Laurie Santos: How monkeys mirror human irrationality

ローリー・サントス: 猿の経済界にも見られる不合理性

198,212 views

2010-07-29 ・ TED


New videos

Laurie Santos: How monkeys mirror human irrationality

ローリー・サントス: 猿の経済界にも見られる不合理性

198,212 views ・ 2010-07-29

TED


下の英語字幕をダブルクリックすると動画を再生できます。

翻訳: Takako Sato 校正: Rinko Kawakami
00:17
I want to start my talk today with two observations
0
17260
2000
ヒトに関する2つの事柄を
00:19
about the human species.
1
19260
2000
まずお話したいと思います
00:21
The first observation is something that you might think is quite obvious,
2
21260
3000
一つめの事柄は当たり前のように聞こえるかもしれませんが
00:24
and that's that our species, Homo sapiens,
3
24260
2000
我々ホモサピエンスは
00:26
is actually really, really smart --
4
26260
2000
実に頭の良い種です
00:28
like, ridiculously smart --
5
28260
2000
その頭の良さは
00:30
like you're all doing things
6
30260
2000
馬鹿げているほどで
00:32
that no other species on the planet does right now.
7
32260
3000
他の種がしていないことを
00:35
And this is, of course,
8
35260
2000
こなしています
00:37
not the first time you've probably recognized this.
9
37260
2000
これは周知の事実ですが
00:39
Of course, in addition to being smart, we're also an extremely vain species.
10
39260
3000
虚栄心の強い種でもあるため
00:42
So we like pointing out the fact that we're smart.
11
42260
3000
自分たちの賢さを示すのが好きなのです
00:45
You know, so I could turn to pretty much any sage
12
45260
2000
シェークスピアから
00:47
from Shakespeare to Stephen Colbert
13
47260
2000
スティーブン・コルベアまで
00:49
to point out things like the fact that
14
49260
2000
賢者を見れば
00:51
we're noble in reason and infinite in faculties
15
51260
2000
人間とは理性と才能に恵まれ
00:53
and just kind of awesome-er than anything else on the planet
16
53260
2000
どんな生き物よりも
00:55
when it comes to all things cerebral.
17
55260
3000
知的であることがわかります
00:58
But of course, there's a second observation about the human species
18
58260
2000
でも私が強調したいのは
01:00
that I want to focus on a little bit more,
19
60260
2000
二つめの事柄です
01:02
and that's the fact that
20
62260
2000
人間ほど賢い生き物はいないのに
01:04
even though we're actually really smart, sometimes uniquely smart,
21
64260
3000
決断力に関しては
01:07
we can also be incredibly, incredibly dumb
22
67260
3000
驚くほど愚かな決断を
01:10
when it comes to some aspects of our decision making.
23
70260
3000
してしまうことがある点です
01:13
Now I'm seeing lots of smirks out there.
24
73260
2000
ニヤニヤしている方
01:15
Don't worry, I'm not going to call anyone in particular out
25
75260
2000
具体的な名前は出しませんので
01:17
on any aspects of your own mistakes.
26
77260
2000
ご心配なく
01:19
But of course, just in the last two years
27
79260
2000
でも過去2年間に
01:21
we see these unprecedented examples of human ineptitude.
28
81260
3000
先例のない愚かな出来事がありました
01:24
And we've watched as the tools we uniquely make
29
84260
3000
資源採取のために人間がつくった道具が
01:27
to pull the resources out of our environment
30
87260
2000
悲惨な結果を招いたのも
01:29
kind of just blow up in our face.
31
89260
2000
見てきました
01:31
We've watched the financial markets that we uniquely create --
32
91260
2000
我々がつくった金融市場は
01:33
these markets that were supposed to be foolproof --
33
93260
3000
確実であったはずなのに
01:36
we've watched them kind of collapse before our eyes.
34
96260
2000
崩壊してしまいました
01:38
But both of these two embarrassing examples, I think,
35
98260
2000
でも この二つの例は
01:40
don't highlight what I think is most embarrassing
36
100260
3000
もっとも情けない間違いを
01:43
about the mistakes that humans make,
37
103260
2000
浮き彫りにはしていません
01:45
which is that we'd like to think that the mistakes we make
38
105260
3000
間違いを犯す原因は 少しばかりの困った問題があったり
01:48
are really just the result of a couple bad apples
39
108260
2000
もの笑いのタネになる決断を
01:50
or a couple really sort of FAIL Blog-worthy decisions.
40
110260
3000
してしまうからだと解釈したいところですが
01:53
But it turns out, what social scientists are actually learning
41
113260
3000
社会科学者の研究でわかったのは
01:56
is that most of us, when put in certain contexts,
42
116260
3000
ほとんどの人は ある状況に置かれると
01:59
will actually make very specific mistakes.
43
119260
3000
ある種の決まった間違いをするのです
02:02
The errors we make are actually predictable.
44
122260
2000
間違いに意外性はなく
02:04
We make them again and again.
45
124260
2000
人は間違いを繰り返します
02:06
And they're actually immune to lots of evidence.
46
126260
2000
警告があっても動じません
02:08
When we get negative feedback,
47
128260
2000
否定的な意見を言われると
02:10
we still, the next time we're face with a certain context,
48
130260
3000
次に同じ状況に直面するときに
02:13
tend to make the same errors.
49
133260
2000
同じ間違いをする傾向があります
02:15
And so this has been a real puzzle to me
50
135260
2000
人間の本質を研究している私には
02:17
as a sort of scholar of human nature.
51
137260
2000
この点が謎なのです
02:19
What I'm most curious about is,
52
139260
2000
一番興味があるのは
02:21
how is a species that's as smart as we are
53
141260
3000
これだけ賢い種である人間が
02:24
capable of such bad
54
144260
2000
このような間違いを
02:26
and such consistent errors all the time?
55
146260
2000
常にし続けるのか ということです
02:28
You know, we're the smartest thing out there, why can't we figure this out?
56
148260
3000
賢いはずの人間が なぜ解決策を見つけられないのでしょう?
02:31
In some sense, where do our mistakes really come from?
57
151260
3000
何が引き金になるのだろうと思いを巡らしていたら
02:34
And having thought about this a little bit, I see a couple different possibilities.
58
154260
3000
原因になり得る事柄が いくつか浮かびました
02:37
One possibility is, in some sense, it's not really our fault.
