Janet Iwasa: How animations can help scientists test a hypothesis

66,403 views ใƒป 2014-08-07

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Oren Szekatch ืžื‘ืงืจ: Zeeva Livshitz
00:12
Take a look at this drawing.
0
12710
1869
ืชืกืชื›ืœื• ืขืœ ื”ืื™ื•ืจ ื”ื–ื”.
00:14
Can you tell what it is?
1
14579
1604
ืืชื ื™ื›ื•ืœื™ื ืœื•ืžืจ ืžื”ื•?
00:16
I'm a molecular biologist by training,
2
16183
2747
ื‘ื”ื›ืฉืจืชื™ ืื ื™ ื‘ื™ื•ืœื•ื’ื™ืช ืžื•ืœืงื•ืœืจื™ืช,
00:18
and I've seen a lot of these kinds of drawings.
3
18930
2603
ื•ืจืื™ืชื™ ืื™ื•ืจื™ื ืจื‘ื™ื ืžืกื•ื’ ื–ื”.
00:21
They're usually referred to as a model figure,
4
21533
3092
ืœืจื•ื‘ ืžืชื™ื™ื—ืกื™ื ืืœื™ื”ื ื›ืืœ ื“ื’ื ืชื‘ื ื™ืชื™,
00:24
a drawing that shows how we think
5
24625
1734
ืื™ื•ืจ ืฉืžืจืื” ื›ื™ืฆื“ ืื ื• ื—ื•ืฉื‘ื™ื
00:26
a cellular or molecular process occurs.
6
26359
2664
ืฉืชื”ืœื™ืš ืชืื™ ืื• ืžื•ืœืงื•ืœืจื™ ืžืชืจื—ืฉ.
00:29
This particular drawing is of a process
7
29023
2499
ื”ืื™ื•ืจ ื”ืกืคืฆื™ืคื™ ื”ื–ื” ื”ื•ื ืฉืœ ืชื”ืœื™ืš
00:31
called clathrin-mediated endocytosis.
8
31522
4323
ื”ื ืงืจื ื‘ืœื™ืขื” ืชืื™ืช ื‘ืชื™ื•ื•ืš ื—ืœื‘ื•ืŸ ืงืœืื˜ืจื™ืŸ.
00:35
It's a process by which a molecule can get
9
35845
2610
ื–ื”ื• ื”ืœื™ืš ื‘ื• ืžื•ืœืงื•ืœื” ื™ื›ื•ืœื” ืœื”ื™ื›ื ืก
00:38
from the outside of the cell to the inside
10
38455
2238
ืžื—ื•ืฅ ืœืชื ืคื ื™ืžื”
00:40
by getting captured in a bubble or a vesicle
11
40693
2537
ืขืœ ื™ื“ื™ ืชืคื™ืกืชื” ื‘ื‘ื•ืขื” ืื• ื‘ืฉืœืคื•ื—ื™ืช
00:43
that then gets internalized by the cell.
12
43230
2820
ืืฉืจ ืœืื—ืจ ืžื›ืŸ ื—ื•ื“ืจืช ืœืชื•ืš ื”ืชื.
00:46
There's a problem with this drawing, though,
13
46050
1835
ืขื ื–ืืช, ื™ืฉื ื” ื‘ืขื™ื” ืขื ื”ืื™ื•ืจ ื”ื–ื”,
00:47
and it's mainly in what it doesn't show.
14
47885
2632
ื•ื”ืขื™ืงืจ ื”ื•ื ื‘ืžื” ืฉื”ืื™ื•ืจ ืœื ืžืจืื”.
