The wonders of the molecular world, animated | Janet Iwasa

82,644 views ใƒป 2020-05-06

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืชืจื’ื•ื: ืขืจื™ื›ื”: zeeva livshitz
00:14
I live in Utah,
0
14417
1267
ืื ื™ ื’ืจื” ื‘ื™ื•ื˜ื”
00:15
a place known for having some of the most awe-inspiring
1
15708
2851
ืžืงื•ื ื”ื™ื“ื•ืข ื›ื‘ืขืœ ืื—ื“ื™ื ืžื”ื ื•ืคื™ื ื”ืžื“ื”ื™ืžื™ื ื‘ื™ื•ืชืจ ื‘ื›ื“ื•ืจ ื”ืืจืฅ
00:18
natural landscapes on this planet.
2
18583
2560
00:21
It's easy to be overwhelmed by these amazing views,
3
21167
3476
ื‘ืงืœื•ืช ืืคืฉืจ ืœื”ืจื’ื™ืฉ ืžื•ืฆืฃ ื•ืžื•ืงืกื ืžื”ืžืจืื•ืช ื”ื ืคืœืื™ื ื”ืืœื”
00:24
and to be really fascinated by these sometimes alien-looking formations.
4
24667
3851
ืฉืœ ื”ืชืฆื•ืจื•ืช ื”ืœืœื• ืฉืœืคืขืžื™ื ื™ืฉ ืœื”ืŸ ืžืจืื” ื—ื™ื™ื–ืจื™.
ื›ืžื“ืขื ื™ืช, ืื ื™ ืื•ื”ื‘ืช ืœื”ืชื‘ื•ื ืŸ ื‘ืขื•ืœื ื”ื˜ื‘ืข.
00:28
As a scientist, I love observing the natural world.
5
28542
3642
ืื‘ืœ ื›ื‘ื™ื•ืœื•ื’ื™ืช ืฉืœ ื”ืชื,
00:32
But as a cell biologist,
6
32208
1768
ื”ืจื‘ื” ื™ื•ืชืจ ืžืขื ื™ื™ืŸ ืื•ืชื™ ืœื”ื‘ื™ืŸ ืืช ืขื•ืœื ื”ื˜ื‘ืข
00:34
I'm much more interested in understanding the natural world
7
34000
2809
00:36
at a much, much smaller scale.
8
36833
2209
ื‘ืงื ื” ืžื™ื“ื” ื”ืจื‘ื” ื”ืจื‘ื” ื™ื•ืชืจ ืงื˜ืŸ
00:39
I'm a molecular animator, and I work with other researchers
9
39917
2809
ืื ื™ ืื ื™ืžื˜ื•ืจื™ืช ืžื•ืœืงื•ืœืจื™ืช ื•ืื ื™ ืขื•ื‘ื“ืช ืขื ื—ื•ืงืจื™ื ืื—ืจื™ื
00:42
to create visualizations of molecules that are so small,
10
42750
2893
ื›ื“ื™ ืœื™ืฆื•ืจ ื”ึทื—ึฐื–ึธื™ึธื” ืฉืœ ืžื•ืœืงื•ืœื•ืช ื›ืœ ื›ืš ืงื˜ื ื•ืช,
00:45
they're essentially invisible.
11
45667
1601
ืฉื”ืŸ ื‘ืขืฆื ื‘ืœืชื™ ื ืจืื•ืช
00:47
These molecules are smaller than the wavelength of light,
12
47292
2851
ื”ืžื•ืœืงื•ืœื•ืช ื”ืืœื” ืงื˜ื ื•ืช ื™ื•ืชืจ ืžืื•ืจืš ื’ืœ ืฉืœ ืื•ืจ,
00:50
which means that we can never see them directly,
13
50167
2239
ืžื” ืฉืื•ืžืจ ืฉืืฃ ืคืขื ืœื ื ื•ื›ืœ ืœืจืื•ืช ืื•ืชื ื™ืฉื™ืจื•ืช
00:52
even with the best light microscopes.
14
52430
2046
ืืคื™ืœื• ืขื ืžื™ืงืจื•ืกืงื•ืค ื”ืื•ืจ ื”ื˜ื•ื‘ ื‘ื™ื•ืชืจ.
