊ทธ๋“ค์€ ์•„๋งˆ๋„ ์—ฌ๋Ÿฌ๋ถ„๊ป˜์„œ ์ด๋ฏธ
16:53
as the human one you already have.
434
1013260
3000
๊ณ ์šฉํ•œ ๊ทธ ์‚ฌ๋žŒ๋งŒํผ ๋ฉ์ฒญํ• ํ…Œ๋‹ˆ๊นŒ์š”.
16:56
So, you know, a little bad -- Sorry, sorry, sorry.
435
1016260
2000
๊ทธ๋ž˜์„œ, ์•Œ๋‹ค์‹œํ”ผ, ์•„์ฃผ ์ž‘์€ -- ์ฃ„์†กํ•ฉ๋‹ˆ๋‹ค. ์ฃ„์†กํ•ฉ๋‹ˆ๋‹ค.
16:58
A little bad for monkey investors.
436
1018260
2000
์›์ˆญ์ด ํˆฌ์ž์ž์˜ ๋‚˜์œ ์Šต๊ด€.
17:00
But of course, you know, the reason you're laughing is bad for humans too.
437
1020260
3000
ํ•˜์ง€๋งŒ ๋ฌผ๋ก , ์•Œ๋‹ค์‹œํ”ผ, ์—ฌ๋Ÿฌ๋ถ„๊ป˜์„œ ์›ƒ๋Š” ์ด์œ ๋Š” ์ธ๊ฐ„๊ณผ ๊ฐ™๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
17:03
Because we've answered the question we started out with.
438
1023260
3000
์™œ๋ƒํ•˜๋ฉด ์šฐ๋ฆฌ๊ฐ€ ์‹œ์ž‘ํ–ˆ์—ˆ๋˜ ๊ทธ ์งˆ๋ฌธ์— ๋‹ตํ–ˆ๊ธฐ ๋•Œ๋ฌธ์ด์ฃ .
17:06
We wanted to know where these kinds of errors came from.
439
1026260
2000
์šฐ๋ฆฌ๋Š” ์ด ์‹ค์ˆ˜๊ฐ€ ์–ด๋””์„œ ์˜ค๋Š”์ง€ ์•Œ๊ณ  ์‹ถ์–ดํ•ฉ๋‹ˆ๋‹ค.
17:08
And we started with the hope that maybe we can
440
1028260
2000
์šฐ๋ฆฌ๊ฐ€ ์žฌ์ • ์ œ๋„, ์šฐ๋ฆฌ์˜ ๊ธฐ์ˆ ๋ ฅ์„
17:10
sort of tweak our financial institutions,
441
1030260
2000
๊ผฌ์ง‘์–ด ๋” ๋‚˜์€ ์‚ถ์„ ์‚ด ์ˆ˜ ์žˆ๋Š”
17:12
tweak our technologies to make ourselves better.
442
1032260
3000
ํฌ๋ง๊ณผ ํ•จ๊ป˜ ์‹œ์ž‘ํ–ˆ์Šต๋‹ˆ๋‹ค.
17:15
But what we've learn is that these biases might be a deeper part of us than that.
443
1035260
3000
ํ•˜์ง€๋งŒ ์šฐ๋ฆฌ๊ฐ€ ๋ฐฐ์šด ๊ฒƒ์€ ์ด ๊ธฐ๋ณธ์ ์ธ ๊ฒƒ๋“ค์ด ๊ทธ๊ฒƒ๋ณด๋‹ค ์šฐ๋ฆฌ์—๊ฒŒ ๋” ๊นŠ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
17:18
In fact, they might be due to the very nature
444
1038260
2000
์‚ฌ์‹ค์ƒ, ๊ทธ๋“ค์€ ์šฐ๋ฆฌ์˜ ์ง„ํ™” ์—ญ์‚ฌ์˜
17:20
of our evolutionary history.
445
1040260
2000
์‚ฐ๋ฌผ์ด๊ธฐ ๋•Œ๋ฌธ์ผ์ง€๋„ ๋ชจ๋ฆ…๋‹ˆ๋‹ค.