00:50
From lots of experiments,
15
50517
1465
ืžืžื—ืงืจื™ื ืจื‘ื™ื,
00:51
from lots of different scientists,
16
51982
1835
ืžืžื“ืขื ื™ื ืจื‘ื™ื ื•ืฉื•ื ื™ื,
00:53
we know a lot about what these molecules look like,
17
53817
2996
ืื ื• ื™ื•ื“ืขื™ื ืจื‘ื•ืช ื›ื™ืฆื“ ื”ืžื•ืœืงื•ืœื•ืช ื”ืœืœื• ื ืจืื•ืช,
00:56
how they move around in the cell,
18
56813
1682
ื›ื™ืฆื“ ื”ืŸ ื–ื–ื•ืช ื‘ืชื•ืš ื”ืชื,
00:58
and that this is all taking place
19
58495
1825
ื•ื›ื™ ื›ืœ ื”ื“ื‘ืจ ื”ื–ื” ืžืชืจื—ืฉ
01:00
in an incredibly dynamic environment.
20
60320
2990
ื‘ืชื•ืš ืกื‘ื™ื‘ื” ื“ื™ื ืžื™ืช ืœืื™ืŸ ืฉื™ืขื•ืจ.
01:03
So in collaboration with a clathrin expert Tomas Kirchhausen,
21
63310
3473
ืื– ื™ื—ื“ ืขื ืžื•ืžื—ื” ืœืงืœืื˜ืจื™ืŸ, ืชื•ืžืืก ืงื™ืจืงื”ืื•ื–ืŸ,
01:06
we decided to create a new kind of model figure
22
66783
2319
ื”ื—ืœื˜ื ื• ืœื™ืฆื•ืจ ืกื•ื’ ื—ื“ืฉ ืฉืœ ื“ื’ื ืชื‘ื ื™ืชื™
01:09
that showed all of that.
23
69102
2024
ืืฉืจ ืžืจืื” ืืช ื›ืœ ื–ื”.
01:11
So we start outside of the cell.
24
71126
1736
ืื– ื”ืชื—ืœื ื• ืžื—ื•ืฅ ืœืชื.
01:12
Now we're looking inside.
25
72862
1648
ืขื›ืฉื™ื• ืื ื—ื ื• ืžืกืชื›ืœื™ื ืคื ื™ืžื”.
01:14
Clathrin are these three-legged molecules
26
74510
2080
ื—ืœื‘ื•ื ื™ ืงืœืื˜ืจื™ืŸ ื”ื ืžื•ืœืงื•ืœื•ืช ื‘ื ื•ืช ืฉืœื•ืฉ ืจื’ืœื™ื™ื
01:16
that can self-assemble into soccer-ball-like shapes.
27
76590
3288
ืืฉืจ ื™ื›ื•ืœื•ืช ืœื”ืชืื’ื“ ืœื›ื“ื™ ืฆื•ืจื•ืช ื”ื“ื•ืžื•ืช ืœื›ื“ื•ืจื’ืœ.
01:19
Through connections with a membrane,
28
79878
1697
ื“ืจืš ืงื™ืฉื•ืจื™ื ืขื ืžืžื‘ืจื ื”,
01:21
clathrin is able to deform the membrane
29
81575
2167
ื—ืœื‘ื•ืŸ ื”ืงืœืื˜ืจื™ืŸ ื™ื›ื•ืœ ืœืขื•ื•ืช ืืช ื”ืžืžื‘ืจื ื”
01:23
and form this sort of a cup
30
83742
1413
ื•ืœื™ืฆื•ืจ ืžืขื™ืŸ ืกื•ื’ ืฉืœ ื›ื•ืก
01:25
that forms this sort of a bubble, or a vesicle,
31
85155
2307
ืืฉืจ ื™ื•ืฆืจ ืžืขื™ืŸ ื‘ื•ืขื”, ืื• ืฉืœืคื•ื—ื™ืช,
01:27
that's now capturing some of the proteins
32
87462
1784
ืืฉืจ ืขืชื” ืœื•ื›ื“ ื—ืœืง ืžื”ื—ืœื‘ื•ื ื™ื
01:29
that were outside of the cell.
33
89246
1654
ืฉื”ื™ื• ืžื—ื•ืฅ ืœืชื.