00:54
So how do I create visualizations of things
15
54500
2143
ืื– ืื™ืš ืื ื™ ื™ื•ืฆืจืช ื”ึทื—ึฐื–ึธื™ึธื” ืฉืœ ื“ื‘ืจื™ื
00:56
that are so small we can't see them?
16
56667
1976
ื›ืœ ื›ืš ืงื˜ื ื™ื ืขื“ ืฉื”ื ื‘ืœืชื™ ื ืจืื™ื?
00:58
Scientists, like my collaborators,
17
58667
2142
ืžื“ืขื ื™ื, ื›ืžื• ื”ืฉื•ืชืคื™ื ืฉืœื™,
01:00
can spend their entire professional careers
18
60833
2101
ื™ื›ื•ืœื™ื ืœื‘ืœื•ืช ืืช ื›ืœ ื”ืงืจื™ื™ืจื” ื”ืžืงืฆื•ืขื™ืช ืฉืœื”ื
01:02
working to understand one molecular process.
19
62958
2560
ื‘ื ื™ืกื™ื•ืŸ ืœื”ื‘ื™ืŸ ืชื”ืœื™ืš ืžื•ืœืงื•ืœืจื™ ืื—ื“.
01:05
To do this, they carry out a series of experiments
20
65542
2476
ื›ื“ื™ ืœื‘ืฆืข ื–ืืช ื”ื ืขื•ืจื›ื™ื ืกื“ืจืช ื ื™ืกื•ื™ื™ื
01:08
that each can tell us a small piece of the puzzle.
21
68042
3101
ืฉื›ืœ ืื—ื“ ืžื”ื ื™ื›ื•ืœ ืœืกืคืง ืœื ื• ื—ืชื™ื›ื” ืงื˜ื ื” ืžื”ืคืื–ืœ
01:11
One kind of experiment can tell us about the protein shape,
22
71167
2767
ืกื•ื’ ืื—ื“ ืฉืœ ื ื™ืกื•ื™ ื™ื›ื•ืœ ืœืกืคืจ ืœื ื• ืขืœ ืฆื•ืจืช ื”ื—ืœื‘ื•ืŸ
01:13
while another can tell us
23
73958
1268
ื‘ืขื•ื“ ื ื™ืกื•ื™ ืื—ืจ ืžืกืคืจ ืœื ื•
01:15
about what other proteins it might interact with,
24
75250
2286
ืขืœ ืื™ืœื• ื—ืœื‘ื•ื ื™ื ืื—ืจื™ื ื™ื›ื•ืœื™ื ืœื‘ื•ื ืขืžื• ื‘ืžื’ืข
01:17
and another can tell us about where it can be found in a cell.
25
77560
2905
ื•ืื—ืจ ืžื’ืœื” ืื™ืคื” ื ื™ืชืŸ ืœืžืฆื•ื ืืช ื–ื” ื‘ืชื.
01:20
And all of these bits of information can be used to come up with a hypothesis,
26
80489
3987
ื›ืœ ืคื™ืกื•ืช ืžื™ื“ืข ืืœื” ื™ื›ื•ืœื•ืช ืœืฉืžืฉ ืœื™ืฆื™ืจืช ื”ื™ืคื•ืชื–ื”,
01:24
a story, essentially, of how a molecule might work.
27
84500
3083
ืกื™ืคื•ืจ, ื‘ืขืฆื, ืขืœ ืื™ืš ืžื•ืœืงื•ืœื” ื™ื›ื•ืœื” ืœืขื‘ื•ื“.
ื”ืžืฉื™ืžื” ืฉืœื™ ื”ื™ื ืœืงื—ืช ืืช ื”ืจืขื™ื•ื ื•ืช ื”ืืœื” ื•ืœื”ืคื•ืš ืื•ืชื ืœืื ื™ืžืฆื™ื•ืช.
01:29
My job is to take these ideas and turn them into an animation.
28
89000
3934
01:32
This can be tricky,
29
92958
1268
ื–ื” ื™ื›ื•ืœ ืœื”ื™ื•ืช ืžืกื•ื‘ืš,
01:34
because it turns out that molecules can do some pretty crazy things.
30
94250
3226
ื›ื™ ืžืกืชื‘ืจ ืฉืžื•ืœืงื•ืœื•ืช ื™ื›ื•ืœื•ืช ืœืขืฉื•ืช ื“ื‘ืจื™ื ื“ื™ ืžื˜ื•ืจืคื™ื.