17:22
You know, maybe it's not just humans
446
1042260
2000
์•Œ๋‹ค์‹œํ”ผ, ์•„๋งˆ๋„ ๊ทธ๋“ค์€ ๋น„ํ•ฉ๋ฆฌ์ ์ธ
17:24
at the right side of this chain that's duncey.
447
1044260
2000
์ผ๋ จ์— ์•ž์„  ์ธ๊ฐ„์€ ์•„๋‹™๋‹ˆ๋‹ค.
17:26
Maybe it's sort of duncey all the way back.
448
1046260
2000
์–ด์ฉŒ๋ฉด ์˜ค๋ž˜์ „๋ถ€ํ„ฐ ๋‚ด๋ ค์˜ค๋Š” ์–ด๋ฆฌ์„์Œ์ผ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
17:28
And this, if we believe the capuchin monkey results,
449
1048260
3000
๋งŒ์•ฝ ์—ฌ๋Ÿฌ๋ถ„๊ป˜์„œ ๊ผฌ๋ฆฌ๊ฐ๊ธฐ ์›์ˆญ์ด์˜ ๊ฒฐ๊ณผ๋ฅผ ๋ฏฟ๋Š”๋‹ค๋ฉด,
17:31
means that these duncey strategies
450
1051260
2000
์ด ๋น„ํ•ฉ๋ฆฌ์  ์ •์ฑ…๋“ค์€
17:33
might be 35 million years old.
451
1053260
2000
์•„๋งˆ๋„ 3์ฒœ 5๋ฐฑ๋งŒ ๋…„์ „์˜ ์‚ฌ์œ ๋ฌผ์ด๋ผ๋Š” ๊ฒƒ์„ ๋œปํ•ฉ๋‹ˆ๋‹ค.
17:35
That's a long time for a strategy
452
1055260
2000
์ „๋žต์— ๊ด€ํ•œ ์˜ค๋žœ ์‹œ๊ฐ„์€
17:37
to potentially get changed around -- really, really old.
453
1057260
3000
์ž ์žฌ์ ์œผ๋กœ ๋ณ€ํ™”๋ฅผ ์ฃผ๊ธฐ์œ„ํ•จ์ž…๋‹ˆ๋‹ค - ์ •๋ง๋กœ ์˜ค๋ž˜๋˜์—ˆ์ฃ .
17:40
What do we know about other old strategies like this?
454
1060260
2000
์ด์™€ ๊ฐ™์€ ์˜ค๋ž˜๋œ ๋‹ค๋ฅธ ์ •์ฑ…์— ๊ด€ํ•ด ๋ฌด์—‡์„ ์•Œ ์ˆ˜์žˆ์„๊นŒ์š”?
17:42
Well, one thing we know is that they tend to be really hard to overcome.
455
1062260
3000
์Œ, ์šฐ๋ฆฌ๊ฐ€ ์•„๋Š” ํ•œ ๊ฐ€์ง€๋Š” ๊ทธ๋“ค์ด ์ •๋ง๋กœ ํž˜๋“ค๊ฒŒ ๊ทน๋ณตํ•˜๋Š” ๊ฒฝํ–ฅ์ด ์žˆ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
17:45
You know, think of our evolutionary predilection
456
1065260
2000
์•Œ๋‹ค์‹œํ”ผ, ์น˜์ฆˆ์ผ€์ดํฌ์™€ ๊ฐ™์€ ๋‹จ๊ฒƒ์„ ์ข‹์•„ํ•˜๋Š”
17:47
for eating sweet things, fatty things like cheesecake.
457
1067260
3000
์šฐ๋ฆฌ์˜ ์ง„ํ™”์  ์ถ”์ธก์„ ์ƒ๊ฐํ•ด๋ณด์„ธ์š”.
17:50
You can't just shut that off.
458
1070260
2000
๊ทธ๊ฒƒ์„ ์ฐจ๋‹จํ•  ์ˆ˜๋Š” ์—†์Šต๋‹ˆ๋‹ค.
17:52
You can't just look at the dessert cart as say, "No, no, no. That looks disgusting to me."
