Laurie Santos: How monkeys mirror human irrationality

198,212 views ・ 2010-07-29

TED


Pre spustenie videa dvakrát kliknite na anglické titulky nižšie.

Translator: Katarina Kesselova Reviewer: Roman Studenic
00:17
I want to start my talk today with two observations
0
17260
2000
Na úvod chcem začať dvoma postrehmi
00:19
about the human species.
1
19260
2000
o ľudskom druhu.
00:21
The first observation is something that you might think is quite obvious,
2
21260
3000
Prvá poznámka, o ktorej si môžte myslieť, že je celkom očividná
00:24
and that's that our species, Homo sapiens,
3
24260
2000
je, že náš druh Homo sapiens,
00:26
is actually really, really smart --
4
26260
2000
je veľmi, veľmi chytrý -
00:28
like, ridiculously smart --
5
28260
2000
priam neuveriteľne chytrý.
00:30
like you're all doing things
6
30260
2000
Robíme všetky tie veci,
00:32
that no other species on the planet does right now.
7
32260
3000
ktoré žiaden iný druh na planéte nedokáže.
00:35
And this is, of course,
8
35260
2000
Pochopiteľne toto nie je
00:37
not the first time you've probably recognized this.
9
37260
2000
prvýkrát, čo ste si to uvedomili.
00:39
Of course, in addition to being smart, we're also an extremely vain species.
10
39260
3000
Popritom že sme chytrí, sme aj neuveriteľne namyslený druh.
00:42
So we like pointing out the fact that we're smart.
11
42260
3000
Radi zdôrazňujeme, že sme chytrí.
00:45
You know, so I could turn to pretty much any sage
12
45260
2000
Môžem sa obrátiť na ktorékoľvek mudrca,
00:47
from Shakespeare to Stephen Colbert
13
47260
2000
od Shakespeara po Stephena Colberta
00:49
to point out things like the fact that
14
49260
2000
aby som ukázala,
00:51
we're noble in reason and infinite in faculties
15
51260
2000
že sme výborní v úsudku a máme neohraničené schopnosti,
00:53
and just kind of awesome-er than anything else on the planet
16
53260
2000
a že sme lepší než čokoľvek iné na planéte,
00:55
when it comes to all things cerebral.
17
55260
3000
keď príde na racionalitu.
00:58
But of course, there's a second observation about the human species
18
58260
2000
Ale druhý postreh o ľudskom druhu,
01:00
that I want to focus on a little bit more,
19
60260
2000
ktorému sa chcem venovať o niečo viac
01:02
and that's the fact that
20
62260
2000
je fakt, že
01:04
even though we're actually really smart, sometimes uniquely smart,
21
64260
3000
aj keď sme skutočne veľmi chytrí, niekedy jedinečne chytrí,
01:07
we can also be incredibly, incredibly dumb
22
67260
3000
dokážeme byť neuveriteľne hlúpi
01:10
when it comes to some aspects of our decision making.
23
70260
3000
v určitých aspektoch rozhodovania.
01:13
Now I'm seeing lots of smirks out there.
24
73260
2000
Teraz na vás vidím, že sa uškŕňate.
01:15
Don't worry, I'm not going to call anyone in particular out
25
75260
2000
Nebojte sa, nevyvolám nikoho z vás,
01:17
on any aspects of your own mistakes.
26
77260
2000
aby sme si tie chyby ukázali.
01:19
But of course, just in the last two years
27
79260
2000
Práve z posledných dvoch rokoch
01:21
we see these unprecedented examples of human ineptitude.
28
81260
3000
máme nebývalé dôkazy o ľudskej neobratnosti.
01:24
And we've watched as the tools we uniquely make
29
84260
3000
Keď nástroje, ktoré vyrábame,
01:27
to pull the resources out of our environment
30
87260
2000
aby sme získali prírodné zdroje,
01:29
kind of just blow up in our face.
31
89260
2000
spôsobujú katastrofy.
01:31
We've watched the financial markets that we uniquely create --
32
91260
2000
Keď finančné trhy, ktoré sme vytvorili,
01:33
these markets that were supposed to be foolproof --
33
93260
3000
trhy, ktoré mali byť spoľahlivé,
01:36
we've watched them kind of collapse before our eyes.
34
96260
2000
sa nám pred očami zrútili.
01:38
But both of these two embarrassing examples, I think,
35
98260
2000
Ale tieto dva zahanbujúce príklady,
01:40
don't highlight what I think is most embarrassing
36
100260
3000
nezvýrazňujú dostatočne, čo je najtrápnejšie
01:43
about the mistakes that humans make,
37
103260
2000
na chybách, ktoré ľudia robia
01:45
which is that we'd like to think that the mistakes we make
38
105260
3000
čo je, že si myslíme, že chyby, ktoré robíme
01:48
are really just the result of a couple bad apples
39
108260
2000
sú len výsledkom zopár zlých rozhodnutí
01:50
or a couple really sort of FAIL Blog-worthy decisions.
40
110260
3000
zopár zlyhaní hodných "FAIL blogov".
01:53
But it turns out, what social scientists are actually learning
41
113260
3000
Ale sociálni vedci zisťujú,
01:56
is that most of us, when put in certain contexts,
42
116260
3000
že väčšina z nás, v určitých situáciách
01:59
will actually make very specific mistakes.
43
119260
3000
bude robiť veľmi špecifické typy chýb.
02:02
The errors we make are actually predictable.
44
122260
2000
Chyby, ktoré robíme sú dokonca predpovedateľné.
02:04
We make them again and again.
45
124260
2000
Robíme ich znova a znova.
02:06
And they're actually immune to lots of evidence.
46
126260
2000
A sú imúnne voči dôkazom.
02:08
When we get negative feedback,
47
128260
2000
Aj keď dostaneme negatívnu spätnú väzbu,
02:10
we still, the next time we're face with a certain context,
48
130260
3000
opäť v podobnej situácii
02:13
tend to make the same errors.
49
133260
2000
zvykneme robiť rovnaké chyby.
02:15
And so this has been a real puzzle to me
50
135260
2000
Toto bolo pre mňa
02:17
as a sort of scholar of human nature.
51
137260
2000
ako výskumníčku ľudskej povahy záhadou.
02:19
What I'm most curious about is,
52
139260
2000
Čo ma zaujíma je to,
02:21
how is a species that's as smart as we are
53
141260
3000
ako je druh, ktorý je tak chytrý ako my,
02:24
capable of such bad
54
144260
2000
schopný takých zlých
02:26
and such consistent errors all the time?
55
146260
2000
a takých konzistentných chýb?
02:28
You know, we're the smartest thing out there, why can't we figure this out?
56
148260
3000
Sme to najchytrejšie, čo poznáme, prečo na to nevieme prísť?
02:31
In some sense, where do our mistakes really come from?
57
151260
3000
Z čoho pramenia naše chyby?
02:34
And having thought about this a little bit, I see a couple different possibilities.
58
154260
3000
Keď som o tom uvažovala, napadlo ma zopár možností.
02:37
One possibility is, in some sense, it's not really our fault.
59
157260
3000
Jedna možnosť je, že to nie je v skutočnosti naša chyba.
02:40
Because we're a smart species,
60
160260
2000
Pretože sme chytrým druhom,
02:42
we can actually create all kinds of environments
61
162260
2000
vytvárame rôzne druhy prostredí,
02:44
that are super, super complicated,
62
164260
2000
ktoré sú super komplikované,
02:46
sometimes too complicated for us to even actually understand,
63
166260
3000
niekedy tak komplikované, že im nerozumieme ani my,
02:49
even though we've actually created them.