01:37
But these animations can be incredibly useful for researchers
31
97500
3351
ืื‘ืœ ื”ืื ื™ืžืฆื™ื•ืช ื”ืืœื• ื™ื›ื•ืœื•ืช ืœื”ื™ื•ืช ืžืื•ื“ ื™ืขื™ืœื•ืช ืœื—ื•ืงืจื™ื
01:40
to communicate their ideas of how these molecules work.
32
100875
3101
ื›ื“ื™ ืœืชืงืฉืจ ืืช ื”ืจืขื™ื•ื ื•ืช ืฉืœื”ื ื›ื™ืฆื“ ืคื•ืขืœื•ืช ื”ืžื•ืœืงื•ืœื•ืช ื”ืœืœื•.
ื”ืŸ ื™ื›ื•ืœื•ืช ื’ื ืœืืคืฉืจ ืœื ื• ืœืจืื•ืช ืืช ื”ืขื•ืœื ื”ืžื•ืœืงื•ืœืจื™
01:44
They can also allow us to see the molecular world
33
104000
2768
01:46
through their eyes.
34
106792
1559
ื“ืจืš ืขื™ื ื™ื”ื
01:48
I'd like to show you some animations,
35
108375
1934
ืื ื™ ืจื•ืฆื” ืœื”ืจืื•ืช ืœื›ื ื›ืžื” ืื ื™ืžืฆื™ื•ืช,
01:50
a brief tour of what I consider to be some of the natural wonders
36
110333
3518
ืกื™ื•ืจ ืงืฆืจ ืืฆืœ ืžื” ืฉืื ื™ ืžื—ืฉื™ื‘ื” ื›ืื—ื“ื™ื ืžืคืœืื™ ื”ื˜ื‘ืข
01:53
of the molecular world.
37
113875
1684
ืฉืœ ื”ืขื•ืœื ื”ืžื•ืœืงื•ืœืจื™.
01:55
First off, this is an immune cell.
38
115583
1976
ืจืืฉื™ืช, ื–ื”ื• ืชื ื—ื™ืกื•ืŸ.
01:57
These kinds of cells need to go crawling around in our bodies
39
117583
2893
ืชืื™ื ืžืกื•ื’ ื–ื” ืฆืจื™ื›ื™ื ืœื”ืกืชื•ื‘ื‘ ื‘ื–ื—ื™ืœื” ื‘ื’ื•ืคื ื•
02:00
in order to find invaders like pathogenic bacteria.
40
120500
3018
ืขืœ ืžื ืช ืœืžืฆื•ื ืคื•ืœืฉื™ื ื›ืžื• ื—ื™ื™ื“ืงื™ื ืคืชื•ื’ื ื™ื™ื.
02:03
This movement is powered by one of my favorite proteins
41
123542
3101
ืชื ื•ืขื” ื–ื• ืžื•ืคืขืœืช ืขืœ ื™ื“ื™ ืื—ื“ ื”ื—ืœื‘ื•ื ื™ื ื”ืื”ื•ื‘ื™ื ืขืœื™
02:06
called actin,
42
126667
1267
ืฉื ืงืจื ืืงื˜ื™ืŸ,
02:07
which is part of what's known as the cytoskeleton.
43
127958
2476
ืฉื”ื•ื ื—ืœืง ืžืžื” ืฉืžื•ื›ืจ ื›ืฉืœื“ ื”ืชื.
02:10
Unlike our skeletons,
44
130458
1643
ื‘ื ื™ื’ื•ื“ ืœืฉืœื“ ืฉืœื ื•,
02:12
actin filaments are constantly being built and taken apart.
45
132125
3726
ืกื™ื‘ื™ ืืงื˜ื™ืŸ ื ื‘ื ื™ื ื•ืžืชืคืจืงื™ื ื›ืœ ื”ื–ืžืŸ.
02:15
The actin cytoskeleton plays incredibly important roles in our cells.
46
135875
3393
ืฉืœื“ ื”ืชื ืฉืœ ื”ืืงื˜ื™ืŸ ืžืฉื—ืง ืชืคืงื™ื“ื™ื ื—ืฉื•ื‘ื™ื ืœื”ืคืœื™ื ื‘ืชืื™ื ืฉืœื ื•.