459
1072260
3000
์—ฌ๋Ÿฌ๋ถ„์€ ๋””์ €ํŠธ ์นดํŠธ๋ฅผ ๋ณด๋ฉฐ "์•„๋‹ˆ์•ผ ์•„๋‹ˆ์•ผ, ๋‚˜๋Š” ๊ทธ๊ฒŒ ์ •๋ง ๋ง›์—†์–ด ๋ณด์—ฌ."๋ผ๊ณ  ๋งํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.
17:55
We're just built differently.
460
1075260
2000
์šฐ๋ฆฌ๋Š” ๋‹ค๋ฅด๊ฒŒ ๋งŒ๋“ค์–ด์กŒ์Šต๋‹ˆ๋‹ค.
17:57
We're going to perceive it as a good thing to go after.
461
1077260
2000
์šฐ๋ฆฌ๋Š” ์ด๊ฒƒ์„ ๊ตฌํ•˜๊ณ ์ž ํ•˜๋Š” ์ข‹์€ ๊ฒƒ์œผ๋กœ ์ธ์ง€ํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
17:59
My guess is that the same thing is going to be true
462
1079260
2000
์ œ ์ถ”์ธก์€ ์ธ๊ฐ„์ด ๋‹ค๋ฅธ ๊ฒฝ์ œ์  ๊ฒฐ์ •์„ ํ•  ๋•Œ๋„
18:01
when humans are perceiving
463
1081260
2000
๊ฐ™์€ ์‚ฌ์‹ค์ด
18:03
different financial decisions.
464
1083260
2000
๋งž์„ ๊ฒƒ์ด๋ผ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
18:05
When you're watching your stocks plummet into the red,
465
1085260
2000
์—ฌ๋Ÿฌ๋ถ„์˜ ์ฆ๊ถŒ ํญ๋ฝ์„ ์ ์‹ํ˜ธ๋กœ ๋ณด์•˜์„ ๋•Œ,
18:07
when you're watching your house price go down,
466
1087260
2000
์ง‘ ๊ฐ’์ด ๋–จ์–ด์ง€๋Š” ๊ฒƒ์„ ์ง€์ผœ ๋ณด์•˜์„ ๋•Œ,
18:09
you're not going to be able to see that
467
1089260
2000
๊ทธ๊ฒƒ์„ ๋ณด์‹ค ์ˆ˜ ์žˆ์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค
18:11
in anything but old evolutionary terms.
468
1091260
2000
์˜ค๋ž˜๋œ ์ง„ํ™”์  ๊ธฐ๊ฐ„์—์„œ ๋ง์ด์ฃ .
18:13
This means that the biases
469
1093260
2000
์ด๋ง์€
18:15
that lead investors to do badly,
470
1095260
2000
ํˆฌ์ž์ž๋“ค์„ ์ด๋Œ์–ด ์•ˆ ์ข‹๊ฒŒ ํ–‰ํ•˜๊ฒŒ ํ•˜๊ฑฐ๋‚˜
18:17
that lead to the foreclosure crisis
471
1097260
2000
์ฒ˜๋ถ„ ์œ„๊ธฐ๋กœ ์ด๋„๋Š” ๊ธฐ๋ณธ ์‚ฌํ•ญ๋“ค์ด
18:19
are going to be really hard to overcome.
472
1099260
2000
๊ทน๋ณตํ•˜๊ธฐ ํž˜๋“ค๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
18:21
So that's the bad news. The question is: is there any good news?
473
1101260
2000
๊ทธ๊ฒƒ์€ ๋‚˜์œ ์†Œ์‹์ž…๋‹ˆ๋‹ค. ์งˆ๋ฌธ์€: ์ข‹์€ ์†Œ์‹์ด ์žˆ์„๊นŒ์š”?
18:23
I'm supposed to be up here telling you the good news.
474
1103260
2000
์ €๋Š” ์ข‹์€ ์†Œ์‹์„ ์ „ํ•˜๊ธฐ ์œ„ํ•ด ์—ฌ๊ธฐ์— ์žˆ์Šต๋‹ˆ๋‹ค.
