Cynthia Kenyon: Experiments that hint of longer lives

95,721 views ใƒป 2011-11-17

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Dotan Koskas ืžื‘ืงืจ: Ido Dekkers
00:15
Have you ever wanted to stay young a little longer
0
15260
3000
ื”ืื ืื™ ืคืขื ืจืฆื™ืชื ืœื”ืฉืืจ ืฆืขื™ืจื™ื ืงืฆืช ื™ื•ืชืจ ื–ืžืŸ
00:18
and put off aging?
1
18260
2000
ื•ืœื“ื—ื•ืช ืืช ื”ื–ื™ืงื ื”?
00:20
This is a dream of the ages.
2
20260
3000
ื–ื”ื• ื—ืœื•ื ืžืฉื—ืจ ื”ื™ืžื™ื
00:23
But scientists have for a long time
3
23260
2000
ืืš ื‘ืžืฉืš ื–ืžืŸ ืžื” ืžื“ืขื ื™ื
00:25
thought this just was never going to be possible.
4
25260
2000
ื—ืฉื‘ื• ืฉื–ื”ื• ื“ื‘ืจ ืฉืœื ื™ืงืจื”.
00:27
They thought you just wear out, there's nothing you can do about it --
5
27260
3000
ื”ื ื—ืฉื‘ื• ืฉืื ื• ืคืฉื•ื˜ ืžืชื‘ืœื™ื, ื•ืื™ืŸ ื“ื‘ืจ ืœืขืฉื•ืช ื‘ื ื™ื“ื•ืŸ --
00:30
kind of like an old shoe.
6
30260
2000
ืžืฉื”ื• ื›ืžื• ื ืขืœ ื™ืฉื ื”
00:32
But if you look in nature,
7
32260
2000
ืืš ืื ืชื‘ื™ื˜ื• ื‘ื˜ื‘ืข,
00:34
you see that different kinds of animals
8
34260
2000
ืชื•ื•ื›ื—ื• ืฉื‘ืขืœื™ ื—ื™ื™ื ืฉื•ื ื™ื
00:36
can have really different lifespans.
9
36260
2000
ื”ื ื‘ืขืœื™ ืชื•ื—ืœืช ื—ื™ื™ื ืฉื•ื ื”.
00:38
Now these animals are different from one another,
10
38260
2000
ืขื›ืฉื™ื• ื‘ืขืœื™ ื”ื—ื™ื™ื ื”ืœืœื• ืฉื•ื ื™ื ืื—ื“ ืžื”ืฉื ื™,
00:40
because they have different genes.
11
40260
2000
ืžืคื ื™ ืฉื™ืฉ ืœื”ื ื’ื ื™ื ืฉื•ื ื™ื.
00:42
So that suggests
12
42260
2000
ื›ืš ืฉื–ื” ืžืจืžื–
00:44
that somewhere in these genes, somewhere in the DNA,
13
44260
2000
ืฉืื™ืคืฉื”ื• ื‘ื’ื ื™ื ื”ืœืœื•, ืื™ืคืฉื”ื• ื‘ DNA,
00:46
are genes for aging,
14
46260
2000
ื™ืฉื ื ื’ื ื™ื ืฉืœ ื”ื–ื“ืงื ื•ืช.
00:48
genes that allow them to have different lifespans.
15
48260
2000
ื’ื ื™ื ื”ืžืืคืฉืจื™ื ืœื”ื ืชื•ื—ืœืช ื—ื™ื™ื ืฉื•ื ื”.
00:50
So if there are genes like that,
16
50260
2000
ืื–ื™ ืื ื™ืฉื ื ื’ื ื™ื ื›ืืœื”
00:52
then you can imagine that,
17
52260
2000
ืืชื ื™ื›ื•ืœื™ื ืœื“ืžื™ื™ืŸ ืฉ..
00:54
if you could change one of the genes in an experiment,
18
54260
2000
ืื ืชื•ื›ืœื• ืœืฉื ื•ืช ืื—ื“ ืžื”ื’ื ื™ื ื‘ื ื™ืกื•ื™,
00:56
an aging gene,
19
56260
2000
ื’ืŸ ื”ื–ื“ืงื ื•ืช,
00:58
maybe you could slow down aging and extend lifespan.
20
58260
3000
ืื•ืœื™ ืชื•ื›ืœื• ืœื”ืื˜ ืืช ื”ื”ื–ื“ืงื ื•ืช ื•ืœื”ืืจื™ืš ื—ื™ื™ื.