01:30
Proteins are coming in now that basically pinch off this vesicle,
34
90900
3498
ื—ืœื‘ื•ื ื™ื ืฉื ื›ื ืกื™ื ืขืชื”, ืœืžืขืฉื” ื ืฆื‘ื˜ื™ื ืืœ ืชื•ืš ื”ืฉืœืคื•ื—ื™ืช ื”ื–ื•,
01:34
making it separate from the rest of the membrane,
35
94398
2584
ื•ื‘ื›ืš ืžืคืจื™ื“ื™ื ืื•ืชื” ืžืฉืืจ ื”ืžืžื‘ืจื ื”,
01:36
and now clathrin is basically done with its job,
36
96982
2392
ื•ืœืžืขืฉื” ืขืชื” ื—ืœื‘ื•ืŸ ื”ืงืื˜ืจื™ืŸ ืกื™ื™ื ืืช ืขื‘ื•ื“ืชื•.
01:39
and so proteins are coming in now โ€”
37
99374
1238
ื›ืš ืฉื”ื—ืœื‘ื•ื ื™ื ื ื›ื ืกื™ื ืขืชื” --
01:40
we've covered them yellow and orange โ€”
38
100612
1946
ืฆื™ืคื™ื ื• ืื•ืชื ื‘ืฆื”ื•ื‘ ื•ื‘ื›ืชื•ื --
01:42
that are responsible for taking apart this clathrin cage.
39
102558
2542
ืฉืื—ืจืื™ื ืœืคืจืง ืืช ื›ืœื•ื‘ ื”ืงืื˜ืจื™ืŸ.
01:45
And so all of these proteins can get basically recycled
40
105100
3282
ื›ืš ืฉืœืžืขืฉื” ื›ืœ ื”ื—ืœื‘ื•ื ื™ื ื”ืœืœื• ื™ื›ื•ืœื™ื ืœืžืขืฉื” ืœื”ื™ื•ืช ืžืžื•ื—ื–ืจื™ื
01:48
and used all over again.
41
108382
1536
ื•ืœื”ื™ื•ืช ื‘ืจื™ ืฉื™ืžื•ืฉ ืฉื•ื‘.
01:49
These processes are too small to be seen directly,
42
109918
3409
ื”ืชื”ืœื™ื›ื™ื ื”ืœืœื• ื”ื ื‘ืงื ื” ืžื™ื“ื” ืงื˜ืŸ ืžื“ื™ ืžื›ื“ื™ ืœื”ื™ืจืื•ืช ื™ืฉื™ืจื•ืช,
01:53
even with the best microscopes,
43
113327
1832
ืืคื™ืœื• ื‘ืขื–ืจืช ื”ืžื™ืงืจื•ืกืงื•ืคื™ื ื”ื˜ื•ื‘ื™ื ื‘ื™ื•ืชืจ,
01:55
so animations like this provide a really powerful way
44
115159
2631
ื›ืš ืฉื”ื ืคืฉื•ืช ืฉื›ืืœื” ืžืกืคืงื•ืช ื“ืจืš ืขื•ืฆืžื™ืช ื‘ืืžืช
01:57
of visualizing a hypothesis.
45
117790
3018
ืœื—ื–ื•ืช ื‘ื”ืฉืขืจื”.
02:00
Here's another illustration,
46
120808
1846
ื”ื ื” ืขื•ื“ ื“ื•ื’ืžื”,
02:02
and this is a drawing of how a researcher might think
47
122654
2736
ื•ื–ื”ื• ืื™ื•ืจ ื”ืžืจืื” ื›ื™ืฆื“ ื—ื•ืงืจ ื™ื›ื•ืœ ืœืฉืขืจ
02:05
that the HIV virus gets into and out of cells.
48
125390
3505
ืฉื•ื•ื™ืจื•ืก ื”-HIV ื ื›ื ืก ื•ื™ื•ืฆื ืžื”ืชืื™ื.
02:08
And again, this is a vast oversimplification
49
128895
2519
ื•ืฉื•ื‘, ื–ื•ื”ื™ ื”ืคืฉื˜ืช ื™ืชืจ
02:11
and doesn't begin to show
50
131414
1744
ื•ืื™ื ื” ืžืชื—ื™ืœื” ืœื”ืจืื•ืช
02:13
what we actually know about these processes.