64
169260
2000
ktorí sme ich vytvorili.
02:51
We create financial markets that are super complex.
65
171260
2000
Vytvárame super zložité finančné trhy.
02:53
We create mortgage terms that we can't actually deal with.
66
173260
3000
Vytvárame hypotekárne podmienky, s ktorými si nevieme rady.
02:56
And of course, if we are put in environments where we can't deal with it,
67
176260
3000
A keď sa v týchto situáciách ocitneme, nevieme si poradiť,
02:59
in some sense makes sense that we actually
68
179260
2000
v podstate to dáva zmysel,
03:01
might mess certain things up.
69
181260
2000
že určité veci popletieme.
03:03
If this was the case, we'd have a really easy solution
70
183260
2000
Ak by to bolo takto, mali by sme jednoduché riešenie
03:05
to the problem of human error.
71
185260
2000
problému ľudskej omylnosti.
03:07
We'd actually just say, okay, let's figure out
72
187260
2000
Len by sme mali určiť,
03:09
the kinds of technologies we can't deal with,
73
189260
2000
s ktorými technológiami si nevieme rady,
03:11
the kinds of environments that are bad --
74
191260
2000
tie situácie, ktoré sú zlé
03:13
get rid of those, design things better,
75
193260
2000
a zbaviť sa ich, spraviť ich lepšie
03:15
and we should be the noble species
76
195260
2000
a boli by sme vznešeným druhom,
03:17
that we expect ourselves to be.
77
197260
2000
ktorým chceme byť.
03:19
But there's another possibility that I find a little bit more worrying,
78
199260
3000
Ale druhá možnosť, ktorá ma viac znepokojuje
03:22
which is, maybe it's not our environments that are messed up.
79
202260
3000
je, že to nie je prostredie, ktoré nás mýli.
03:25
Maybe it's actually us that's designed badly.
80
205260
3000
Možno sme to my, kto je zle navrhnutí.
03:28
This is a hint that I've gotten
81
208260
2000
Toto ma napadlo pri pozeraní
03:30
from watching the ways that social scientists have learned about human errors.
82
210260
3000
na výskumy sociálnych vedcov študujúcich ľudské chyby.
03:33
And what we see is that people tend to keep making errors
83
213260
3000
Čo vidíme je, že ľudia zvyknú robiť rovnaké chyby
03:36
exactly the same way, over and over again.
84
216260
3000
stále dookola.
03:39
It feels like we might almost just be built
85
219260
2000
Akoby sme boli už tak nastavení,
03:41
to make errors in certain ways.
86
221260
2000
robiť chyby určitým spôsobom.
03:43
This is a possibility that I worry a little bit more about,
87
223260
3000
Táto možnosť ma znepokojuje viac,
03:46
because, if it's us that's messed up,
88
226260
2000
lebo ak je problém v nás,
03:48
it's not actually clear how we go about dealing with it.
89
228260
2000
nezdá sa, že s tým môžme niečo urobiť.
03:50
We might just have to accept the fact that we're error prone
90
230260
3000
Mohli by sme to akceptovať, že sme náchylní robiť chyby
03:53
and try to design things around it.
91
233260
2000
a všetko tomu prispôsobiť.
03:55
So this is the question my students and I wanted to get at.
92
235260
3000
S mojimi študentami sa snažíme dopátrať odpovede.
03:58
How can we tell the difference between possibility one and possibility two?
93
238260
3000
Ako rozoznáme prvú a druhú možnosť?
04:01
What we need is a population
94
241260
2000
Potrebujeme populáciu,
04:03
that's basically smart, can make lots of decisions,
95
243260
2000
ktorá je síce chytrá, robí rozhodnutia
04:05
but doesn't have access to any of the systems we have,
96
245260
2000
ale nemá prístup k systémom, ktoré máme my,
04:07
any of the things that might mess us up --
97
247260
2000
ktoré nás môžu zmiasť,
04:09
no human technology, human culture,
98
249260
2000
žiadne ľudské technológie, kultúra,
04:11
maybe even not human language.
99
251260
2000
možno dokonca ani jazyk.
04:13
And so this is why we turned to these guys here.
100
253260
2000
Preto sme sa obrátili na týchto tu.
04:15
These are one of the guys I work with. This is a brown capuchin monkey.
101
255260
3000
Toto je jeden z nich. Toto je hnedá kapucínska opica.
04:18
These guys are New World primates,
102
258260
2000
Sú to primáty Nového Sveta,
04:20
which means they broke off from the human branch
103
260260
2000
čo znamená, že sa odklonili od ľudskej vetvy
04:22
about 35 million years ago.
104
262260
2000
pred 36 miliónmi rokov.
04:24
This means that your great, great, great great, great, great --
105
264260
2000
To znamená, že vaša pra, pra, pra, pra, pra, pra
04:26
with about five million "greats" in there --
106
266260
2000
za tým asi päť miliónov "pra-"
04:28
grandmother was probably the same great, great, great, great
107
268260
2000
babka bola pravdepodobne tá istá pra, pra, pra, pra, pra
04:30
grandmother with five million "greats" in there
108
270260
2000
babka s piatimi miliónmi "pra"
04:32
as Holly up here.
109
272260
2000
ako má Holly, ktorú máme tu.
04:34
You know, so you can take comfort in the fact that this guy up here is a really really distant,
110
274260
3000
Takže môžete sa utešovať, že tieto tvory sú síce veľmi vzdialenými,
04:37
but albeit evolutionary, relative.
111
277260
2000
ale evolučnými príbuznými.
04:39
The good news about Holly though is that
112
279260
2000
Dobrá vec na Holly je,
04:41
she doesn't actually have the same kinds of technologies we do.
113
281260
3000
že nemá také technológie ako my.
04:44
You know, she's a smart, very cut creature, a primate as well,
114
284260
3000
Je to chytrý, rozkošný primát
04:47
but she lacks all the stuff we think might be messing us up.
115
287260
2000
ale nestretáva sa s ničím, čo nás dokáže popliesť.
04:49
So she's the perfect test case.
116
289260
2000
Skvele sa hodí do výskumu.
04:51
What if we put Holly into the same context as humans?
117
291260
3000
Čo ak dáme Holly do rovnakého kontextu ako ľudí?
04:54
Does she make the same mistakes as us?
118
294260
2000
Bude robiť rovnaké chyby ako my?
04:56
Does she not learn from them? And so on.
119
296260
2000
Nebude sa z nich učiť? A tak ďalej.
04:58
And so this is the kind of thing we decided to do.
120
298260
2000
Takže takto sme sa rozhodli.
05:00
My students and I got very excited about this a few years ago.
121
300260
2000
Mňa a mojich študentov to pred pár rokmi veľmi nadchlo.
05:02
We said, all right, let's, you know, throw so problems at Holly,
122
302260
2000
Povedali sme si, dajme Holly problémy,
05:04
see if she messes these things up.
123
304260
2000
uvidíme, či ich popletie.
05:06
First problem is just, well, where should we start?
124
306260
3000
Prvý problém bol, nuž, ako začať?
05:09
Because, you know, it's great for us, but bad for humans.
125
309260
2000
Pre nás je to skvelé ale pre ľudí nie.