01:01
And if you could do that, then you could find the genes for aging.
21
61260
3000
ื•ืื ืชืฆืœื™ื—ื• ืœืขืฉื•ืช ื–ืืช, ืชื•ื›ืœื• ืœืžืฆื•ื ืืช ื”ื’ื ื™ื ืœื”ื–ื“ืงื ื•ืช
01:04
And if they exist and you can find them,
22
64260
2000
ื•ืื ื”ื ืงื™ื™ืžื™ื ื•ืชื•ื›ืœื• ืœืžืฆื•ื ืื•ืชื,
01:06
then maybe one could eventually do something about it.
23
66260
3000
ืื•ืœื™ ืื– ืžื™ืฉื”ื• ื™ื•ื›ืœ ืœื‘ืกื•ืฃ ืœืขืฉื•ืช ืžืฉื”ื• ื‘ื ื™ื“ื•ืŸ.
01:09
So we've set out to look for genes that control aging.
24
69260
3000
ืื– ื™ืฆืื ื• ืœื—ืคืฉ ืืช ื”ื’ื ื™ื ื”ืฉื•ืœื˜ื™ื ื‘ื”ื–ื“ืงื ื•ืช.
01:12
And we didn't study any of these animals.
25
72260
3000
ื•ืœื ื—ืงืจื ื• ืืฃ ืื—ื“ ืžื‘ืขืœื™ ื”ื—ื™ื™ื ื”ืืœื”.
01:15
Instead, we studied a little, tiny, round worm called C. elegans,
26
75260
3000
ื‘ืžืงื•ื ื–ืืช, ื—ืงืจื ื• ืชื•ืœืขืช ืงื˜ื ื˜ื ื” ื‘ืฉื C elegans,
01:18
which is just about the size of a comma in a sentence.
27
78260
3000
ืฉื”ื™ื ื‘ืขืจืš ื‘ื’ื•ื“ืœ ืฉืœ ืคืกื™ืง ื‘ืžืฉืคื˜.
01:21
And we were really optimistic that we could find something
28
81260
3000
ื•ื”ื™ื™ื ื• ืžืื“ ืื•ืคื˜ื™ืžื™ื™ื ืฉื ืžืฆื ืžืฉื”ื•
01:24
because there had been a report of a long-lived mutant.
29
84260
3000
ื‘ื’ืœืœ ื“ื•"ื— ืขืœ ืžื•ื˜ืฆื™ื” ืืจื•ื›ืช ื—ื™ื™ื.
01:27
So we started to change genes at random,
30
87260
2000
ืื– ื”ืชื—ืœื ื• ืœืฉื ื•ืช ื’ื ื™ื ื‘ืฆื•ืจื” ืืงืจืื™ืช,
01:29
looking for long-lived animals.
31
89260
2000
ืชื•ืš ื—ื™ืคื•ืฉ ืื—ืจ ื‘ืขืœื™ ื—ื™ื™ื ืขื ืชื•ื—ืœืช ื—ื™ื™ื ืืจื•ื›ื”.
01:31
And we were very lucky to find
32
91260
2000
ื•ื”ื™ื™ื ื• ื‘ืจื™ ืžื–ืœ ืœืžืฆื•ื
01:33
that mutations that damage one single gene called daf-2
33
93260
4000
ืฉืžื•ื˜ืฆื™ื•ืช ืืฉืจ ืคื•ื’ืขื•ืช ื‘ื’ืŸ ืื—ื“ ื”ื ืงืจื daf-2
01:37
doubled the lifespan of the little worm.
34
97260
3000
ืžื›ืคื™ืœื•ืช ืืช ืื•ืจืš ื”ื—ื™ื™ื ืฉืœ ื”ืชื•ืœืขืช ื”ืงื˜ื ื”.
01:40
So you can see in black, after a month --
35
100260
2000
ื›ืš ืฉืืคืฉืจ ืœืจืื•ืช ื‘ืฉื—ื•ืจ, ืœืื—ืจ ื—ื•ื“ืฉ --
01:42
they're very short-lived; that's why we like to study them
36
102260
2000
ืฉื—ื™ื™ื”ื ืงืฆืจื™ื ืžืื“; ื–ื• ื”ืกื™ื‘ื” ืฉืื ื• ืื•ื”ื‘ื™ื ืœืœืžื•ื“ ืื•ืชื
01:44
for studies of aging --
37
104260
2000
ื‘ืœื™ืžื•ื“ื™ื ืขืœ ื”ื–ื“ืงื ื•ืช --
01:46
in black, after a month, the normal worms are all dead.