02:19
They allow them to change shape,
47
139292
1767
ื”ื ืžืืคืฉืจื™ื ืœื”ื ืœืฉื ื•ืช ืฆื•ืจื”,
02:21
to move around, to adhere to surfaces
48
141083
2393
ืœื”ืกืชื•ื‘ื‘, ืœื“ื‘ื•ืง ื‘ืžืฉื˜ื—ื™ื
02:23
and also to gobble up bacteria.
49
143500
2434
ื•ื’ื ืœื–ืœื•ืœ ื—ื™ื™ื“ืงื™ื.
02:25
Actin is also involved in a different kind of movement.
50
145958
2601
ืืงื˜ื™ืŸ ืžืขื•ืจื‘ ื’ื ื‘ืชื ื•ืขื” ืžืกื•ื’ ืื—ืจ.
02:28
In our muscle cells, actin structures form these regular filaments
51
148583
3185
ื‘ืชืื™ ื”ืฉืจื™ืจ ืฉืœื ื•, ืžื‘ื ื™ื ืฉืœ ืืงื˜ื™ืŸ ื™ื•ืฆืจื™ื ืกื™ื‘ื™ื ืจื’ื™ืœื™ื ืืœื”
02:31
that look kind of like fabric.
52
151792
1517
ืฉื ืจืื™ื ื›ืžื• ืืจื™ื’.
02:33
When our muscles contract, these filaments are pulled together
53
153333
2935
ื›ืืฉืจ ื”ืฉืจื™ืจื™ื ืฉืœื ื• ืžืชื›ื•ื•ืฆื™ื, ื”ืกื™ื‘ื™ื ื”ืืœื” ื ืžืฉื›ื™ื ื–ื” ืœื–ื”
02:36
and they go back to their original position
54
156292
2017
ื•ื”ื ื—ื•ื–ืจื™ื ืœืขืžื“ืชื ื”ืžืงื•ืจื™ืช
02:38
when our muscles relax.
55
158333
1476
ื›ืฉื”ืฉืจื™ืจื™ื ืฉืœื ื• ื ืจื’ืขื™ื.
02:39
Other parts of the cytoskeleton, in this case microtubules,
56
159833
3226
ื—ืœืงื™ื ืื—ืจื™ื ืฉืœ ืฉืœื“ ื”ืชื, ื‘ืžืงืจื” ื–ื” ืžื™ืงืจื•-ืฆื™ื ื•ืจื™ื•ืช,
02:43
are responsible for long-range transportation.
57
163083
2685
ืื—ืจืื™ื•ืช ืœื˜ื•ื•ื— ื”ื•ื‘ืœื” ืืจื•ืš.
02:45
They can be thought of as basically cellular highways
58
165792
2642
ืืคืฉืจ ืœื—ืฉื•ื‘ ืขืœื™ื”ืŸ ื›ืขืœ ื›ื‘ื™ืฉื™ื ืชืื™ื™ื ืžื”ื™ืจื™ื
02:48
that are used to move things from one side of the cell to the other.
59
168458
3351
ืฉืžืฉืžืฉื™ื ืœื”ื–ื–ืช ื“ื‘ืจื™ื ืžืฆื“ ืื—ื“ ืฉืœ ื”ืชื ืœืฉื ื™.
02:51
Unlike our roads, microtubules grow and shrink,
60
171833
2768
ื‘ื ื™ื’ื•ื“ ืœื›ื‘ื™ืฉื™ื ืฉืœื ื•, ืžื™ืงืจื• -ืฆื™ื ื•ืจื™ื•ืช ื’ื“ืœื•ืช ื•ืžืชื›ื•ื•ืฆื•ืช,
02:54
appearing when they're needed
61
174625
1434
ืžื•ืคื™ืขื•ืช ื›ืฉื”ืŸ ื ื—ื•ืฆื•ืช
02:56
and disappearing when their job is done.
62
176083
2351
ื•ื ืขืœืžื•ืช ื›ืืฉืจ ืขื‘ื•ื“ืชืŸ ื”ื•ืฉืœืžื”.