05:11
We make a lot of mistakes in a lot of different contexts.
126
311260
2000
Robíme veľa chýb v rôznych kontextoch.
05:13
You know, where are we actually going to start with this?
127
313260
2000
Takže, kde máme v skutočnosti začať?
05:15
And because we started this work around the time of the financial collapse,
128
315260
3000
A keďže sme sa tomu začali venovať v období finančnej krízy,
05:18
around the time when foreclosures were hitting the news,
129
318260
2000
keď sa zabavovali hypotéky,
05:20
we said, hhmm, maybe we should
130
320260
2000
povedali sme si, že by sme mali
05:22
actually start in the financial domain.
131
322260
2000
začať vo finančnej oblasti.
05:24
Maybe we should look at monkey's economic decisions
132
324260
3000
Mali by sme sa pozrieť na ekonomické rozhodovanie opíc
05:27
and try to see if they do the same kinds of dumb things that we do.
133
327260
3000
a pokúsiť sa zistiť, či robia rovnko hlúpe chyby ako my.
05:30
Of course, that's when we hit a sort second problem --
134
330260
2000
Narazili sme na technický problém
05:32
a little bit more methodological --
135
332260
2000
a trochu metodologický
05:34
which is that, maybe you guys don't know,
136
334260
2000
a to, možno o tom neviete
05:36
but monkeys don't actually use money. I know, you haven't met them.
137
336260
3000
ale opice nepoužívaú peniaze. Viem, že ste sa s nimi ešte nestretli.
05:39
But this is why, you know, they're not in the queue behind you
138
339260
2000
To preto nestoja za vami v rade pri pokladni
05:41
at the grocery store or the ATM -- you know, they don't do this stuff.
139
341260
3000
alebo pri bankomate, oni toto nerobia.
05:44
So now we faced, you know, a little bit of a problem here.
140
344260
3000
Takže sme narazili na maličký problém.
05:47
How are we actually going to ask monkeys about money
141
347260
2000
Ako sa môžme opíc pýtať na peniaze,
05:49
if they don't actually use it?
142
349260
2000
keď ich nepoužívajú?
05:51
So we said, well, maybe we should just, actually just suck it up
143
351260
2000
Museli sme sa s tým zmieriť
05:53
and teach monkeys how to use money.
144
353260
2000
a naučiť opice používať peniaze.
05:55
So that's just what we did.
145
355260
2000
Takže sme to urobili.
05:57
What you're looking at over here is actually the first unit that I know of
146
357260
3000
Práve sa pozeráte na prvú jednotku, o ktorej viem,
06:00
of non-human currency.
147
360260
2000
nehumánnej meny.
06:02
We weren't very creative at the time we started these studies,
148
362260
2000
Neboli sme nijak kreatívni, keď sme s tým začali
06:04
so we just called it a token.
149
364260
2000
nazvali sme ich žetón.
06:06
But this is the unit of currency that we've taught our monkeys at Yale
150
366260
3000
Toto platidlo sme naučili opice na Yale
06:09
to actually use with humans,
151
369260
2000
používať, kupovať si
06:11
to actually buy different pieces of food.
152
371260
3000
od ľudí rozličné kúsky jedla.
06:14
It doesn't look like much -- in fact, it isn't like much.
153
374260
2000
Nevyzerá, že by to malo veľkú hodnotu, ani nemá.
06:16
Like most of our money, it's just a piece of metal.
154
376260
2000
Tak ako naše mince, aj táto je z kovu.
06:18
As those of you who've taken currencies home from your trip know,
155
378260
3000
Ako tí z vás, ktorí si beriete mince z dovolenky domov,
06:21
once you get home, it's actually pretty useless.
156
381260
2000
doma sú bezcenné.
06:23
It was useless to the monkeys at first
157
383260
2000
Spočiatku boli bezcenné i pre opice.
06:25
before they realized what they could do with it.
158
385260
2000
Kým si neuvedomili, čo s nimi dokážu.
06:27
When we first gave it to them in their enclosures,
159
387260
2000
Keď sme ich im dali prvýkrát,
06:29
they actually kind of picked them up, looked at them.
160
389260
2000
zdvihli ich, poprezerali.
06:31
They were these kind of weird things.
161
391260
2000
Boli to len čudné veci.
06:33
But very quickly, the monkeys realized
162
393260
2000
Ale opice si rýchlo uvedomili,
06:35
that they could actually hand these tokens over
163
395260
2000
že keď žetón odovzdajú
06:37
to different humans in the lab for some food.
164
397260
3000
ľuďom v labáku, dostajú jedlo.
06:40
And so you see one of our monkeys, Mayday, up here doing this.
165
400260
2000
Tu práve vidíte jednu z našich opíc, Mayday.
06:42
This is A and B are kind of the points where she's sort of a little bit
166
402260
3000
Tu je ešte trochu
06:45
curious about these things -- doesn't know.
167
405260
2000
zvedavá, nevie, čo sú to za veci.
06:47
There's this waiting hand from a human experimenter,
168
407260
2000
A tu ich vymieňa s experimentátorom.
06:49
and Mayday quickly figures out, apparently the human wants this.
169
409260
3000
Mayday rýchlo pochopila, že človek ich chce.
06:52
Hands it over, and then gets some food.
170
412260
2000
Odovzdá žetón a potom dostane jedlo.
06:54
It turns out not just Mayday, all of our monkeys get good
171
414260
2000
Ukázalo sa, že nielen Mayday ale všetky naše opice
06:56
at trading tokens with human salesman.
172
416260
2000
dokázali meniť žetóny s ľudskými predavačmi.
06:58
So here's just a quick video of what this looks like.
173
418260
2000
Tu je krátke video, ako to vyzeralo.
07:00
Here's Mayday. She's going to be trading a token for some food
174
420260
3000
Tu je Mayday, vymieňa žetón za jedlo
07:03
and waiting happily and getting her food.
175
423260
3000
a veselo čaká na svoje jedlo.
07:06
Here's Felix, I think. He's our alpha male; he's a kind of big guy.
176
426260
2000
Tu je Felix, náš alfa samec, je to veľký chlapík.
07:08
But he too waits patiently, gets his food and goes on.
177
428260
3000
Ale tiež trpezlivo čaká na svoje jedlo.
07:11
So the monkeys get really good at this.
178
431260
2000
Takže opice sú v tom naozaj dobré.
07:13
They're surprisingly good at this with very little training.
179
433260
3000
Po malom tréningu prekvapujúco dobré.
07:16
We just allowed them to pick this up on their own.
180
436260
2000
Len sme im umožnili naučiť sa to.
07:18
The question is: is this anything like human money?
181
438260
2000
Otázkou je, dá sa to vôbec porovnať s ľudskými peniazmi?
07:20
Is this a market at all,
182
440260
2000
Je toto vôbec trh
07:22
or did we just do a weird psychologist's trick
183
442260
2000
alebo sme spravili len divný psychologický trik,
07:24
by getting monkeys to do something,
184
444260
2000
že opice niečo robia,
07:26
looking smart, but not really being smart.
185
446260
2000
vyzerajú chytro ale v skutočnosti nie sú.
07:28
And so we said, well, what would the monkeys spontaneously do
186
448260
3000
Čo by opice robili spontánne,
07:31
if this was really their currency, if they were really using it like money?
187
451260
3000
keby toto bolo ich platidlo, keby ho naozaj používali ako peniaze?