38
106260
3000
ื‘ืฉื—ื•ืจ, ืœืื—ืจ ื—ื•ื“ืฉ, ื”ืชื•ืœืขื™ื ื”ืจื’ื™ืœื•ืช ืžืชื•.
01:49
But at that time,
39
109260
2000
ืืš ื‘ื–ืžืŸ ื–ื”,
01:51
most of the mutant worms are still alive.
40
111260
2000
ืจื•ื‘ ืชื•ืœืขื™ ื”ืžื•ื˜ืฆื™ื•ืช ืขื“ื™ื™ืŸ ื‘ื—ื™ื™ื.
01:53
And it isn't until twice as long
41
113260
2000
ืจืง ืœืื—ืจ ื›ืคื•ืœ ืžื”ื–ืžืŸ
01:55
that they're all dead.
42
115260
2000
ื›ื•ืœืŸ ืžืชื•.
01:57
And now I want to show what they actually look like in this movie here.
43
117260
3000
ื›ืขืช ืื ื™ ืจื•ืฆื” ืœื”ืจืื•ืช ื”ืœื›ื” ืœืžืขืฉื” ืื™ืš ื”ืŸ ื ืจืื•ืช ื‘ืกื™ืจื˜ื•ืŸ ื”ื‘ื.
02:00
So the first thing you're going to see
44
120260
2000
ื”ื“ื‘ืจ ื”ืจืืฉื•ืŸ ืฉืืชื ื”ื•ืœื›ื™ื ืœืจืื•ืช
02:02
is the normal worm
45
122260
2000
ื–ื” ื”ืชื•ืœืขืช ื”ืจื’ื™ืœื”
02:04
when it's about college student age -- a young adult.
46
124260
3000
ื›ืืฉืจ ื–ื” ื‘ื’ื™ืœ ืกื˜ื•ื“ื ื˜ ืฆืขื™ืจ -- ื‘ื’ื™ืจ
02:07
It's quite a cute little fellow.
47
127260
3000
ื–ื” ืžืžืฉ ื‘ื—ื•ืจ ื—ืžื•ื“
02:10
And next you're going to see the long-lived mutant when it's young.
48
130260
3000
ื”ื“ื‘ืจ ื”ื‘ื ืฉืชืจืื• ืžื•ื˜ืฆื™ื” ืืจื•ื›ืช ื—ื™ื™ื ื‘ืฆืขื™ืจื•ืชื”
02:13
So this animal is going to live twice as long.
49
133260
2000
ื›ืš ืฉื‘ืขืœ ื—ื™ื™ื ื–ื” ื™ื—ื™ื” ื›ืคื•ืœ ื–ืžืŸ
02:15
Is it miserable? It doesn't seem to be.
50
135260
2000
ื”ืื ื”ื™ื ืื•ืžืœืœื”? ื–ื” ืœื ื ืจืื” ื›ืš.
02:17
It's active. You can't tell the difference really.
51
137260
3000
ื”ื™ื ืคืขื™ืœื”. ืื™ ืืคืฉืจ ืžืžืฉ ืœืจืื•ืช ืืช ื”ื”ื‘ื“ืœ.
02:20
And they can be completely fertile --
52
140260
2000
ื•ื”ืŸ ื™ื›ื•ืœื•ืช ืœื”ื™ื•ืช ืคื•ืจื™ื•ืช ืœื’ืžืจื™ --
02:22
have the same number of progeny as the normal worms do.
53
142260
2000
ืขื ืื•ืชื• ืžืกืคืจ ืฆืืฆืื™ื ื›ืžื• ื”ืชื•ืœืขื™ื ื”ืจื’ื™ืœื•ืช.
02:24
Now get out your handkerchiefs here.
54
144260
2000
ืขื›ืฉื™ื• ื”ื•ืฆื™ืื• ืืช ื”ืžืžื—ื˜ื•ืช.
02:26
You're going to see, in just two weeks,
55
146260
2000
ืืชื ื”ื•ืœื›ื™ื ืœืจืื•ืช, ื‘ืชื•ืš ืฉื‘ื•ืขื™ื™ื ื‘ืœื‘ื“
02:28
the normal worms are old.
56
148260
2000
ื”ืชื•ืœืขื™ื ื”ืจื’ื™ืœื•ืช ื–ืงื ื•ืช.
02:30
You can see the little head moving down at the bottom there.