59
157260
3000
一つめは 我々の責任ではないという見解です
02:40
Because we're a smart species,
60
160260
2000
人間は賢いので
02:42
we can actually create all kinds of environments
61
162260
2000
非常に複雑な環境を
02:44
that are super, super complicated,
62
164260
2000
つくり出すことができます
02:46
sometimes too complicated for us to even actually understand,
63
166260
3000
時に複雑すぎて自ら作ったものを
02:49
even though we've actually created them.
64
169260
2000
理解できないことすらあります
02:51
We create financial markets that are super complex.
65
171260
2000
入り組んだ金融市場をつくり
02:53
We create mortgage terms that we can't actually deal with.
66
173260
3000
返済しきれない住宅ローンを組んだりします
02:56
And of course, if we are put in environments where we can't deal with it,
67
176260
3000
もちろん 対応できない状況に置かれれば
02:59
in some sense makes sense that we actually
68
179260
2000
ある意味 我々が
03:01
might mess certain things up.
69
181260
2000
物事を悪化させるのもわかります
03:03
If this was the case, we'd have a really easy solution
70
183260
2000
もしそうならば
03:05
to the problem of human error.
71
185260
2000
解決策は至って簡単
03:07
We'd actually just say, okay, let's figure out
72
187260
2000
扱いきれない技術や
03:09
the kinds of technologies we can't deal with,
73
189260
2000
悪影響を及ぼす環境を
03:11
the kinds of environments that are bad --
74
191260
2000
見つけたら取り払い
03:13
get rid of those, design things better,
75
193260
2000
より良いものをデザインすれば
03:15
and we should be the noble species
76
195260
2000
人間は期待通りに
03:17
that we expect ourselves to be.
77
197260
2000
立派な種になるはずです
03:19
But there's another possibility that I find a little bit more worrying,
78
199260
3000
でも混乱状態にあるのは環境ではなく
03:22
which is, maybe it's not our environments that are messed up.
79
202260
3000
いい加減につくられた人間なのでは?
03:25
Maybe it's actually us that's designed badly.
80
205260
3000
社会科学者が人間の間違いを
03:28
This is a hint that I've gotten
81
208260
2000
見つけ出す方法を見ていて
03:30
from watching the ways that social scientists have learned about human errors.
82
210260
3000
私はそう思いました
03:33
And what we see is that people tend to keep making errors
83
213260
3000
人間は同じ間違いを
03:36
exactly the same way, over and over again.
84
216260
3000
何度も繰り返す傾向があるため
03:39
It feels like we might almost just be built
85
219260
2000
人間のつくりを
03:41
to make errors in certain ways.
86
221260
2000
疑ってしまうほどです
03:43
This is a possibility that I worry a little bit more about,
87
223260
3000
もし問題が人間自体にあるのなら
03:46
because, if it's us that's messed up,
88
226260
2000
どう対処すればいいのか
03:48
it's not actually clear how we go about dealing with it.
89
228260
2000
わからないことが問題です
03:50
We might just have to accept the fact that we're error prone
90
230260
3000
間違いをしがちだという事実を受け入れて
03:53
and try to design things around it.
91
233260
2000
問題を避けられるデザインが必要かもしれません
03:55
So this is the question my students and I wanted to get at.
92
235260
3000
私が学生と共に究明したかったのは
03:58
How can we tell the difference between possibility one and possibility two?
93
238260
3000
可能性1と可能性2の違いを見出すことです
04:01
What we need is a population
94
241260
2000
必要としていたのは
04:03
that's basically smart, can make lots of decisions,
95
243260
2000
賢くて 決断力があるけれど
04:05
but doesn't have access to any of the systems we have,
96
245260
2000
人間を狂わせる材料に
04:07
any of the things that might mess us up --
97
247260
2000
手の届かない生き物
04:09
no human technology, human culture,
98
249260
2000
テクノロジーや文化や言葉を
04:11
maybe even not human language.
99
251260
2000
有しない生き物です
04:13
And so this is why we turned to these guys here.
100
253260
2000
こうして決定した
04:15
These are one of the guys I work with. This is a brown capuchin monkey.
101
255260
3000
研究の協力者はオマキザルです
04:18
These guys are New World primates,
102
258260
2000
新世界ザルとも呼ばれるのは
04:20
which means they broke off from the human branch
103
260260
2000
約3500万年前に
04:22
about 35 million years ago.
104
262260
2000
ヒトから分岐したからです
04:24
This means that your great, great, great great, great, great --
105
264260
2000
「ひい」を500万回つけた
04:26
with about five million "greats" in there --
106
266260
2000
我々のひいおばあちゃんと
04:28
grandmother was probably the same great, great, great, great
107
268260
2000
彼らのひいおばあちゃんが
04:30
grandmother with five million "greats" in there
108
270260
2000
同一人物であったと
04:32
as Holly up here.
109
272260
2000
言えるわけです
04:34
You know, so you can take comfort in the fact that this guy up here is a really really distant,
110
274260
3000
この猿と人間は非常に離れていながらも
04:37
but albeit evolutionary, relative.
111
277260
2000
親戚にあたります
04:39
The good news about Holly though is that
112
279260
2000
ホリーは人間のような
04:41
she doesn't actually have the same kinds of technologies we do.
113
281260
3000
技術を持ち合わせていません
04:44
You know, she's a smart, very cut creature, a primate as well,
114
284260
3000
賢くて可愛い霊長類ですが
04:47
but she lacks all the stuff we think might be messing us up.
115
287260
2000
人間を狂わせる要素を持ち合わせていないので
04:49
So she's the perfect test case.
116
289260
2000
この実験には完璧です
04:51
What if we put Holly into the same context as humans?
117
291260
3000
ホリーを人間と同じ境遇に置いたら
04:54
Does she make the same mistakes as us?
118
294260
2000
人間と同じ間違いをしたり
04:56
Does she not learn from them? And so on.
119
296260
2000
間違いから学ぶのか―
04:58
And so this is the kind of thing we decided to do.
120
298260
2000
実験してみることにしました
05:00
My students and I got very excited about this a few years ago.
121
300260
2000
数年前 このアイデアを思いつき
05:02
We said, all right, let's, you know, throw so problems at Holly,
122
302260
2000
ホリーは この問題を
05:04
see if she messes these things up.
123
304260
2000
どう対処するか見てみようということになりました
05:06
First problem is just, well, where should we start?