07:34
Well, you might actually imagine them
188
454260
2000
Dokážete si ich predstaviť,
07:36
to do all the kinds of smart things
189
456260
2000
že robia všelijaké chytré veci
07:38
that humans do when they start exchanging money with each other.
190
458260
3000
ako ľudia, keď si peniaze vymieňajú.
07:41
You might have them start paying attention to price,
191
461260
3000
Začnú dávať pozor na cenu,
07:44
paying attention to how much they buy --
192
464260
2000
na to, koľko kupujú
07:46
sort of keeping track of their monkey token, as it were.
193
466260
3000
proste dávať si na svoje žetóny pozor.
07:49
Do the monkeys do anything like this?
194
469260
2000
Robia niečo také aj opice?
07:51
And so our monkey marketplace was born.
195
471260
3000
Tak sa zrodil náš trh pre opice.
07:54
The way this works is that
196
474260
2000
Funguje to tak,
07:56
our monkeys normally live in a kind of big zoo social enclosure.
197
476260
3000
že naše opice žijú akoby v zoologickom výbehu.
07:59
When they get a hankering for some treats,
198
479260
2000
Keď dostanú chuť na pochúťky,
08:01
we actually allowed them a way out
199
481260
2000
umožníme im vyjsť
08:03
into a little smaller enclosure where they could enter the market.
200
483260
2000
do menšej ohrady, kde majú trh.
08:05
Upon entering the market --
201
485260
2000
Keď prídu na trh,
08:07
it was actually a much more fun market for the monkeys than most human markets
202
487260
2000
trh bol oveľa zábavnejší pre opice ako pre ľudí,
08:09
because, as the monkeys entered the door of the market,
203
489260
3000
lebo keď opice prišli k dverám trhu
08:12
a human would give them a big wallet full of tokens
204
492260
2000
dostali plnú peňaženku žetónov
08:14
so they could actually trade the tokens
205
494260
2000
a mohli si ich vymeniť
08:16
with one of these two guys here --
206
496260
2000
u dvoch chlapíkov,
08:18
two different possible human salesmen
207
498260
2000
dvoch možných ľudských predavačov,
08:20
that they could actually buy stuff from.
208
500260
2000
od ktorých mohli kupovať.
08:22
The salesmen were students from my lab.
209
502260
2000
Predavačmi boli študenti z môjho laboratória.
08:24
They dressed differently; they were different people.
210
504260
2000
Mali odlišné oblečenie, boli to rôzni ľudia.
08:26
And over time, they did basically the same thing
211
506260
3000
A celý čas robili to isté,
08:29
so the monkeys could learn, you know,
212
509260
2000
aby sa opice mohli učiť,
08:31
who sold what at what price -- you know, who was reliable, who wasn't, and so on.
213
511260
3000
čo kto predáva a za akú cenu, viete, kto je spoľahlivý a kto nie atď.
08:34
And you can see that each of the experimenters
214
514260
2000
Vidíte, že každý z experimentátorov
08:36
is actually holding up a little, yellow food dish.
215
516260
3000
drží malý žltý podnos s jedlom.
08:39
and that's what the monkey can for a single token.
216
519260
2000
Ten opica dostane za jeden žetón.
08:41
So everything costs one token,
217
521260
2000
Takže všetko stojí jeden žetón,
08:43
but as you can see, sometimes tokens buy more than others,
218
523260
2000
ale ako vidíte, niekedy za jeden dostanete viac,
08:45
sometimes more grapes than others.
219
525260
2000
viac hrozna.
08:47
So I'll show you a quick video of what this marketplace actually looks like.
220
527260
3000
Ukážem vám krátke video, ako to na trhu vyzerá.
08:50
Here's a monkey-eye-view. Monkeys are shorter, so it's a little short.
221
530260
3000
Z pohľadu opce. Keďže sú nižšie, je to nízko.
08:53
But here's Honey.
222
533260
2000
Tu je Honey.
08:55
She's waiting for the market to open a little impatiently.
223
535260
2000
Netrpezlivo čaká, kým sa otvorí trh.
08:57
All of a sudden the market opens. Here's her choice: one grapes or two grapes.
224
537260
3000
A zrazu sa otvorí. Jej možnosti: jedno hrozno alebo dve.
09:00
You can see Honey, very good market economist,
225
540260
2000
Ako vidíte, Honey je dobrá ekonómka,
09:02
goes with the guy who gives more.
226
542260
3000
ide k tomu, kto dá viac.
09:05
She could teach our financial advisers a few things or two.
227
545260
2000
Aj našich finančných poradcov by mohla učiť.
09:07
So not just Honey,
228
547260
2000
Nielen Honey,
09:09
most of the monkeys went with guys who had more.
229
549260
3000
väčšina z našich opíc pôjde za tým, kto dáva viac.
09:12
Most of the monkeys went with guys who had better food.
230
552260
2000
Väčšina opíc pôjde za tým, kto dáva lepšie jedlo.
09:14
When we introduced sales, we saw the monkeys paid attention to that.
231
554260
3000
Keď sme prišli so zľavami, opice to zaujalo.
09:17
They really cared about their monkey token dollar.
232
557260
3000
Starali sa o svoje žetóny.
09:20
The more surprising thing was that when we collaborated with economists
233
560260
3000
Prekvapujúcejšie bolo, keď sme spolupracovali s ekonómami,
09:23
to actually look at the monkeys' data using economic tools,
234
563260
3000
ktorí keď na údaje od opíc použili ekonomické nástroje,
09:26
they basically matched, not just qualitatively,
235
566260
3000
zhodovali sa, nielen kvalitatívne
09:29
but quantitatively with what we saw
236
569260
2000
ale kvantitatívne s tým,
09:31
humans doing in a real market.
237
571260
2000
čo robia ľudia na reálnom trhu.
09:33
So much so that, if you saw the monkeys' numbers,
238
573260
2000
Dokonca tak, že ak by ste videli údaje,
09:35
you couldn't tell whether they came from a monkey or a human in the same market.
239
575260
3000
nerozoznali by ste, či sú od opíc alebo ľudí.
09:38
And what we'd really thought we'd done
240
578260
2000
Takže sme si mysleli,
09:40
is like we'd actually introduced something
241
580260
2000
že sme zaviedli niečo,
09:42
that, at least for the monkeys and us,
242
582260
2000
čo aspoň pre opice a nás
09:44
works like a real financial currency.
243
584260
2000
fungovalo ako peňažné platidlo.
09:46
Question is: do the monkeys start messing up in the same ways we do?
244
586260
3000
Otázkou je, či sa opice nechajú tak popliesť ako my.
09:49
Well, we already saw anecdotally a couple of signs that they might.
245
589260
3000
Zaznamenali sme niekoľko znakov, že by to tak mohlo byť.
09:52
One thing we never saw in the monkey marketplace
246
592260
2000
Jednu z vecí, ktorú sme si u opíc nikdy nevšimli
09:54
was any evidence of saving --
247
594260
2000
bol akýkoľvek náznak šetrenia,
09:56
you know, just like our own species.
248
596260
2000
tak ako i náš vlastný druh.
09:58
The monkeys entered the market, spent their entire budget
249
598260
2000
Keď prišli opice na trh, minuli celý svoj rozpočet
10:00
and then went back to everyone else.
250
600260
2000
a tak sa vrátili za ostatnými.