02:58
The molecular version of semitrucks
63
178458
2435
ื”ื’ืจืกื” ื”ืžื•ืœืงื•ืœืจื™ืช ืฉืœ ืžืฉืื™ื•ืช-ืกืžื™ ื˜ืจื™ื™ืœืจ
03:00
are proteins aptly named motor proteins,
64
180917
2559
ื”ื™ื ื—ืœื‘ื•ื ื™ื ื‘ืฉื ื—ืœื‘ื•ื ื™ื ืžื•ื˜ื•ืจื™ื™ื,
03:03
that can walk along microtubules,
65
183500
2476
ืฉื™ื›ื•ืœื™ื ืœืœื›ืช ืœืื•ืจืš ื”ืžื™ืงืจื• ืฆื™ื ื•ืจื™ื•ืช,
ื›ืฉื”ื ื’ื•ืจืจื™ื ืœืคืขืžื™ื ืžื˜ืขื ื™ื ืขื ืงื™ื™ื,
03:06
dragging sometimes huge cargoes,
66
186000
2684
03:08
like organelles, behind them.
67
188708
1810
ื›ืžื• ืื‘ืจื•ื ื™ื, ืžืื—ื•ืจื™ื”ื.
03:10
This particular motor protein is known as dynein,
68
190542
2851
ื”ื—ืœื‘ื•ืŸ ื”ืžื•ื˜ื•ืจื™ ื”ืกืคืฆื™ืคื™ ื”ื–ื” ื™ื“ื•ืข ื‘ืฉื ื“ื™ื ืื™ืŸ,
03:13
and its known to be able to work together in groups
69
193417
2434
ื•ื™ื“ื•ืข ืฉื”ื•ื ืžืกื•ื’ืœ ืœืขื‘ื•ื“ ื™ื—ื“ ื‘ืงื‘ื•ืฆื•ืช
03:15
that almost look, at least to me, like a chariot of horses.
70
195875
3434
ืฉื–ื” ื›ืžืขื˜ ื ืจืื”, ืœืคื—ื•ืช ื‘ืขื™ื ื™, ื›ืžืจื›ื‘ื” ืขื ืกื•ืกื™ื.
03:19
As you see, the cell is this incredibly changing, dynamic place,
71
199333
3851
ื›ืคื™ ืฉืืชื ืจื•ืื™ื, ื”ืชื ื”ื•ื ืžืงื•ื ื“ื™ื ืืžื™ ืžื“ื”ื™ื ื•ืžืฉืชื ื”,
03:23
where things are constantly being built and disassembled.
72
203208
3435
ืฉื‘ื• ื›ืœ ื”ื–ืžืŸ ื“ื‘ืจื™ื ื ื‘ื ื™ื ื•ืžืชืคืจืงื™ื.
03:26
But some of these structures
73
206667
1351
ืื‘ืœ ื›ืžื” ืžื”ืžื‘ื ื™ื ื”ืืœื”
03:28
are harder to take apart than others, though.
74
208042
2101
ืงืฉื™ื ื™ื•ืชืจ ืœืคื™ืจื•ืง ืœืขื•ืžืช ืื—ืจื™ื,
03:30
And special forces need to be brought in
75
210167
1934
ื•ืฆืจื™ืš ืœื”ื‘ื™ื ื›ื•ื—ื•ืช ืžื™ื•ื—ื“ื™ื
03:32
in order to make sure that structures are taken apart in a timely manner.
76
212125
3434
ืขืœ ืžื ืช ืœื•ื•ื“ื ืฉืžื‘ื ื™ื ืžืชืคืจืงื™ื ื‘ื–ืžืŸ.
03:35
That job is done in part by proteins like these.
77
215583
2726
ื”ืขื‘ื•ื“ื” ื”ื–ืืช ื ืขืฉื™ืช ื‘ื—ืœืงื” ืขืœ ื™ื“ื™ ื—ืœื‘ื•ื ื™ื ื›ืืœื”.
03:38
These donut-shaped proteins,
78
218333
1518
ื—ืœื‘ื•ื ื™ื ืืœื” ื‘ืฆื•ืจืช ืกื•ืคื’ื ื™ื™ื”,
03:39
of which there are many types in the cell,
79
219875
2018
ืฉื™ืฉ ืžืชื•ื›ื ืกื•ื’ื™ื ืจื‘ื™ื ื‘ืชื,
03:41
all seem to act to rip apart structures
80
221917
2059
ื ืจืื” ืฉื›ื•ืœื ืคื•ืขืœื™ื ื›ื“ื™ ืœืงืจื•ืข ืœื’ื–ืจื™ื ืžื‘ื ื™ื
ืขืœ ื™ื“ื™ ืžืฉื™ื›ืช ื—ืœื‘ื•ื ื™ื ื‘ื•ื“ื“ื™ื ื“ืจืš ื—ื•ืจ ืžืจื›ื–ื™.