124
306260
3000
人間の間違いだけでも
05:09
Because, you know, it's great for us, but bad for humans.
125
309260
2000
あまりにも題材が多くて
05:11
We make a lot of mistakes in a lot of different contexts.
126
311260
2000
どこから着手したらいいのか
05:13
You know, where are we actually going to start with this?
127
313260
2000
迷いました
05:15
And because we started this work around the time of the financial collapse,
128
315260
3000
この研究を始めたとき 金融崩壊が起き
05:18
around the time when foreclosures were hitting the news,
129
318260
2000
差し押さえが相次いだので
05:20
we said, hhmm, maybe we should
130
320260
2000
私たちは金融の領域が
05:22
actually start in the financial domain.
131
322260
2000
研究題材にいいのではと思ったのです
05:24
Maybe we should look at monkey's economic decisions
132
324260
3000
猿の経済的決断の仕方を観察して
05:27
and try to see if they do the same kinds of dumb things that we do.
133
327260
3000
人間同様 愚かな間違いをするか見てみるのです
05:30
Of course, that's when we hit a sort second problem --
134
330260
2000
このとき二つめの問題にぶちあたりました
05:32
a little bit more methodological --
135
332260
2000
少々 方法論的な
05:34
which is that, maybe you guys don't know,
136
334260
2000
問題なのですが
05:36
but monkeys don't actually use money. I know, you haven't met them.
137
336260
3000
猿はお金を使いません
05:39
But this is why, you know, they're not in the queue behind you
138
339260
2000
スーパーや銀行で
05:41
at the grocery store or the ATM -- you know, they don't do this stuff.
139
341260
3000
列に並ぶ猿などいないので
05:44
So now we faced, you know, a little bit of a problem here.
140
344260
3000
お金に対する質問を
05:47
How are we actually going to ask monkeys about money
141
347260
2000
どうやって猿にしたらいいのか
05:49
if they don't actually use it?
142
349260
2000
問題になりましたが
05:51
So we said, well, maybe we should just, actually just suck it up
143
351260
2000
ともかく 猿に
05:53
and teach monkeys how to use money.
144
353260
2000
お金の使い方を
05:55
So that's just what we did.
145
355260
2000
教えてみることにしました
05:57
What you're looking at over here is actually the first unit that I know of
146
357260
3000
これはお金の代わりに使った
06:00
of non-human currency.
147
360260
2000
造り物の通貨です
06:02
We weren't very creative at the time we started these studies,
148
362260
2000
研究を始めた当初は
06:04
so we just called it a token.
149
364260
2000
単にトークンと呼んでいたもので
06:06
But this is the unit of currency that we've taught our monkeys at Yale
150
366260
3000
エール大学で この通貨を使って
06:09
to actually use with humans,
151
369260
2000
人間から食べ物を得るために
06:11
to actually buy different pieces of food.
152
371260
3000
猿を調教しました
06:14
It doesn't look like much -- in fact, it isn't like much.
153
374260
2000
トークンは大したことない
06:16
Like most of our money, it's just a piece of metal.
154
376260
2000
ただの金属片です
06:18
As those of you who've taken currencies home from your trip know,
155
378260
3000
海外旅行から持ち帰り
06:21
once you get home, it's actually pretty useless.
156
381260
2000
無用になったお金と一緒で
06:23
It was useless to the monkeys at first
157
383260
2000
最初 猿はその利用価値が
06:25
before they realized what they could do with it.
158
385260
2000
わからなかったので
06:27
When we first gave it to them in their enclosures,
159
387260
2000
柵に入れられたトークンを
06:29
they actually kind of picked them up, looked at them.
160
389260
2000
拾って眺めたものの
06:31
They were these kind of weird things.
161
391260
2000
特に意味はなしませんでした
06:33
But very quickly, the monkeys realized
162
393260
2000
でも 猿はすぐに
06:35
that they could actually hand these tokens over
163
395260
2000
トークンを渡せば
06:37
to different humans in the lab for some food.
164
397260
3000
食べ物がもらえることに気づきました
06:40
And so you see one of our monkeys, Mayday, up here doing this.
165
400260
2000
猿のメーデーが実践しています
06:42
This is A and B are kind of the points where she's sort of a little bit
166
402260
3000
左の二つの写真は 好奇心を
06:45
curious about these things -- doesn't know.
167
405260
2000
示しているところです
06:47
There's this waiting hand from a human experimenter,
168
407260
2000
手を差し出す実験者がいて
06:49
and Mayday quickly figures out, apparently the human wants this.
169
409260
3000
メーデーはこの人が欲しがっていることを察します
06:52
Hands it over, and then gets some food.
170
412260
2000
渡すと食べ物がもらえます
06:54
It turns out not just Mayday, all of our monkeys get good
171
414260
2000
どの猿も 人間にトークンを差し出し
06:56
at trading tokens with human salesman.
172
416260
2000
食べ物が得られます
06:58
So here's just a quick video of what this looks like.
173
418260
2000
ビデオを用意しました
07:00
Here's Mayday. She's going to be trading a token for some food
174
420260
3000
メーデーがトークンを差し出し
07:03
and waiting happily and getting her food.
175
423260
3000
嬉しそうに待ち 食べ物をもらいます
07:06
Here's Felix, I think. He's our alpha male; he's a kind of big guy.
176
426260
2000
ボス的存在のフィリックスも
07:08
But he too waits patiently, gets his food and goes on.
177
428260
3000
辛抱強く待って食べ物をもらいます
07:11
So the monkeys get really good at this.
178
431260
2000
あまり訓練をしなくても
07:13
They're surprisingly good at this with very little training.
179
433260
3000
どの猿も やり方を
07:16
We just allowed them to pick this up on their own.
180
436260
2000
覚えてしまいました
07:18
The question is: is this anything like human money?
181
438260
2000
これは人間が扱うお金と同じなのか
07:20
Is this a market at all,
182
440260
2000
それとも 猿が
07:22
or did we just do a weird psychologist's trick
183
442260
2000
賢く見えるだけで
07:24
by getting monkeys to do something,
184
444260
2000
実はそうではないのか
07:26
looking smart, but not really being smart.
185
446260
2000
疑問に思いました
07:28
And so we said, well, what would the monkeys spontaneously do
186
448260
3000
猿がお金に匹敵するものを本当に使っていたら
07:31
if this was really their currency, if they were really using it like money?