10:02
The other thing we also spontaneously saw,
251
602260
2000
Čo sme tiež spozorovali,
10:04
embarrassingly enough,
252
604260
2000
a je to zahanbujúce,
10:06
is spontaneous evidence of larceny.
253
606260
2000
je spontánny výskyt krádeží.
10:08
The monkeys would rip-off the tokens at every available opportunity --
254
608260
3000
Opice si kradli žetóny pri každej príležitosti.
10:11
from each other, often from us --
255
611260
2000
Navzájom i od nás,
10:13
you know, things we didn't necessarily think we were introducing,
256
613260
2000
ani nás nenapadlo, že to spôsobíme
10:15
but things we spontaneously saw.
257
615260
2000
ale spontánne to vzniklo.
10:17
So we said, this looks bad.
258
617260
2000
Povedali sme si, že to vyzerá zle.
10:19
Can we actually see if the monkeys
259
619260
2000
Uvidíme teda, či opice
10:21
are doing exactly the same dumb things as humans do?
260
621260
3000
robia rovnako hlúpe veci ako ľudia?
10:24
One possibility is just kind of let
261
624260
2000
Jednou možnosťou je nechať
10:26
the monkey financial system play out,
262
626260
2000
finančný systém opíc rozvíjať sa,
10:28
you know, see if they start calling us for bailouts in a few years.
263
628260
2000
viete, či nás o pár rokov začnú žiadať o finančné injekcie.
10:30
We were a little impatient so we wanted
264
630260
2000
Ale boli sme netrpezliví a chceli sme
10:32
to sort of speed things up a bit.
265
632260
2000
to trochu urýchliť.
10:34
So we said, let's actually give the monkeys
266
634260
2000
Tak sme opiciam dali
10:36
the same kinds of problems
267
636260
2000
rovnaké problémy,
10:38
that humans tend to get wrong
268
638260
2000
ktoré mýlia i ľudí,
10:40
in certain kinds of economic challenges,
269
640260
2000
určité ekonomické výzvy,
10:42
or certain kinds of economic experiments.
270
642260
2000
určité ekonomické experimenty.
10:44
And so, since the best way to see how people go wrong
271
644260
3000
Keďže najlepším spôsobom ako zistiť v čom sa ľudia mýlia,
10:47
is to actually do it yourself,
272
647260
2000
je vyskúšať si to,
10:49
I'm going to give you guys a quick experiment
273
649260
2000
dám vám rýchly experiment
10:51
to sort of watch your own financial intuitions in action.
274
651260
2000
zisťujúci vaše finančné intuície v akcii.
10:53
So imagine that right now
275
653260
2000
Predstavte si,
10:55
I handed each and every one of you
276
655260
2000
že každému z vás dám
10:57
a thousand U.S. dollars -- so 10 crisp hundred dollar bills.
277
657260
3000
tisíc dolárov, desať novučkých stodolároviek.
11:00
Take these, put it in your wallet
278
660260
2000
Zoberte si ich, dajte si ich do peňaženky
11:02
and spend a second thinking about what you're going to do with it.
279
662260
2000
a popremýšľajte, čo s nimi urobíte.
11:04
Because it's yours now; you can buy whatever you want.
280
664260
2000
Lebo už sú vaše, môžete s nimi robiť čokoľvek.
11:06
Donate it, take it, and so on.
281
666260
2000
Venuje ich, miňte atď.
11:08
Sounds great, but you get one more choice to earn a little bit more money.
282
668260
3000
Znie to skvele ale máte ešte jednu možnosť, ako si zarobiť.
11:11
And here's your choice: you can either be risky,
283
671260
3000
Tu je: môžete buď zariskovať
11:14
in which case I'm going to flip one of these monkey tokens.
284
674260
2000
v tom prípade hodím týmto žetónom.
11:16
If it comes up heads, you're going to get a thousand dollars more.
285
676260
2000
Keď padne hlava, dostanete o tisíc viac.
11:18
If it comes up tails, you get nothing.
286
678260
2000
Ak znak, nedostanete nič.
11:20
So it's a chance to get more, but it's pretty risky.
287
680260
3000
Je šanca na viac ale dosť riskantná.
11:23
Your other option is a bit safe. Your just going to get some money for sure.
288
683260
3000
Druhá možnosť je istejšia. Istotne dostanete viac.
11:26
I'm just going to give you 500 bucks.
289
686260
2000
Dám vám ešte päťsto.
11:28
You can stick it in your wallet and use it immediately.
290
688260
3000
Môžete si ich dať do peňaženky a hneď použiť.
11:31
So see what your intuition is here.
291
691260
2000
Aká je vaša intuícia?
11:33
Most people actually go with the play-it-safe option.
292
693260
3000
Väčšina ľudí pôjde na istotu.
11:36
Most people say, why should I be risky when I can get 1,500 dollars for sure?
293
696260
3000
Prečo riskovať, keď môžem s istotou dostať 1500 dolárov?
11:39
This seems like a good bet. I'm going to go with that.
294
699260
2000
Vyzerá to ako dobrá stávka.
11:41
You might say, eh, that's not really irrational.
295
701260
2000
Môžete si povedať, to nie je veľmi racionálne.
11:43
People are a little risk-averse. So what?
296
703260
2000
Ľudia sa vyhýbajú riziku. No a čo?
11:45
Well, the "so what?" comes when start thinking
297
705260
2000
"No a čo" sa objaví,
11:47
about the same problem
298
707260
2000
keď rovnaký problém
11:49
set up just a little bit differently.
299
709260
2000
postavíme odlišne.
11:51
So now imagine that I give each and every one of you
300
711260
2000
Teraz si predstavte, že každému z vás
11:53
2,000 dollars -- 20 crisp hundred dollar bills.
301
713260
3000
dám dvetisíc dolárov, dvadsať stodolároviek.
11:56
Now you can buy double to stuff you were going to get before.
302
716260
2000
Teraz si môžte kúpiť dvojnások toho, čo ste si predtým želali.
11:58
Think about how you'd feel sticking it in your wallet.
303
718260
2000
Porozmýšľajte, aké by to bolo dávať si ich do peňaženky.
12:00
And now imagine that I have you make another choice
304
720260
2000
A teraz sa musíte rozhodnúť.
12:02
But this time, it's a little bit worse.
305
722260
2000
Ale tentokrát je to horšie.
12:04
Now, you're going to be deciding how you're going to lose money,
306
724260
3000
Budete sa rozhodovať o tom, ako prídete o peniaze
12:07
but you're going to get the same choice.
307
727260
2000
ale možnosti sú rovnaké.
12:09
You can either take a risky loss --
308
729260
2000
Môžete úplne riskovať,
12:11
so I'll flip a coin. If it comes up heads, you're going to actually lose a lot.
309
731260
3000
takže hodím mincou. Ak padne hlava, prídete o všetko.
12:14
If it comes up tails, you lose nothing, you're fine, get to keep the whole thing --
310
734260
3000
Keď znak, neprídete o nič, môžete si nechať všetko.
12:17
or you could play it safe, which means you have to reach back into your wallet
311
737260
3000
Alebo pôjdete na istotu, čo znamená, že siahnete do peňaženky
12:20
and give me five of those $100 bills, for certain.
312
740260
3000
a vrátite mi päť stodolároviek.
12:23
And I'm seeing a lot of furrowed brows out there.
313
743260
3000
Vidím v hľadisku zvraštené čelá.