18:25
Well, the good news, I think,
475
1105260
2000
์Œ, ์ œ๊ฐ€ ์ƒ๊ฐํ•˜๋Š” ์ข‹์€ ์†Œ์‹์€
18:27
is what I started with at the beginning of the Talk,
476
1107260
2000
๊ฐ•์—ฐ ์ฒ˜์Œ ๋ถ€๋ถ„์— ์‹œ์ž‘ํ–ˆ๋˜ ๊ฒƒ์ž…๋‹ˆ๋‹ค,
18:29
which is that humans are not only smart;
477
1109260
2000
์ธ๊ฐ„์ด ์˜ค์ง ์˜๋ฆฌํ•˜๋‹ค๋Š” ๊ฒƒ์€ ์•„๋‹™๋‹ˆ๋‹ค;
18:31
we're really inspirationally smart
478
1111260
2000
์šฐ๋ฆฌ๋Š” ์ด ์ƒ๋ฌผํ•™์  ์™•๊ตญ์—
18:33
to the rest of the animals in the biological kingdom.
479
1113260
3000
๋‚จ์•„ ์žˆ๋Š” ๋™๋ฌผ์—์„œ ์ •๋ง๋กœ ์˜๋ฆฌํ•ฉ๋‹ˆ๋‹ค.
18:36
We're so good at overcoming our biological limitations --
480
1116260
3000
์šฐ๋ฆฌ๋Š” ์ƒ๋ฌผํ•™์  ํ•œ๊ณ„ ๊ทน๋ณต์— ๋งค์šฐ ๋Šฅ์ˆ™ํ•ฉ๋‹ˆ๋‹ค --
18:39
you know, I flew over here in an airplane.
481
1119260
2000
์•Œ๋‹ค์‹œํ”ผ, ์ €๋Š” ๋น„ํ–‰๊ธฐ๋กœ ์—ฌ๊ธฐ์— ์™”์Šต๋‹ˆ๋‹ค.
18:41
I didn't have to try to flap my wings.
482
1121260
2000
์ œ ๋‚ ๊ฐœ๋ฅผ ํŽผ์น  ํ•„์š”๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค.
18:43
I'm wearing contact lenses now so that I can see all of you.
483
1123260
3000
์ฝ˜ํƒํŠธ ๋ Œ์ฆˆ๋ฅผ ๋ผ๊ณ  ์žˆ์–ด์„œ ์—ฌ๋Ÿฌ๋ถ„ ๋ชจ๋‘๋ฅผ ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
18:46
I don't have to rely on my own near-sightedness.
484
1126260
3000
์ €์˜ ๊ทผ์‹œ์•ˆ์  ์‹œ๊ฐ์— ์˜์กดํ•  ํ•„์š”๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค.
18:49
We actually have all of these cases
485
1129260
2000
์šฐ๋ฆฌ๋Š” ์‹ค์ œ๋กœ ์ด ๋ชจ๋“  ์ƒํ™ฉ์„ ๊ฐ€์ง‘๋‹ˆ๋‹ค
18:51
where we overcome our biological limitations
486
1131260
3000
์ƒ๋ฌผํ•™์  ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๋Š” ๊ฒƒ์ด์ง€์š”
18:54
through technology and other means, seemingly pretty easily.
487
1134260
3000
์™ธ์ ์œผ๋กœ ๊ฝค ์‰ฝ๊ฒŒ ๊ธฐ์ˆ ๊ณผ ๋‹ค๋ฅธ ์˜๋ฏธ๋ฅผ ํ†ตํ•ด์„œ ๋ง์ž…๋‹ˆ๋‹ค.
18:57
But we have to recognize that we have those limitations.
488
1137260
3000
ํ•˜์ง€๋งŒ ์šฐ๋ฆฌ๊ฐ€ ์ด๋Ÿฐ ํ•œ๊ณ„๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ์ธ์‹ํ•ด์•ผ๋งŒ ํ•ฉ๋‹ˆ๋‹ค.
19:00
And here's the rub.
489
1140260
2000
์—ฌ๊ธฐ ์ธ๊ฐ„์— ๋Œ€ํ•œ ๋น„๋‚œ์ด ์žˆ์Šต๋‹ˆ๋‹ค.