187
451260
3000
猿は自発的に何をするのか 気になりました
07:34
Well, you might actually imagine them
188
454260
2000
人間が金銭の授受をするように
07:36
to do all the kinds of smart things
189
456260
2000
猿も賢いことをすると
07:38
that humans do when they start exchanging money with each other.
190
458260
3000
想像する人がいるかもしれません
07:41
You might have them start paying attention to price,
191
461260
3000
トークンがあれば どれだけのものを
07:44
paying attention to how much they buy --
192
464260
2000
買えるのかと
07:46
sort of keeping track of their monkey token, as it were.
193
466260
3000
猿が関心をもつのかどうか
07:49
Do the monkeys do anything like this?
194
469260
2000
突き止めるため
07:51
And so our monkey marketplace was born.
195
471260
3000
猿の市場をつくり出しました
07:54
The way this works is that
196
474260
2000
対象となった猿は
07:56
our monkeys normally live in a kind of big zoo social enclosure.
197
476260
3000
動物園のような社会的囲いの中で通常暮らしています
07:59
When they get a hankering for some treats,
198
479260
2000
おやつを欲しがるときに
08:01
we actually allowed them a way out
199
481260
2000
市場へつながる小さな囲いに
08:03
into a little smaller enclosure where they could enter the market.
200
483260
2000
誘い込みます
08:05
Upon entering the market --
201
485260
2000
そこは人間の市場より
08:07
it was actually a much more fun market for the monkeys than most human markets
202
487260
2000
楽しさがある場所にしました
08:09
because, as the monkeys entered the door of the market,
203
489260
3000
猿がドアをくぐると トークンがたくさん入った
08:12
a human would give them a big wallet full of tokens
204
492260
2000
財布が渡されます
08:14
so they could actually trade the tokens
205
494260
2000
トークンを使って
08:16
with one of these two guys here --
206
496260
2000
物を得られる仕組みです
08:18
two different possible human salesmen
207
498260
2000
2人のセールスマンが
08:20
that they could actually buy stuff from.
208
500260
2000
商品を用意しています
08:22
The salesmen were students from my lab.
209
502260
2000
学生にセールスマンになってもらい
08:24
They dressed differently; they were different people.
210
504260
2000
それぞれ違う格好をしました
08:26
And over time, they did basically the same thing
211
506260
3000
何度も同じことを繰り返し
08:29
so the monkeys could learn, you know,
212
509260
2000
猿に仕組みを教えました
08:31
who sold what at what price -- you know, who was reliable, who wasn't, and so on.
213
511260
3000
商品や値段や誰が信頼できるかなどです
08:34
And you can see that each of the experimenters
214
514260
2000
実験者が持っている
08:36
is actually holding up a little, yellow food dish.
215
516260
3000
黄色い小皿に乗っている量が
08:39
and that's what the monkey can for a single token.
216
519260
2000
トークン1枚で買えるものです
08:41
So everything costs one token,
217
521260
2000
どれもトークン1枚分ですが
08:43
but as you can see, sometimes tokens buy more than others,
218
523260
2000
時々ぶどうが多く得られるように
08:45
sometimes more grapes than others.
219
525260
2000
設定しました
08:47
So I'll show you a quick video of what this marketplace actually looks like.
220
527260
3000
実際のビデオをご覧ください
08:50
Here's a monkey-eye-view. Monkeys are shorter, so it's a little short.
221
530260
3000
猿の視点から撮影したものです
08:53
But here's Honey.
222
533260
2000
これは猿のハニー
08:55
She's waiting for the market to open a little impatiently.
223
535260
2000
市場の開店を待っています
08:57
All of a sudden the market opens. Here's her choice: one grapes or two grapes.
224
537260
3000
一人は1粒 もう一人は2粒差し出しています
09:00
You can see Honey, very good market economist,
225
540260
2000
見極め上手なハニーは
09:02
goes with the guy who gives more.
226
542260
3000
ぶどう2粒をくれる人を選びました
09:05
She could teach our financial advisers a few things or two.
227
545260
2000
ハニーから学べることはありそうです
09:07
So not just Honey,
228
547260
2000
ハニーに限らず
09:09
most of the monkeys went with guys who had more.
229
549260
3000
大半の猿は より多くてより美味しいものを
09:12
Most of the monkeys went with guys who had better food.
230
552260
2000
持っている人を選びました
09:14
When we introduced sales, we saw the monkeys paid attention to that.
231
554260
3000
猿は商品に注目をして
09:17
They really cared about their monkey token dollar.
232
557260
3000
トークンに関心をよせました
09:20
The more surprising thing was that when we collaborated with economists
233
560260
3000
驚いたのは 経済学者と共に
09:23
to actually look at the monkeys' data using economic tools,
234
563260
3000
経済的指針で猿のデータを見てみると
09:26
they basically matched, not just qualitatively,
235
566260
3000
人間がしていることと同じことが
09:29
but quantitatively with what we saw
236
569260
2000
質的にも量的にも
09:31
humans doing in a real market.
237
571260
2000
一致したことです
09:33
So much so that, if you saw the monkeys' numbers,
238
573260
2000
数値を見ただけでは
09:35
you couldn't tell whether they came from a monkey or a human in the same market.
239
575260
3000
猿なのか人間なのか区別がつかないほどです
09:38
And what we'd really thought we'd done
240
578260
2000
少なくとも
09:40
is like we'd actually introduced something
241
580260
2000
猿と私たちには
09:42
that, at least for the monkeys and us,
242
582260
2000
本物のお金のように使えるものを
09:44
works like a real financial currency.
243
584260
2000
導入できたと感じました
09:46
Question is: do the monkeys start messing up in the same ways we do?
244
586260
3000
問題は 猿も人間同様に間違いをするのかということです
09:49
Well, we already saw anecdotally a couple of signs that they might.
245
589260
3000
その可能性はいくつかありました
09:52
One thing we never saw in the monkey marketplace
246
592260
2000
猿の経済界で見かけなかったのは
09:54
was any evidence of saving --
247
594260
2000
人間のように
09:56
you know, just like our own species.
248
596260
2000
貯金をしないことです
09:58
The monkeys entered the market, spent their entire budget
249
598260
2000
コインを使い果たし
10:00
and then went back to everyone else.
250
600260
2000
帰って行きました
10:02
The other thing we also spontaneously saw,
251
602260
2000
また同時に見かけたのは
10:04
embarrassingly enough,
252
604260
2000
恥ずかしいことに
10:06
is spontaneous evidence of larceny.