12:26
So maybe you're having the same intuitions
314
746260
2000
Možno máte rovnaké intuície
12:28
as the subjects that were actually tested in this,
315
748260
2000
ako subjekty, ktoré sme tým už testovali,
12:30
which is when presented with these options,
316
750260
2000
keď sme im predložili tieto možnosti,
12:32
people don't choose to play it safe.
317
752260
2000
ľudia neradi idú na istotu.
12:34
They actually tend to go a little risky.
318
754260
2000
Zvyknú riskovať.
12:36
The reason this is irrational is that we've given people in both situations
319
756260
3000
Dôvod je iracionálny, v oboch prípadoch
12:39
the same choice.
320
759260
2000
ide o rovnaké možnosti.
12:41
It's a 50/50 shot of a thousand or 2,000,
321
761260
3000
Je to 50:50 šanca na tisíc alebo dvetisíc
12:44
or just 1,500 dollars with certainty.
322
764260
2000
alebo s istotou 1500.
12:46
But people's intuitions about how much risk to take
323
766260
3000
Ale ochota ľudí riskovať
12:49
varies depending on where they started with.
324
769260
2000
sa mení v závislosti od toho, s čím začali.
12:51
So what's going on?
325
771260
2000
O čo tu ide?
12:53
Well, it turns out that this seems to be the result
326
773260
2000
Ukázalo sa, že je to dôsledok
12:55
of at least two biases that we have at the psychological level.
327
775260
3000
aspoň dvoch systematických chýb na psychologickej úrovni.
12:58
One is that we have a really hard time thinking in absolute terms.
328
778260
3000
Po prvé, veľmi ťažko sa nám rozmýšľa v absolútnych pojmoch.
13:01
You really have to do work to figure out,
329
781260
2000
Musíte sa posnažiť, aby ste zistili,
13:03
well, one option's a thousand, 2,000;
330
783260
2000
jedna možnosť je 2000
13:05
one is 1,500.
331
785260
2000
druhá 1500.
13:07
Instead, we find it very easy to think in very relative terms
332
787260
3000
namiesto toho sa nám ľahko rozmýšľa v relatívnych pojmoch,
13:10
as options change from one time to another.
333
790260
3000
keď sa možnosti menia.
13:13
So we think of things as, "Oh, I'm going to get more," or "Oh, I'm going to get less."
334
793260
3000
Rozmýšľame o veciach ako "Ó, tu dostanem viac" či "ˇÓ tu dostanem menej"
13:16
This is all well and good, except that
335
796260
2000
To je v poriadku lenže
13:18
changes in different directions
336
798260
2000
zmeny v rozličných smeroch
13:20
actually effect whether or not we think
337
800260
2000
ovplyvňujú, či si myslíme alebo nie,
13:22
options are good or not.
338
802260
2000
že možnosť je dobrá.
13:24
And this leads to the second bias,
339
804260
2000
A to nás vedie k druhej chybe,
13:26
which economists have called loss aversion.
340
806260
2000
ktorú ekonómovia nazývajú averzia k strate.
13:28
The idea is that we really hate it when things go into the red.
341
808260
3000
Nenávidíme, keď ideme do mínusu.
13:31
We really hate it when we have to lose out on some money.
342
811260
2000
Nenávidíme, keď máme prísť o peniaze.
13:33
And this means that sometimes we'll actually
343
813260
2000
A to spôsobuje, že niekedy
13:35
switch our preferences to avoid this.
344
815260
2000
zmeníme svoje preferencie, aby sme sa tomu vyhli.
13:37
What you saw in that last scenario is that
345
817260
2000
V poslednej ukážke ste videli,
13:39
subjects get risky
346
819260
2000
že subjekty riskujú,
13:41
because they want the small shot that there won't be any loss.
347
821260
3000
lebo chcú tú malú šancu, že nedôjde k žiadnej strate.
13:44
That means when we're in a risk mindset --
348
824260
2000
Keď sme nastavení na riziko,
13:46
excuse me, when we're in a loss mindset,
349
826260
2000
prepáčte, keď sme nastavení na stratu,
13:48
we actually become more risky,
350
828260
2000
začneme viac riskovať,
13:50
which can actually be really worrying.
351
830260
2000
čo môže byť znepokojujúce.
13:52
These kinds of things play out in lots of bad ways in humans.
352
832260
3000
Takéto veci môžu pre ľudí dopadnúť zle.
13:55
They're why stock investors hold onto losing stocks longer --
353
835260
3000
Preto sa investori nezbavia klesajúcich akcií
13:58
because they're evaluating them in relative terms.
354
838260
2000
lebo ich hodnotia v relatívnych pojomoch.
14:00
They're why people in the housing market refused to sell their house --
355
840260
2000
Preto ľudia odmietajú predať svoj dom,
14:02
because they don't want to sell at a loss.
356
842260
2000
lebo nechcú predať so stratou.
14:04
The question we were interested in
357
844260
2000
To, čo zaujíma nás, je,
14:06
is whether the monkeys show the same biases.
358
846260
2000
či sú opice rovnako predpojaté.
14:08
If we set up those same scenarios in our little monkey market,
359
848260
3000
Ak vytvoríme rovnaké scenáre na trhu opíc,
14:11
would they do the same thing as people?
360
851260
2000
budú robiť to isté čo ľudia?
14:13
And so this is what we did, we gave the monkeys choices
361
853260
2000
Urobili sme to, dali sme opiciam na výber
14:15
between guys who were safe -- they did the same thing every time --
362
855260
3000
medzi chalanmi, čo boli bezpeční, robili vždy rovnaké veci
14:18
or guys who were risky --
363
858260
2000
a chalanmi riskantnými,
14:20
they did things differently half the time.
364
860260
2000
ktorí robili spolovice veci inak.
14:22
And then we gave them options that were bonuses --
365
862260
2000
A potom sme im dali bonusové možnosti
14:24
like you guys did in the first scenario --
366
864260
2000
ako vy v tom prvom prípade,
14:26
so they actually have a chance more,
367
866260
2000
mali šancu na viac
14:28
or pieces where they were experiencing losses --
368
868260
3000
alebo zažívali stratu,
14:31
they actually thought they were going to get more than they really got.
369
871260
2000
keď si mysleli, že dostanú viac, než naozaj dostali.
14:33
And so this is what this looks like.
370
873260
2000
Vyzeralo to takto.
14:35
We introduced the monkeys to two new monkey salesmen.
371
875260
2000
Opiciam sme predstavili dvoch nových predavačov.
14:37
The guy on the left and right both start with one piece of grape,
372
877260
2000
Chalan vľavo i vpravo začali s jedným kúskom hrozna,
14:39
so it looks pretty good.
373
879260
2000
vyzerá to celkom dobre.
14:41
But they're going to give the monkeys bonuses.
374
881260
2000
Ale začali im dávať bonusy.
14:43
The guy on the left is a safe bonus.
375
883260
2000
Chalan vľavo je istý bonus.
14:45
All the time, he adds one, to give the monkeys two.
376
885260
3000
Zakaždým pridá jedno hrozno.
14:48
The guy on the right is actually a risky bonus.
377
888260
2000
Chalan naľavo je riskantný bonus.
14:50
Sometimes the monkeys get no bonus -- so this is a bonus of zero.
378
890260
3000
Niekedy nedá nič, nulový bonus.
14:53
Sometimes the monkeys get two extra.
379
893260
3000
Niekedy dá dve hrozná extra.