51
133158
2482
ืžื” ืฉืื ื• ืœืžืขืฉื” ื™ื•ื“ืขื™ื ืขืœ ื”ืชื”ืœื™ื›ื™ื ื”ืœืœื•.
02:15
You might be surprised to know
52
135640
2215
ืื•ืœื™ ืชื”ื™ื• ืžื•ืคืชืขื™ื ืœื’ืœื•ืช
02:17
that these simple drawings are the only way
53
137855
2767
ืฉื”ืื™ื•ืจื™ื ื”ืคืฉื•ื˜ื™ื ื”ืœืœื• ื”ื ื”ื“ืจืš ื”ื™ื—ื™ื“ื”
02:20
that most biologists visualize their molecular hypotheses.
54
140622
3832
ืฉืจื•ื‘ ื”ื‘ื™ื•ืœื•ื’ื™ื ื—ื•ื–ื™ื ื‘ื”ืฉืขืจื•ืช ื”ืžื•ืœืงื•ืœืจื™ื•ืช ืฉืœื”ื.
02:24
Why?
55
144454
1028
ืžื“ื•ืข?
02:25
Because creating movies of processes
56
145482
1990
ืžื›ื™ื•ื•ืŸ ืฉื™ืฆื™ืจืช ืกืจื˜ื™ื ืฉืœ ืชื”ืœื™ื›ื™ื
02:27
as we think they actually occur is really hard.
57
147472
3014
ื›ืคื™ ืฉืื ื• ื—ื•ืฉื‘ื™ื ืฉื”ื ืœืžืขืฉื” ืžืชืจื—ืฉื™ื, ื”ื™ื ืžืœืื›ื” ืงืฉื”.
02:30
I spent months in Hollywood learning 3D animation software,
58
150486
3633
ื‘ื™ืœื™ืชื™ ื—ื•ื“ืฉื™ื ื‘ื”ื•ืœื™ื•ื•ื“, ืœืžื“ืชื™ ืชื•ื›ื ื•ืช ืœื”ื ืคืฉืช ืชืœืช ืžื™ืžื“,
02:34
and I spend months on each animation,
59
154119
2281
ื•ื‘ื™ืœื™ืชื™ ื—ื•ื“ืฉื™ื ืขืœ ื›ืœ ื”ื ืคืฉื”,
02:36
and that's just time that most researchers can't afford.
60
156400
3350
ื•ื–ื”ื• ื–ืžืŸ ืฉืจื•ื‘ ื”ื—ื•ืงืจื™ื ืœื ื™ื›ื•ืœื™ื ืœื”ืจืฉื•ืช ืœืขืฆืžื.
02:39
The payoffs can be huge, though.
61
159750
2200
ืขื ื–ืืช, ื”ืฉื›ืจ ื™ื›ื•ืœ ืœื”ื™ื•ืช ืขืฆื•ื.
02:41
Molecular animations are unparalleled
62
161950
2384
ืœื”ื ืคืฉื•ืช ืžื•ืœืงื•ืœืจื™ื•ืช ืื™ืŸ ืื— ื•ืจืข
02:44
in their ability to convey a great deal of information
63
164334
3441
ื‘ื™ื›ื•ืœืชืŸ ืœื”ืขื‘ื™ืจ ืžื™ื“ืข ืจื‘
02:47
to broad audiences with extreme accuracy.
64
167775
3592
ืœืงื”ืœ ืจื—ื‘, ื‘ื“ื™ื•ืง ืจื‘.
02:51
And I'm working on a new project now
65
171367
1503
ื•ืื ื™ ืขื•ื‘ื“ืช ืขืœ ืคืจื•ื™ื™ืงื˜ ื—ื“ืฉ ืขืชื”
02:52
called "The Science of HIV"
66
172870
1438
ื”ื ืงืจื "ืžื“ืข ื”-HIV"
02:54
where I'll be animating the entire life cycle
67
174308
2362
ื‘ื• ืื ื™ ืžื ืคื™ืฉื” ืืช ืžื—ื–ื•ืจ ื”ื—ื™ื™ื ื”ืฉืœื
02:56
of the HIV virus as accurately as possible
68
176670
3104
ืฉืœ ื•ื•ื™ืจื•ืก ื”-HIV ื‘ืฆื•ืจื” ื”ืžื“ื•ื™ื™ืงืช ื‘ื™ื•ืชืจ ืฉืืคืฉืจ
02:59
and all in molecular detail.