253
606260
2000
盗みを働くのです
10:08
The monkeys would rip-off the tokens at every available opportunity --
254
608260
3000
機会さえあれば人間からトークンを
10:11
from each other, often from us --
255
611260
2000
だまし取ろうとしました
10:13
you know, things we didn't necessarily think we were introducing,
256
613260
2000
教えたつもりはないのに
10:15
but things we spontaneously saw.
257
615260
2000
盗みを身につけていました
10:17
So we said, this looks bad.
258
617260
2000
そこで 人間同様に
10:19
Can we actually see if the monkeys
259
619260
2000
猿も愚かなことをするのか
10:21
are doing exactly the same dumb things as humans do?
260
621260
3000
確かめることにしたのです
10:24
One possibility is just kind of let
261
624260
2000
猿の経済界を放っておけば
10:26
the monkey financial system play out,
262
626260
2000
数年後には人間に
10:28
you know, see if they start calling us for bailouts in a few years.
263
628260
2000
経済援助を求めてくるかもしれませんが
10:30
We were a little impatient so we wanted
264
630260
2000
そんなに待っていられないので
10:32
to sort of speed things up a bit.
265
632260
2000
時間を短縮するために
10:34
So we said, let's actually give the monkeys
266
634260
2000
経済的な難局に
10:36
the same kinds of problems
267
636260
2000
直面したとき
10:38
that humans tend to get wrong
268
638260
2000
人間が間違いやすい問題を
10:40
in certain kinds of economic challenges,
269
640260
2000
猿にも
10:42
or certain kinds of economic experiments.
270
642260
2000
与えてみることにしました
10:44
And so, since the best way to see how people go wrong
271
644260
3000
人がいかに間違いを犯すのかを確かめるには
10:47
is to actually do it yourself,
272
647260
2000
自分でやってみるのが一番ですから
10:49
I'm going to give you guys a quick experiment
273
649260
2000
直感を見るために
10:51
to sort of watch your own financial intuitions in action.
274
651260
2000
実験をしてみましょう
10:53
So imagine that right now
275
653260
2000
皆さんに
10:55
I handed each and every one of you
276
655260
2000
1000ドルずつ
10:57
a thousand U.S. dollars -- so 10 crisp hundred dollar bills.
277
657260
3000
渡したとします
11:00
Take these, put it in your wallet
278
660260
2000
そのお金は
11:02
and spend a second thinking about what you're going to do with it.
279
662260
2000
もう皆さんのものですから
11:04
Because it's yours now; you can buy whatever you want.
280
664260
2000
募金でも何でも
11:06
Donate it, take it, and so on.
281
666260
2000
好きなように使えます
11:08
Sounds great, but you get one more choice to earn a little bit more money.
282
668260
3000
もうちょっと儲かる選択肢があったとします
11:11
And here's your choice: you can either be risky,
283
671260
3000
一つめの選択肢はリスクを伴います
11:14
in which case I'm going to flip one of these monkey tokens.
284
674260
2000
私がコインを投げて表が出たら
11:16
If it comes up heads, you're going to get a thousand dollars more.
285
676260
2000
もう1000ドルプラス
11:18
If it comes up tails, you get nothing.
286
678260
2000
裏が出たら何もなし
11:20
So it's a chance to get more, but it's pretty risky.
287
680260
3000
増える確率はありますが 高リスクです
11:23
Your other option is a bit safe. Your just going to get some money for sure.
288
683260
3000
もう一つの選択肢は 安全志向
11:26
I'm just going to give you 500 bucks.
289
686260
2000
金額は500ドルですが
11:28
You can stick it in your wallet and use it immediately.
290
688260
3000
確実にもらえるとしたら
11:31
So see what your intuition is here.
291
691260
2000
どちらを選びますか
11:33
Most people actually go with the play-it-safe option.
292
693260
3000
大半の人は安全な方を選びます
11:36
Most people say, why should I be risky when I can get 1,500 dollars for sure?
293
696260
3000
1500ドルが確実に手に入るなら 賭ける必要はないと言うのです
11:39
This seems like a good bet. I'm going to go with that.
294
699260
2000
慎重な選択と言えますね
11:41
You might say, eh, that's not really irrational.
295
701260
2000
人はリスクを負うのが嫌なため
11:43
People are a little risk-averse. So what?
296
703260
2000
合理的だと思うかもしれませんが
11:45
Well, the "so what?" comes when start thinking
297
705260
2000
同じ問題の
11:47
about the same problem
298
707260
2000
状況を変えた場合
11:49
set up just a little bit differently.
299
709260
2000
どうなるか見てみましょう
11:51
So now imagine that I give each and every one of you
300
711260
2000
皆さんに2000ドルを
11:53
2,000 dollars -- 20 crisp hundred dollar bills.
301
713260
3000
渡したと想像してください
11:56
Now you can buy double to stuff you were going to get before.
302
716260
2000
先ほどの2倍も
11:58
Think about how you'd feel sticking it in your wallet.
303
718260
2000
好きなものが買えます
12:00
And now imagine that I have you make another choice
304
720260
2000
ここで選択です
12:02
But this time, it's a little bit worse.
305
722260
2000
先ほどとは違って
12:04
Now, you're going to be deciding how you're going to lose money,
306
724260
3000
どのようにお金を失うかを考えてもらいます
12:07
but you're going to get the same choice.
307
727260
2000
選択肢は同じ
12:09
You can either take a risky loss --
308
729260
2000
リスクを伴う選択肢は
12:11
so I'll flip a coin. If it comes up heads, you're going to actually lose a lot.
309
731260
3000
表が出たら1000ドル失いますが
12:14
If it comes up tails, you lose nothing, you're fine, get to keep the whole thing --
310
734260
3000
裏が出たら何も失わずに済みます
12:17
or you could play it safe, which means you have to reach back into your wallet
311
737260
3000
リスクをかけたくなければ
12:20
and give me five of those $100 bills, for certain.
312
740260
3000
私に500ドルを渡すだけ
12:23
And I'm seeing a lot of furrowed brows out there.
313
743260
3000
眉にしわを寄せる人が見えますね
12:26
So maybe you're having the same intuitions
314
746260
2000
きっと皆さんも
12:28
as the subjects that were actually tested in this,
315
748260
2000
この実験の対象者と同様に
12:30
which is when presented with these options,
316
750260
2000
この選択肢を与えられると
12:32
people don't choose to play it safe.