03:44
by basically pulling individual proteins through a central hole.
81
224000
3393
03:47
When these kinds of proteins don't work properly,
82
227417
2559
ื›ืืฉืจ ื—ืœื‘ื•ื ื™ื ืžืกื•ื’ ื–ื” ืœื ืขื•ื‘ื“ื™ื ื›ืžื• ืฉืฆืจื™ืš,
ืกื•ื’ื™ ื”ื—ืœื‘ื•ื ื™ื ืฉืืžื•ืจื™ื ืœื”ืชืคืจืง
03:50
the types of proteins that are supposed to get taken apart
83
230000
2726
03:52
can sometimes stick together and aggregate
84
232750
2434
ื™ื›ื•ืœื™ื ืœืคืขืžื™ื ืœื”ื™ื“ื‘ืง ื•ืœื”ืฆื˜ื‘ืจ
03:55
and that can give rise to terrible diseases, such as Alzheimer's.
85
235208
4185
ื•ื–ื” ื™ื›ื•ืœ ืœื”ื•ืœื™ื“ ืžื—ืœื•ืช ืื™ื•ืžื•ืช, ื›ื’ื•ืŸ ืืœืฆื”ื™ื™ืžืจ.
03:59
And now let's take a look at the nucleus,
86
239417
2017
ื•ืขื›ืฉื™ื• ื‘ื•ืื• ื•ื ืกืชื›ืœ ืขืœ ื”ื’ืจืขื™ืŸ,
04:01
which houses our genome in the form of DNA.
87
241458
2935
ืฉืžื›ื™ืœ ืืช ื”ื’ื ื•ื ืฉืœื ื• ื‘ืฆื•ืจื” ืฉืœ ื“ื โ€œื.
04:04
In all of our cells,
88
244417
1434
ื‘ื›ืœ ื”ืชืื™ื ืฉืœื ื•,
04:05
our DNA is cared for and maintained by a diverse set of proteins.
89
245875
4309
ื”ื“ื โ€œื ืฉืœื ื• ืžื˜ื•ืคืœ ื•ืžืชื•ื—ื–ืง ืขืœ ื™ื“ื™ ืงื‘ื•ืฆื” ืžื’ื•ื•ื ืช ืฉืœ ื—ืœื‘ื•ื ื™ื.
04:10
DNA is wound around proteins called histones,
90
250208
2810
ื“ื โ€œื ื›ืจื•ืš ืกื‘ื™ื‘ ื—ืœื‘ื•ื ื™ื ืฉื ืงืจืื™ื ื”ื™ืกื˜ื•ื ื™ื,
04:13
which enable cells to pack large amounts of DNA into our nucleus.
91
253042
4309
ืžื” ืฉืžืืคืฉืจ ืœืชืื™ื ืœืืกื•ืฃ ื›ืžื•ื™ื•ืช ื’ื“ื•ืœื•ืช ืฉืœ ื“ื โ€œื ืœื’ืจืขื™ืŸ ืฉืœื ื•.
04:17
These machines are called chromatin remodelers,
92
257375
3059
ื”ืžื›ื•ื ื•ืช ื”ืืœื” ื ืงืจืื•ืช ืžืฉืคืฆื•ืช ื›ืจื•ืžื˜ื™ืŸ,
04:20
and the way they work is that they basically scoot the DNA
93
260458
2726
ื•ืื•ืคืŸ ืขื‘ื•ื“ืชืŸ ื”ื•ื ืฉื”ืŸ ื‘ืขืฆื ืขื•ืงืคื•ืช ืืช ื”- ื“ื โ€œื
04:23
around these histones
94
263208
1268
ืกื‘ื™ื‘ ื”ื”ื™ืกื˜ื•ื ื™ื ื”ืืœื”
04:24
and they allow new pieces of DNA to become exposed.
95
264500
3851
ื•ื”ืŸ ืžืืคืฉืจื•ืช ืœืคื™ืกื•ืช ื“ื โ€œื ื—ื“ืฉื•ืช ืœื”ื™ื—ืฉืฃ.
04:28
This DNA can then be recognized by other machinery.