69
179774
1961
ื•ื”ื›ืœ ื‘ืคื™ืจื•ื˜ ืžื•ืœืงื•ืœืจื™.
03:01
The animation will feature data
70
181735
2151
ื”ื”ื ืคืฉื•ืช ืชื›ืœื•ืœื ื” ืžื™ื“ืข
03:03
from thousands of researchers collected over decades,
71
183886
2976
ืžืืœืคื™ ืžื—ืงืจื™ื, ืืฉืจ ื ืืกืฃ ืœืื•ืจืš ื”ืขืฉื•ืจื™ื,
03:06
data on what this virus looks like,
72
186862
3080
ืžื™ื“ืข ืขืœ ืžืจืื”ื• ืฉืœ ื”ื•ื•ื™ืจื•ืก,
03:09
how it's able to infect cells in our body,
73
189942
3088
ื™ื›ื•ืœืชื• ืœื ื’ืข ืชืื™ื ื‘ื’ื•ืคื ื•,
03:13
and how therapeutics are helping to combat infection.
74
193030
3972
ื•ื›ื™ืฆื“ ืชืจื•ืคื•ืช ืขื•ื–ืจื•ืช ืœื”ื™ืœื—ื ื‘ื ื’ืข.
03:17
Over the years, I found that animations
75
197002
2329
ื‘ืžื”ืœืš ื”ืฉื ื™ื, ืžืฆืืชื™ ืฉื”ื ืคืฉื•ืช
03:19
aren't just useful for communicating an idea,
76
199331
2819
ืื™ื ืŸ ืจืง ื™ืขื™ืœื•ืช ื‘ื”ืขื‘ืจืช ืจืขื™ื•ืŸ,
03:22
but they're also really useful
77
202150
1496
ืืœื ื”ืŸ ื’ื ื™ืขื™ืœื•ืช ืžืื•ื“
03:23
for exploring a hypothesis.
78
203646
2312
ื‘ื—ืงื™ืจืช ื”ืฉืขืจื”.
03:25
Biologists for the most part are still using a paper and pencil
79
205958
3194
ื‘ื™ื•ืœื•ื’ื™ื, ื‘ืจื•ื‘ื, ืขื“ื™ื™ืŸ ืžืฉืชืžืฉื™ื ื‘ื ื™ื™ืจ ื•ืขืคืจื•ืŸ
03:29
to visualize the processes they study,
80
209152
2222
ื‘ื›ื“ื™ ืœื”ืžื—ื™ืฉ ืืช ื”ื”ืœื™ืš ืฉื”ื ื—ื•ืงืจื™ื,
03:31
and with the data we have now, that's just not good enough anymore.
81
211374
3480
ื•ืขื ื”ืžื™ื“ืข ืฉื™ืฉ ืœื ื• ื›ืขืช, ื–ื” ื›ื‘ืจ ืคืฉื•ื˜ ืœื ื˜ื•ื‘ ืžืกืคื™ืง.
03:34
The process of creating an animation
82
214854
2416
ืชื”ืœื™ืš ื™ืฆื™ืจืช ื”ื”ื ืคืฉื”
03:37
can act as a catalyst that allows researchers
83
217270
2657
ื™ื›ื•ืœ ืœืฉืžืฉ ื›ื–ืจื– ืืฉืจ ืžืืคืฉืจ ืœื—ื•ืงืจื™ื
03:39
to crystalize and refine their own ideas.
84
219927
2951
ืœื—ื“ื“ ื•ืœื’ื‘ืฉ ืืช ื”ืจืขื™ื•ื ื•ืช ืฉืœื”ื.