317
752260
2000
安全な方は選ばないのかもしれません
12:34
They actually tend to go a little risky.
318
754260
2000
人はリスクをかける傾向にあるのです
12:36
The reason this is irrational is that we've given people in both situations
319
756260
3000
これが合理的でないのは どちらの状況も
12:39
the same choice.
320
759260
2000
選択肢が同じだったからです
12:41
It's a 50/50 shot of a thousand or 2,000,
321
761260
3000
1000ドルか2000ドルのどちらかになる選択肢と
12:44
or just 1,500 dollars with certainty.
322
764260
2000
1500ドルと決まった選択肢
12:46
But people's intuitions about how much risk to take
323
766260
3000
でも 伴うリスクに関わる直感は
12:49
varies depending on where they started with.
324
769260
2000
立たされた状況によって異なります
12:51
So what's going on?
325
771260
2000
どういうことでしょうか
12:53
Well, it turns out that this seems to be the result
326
773260
2000
これは心理的な面から生まれる
12:55
of at least two biases that we have at the psychological level.
327
775260
3000
少なくとも二つの先入観が関係しています
12:58
One is that we have a really hard time thinking in absolute terms.
328
778260
3000
まず 絶対数で考える難しさです
13:01
You really have to do work to figure out,
329
781260
2000
1000ドルか2000ドルの選択肢と
13:03
well, one option's a thousand, 2,000;
330
783260
2000
1500ドルの選択肢を
13:05
one is 1,500.
331
785260
2000
天秤にかけなくてはいけません
13:07
Instead, we find it very easy to think in very relative terms
332
787260
3000
でも選択肢が変わり
13:10
as options change from one time to another.
333
790260
3000
相対的に考えるのは簡単です
13:13
So we think of things as, "Oh, I'm going to get more," or "Oh, I'm going to get less."
334
793260
3000
もっともらえる とか 失う額は少ない という具合です
13:16
This is all well and good, except that
335
796260
2000
これはいいのですが
13:18
changes in different directions
336
798260
2000
捉え方を変えることで
13:20
actually effect whether or not we think
337
800260
2000
選択肢の妥当性の
13:22
options are good or not.
338
802260
2000
見極めに影響します
13:24
And this leads to the second bias,
339
804260
2000
これは二つめの傾向につながり
13:26
which economists have called loss aversion.
340
806260
2000
経済学者は損失回避と呼んでいます
13:28
The idea is that we really hate it when things go into the red.
341
808260
3000
赤字になることを嫌うという意味です
13:31
We really hate it when we have to lose out on some money.
342
811260
2000
人は損失を嫌うため
13:33
And this means that sometimes we'll actually
343
813260
2000
損失を避けようと
13:35
switch our preferences to avoid this.
344
815260
2000
することがあります
13:37
What you saw in that last scenario is that
345
817260
2000
最後のシナリオで見たのは
13:39
subjects get risky
346
819260
2000
対象者はリスクをかけます
13:41
because they want the small shot that there won't be any loss.
347
821260
3000
何も失いたくないからです
13:44
That means when we're in a risk mindset --
348
824260
2000
これは我々が
13:46
excuse me, when we're in a loss mindset,
349
826260
2000
損失の覚悟があるとき
13:48
we actually become more risky,
350
828260
2000
非常に厄介になり得るのですが
13:50
which can actually be really worrying.
351
830260
2000
リスクを負うことが多くなります
13:52
These kinds of things play out in lots of bad ways in humans.
352
832260
3000
始末の悪い様々な状況を作り出すものです
13:55
They're why stock investors hold onto losing stocks longer --
353
835260
3000
株投資家が株を売らないがために損失を出すのは
13:58
because they're evaluating them in relative terms.
354
838260
2000
相対的に考えているからです
14:00
They're why people in the housing market refused to sell their house --
355
840260
2000
住宅市場の人たちが不動産を売り渋ったのは
14:02
because they don't want to sell at a loss.
356
842260
2000
損を承知で売りたくなかったからです
14:04
The question we were interested in
357
844260
2000
猿も同じ傾向を示すのか
14:06
is whether the monkeys show the same biases.
358
846260
2000
私たちは興味がありました
14:08
If we set up those same scenarios in our little monkey market,
359
848260
3000
猿の市場でも同じ状況をつくりだしたら
14:11
would they do the same thing as people?
360
851260
2000
人間と同じことをするでしょうか
14:13
And so this is what we did, we gave the monkeys choices
361
853260
2000
そこで私たちは猿に選択肢を与え
14:15
between guys who were safe -- they did the same thing every time --
362
855260
3000
常に同じことをする安全な人と
14:18
or guys who were risky --
363
858260
2000
50%の確率で違う事をする
14:20
they did things differently half the time.
364
860260
2000
リスク型の人を用意しました
14:22
And then we gave them options that were bonuses --
365
862260
2000
そして初めのシナリオのように
14:24
like you guys did in the first scenario --
366
864260
2000
ボーナスがもらえるようにしました
14:26
so they actually have a chance more,
367
866260
2000
儲かるチャンスでもあり
14:28
or pieces where they were experiencing losses --
368
868260
3000
失う可能性も出てきます
14:31
they actually thought they were going to get more than they really got.
369
871260
2000
実際よりも儲けたと思うのです
14:33
And so this is what this looks like.
370
873260
2000
このような感じです
14:35
We introduced the monkeys to two new monkey salesmen.
371
875260
2000
新しい販売員を紹介します
14:37
The guy on the left and right both start with one piece of grape,
372
877260
2000
どちらも持っているのは ぶどう1粒
14:39
so it looks pretty good.
373
879260
2000
見た目はいいですが
14:41
But they're going to give the monkeys bonuses.
374
881260
2000
ボーナスが出てきます
14:43
The guy on the left is a safe bonus.
375
883260
2000
左の人はおまけをくれるので
14:45
All the time, he adds one, to give the monkeys two.
376
885260
3000
合計2粒のぶどうがもらえます
14:48
The guy on the right is actually a risky bonus.
377
888260
2000
右の人はリスク型で
14:50
Sometimes the monkeys get no bonus -- so this is a bonus of zero.
378
890260
3000
何もくれない時がありますが
14:53
Sometimes the monkeys get two extra.
379
893260
3000
時々2粒もらえるため
14:56
For a big bonus, now they get three.