14:56
For a big bonus, now they get three.
380
896260
2000
Je to veľký bonus, teraz majú tri bobule.
14:58
But this is the same choice you guys just faced.
381
898260
2000
Je to ten istý výber, ktorý ste robili vy,
15:00
Do the monkeys actually want to play it safe
382
900260
3000
Opice môžu ísť na istotu
15:03
and then go with the guy who's going to do the same thing on every trial,
383
903260
2000
a ísť k predavačovi, čo dá vždy rovnako
15:05
or do they want to be risky
384
905260
2000
alebo budú riskovať
15:07
and try to get a risky, but big, bonus,
385
907260
2000
a pokúsia sa o riskantný veľký bonus,
15:09
but risk the possibility of getting no bonus.
386
909260
2000
a riskujú možnosť, že nedostanú nič.
15:11
People here played it safe.
387
911260
2000
Ľudia v tomto prípade stavili na istotu.
15:13
Turns out, the monkeys play it safe too.
388
913260
2000
Ukázalo sa, že opice tiež.
15:15
Qualitatively and quantitatively,
389
915260
2000
Kvalitatívne i kvantitatívne,
15:17
they choose exactly the same way as people,
390
917260
2000
sa rozhodujú tak ako ľudia,
15:19
when tested in the same thing.
391
919260
2000
keď sú testovaní v rovnakých podmienkach.
15:21
You might say, well, maybe the monkeys just don't like risk.
392
921260
2000
Poviete si, možno len opice nerady riskujú.
15:23
Maybe we should see how they do with losses.
393
923260
2000
Mali by sme sa pozrieť, ako si poradia pri stratách.
15:25
And so we ran a second version of this.
394
925260
2000
Tak sme spustili druhú verziu experimentu.
15:27
Now, the monkeys meet two guys
395
927260
2000
Teraz opice stretnú dvoch chalanov,
15:29
who aren't giving them bonuses;
396
929260
2000
ktorí nedávajú bonusy,
15:31
they're actually giving them less than they expect.
397
931260
2000
ale dajú im menej, než čakali.
15:33
So they look like they're starting out with a big amount.
398
933260
2000
Vyzerajú, že ponúkajú veľa.
15:35
These are three grapes; the monkey's really psyched for this.
399
935260
2000
Majú tri bobule, opice sú vytešené.
15:37
But now they learn these guys are going to give them less than they expect.
400
937260
3000
Ale teraz zistia, že im dajú menej, než čakali.
15:40
They guy on the left is a safe loss.
401
940260
2000
Chalan naľavo je istou stratou.
15:42
Every single time, he's going to take one of these away
402
942260
3000
Zakaždým odoberie jednu bobuľu
15:45
and give the monkeys just two.
403
945260
2000
a dá opice len dve-
15:47
the guy on the right is the risky loss.
404
947260
2000
Chalan vpravo je riskantnou stratou.
15:49
Sometimes he gives no loss, so the monkeys are really psyched,
405
949260
3000
Niekedy neprídu o nič, opice sú nadšené.
15:52
but sometimes he actually gives a big loss,
406
952260
2000
ale niekedy je uňho veľká strata,
15:54
taking away two to give the monkeys only one.
407
954260
2000
odoberie dve bobule a opici dá len jednu.
15:56
And so what do the monkeys do?
408
956260
2000
A čo spravili opice?
15:58
Again, same choice; they can play it safe
409
958260
2000
Opäť, rovnaké možnosti, ísť na istotu
16:00
for always getting two grapes every single time,
410
960260
3000
a vždy zobrať dve hrozná
16:03
or they can take a risky bet and choose between one and three.
411
963260
3000
alebo riskovať medzi jedným a troma.
16:06
The remarkable thing to us is that, when you give monkeys this choice,
412
966260
3000
Pozoruhodné bolo, že keď dáte opici túto možnosť,
16:09
they do the same irrational thing that people do.
413
969260
2000
robia tú istú iracionálnu vec, čo ľudia.
16:11
They actually become more risky
414
971260
2000
Začnú viac riskovať,
16:13
depending on how the experimenters started.
415
973260
3000
podľa toho, ako experiment začal.
16:16
This is crazy because it suggests that the monkeys too
416
976260
2000
To je šialené, lebo to naznačuje, že opice
16:18
are evaluating things in relative terms
417
978260
2000
tiež hodnotia veci v relatívnych pojmoch
16:20
and actually treating losses differently than they treat gains.
418
980260
3000
a pristupujú k stratám inak než k ziskom.
16:23
So what does all of this mean?
419
983260
2000
Čo to všetko znamená?
16:25
Well, what we've shown is that, first of all,
420
985260
2000
Nuž, čo sme tým ukázali je, poprvé,
16:27
we can actually give the monkeys a financial currency,
421
987260
2000
že sme opiciam dali finančné platidlo
16:29
and they do very similar things with it.
422
989260
2000
a oni robili veľmi podobné veci ako my.
16:31
They do some of the smart things we do,
423
991260
2000
Robili niektoré chytré veci ako my,
16:33
some of the kind of not so nice things we do,
424
993260
2000
nejaké nepekné veci, ktoré robíme i my,
16:35
like steal it and so on.
425
995260
2000
ako kradnutie a tak.
16:37
But they also do some of the irrational things we do.
426
997260
2000
Ale rovnako robia i niektoré neracionálne veci ako my.
16:39
They systematically get things wrong
427
999260
2000
Robia systematické chyby
16:41
and in the same ways that we do.
428
1001260
2000
rovnakým spôsobom ako my.
16:43
This is the first take-home message of the Talk,
429
1003260
2000
Toto by ste si mali z prednášky vziať za svoje,
16:45
which is that if you saw the beginning of this and you thought,
430
1005260
2000
ak ste si na začiatku mysleli,
16:47
oh, I'm totally going to go home and hire a capuchin monkey financial adviser.
431
1007260
2000
ó, zamestnám kapucínsku opicu ako svojho finančného poradcu.
16:49
They're way cuter than the one at ... you know --
432
1009260
2000
Sú zlatučké, ale viete,
16:51
Don't do that; they're probably going to be just as dumb
433
1011260
2000
nerobte to, budú pravdepodobne rovnako hlúpe
16:53
as the human one you already have.
434
1013260
3000
ako človek, ktorého už zamestnávate.
16:56
So, you know, a little bad -- Sorry, sorry, sorry.
435
1016260
2000
Trochu kruté. Prepáčte, prepáčte, prepáčte.
16:58
A little bad for monkey investors.
436
1018260
2000
Dosť zlé pre opice investorov.
17:00
But of course, you know, the reason you're laughing is bad for humans too.
437
1020260
3000
Ale jasné, to, že sa smejete je zlé i pre ľudí.
17:03
Because we've answered the question we started out with.
438
1023260
3000
Lebo sme zodpovedali otázku, s ktorou sme začali.
17:06
We wanted to know where these kinds of errors came from.
439
1026260
2000
Chceli sme vedieť, odkiaľ pochádzajú tieto chyby,
17:08
And we started with the hope that maybe we can
440
1028260
2000
A začali sme s nádejou, že by sme mohli
17:10
sort of tweak our financial institutions,
441
1030260
2000
vylepšiť naše finančné inštitúcie
17:12
tweak our technologies to make ourselves better.
442
1032260
3000
vylepšiť naše technológie k lepšiemu.
17:15
But what we've learn is that these biases might be a deeper part of us than that.