96
268375
2934
ืœืื—ืจ ืžื›ืŸ ื ื™ืชืŸ ืœื–ื”ื•ืช ืืช ื”-DNA ื”ื–ื” ืขืœ ื™ื“ื™ ืžื™ื›ื•ืŸ ืื—ืจ
04:31
In this case, this large molecular machine
97
271333
2518
ื‘ืžืงืจื” ื–ื”, ื”ืžื›ื•ื ื” ื”ืžื•ืœืงื•ืœืจื™ืช ื”ื’ื“ื•ืœื” ื”ื–ื•
04:33
is looking for a segment of DNA
98
273875
1684
ืžื—ืคืฉืช ืงื˜ืข ืฉืœ ื“ื โ€œื
04:35
that tells it it's at the beginning of a gene.
99
275583
2310
ืฉืื•ืžืจ ืœื” ืฉื–ื” ื‘ืชื—ื™ืœืช ื”ื’ึถึผืŸ.
04:37
Once it finds a segment,
100
277917
1684
ื‘ืจื’ืข ืฉื”ื™ื ืžื•ืฆืืช ืคื™ืกื”,
04:39
it basically undergoes a series of shape changes
101
279625
2768
ื”ื™ื ื‘ืขืฆื ืขื•ื‘ืจืช ืกื“ืจื” ืฉืœ ืฉื™ื ื•ื™ื™ ืฆื•ืจื”
04:42
which enables it to bring in other machinery
102
282417
2101
ืžื” ืฉืžืืคืฉืจ ืœื”ื›ื ื™ืก ืžื›ื•ื ื•ืช ืื—ืจื•ืช
04:44
that in turn allows a gene to get turned on or transcribed.
103
284542
4142
ืฉื‘ืชื•ืจืŸ ืžืืคืฉืจื•ืช ืœื’ืŸ ืœื”ื™ื“ืœืง ืื• ืœื”ืชืขืชืง.
04:48
This has to be a very tightly regulated process,
104
288708
3101
ื–ื” ื—ื™ื™ื‘ ืœื”ื™ื•ืช ืชื”ืœื™ืš ืžืื•ื“ ืžื•ืกื“ืจ ื”ื™ื˜ื‘,
04:51
because turning on the wrong gene at the wrong time
105
291833
2768
ื›ื™ ืœื”ืคืขืœืช ื”ื’ืŸ ื”ืœื ื ื›ื•ืŸ ื‘ื–ืžืŸ ื”ืœื ื ื›ื•ืŸ
04:54
can have disastrous consequences.
106
294625
2643
ื™ื›ื•ืœื•ืช ืœื”ื™ื•ืช ื”ืฉืœื›ื•ืช ื”ืจื•ืช ืืกื•ืŸ.
04:57
Scientists are now able to use protein machines
107
297292
2809
ืžื“ืขื ื™ื ื™ื›ื•ืœื™ื ื›ืขืช ืœื”ืฉืชืžืฉ ื‘ืžื›ื•ื ื•ืช ื—ืœื‘ื•ืŸ
05:00
to edit genomes.
108
300125
1434
ื›ื“ื™ ืœืขืจื•ืš ื’ื ื•ืžื™ื.
05:01
I'm sure all of you have heard of CRISPR.
109
301583
2435
ืื ื™ ื‘ื˜ื•ื—ื” ืฉื›ื•ืœื›ื ืฉืžืขืชื ืขืœ โ€œืงืจื™ืกืคืจ.โ€
05:04
CRISPR takes advantage of a protein known as Cas9,
110
304042
2809
ืงืจื™ืกืคืจ ืžื ืฆืœ ื—ืœื‘ื•ืŸ ื”ืžื›ื•ื ื” Cas9,
05:06
which can be engineered to recognize and cut
111
306875
2934
ืืฉืจ ื ื™ืชืŸ ืœื”ื ื“ืก, ืœื–ื”ื•ืช ื•ืœื—ืชื•ืš ืžืžื ื•
05:09
a very specific sequence of DNA.
112
309833
2393
ืจืฆืฃ ื“ื โ€œื ืžืื•ื“ ืกืคืฆื™ืคื™.
05:12
In this example,
113
312250
1268
ื‘ื“ื•ื’ืžื” ื–ื•,
05:13
two Cas9 proteins are being used to excise a problematic piece of DNA.
114
313542
3976
ื ืขืฉื” ืฉื™ืžื•ืฉ ื‘ 2 ื—ืœื‘ื•ื ื™ Cas9 ื›ื“ื™ ืœื›ืจื•ืช ืคื™ืกืช DNA ื‘ืขื™ื™ืชื™ืช.