03:42
One researcher I worked with
85
222878
1784
ื—ื•ืงืจืช ืื—ืช ืขื™ืžื” ืขื‘ื“ืชื™
03:44
who works on the molecular mechanisms
86
224662
1776
ืืฉืจ ืขื•ื‘ื“ืช ืขืœ ืžื›ื ื™ืงื” ืžื•ืœืงื•ืœืจื™ืช
03:46
of neurodegenerative diseases
87
226438
1784
ืฉืœ ืžื—ืœื•ืช ื ื™ื•ื•ื ื™ื•ืช
03:48
came up with experiments that were related
88
228222
1978
ื™ืฆืจื” ืžื—ืงืจื™ื ืืฉืจ ื”ื™ื• ืงืฉื•ืจื™ื
03:50
directly to the animation that she and I worked on together,
89
230200
2983
ื™ืฉื™ืจื•ืช ืœื”ื ืคืฉื•ืช ืฉื”ื™ื ื•ืื ื™ ืขื‘ื“ื ื• ืขืœื™ื”ืŸ ื™ื—ื“ื™ื•,
03:53
and in this way, animation can feed back into the research process.
90
233183
4121
ื•ื‘ื“ืจืš ื–ื•, ื”ื ืคืฉื” ื™ื›ื•ืœื” ืœืชืช ืžืฉื•ื‘ ืœืชื•ืš ื”ืœื™ืš ื”ืžื—ืงืจ.
03:57
I believe that animation can change biology.
91
237304
2853
ืื ื™ ืžืืžื™ื ื” ืฉื”ื ืคืฉื” ื™ื›ื•ืœื” ืœืฉื ื•ืช ืืช ื”ื‘ื™ื•ืœื•ื’ื™ื”.
04:00
It can change the way that we communicate with one another,
92
240157
2568
ื”ื™ื ื™ื›ื•ืœื” ืœืฉื ื•ืช ืืช ื”ื“ืจืš ืฉื‘ื” ืื ื• ืžืชืงืฉืจื™ื ื–ื” ืขื ื–ื”,
04:02
how we explore our data
93
242725
1623
ื”ื“ืจืš ื‘ื” ืื ื• ื—ื•ืงืจื™ื ืืช ื”ืžื™ื“ืข ืฉืœื ื•
04:04
and how we teach our students.
94
244348
1327
ื•ืื™ืš ืื ื• ืžืœืžื“ื™ื ืืช ื”ืกื˜ื•ื“ื ื˜ื™ื ืฉืœื ื•.
04:05
But for that change to happen,
95
245675
1454
ืืš ื‘ื›ื“ื™ ืฉื”ืฉื™ื ื•ื™ ื”ื–ื” ื™ืชืจื—ืฉ,
04:07
we need more researchers creating animations,
96
247129
3157
ืื ื• ื–ืงื•ืงื™ื ืœื—ื•ืงืจื™ื ื ื•ืกืคื™ื ืฉื™ื™ืฆืจื• ื”ื ืคืฉื•ืช,
04:10
and toward that end, I brought together a team
97
250286
2255
ื•ืœืฉื ืžื˜ืจื” ื–ื•, ืื ื™ ื”ืงืžืชื™ ืงื‘ื•ืฆื”
04:12
of biologists, animators and programmers
98
252541
3137
ืฉืœ ื‘ื™ื•ืœื•ื’ื™ื, ืžื ืคื™ืฉื™ื ื•ืžืชื›ื ืชื™ื
04:15
to create a new, free, open-source software โ€”
99
255678
3047
ื‘ื›ื“ื™ ืœื™ืฆื•ืจ ืชื•ื›ื ืช ืงื•ื“ ืคืชื•ื— ื—ื“ืฉื”, ื—ื™ื ืžื™ืช --
04:18
we call it Molecular Flipbook โ€”
100
258725
1904
ืื ื• ืงื•ืจืื™ื ืœื” Molecular Flipbook (ืกืคืจื•ืŸ ืžืชื”ืคืš ืžื•ืœืงื•ืœืจื™)
04:20
that's created just for biologists
101
260629
1896
ืืฉืจ ื ื•ืฆืจื” ืจืง ืขื‘ื•ืจ ื‘ื™ื•ืœื•ื’ื™ื
04:22
just to create molecular animations.