443
1035260
3000
Ale zistili sme, že tieto chyby sú v nás zakorenené hlbšie.
17:18
In fact, they might be due to the very nature
444
1038260
2000
V skutočnosti možno sú súčasťou
17:20
of our evolutionary history.
445
1040260
2000
našej evolučnej histórie.
17:22
You know, maybe it's not just humans
446
1042260
2000
Asi to nie sú len hlúpi ľudia
17:24
at the right side of this chain that's duncey.
447
1044260
2000
na konci reťazca.
17:26
Maybe it's sort of duncey all the way back.
448
1046260
2000
Tú hlúposť sme zdedili.
17:28
And this, if we believe the capuchin monkey results,
449
1048260
3000
Ak veríme výsledkom od kapucínskych opíc,
17:31
means that these duncey strategies
450
1051260
2000
znamená to, že hlúpe stratégie
17:33
might be 35 million years old.
451
1053260
2000
môžu byť už 35 miliónov rokov staré.
17:35
That's a long time for a strategy
452
1055260
2000
To je dosť dlho pre stratégiu,
17:37
to potentially get changed around -- really, really old.
453
1057260
3000
aby sa potenciálne zmenila, veľmi, veľmi veľa.
17:40
What do we know about other old strategies like this?
454
1060260
2000
Čo vieme o iných rovnako starých stratégiách?
17:42
Well, one thing we know is that they tend to be really hard to overcome.
455
1062260
3000
Vieme jedno, je ich veľmi ťažko prekonať.
17:45
You know, think of our evolutionary predilection
456
1065260
2000
Pomyslite na našu evolučnú slabosť
17:47
for eating sweet things, fatty things like cheesecake.
457
1067260
3000
pre sladké, tučné veci ako syrové koláče.
17:50
You can't just shut that off.
458
1070260
2000
Nedá sa tomu len tak odolať.
17:52
You can't just look at the dessert cart as say, "No, no, no. That looks disgusting to me."
459
1072260
3000
Nedokážete sa pozrieť na dezert a povedať: "Fuj vyzerá to nechutne."
17:55
We're just built differently.
460
1075260
2000
Sme nastavení inak.
17:57
We're going to perceive it as a good thing to go after.
461
1077260
2000
Budeme to vnímať ako niečo, čo chceme.
17:59
My guess is that the same thing is going to be true
462
1079260
2000
Podľa mňa je to rovnaké,
18:01
when humans are perceiving
463
1081260
2000
keď ľudia vnímajú
18:03
different financial decisions.
464
1083260
2000
rozličné finančné rozhodnutia.
18:05
When you're watching your stocks plummet into the red,
465
1085260
2000
Keď vidíte, že idete do červených čísel,
18:07
when you're watching your house price go down,
466
1087260
2000
keď vidíte, že cena vášho domu klesá,
18:09
you're not going to be able to see that
467
1089260
2000
neuvidíte to inak,
18:11
in anything but old evolutionary terms.
468
1091260
2000
než v starých evolučných pojmoch.
18:13
This means that the biases
469
1093260
2000
To znamená, že chyby,
18:15
that lead investors to do badly,
470
1095260
2000
pre ktoré investori zlyhali,
18:17
that lead to the foreclosure crisis
471
1097260
2000
ktoré viedli k hypotekárnej kríze
18:19
are going to be really hard to overcome.
472
1099260
2000
bude veľmi ťažké prekonať.
18:21
So that's the bad news. The question is: is there any good news?
473
1101260
2000
To je zlá správa. Je tu nejaká dobrá?
18:23
I'm supposed to be up here telling you the good news.
474
1103260
2000
Mala by som vám rozprávať o dobrých správach.
18:25
Well, the good news, I think,
475
1105260
2000
Nuž, dobrou správou, myslím si,
18:27
is what I started with at the beginning of the Talk,
476
1107260
2000
je s čím som začala túto prednášku,
18:29
which is that humans are not only smart;
477
1109260
2000
že ľudia sú nielen chytrí,
18:31
we're really inspirationally smart
478
1111260
2000
sme v skutočnosti inšpirujúco chytrí
18:33
to the rest of the animals in the biological kingdom.
479
1113260
3000
v porovnaní so zvyškom zvieracieho kráľovstva.
18:36
We're so good at overcoming our biological limitations --
480
1116260
3000
Sme dobrí v prekonávaní našich biologických limitov,
18:39
you know, I flew over here in an airplane.
481
1119260
2000
priletela som sem lietadlom,
18:41
I didn't have to try to flap my wings.
482
1121260
2000
nemusela som mávať krídlami.
18:43
I'm wearing contact lenses now so that I can see all of you.
483
1123260
3000
Mám kontaktné šošovky, aby som vás všetkých videla.
18:46
I don't have to rely on my own near-sightedness.
484
1126260
3000
Nemusím sa spoliehať na svoju krátkozrakosť.
18:49
We actually have all of these cases
485
1129260
2000
Je mnoho príkladov toho,
18:51
where we overcome our biological limitations
486
1131260
3000
ako sme prekonali svoje biologické možnosti
18:54
through technology and other means, seemingly pretty easily.
487
1134260
3000
pomocou technológie či inak, zdanlivo jednoducho.
18:57
But we have to recognize that we have those limitations.
488
1137260
3000
Ale musíme si tieto limity uvedomiť.
19:00
And here's the rub.
489
1140260
2000
A tu je pes zakopaný.
19:02
It was Camus who once said that, "Man is the only species
490
1142260
2000
Bol to Camus, ktorý povedal: "Človek je jediný druh,
19:04
who refuses to be what he really is."
491
1144260
3000
ktorý odmieta byť tým, čím je."
19:07
But the irony is that
492
1147260
2000
Iróniou je, že
19:09
it might only be in recognizing our limitations
493
1149260
2000
len pochopením našich limitov,
19:11
that we can really actually overcome them.
494
1151260
2000
ich môžeme prekonať.
19:13
The hope is that you all will think about your limitations,
495
1153260
3000
Dúfam, že budete o svojich limitoch premýšľať
19:16
not necessarily as unovercomable,
496
1156260
3000
nie nutne ako o neprekonateľných,
19:19
but to recognize them, accept them
497
1159260
2000
ale prijmete ich
19:21
and then use the world of design to actually figure them out.
498
1161260
3000
a vyznáte sa v nich.
19:24
That might be the only way that we will really be able
499
1164260
3000
Toto je asi jedný spôsob,
19:27
to achieve our own human potential
500
1167260
2000
ako dosiahnuť náš ľudský potenciál
19:29
and really be the noble species we hope to all be.
501
1169260
3000
a byť skutočne tým vznešeným druhom, ktorým chceme byť.
19:32
Thank you.
502
1172260
2000
Ďakujem.
19:34
(Applause)
503
1174260
5000
(Potlesk)
O tomto webe

Táto stránka vám predstaví videá na YouTube, ktoré sú užitočné pri učení angličtiny. Uvidíte lekcie angličtiny, ktoré vedú špičkoví učitelia z celého sveta. Dvojitým kliknutím na anglické titulky zobrazené na stránke každého videa si môžete video odtiaľ prehrať. Titulky sa posúvajú synchronizovane s prehrávaním videa. Ak máte akékoľvek pripomienky alebo požiadavky, kontaktujte nás prostredníctvom tohto kontaktného formulára.

https://forms.gle/WvT1wiN1qDtmnspy7