05:17
For example, a part of a gene that may give rise to a disease.
115
317542
3476
ื›ื’ื•ืŸ, ื—ืœืง ืžื”ื’ืŸ ืฉืขืœื•ืœ ืœื’ืจื•ื ืœืžื—ืœื”.
ืœืื—ืจ ืžื›ืŸ ืžืฉืชืžืฉื™ื ื‘ืžื™ื›ื•ืŸ ืกืœื•ืœืจื™
05:21
Cellular machinery is then used
116
321042
1477
05:22
to basically glue two ends of the DNA back together.
117
322543
3516
ืœื”ื“ื‘ื™ืง ืฉื ื™ ืงืฆื•ื•ืช ืฉืœ ื”ื“ื โ€œื ื™ื—ื“ ืฉื•ื‘.
05:26
As a molecular animator,
118
326083
1268
ื›ืื ื™ืžื˜ื•ืจื™ืช ืžื•ืœืงื•ืœืจื™ืช,
05:27
one of my biggest challenges is visualizing uncertainty.
119
327375
3309
ืื—ื“ ื”ืืชื’ืจื™ื ื”ื’ื“ื•ืœื™ื ื‘ื™ื•ืชืจ ืฉืœื™ ื”ื•ื ืœื“ืžื™ื™ืŸ ืื™ ื•ื•ื“ืื•ืช
05:30
All of the animations I've shown to you represent hypotheses,
120
330708
3310
ื›ืœ ื”ืื ื™ืžืฆื™ื•ืช ืฉื”ืฆื’ืชื™ ื‘ืคื ื™ื›ื ืžื™ื™ืฆื’ื™ื ื”ืฉืขืจื•ืช,
05:34
how my collaborators think a process works,
121
334042
2267
ืขืœ ื”ืื•ืคืŸ ื‘ื• ื”ืฉื•ืชืคื™ื ืฉืœื™ ื—ื•ืฉื‘ื™ื ืฉื”ืชื”ืœื™ืš ืขื•ื‘ื“
05:36
based on the best information that they have.
122
336333
2351
ื‘ื”ืชื‘ืกืก ืขืœ ื”ืžื™ื“ืข ื”ื˜ื•ื‘ ื‘ื™ื•ืชืจ ืฉื™ืฉ ืœื”ื.
05:38
But for a lot of molecular processes,
123
338708
1976
ืื‘ืœ ืœื”ืจื‘ื” ืชื”ืœื™ื›ื™ื ืžื•ืœืงื•ืœืจื™ื™ื,
05:40
we're still really at the early stages of understanding things,
124
340708
2976
ืื ื—ื ื• ืžืžืฉ ืขื“ื™ื™ืŸ ื‘ืฉืœื‘ื™ื ืžื•ืงื“ืžื™ื ืฉืœ ื”ื‘ื ืช ื”ื“ื‘ืจื™ื,
05:43
and there's a lot to learn.
125
343708
1310
ื•ื™ืฉ ื”ืจื‘ื” ืžื” ืœืœืžื•ื“.
05:45
The truth is
126
345042
1267
ื”ืืžืช ื”ื™ื
05:46
that these invisible molecular worlds are vast and largely unexplored.
127
346333
3959
ืฉืขื•ืœืžื•ืช ืžื•ืœืงื•ืœืจื™ื™ื ื‘ืœืชื™ ื ืจืื™ื ืืœื” ื”ื ืขืฆื•ืžื™ื ื•ืœืจื•ื‘ ืœื ื ื—ืงืจื•.
05:51
To me, these molecular landscapes
128
351458
2060
ืขื‘ื•ืจื™, ื—ืงื™ืจืช ื”ื ื•ืคื™ื ื”ืžื•ืœืงื•ืœืจื™ื™ื ื”ืืœื”
05:53
are just as exciting to explore as a natural world
129
353542
3392
ืœื ืคื—ื•ืช ืžืจื’ืฉื™ื ืžืขื•ืœื ื”ื˜ื‘ืข
05:56
that's visible all around us.
130
356958
2393
ืฉื’ืœื•ื™ ืžืกื‘ื™ื‘ื ื•.
05:59
Thank you.
131
359375
1268
ืชื•ื“ื”
06:00
(Applause)
132
360667
3125
(ืชึฐืฉืื•ึผืื•ึนืช)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7