102
262525
3545
ืจืง ื‘ืฉื‘ื™ืœ ืœื™ืฆื•ืจ ื”ื ืคืฉื•ืช ืžื•ืœืงื•ืœืจื™ื•ืช.
04:26
From our testing, we've found that it only takes 15 minutes
103
266070
3712
ืžื”ื‘ื“ื™ืงื•ืช ืฉืœื ื•, ื’ื™ืœื™ื ื• ื›ื™ ืœื•ืงื— ืจืง 15 ื“ืงื•ืช
04:29
for a biologist who has never touched animation software before
104
269782
3268
ืœื‘ื™ื•ืœื•ื’ื™ืช ืฉืžืขื•ืœื ืœื ื ื’ืขื” ื‘ืชื•ื›ื ืช ื”ื ืคืฉื” ืœืคื ื™ ื›ืŸ
04:33
to create her first molecular animation
105
273050
2736
ืœื™ืฆื•ืจ ืืช ื”ื”ื ืคืฉื” ื”ืžื•ืœืงื•ืœืจื™ืช ื”ืจืืฉื•ื ื”
04:35
of her own hypothesis.
106
275786
1522
ืฉืœ ื”ื”ืฉืขืจื” ืฉืœื”.
04:37
We're also building an online database
107
277308
2150
ื›ืžื• ื›ืŸ, ื‘ื ื™ื ื• ืžืื’ืจ ืžื™ื“ืข ื‘ืจืฉืช
04:39
where anyone can view, download and contribute
108
279458
2775
ื‘ื• ื›ืœ ืื—ื“ ื™ื›ื•ืœ ืœืจืื•ืช, ืœื”ื•ืจื™ื“ ื•ืœืชืจื•ื
04:42
their own animations.
109
282233
1616
ืืช ื”ื”ื ืคืฉื•ืช ืฉืœื”ื.
04:43
We're really excited to announce
110
283849
1971
ืื ื—ื ื• ืžืชืจื’ืฉื™ื ืžืื•ื“ ืœื”ื›ืจื™ื–
04:45
that the beta version of the molecular animation
111
285820
2462
ื›ื™ ื’ื™ืจืกืช ื”ื‘ื˜ื ืฉืœ ืขืจื›ืช ื”ื›ืœื™ื ืฉืœ ืชื•ื›ื ืช ื”ื”ื ืคืฉื”
04:48
software toolkit will be available for download today.
112
288282
4208
ื”ืžื•ืœืงื•ืœืจื™ืช ืชื”ื™ื” ื–ืžื™ื ื” ืœื”ื•ืจื“ื” ื”ื™ื•ื.
04:52
We are really excited to see what biologists will create with it
113
292490
2743
ืื ื—ื ื• ืžืื•ื“ ืžืชืจื’ืฉื™ื ืœืจืื•ืช ืžื” ื‘ื™ื•ืœื•ื’ื™ื ื™ื•ื›ืœื• ืœื™ืฆื•ืจ ืื™ืชื”
04:55
and what new insights they're able to gain
114
295233
2056
ื•ืื™ืœื• ืชื•ื‘ื ื•ืช ื—ื“ืฉื•ืช ื”ื ื™ื•ื›ืœื• ืœื”ืฉื™ื’
04:57
from finally being able to animate
115
297289
1481
ื‘ื–ื›ื•ืช ื”ื™ื›ื•ืœืช ืœื”ื ืคื™ืฉ,
04:58
their own model figures.
116
298770
1703
ืืช ื”ื“ื’ืžื™ื ื”ืชื‘ื ื™ืชื™ื™ื ืฉืœื”ื.
05:00
Thank you.
117
300473
2240
ืชื•ื“ื” ืจื‘ื”.
05:02
(Applause)
118
302713
3158
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7