380
896260
2000
合計3粒のときがあります
14:58
But this is the same choice you guys just faced.
381
898260
2000
これは皆さんが直面したものと同じ
15:00
Do the monkeys actually want to play it safe
382
900260
3000
猿はリスクを回避して
15:03
and then go with the guy who's going to do the same thing on every trial,
383
903260
2000
毎回おまけをくれる人を選ぶのか
15:05
or do they want to be risky
384
905260
2000
それとも
15:07
and try to get a risky, but big, bonus,
385
907260
2000
何ももらえない時を覚悟して
15:09
but risk the possibility of getting no bonus.
386
909260
2000
大きなボーナスを得ようとするでしょうか
15:11
People here played it safe.
387
911260
2000
人間は安全な方を選びました
15:13
Turns out, the monkeys play it safe too.
388
913260
2000
結果は猿も同じでした
15:15
Qualitatively and quantitatively,
389
915260
2000
質的にも量的にも
15:17
they choose exactly the same way as people,
390
917260
2000
猿は人間と同じ―
15:19
when tested in the same thing.
391
919260
2000
判断を下しました
15:21
You might say, well, maybe the monkeys just don't like risk.
392
921260
2000
猿の損失との向き合い方を
15:23
Maybe we should see how they do with losses.
393
923260
2000
明らかにするために
15:25
And so we ran a second version of this.
394
925260
2000
別の実験を行いました
15:27
Now, the monkeys meet two guys
395
927260
2000
ここでは 何もくれない
15:29
who aren't giving them bonuses;
396
929260
2000
2人の人に会います
15:31
they're actually giving them less than they expect.
397
931260
2000
ぶどうの数が多いので
15:33
So they look like they're starting out with a big amount.
398
933260
2000
たくさんもらえる印象を与えます
15:35
These are three grapes; the monkey's really psyched for this.
399
935260
2000
3粒のぶどうに猿は大喜び
15:37
But now they learn these guys are going to give them less than they expect.
400
937260
3000
でも3粒はもらえないことがわかります
15:40
They guy on the left is a safe loss.
401
940260
2000
左の人は安全型で
15:42
Every single time, he's going to take one of these away
402
942260
3000
毎度 ぶどう1粒を取り上げて
15:45
and give the monkeys just two.
403
945260
2000
猿には2粒だけ渡します
15:47
the guy on the right is the risky loss.
404
947260
2000
右の人はリスク型で
15:49
Sometimes he gives no loss, so the monkeys are really psyched,
405
949260
3000
3粒くれることもあるため 猿は喜びますが
15:52
but sometimes he actually gives a big loss,
406
952260
2000
時々大きな損をする羽目になり
15:54
taking away two to give the monkeys only one.
407
954260
2000
1粒しかくれません
15:56
And so what do the monkeys do?
408
956260
2000
猿はどうしたでしょうか
15:58
Again, same choice; they can play it safe
409
958260
2000
安全型は
16:00
for always getting two grapes every single time,
410
960260
3000
毎度2粒もらえます
16:03
or they can take a risky bet and choose between one and three.
411
963260
3000
リスク型は3粒の時と1粒の時が混在します
16:06
The remarkable thing to us is that, when you give monkeys this choice,
412
966260
3000
私たちが驚いたのは 猿にこの選択をさせたとき
16:09
they do the same irrational thing that people do.
413
969260
2000
人間と同様に非合理的な選択をすることです
16:11
They actually become more risky
414
971260
2000
実験を どう始めるかによって
16:13
depending on how the experimenters started.
415
973260
3000
猿はリスク型を選ぶのです
16:16
This is crazy because it suggests that the monkeys too
416
976260
2000
猿も物事を相対的に
16:18
are evaluating things in relative terms
417
978260
2000
見ていることを示唆しており
16:20
and actually treating losses differently than they treat gains.
418
980260
3000
損失と儲けは同じ方法では扱っていません
16:23
So what does all of this mean?
419
983260
2000
これはどういうことでしょうか
16:25
Well, what we've shown is that, first of all,
420
985260
2000
第一に 猿に対して
16:27
we can actually give the monkeys a financial currency,
421
987260
2000
金融価値のあるお金を与えると
16:29
and they do very similar things with it.
422
989260
2000
人間と似たことをします
16:31
They do some of the smart things we do,
423
991260
2000
賢い行動もしますが
16:33
some of the kind of not so nice things we do,
424
993260
2000
盗みなどの
16:35
like steal it and so on.
425
995260
2000
好ましくないことをしたり
16:37
But they also do some of the irrational things we do.
426
997260
2000
非合理的なこともするのです
16:39
They systematically get things wrong
427
999260
2000
猿は人間と同様に
16:41
and in the same ways that we do.
428
1001260
2000
体系的な失敗をします
16:43
This is the first take-home message of the Talk,
429
1003260
2000
これがまず第一に示したい点です
16:45
which is that if you saw the beginning of this and you thought,
430
1005260
2000
猿の金融アドバイザーを雇おうと
16:47
oh, I'm totally going to go home and hire a capuchin monkey financial adviser.
431
1007260
2000
考えた方がいると思いますが
16:49
They're way cuter than the one at ... you know --
432
1009260
2000
猿はかわいいけれど
16:51
Don't do that; they're probably going to be just as dumb
433
1011260
2000
人間の金融アドバイザー同様に
16:53
as the human one you already have.
434
1013260
3000
愚かですから お勧めしません
16:56
So, you know, a little bad -- Sorry, sorry, sorry.
435
1016260
2000
ごめんなさい
16:58
A little bad for monkey investors.
436
1018260
2000
言い方が悪かったわ
17:00
But of course, you know, the reason you're laughing is bad for humans too.
437
1020260
3000
皆さんが笑うのも 人間の弱点を知っているからですよね
17:03
Because we've answered the question we started out with.
438
1023260
3000
初めの質問で答えたからわかりますね
17:06
We wanted to know where these kinds of errors came from.
439
1026260
2000
このような間違いは どこから始まるのでしょうか
17:08
And we started with the hope that maybe we can
440
1028260
2000
私たちの願いは
17:10
sort of tweak our financial institutions,
441
1030260
2000
金融制度や技術に
17:12
tweak our technologies to make ourselves better.
442
1032260
3000
ひねりを入れて向上させることでした
17:15
But what we've learn is that these biases might be a deeper part of us than that.