19:02
It was Camus who once said that, "Man is the only species
490
1142260
2000
์นด๋ฎˆ๋Š” ๋งํ–ˆ์—ˆ์ฃ , "์‚ฌ๋žŒ์€ ์˜ค์ง ์ž์‹ ์˜ ์กด์žฌ์— ์ง„์‹ค๋˜๊ธฐ๋ฅผ
19:04
who refuses to be what he really is."
491
1144260
3000
๊ฑฐ์ ˆํ•˜๋Š” ์ข…์ž…๋‹ˆ๋‹ค."
19:07
But the irony is that
492
1147260
2000
ํ•˜์ง€๋งŒ ๋ชจ์ˆœ์ ์ด๊ฒŒ๋„
19:09
it might only be in recognizing our limitations
493
1149260
2000
์šฐ๋ฆฌ์˜ ํ•œ๊ณ„๋ฅผ ์ธ์‹ํ•ด์•ผ ์šฐ๋ฆฌ๋Š”
19:11
that we can really actually overcome them.
494
1151260
2000
์‹ค์ œ๋กœ ํ•œ๊ณ„๋“ค์„ ๊ทน๋ณตํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
19:13
The hope is that you all will think about your limitations,
495
1153260
3000
ํฌ๋ง์€ ์—ฌ๋Ÿฌ๋ถ„๊ป˜์„œ ํ•œ๊ณ„๋ฅผ ์ƒ๊ฐํ•˜๊ณ ,
19:16
not necessarily as unovercomable,
496
1156260
3000
๊ทน๋ณตํ•˜์ง€ ๋ชปํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ
19:19
but to recognize them, accept them
497
1159260
2000
๊ทธ๊ฒƒ๋“ค์„ ์ธ์‹ํ•˜๊ณ  ๋ฐ›์•„๋“ค์—ฌ
19:21
and then use the world of design to actually figure them out.
498
1161260
3000
์‹ค์ œ๋กœ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•ด ๋””์ž์ธ ์„ธ๊ณ„๋ฅผ ์ด์šฉํ•˜๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
19:24
That might be the only way that we will really be able
499
1164260
3000
๊ทธ๊ฒƒ์€ ์•„๋งˆ๋„ ์ธ๊ฐ„์ด ๊ฐ„์ง„ ๊ณ ์œ ์˜ ์ž ์žฌ๋ ฅ๊ณผ
19:27
to achieve our own human potential
500
1167260
2000
๋ชจ๋‘๊ฐ€ ๋ฐ”๋ผ๋Š” ์กด๊ท€ํ•œ ์ข…์ด ๋  ์ˆ˜ ์žˆ๋Š”
19:29
and really be the noble species we hope to all be.
501
1169260
3000
์œ ์ผํ•œ ๋ฐฉ๋ฒ•์ผ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
19:32
Thank you.
502
1172260
2000
๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
19:34
(Applause)
503
1174260
5000
(๋ฐ•์ˆ˜)
์ด ์›น์‚ฌ์ดํŠธ ์ •๋ณด

์ด ์‚ฌ์ดํŠธ๋Š” ์˜์–ด ํ•™์Šต์— ์œ ์šฉํ•œ YouTube ๋™์˜์ƒ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ์„ ์ƒ๋‹˜๋“ค์ด ๊ฐ€๋ฅด์น˜๋Š” ์˜์–ด ์ˆ˜์—…์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋™์˜์ƒ ํŽ˜์ด์ง€์— ํ‘œ์‹œ๋˜๋Š” ์˜์–ด ์ž๋ง‰์„ ๋”๋ธ” ํด๋ฆญํ•˜๋ฉด ๊ทธ๊ณณ์—์„œ ๋™์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค. ๋น„๋””์˜ค ์žฌ์ƒ์— ๋งž์ถฐ ์ž๋ง‰์ด ์Šคํฌ๋กค๋ฉ๋‹ˆ๋‹ค. ์˜๊ฒฌ์ด๋‚˜ ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด ๋ฌธ์˜ ์–‘์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์˜ํ•˜์‹ญ์‹œ์˜ค.

https://forms.gle/WvT1wiN1qDtmnspy7