443
1035260
3000
でもわかったのは このような傾向はもっと深い部分から発生していることです
17:18
In fact, they might be due to the very nature
444
1038260
2000
人間が進化してきた中に
17:20
of our evolutionary history.
445
1040260
2000
理由が見つけられる可能性もあります
17:22
You know, maybe it's not just humans
446
1042260
2000
愚かな面が見られるのは
17:24
at the right side of this chain that's duncey.
447
1044260
2000
人間だけなのではなく
17:26
Maybe it's sort of duncey all the way back.
448
1046260
2000
大昔から猿にも見られたのかもしれません
17:28
And this, if we believe the capuchin monkey results,
449
1048260
3000
猿の実験結果を信用するとしたら
17:31
means that these duncey strategies
450
1051260
2000
この愚かな策略は
17:33
might be 35 million years old.
451
1053260
2000
3500万年も続いているのかもしれません
17:35
That's a long time for a strategy
452
1055260
2000
この古くからある策略は
17:37
to potentially get changed around -- really, really old.
453
1057260
3000
ずっと変わらないままなのです
17:40
What do we know about other old strategies like this?
454
1060260
2000
他にはどのようなものがあるでしょうか
17:42
Well, one thing we know is that they tend to be really hard to overcome.
455
1062260
3000
愚かな策略を克服するのは大変なのです
17:45
You know, think of our evolutionary predilection
456
1065260
2000
人間は進化するうちに
17:47
for eating sweet things, fatty things like cheesecake.
457
1067260
3000
甘いものや脂肪分の多いものを好むようになりました
17:50
You can't just shut that off.
458
1070260
2000
美味しさを知っているので
17:52
You can't just look at the dessert cart as say, "No, no, no. That looks disgusting to me."
459
1072260
3000
デザートを見たときに まずそうとは思わず
17:55
We're just built differently.
460
1075260
2000
体にはプラスだと
17:57
We're going to perceive it as a good thing to go after.
461
1077260
2000
思うようになっています
17:59
My guess is that the same thing is going to be true
462
1079260
2000
経済的な決断に関しても
18:01
when humans are perceiving
463
1081260
2000
同じことが起こるというのが
18:03
different financial decisions.
464
1083260
2000
私の推測です
18:05
When you're watching your stocks plummet into the red,
465
1085260
2000
株が下落したり
18:07
when you're watching your house price go down,
466
1087260
2000
不動産価値が下がるとき
18:09
you're not going to be able to see that
467
1089260
2000
進化的な意味で
18:11
in anything but old evolutionary terms.
468
1091260
2000
解釈してしまいます
18:13
This means that the biases
469
1093260
2000
投資家を失敗に招いたり
18:15
that lead investors to do badly,
470
1095260
2000
差し押さえをつくり出す先入観を
18:17
that lead to the foreclosure crisis
471
1097260
2000
乗り越えるのは
18:19
are going to be really hard to overcome.
472
1099260
2000
非常に難しいことを指しています
18:21
So that's the bad news. The question is: is there any good news?
473
1101260
2000
これが悲しい現実ですが
18:23
I'm supposed to be up here telling you the good news.
474
1103260
2000
喜ばしいことも必要ですね
18:25
Well, the good news, I think,
475
1105260
2000
肯定的側面は
18:27
is what I started with at the beginning of the Talk,
476
1107260
2000
冒頭で触れたように
18:29
which is that humans are not only smart;
477
1109260
2000
人間は賢いだけではなく
18:31
we're really inspirationally smart
478
1111260
2000
生物界の中でも
18:33
to the rest of the animals in the biological kingdom.
479
1113260
3000
感動するほどに
18:36
We're so good at overcoming our biological limitations --
480
1116260
3000
賢いことです
18:39
you know, I flew over here in an airplane.
481
1119260
2000
羽をバタバタさせなくても
18:41
I didn't have to try to flap my wings.
482
1121260
2000
ここまで飛行機で来れましたし
18:43
I'm wearing contact lenses now so that I can see all of you.
483
1123260
3000
今しているように コンタクトを使用すれば
18:46
I don't have to rely on my own near-sightedness.
484
1126260
3000
近視でも皆さんがちゃんと見えます
18:49
We actually have all of these cases
485
1129260
2000
このように人間は
18:51
where we overcome our biological limitations
486
1131260
3000
生まれもった力の限界を
18:54
through technology and other means, seemingly pretty easily.
487
1134260
3000
技術などを使って容易に乗り越えています
18:57
But we have to recognize that we have those limitations.
488
1137260
3000
でも限界があることを認識しなければいけません
19:00
And here's the rub.
489
1140260
2000
厄介なことです
19:02
It was Camus who once said that, "Man is the only species
490
1142260
2000
作家のカミュは言いました
19:04
who refuses to be what he really is."
491
1144260
3000
“人間は 本来の姿でいることを拒む唯一の種だ”
19:07
But the irony is that
492
1147260
2000
限界を知らない限り
19:09
it might only be in recognizing our limitations
493
1149260
2000
限界を乗り越えることは
19:11
that we can really actually overcome them.
494
1151260
2000
無理かもしれないのが皮肉ですが
19:13
The hope is that you all will think about your limitations,
495
1153260
3000
克服できない限界として考えるのではなく
19:16
not necessarily as unovercomable,
496
1156260
3000
限界を認識して 受け入れて
19:19
but to recognize them, accept them
497
1159260
2000
デザイン界に答えを
19:21
and then use the world of design to actually figure them out.
498
1161260
3000
見つけ出せる希望を抱けます
19:24
That might be the only way that we will really be able
499
1164260
3000
これこそ人間の可能性を最大限にして
19:27
to achieve our own human potential
500
1167260
2000
立派な種と名乗るための
19:29
and really be the noble species we hope to all be.
501
1169260
3000
唯一の方法かもしれません
19:32
Thank you.
502
1172260
2000
ありがとう
19:34
(Applause)
503
1174260
5000
(拍手)
このウェブサイトについて

このサイトでは英語学習に役立つYouTube動画を紹介します。世界中の一流講師による英語レッスンを見ることができます。各ビデオのページに表示される英語字幕をダブルクリックすると、そこからビデオを再生することができます。字幕はビデオの再生と同期してスクロールします。ご意見・ご要望がございましたら、こちらのお問い合わせフォームよりご連絡ください。

https://forms.gle/WvT1wiN1qDtmnspy7