57
150260
3000
ืืคืฉ ืœืจืื•ืช ืืช ื”ืจืืฉ ื”ืงื˜ืŸ ื–ื– ืฉื ืœืžื˜ื”.
02:33
But everything else is just lying there.
58
153260
2000
ื›ืฉื›ืœ ื”ืฉืืจ ืคืฉื•ื˜ ืžื•ื ื— ืฉื.
02:35
The animal's clearly in the nursing home.
59
155260
2000
ื”ื—ื™ื” ืœื’ืžืจื™ ื‘ืžื—ืœืงื” ื”ื’ืจื™ื˜ืจื™ืช.
02:37
And if you look at the tissues of the animal, they're starting to deteriorate.
60
157260
3000
ื•ืื ืชืกืชื›ืœื• ื‘ืขื•ืจ ื”ื—ื™ื”, ื”ื•ื ืžืชื—ื™ืœ ืœื”ืชืคืจืง.
02:40
You know, even if you've never seen one of these little C. elegans --
61
160260
2000
ืืชื ื™ื•ื“ืขื™ื, ืื ืืฃ ืคืขื ืœื ืจืื™ืชื ืืช ืื—ืช ืžื” - C. elegans ื”ืงื˜ื ื•ืช --
02:42
which probably most of you haven't seen one --
62
162260
2000
ืฉื›ื ืจืื” ืจื•ื‘ื›ื ืœื ืจืื™ืชื --
02:44
you can tell they're old -- isn't that interesting?
63
164260
3000
ืืคืฉืจ ืœืจืื•ืช ืฉื”ืŸ ื–ืงื ื•ืช -- ืื™ืŸ ื–ื” ืžืขื ื™ื™ืŸ?
02:47
So there's something about aging that's kind of universal.
64
167260
3000
ื›ืš ืฉื™ืฉ ืžืฉื”ื• ื‘ื–ื™ืงื ื” ืฉื”ื•ื ืื•ื ื™ื‘ืจืกืœื™
02:50
And now here is the daf-2 mutant.
65
170260
3000
ื•ืขื›ืฉื™ื• ื”ืžื•ื˜ืฆื™ื” daf-2
02:53
One gene is changed out of 20,000, and look at it.
66
173260
2000
ื’ืŸ ืื—ื“ ืฉื•ื ื” ืžืชื•ืš 20,000, ื•ืชืจืื• ืื•ืชื”.
02:55
It's the same age, but it's not in the nursing home;
67
175260
3000
ื”ื™ื ื‘ืื•ืชื• ื”ื’ื™ืœ, ืืš ื”ื™ื ืœื ื‘ืžื—ืœืงื” ื”ื’ืจื™ื˜ืจื™ืช;
02:58
it's going skiing.
68
178260
3000
ื”ื™ื ื‘ื—ื•ืคืฉืช ืกืงื™.
03:01
This is what's really cool: it's aging more slowly.
69
181260
3000
ื–ื” ืžื” ืฉื‘ืืžืช ืžื’ื ื™ื‘: ื”ื™ื ืžื–ื“ืงื ืช ืœืื˜ ื™ื•ืชืจ.
03:04
It takes this worm two days
70
184260
2000
ืœื•ืงื— ืœืชื•ืœืขืช ื”ื–ื• ื™ื•ืžื™ื™ื
03:06
to age as much as the normal worm ages in one day.
71
186260
2000
ืœื”ื–ื“ืงืŸ ื‘ื–ืžืŸ ืฉืœื•ืงื— ืœืชื•ืœืขืช ื”ืจื’ื™ืœื” ื‘ื™ื•ื.
03:08
And when I tell people about this,
72
188260
2000
ื•ื›ืฉืื ื™ ืื•ืžืจืช ื–ืืช ืœืื ืฉื™ื,
03:10
they tend to think of maybe an 80 or 90 year-old person
73
190260
4000
ื”ื ื ื•ื˜ื™ื ืœื—ืฉื•ื‘ ืขืœ ืื“ื ื‘ืŸ 80 ืื• 90
03:14
who looks really good for being 90 or 80.
74
194260
2000
ืฉื ืจืื” ืžืžืฉ ื˜ื•ื‘ ืœืื“ื ื‘ืŸ 90 ืื• 80
03:16
But it's really more like this:
75
196260
2000
ืื‘ืœ ื–ื” ื™ื•ืชืจ ื“ื•ืžื” ืœื–ื”:
03:18
let's say you're a 30 year-old guy -- or in your 30s --
76
198260
3000
ื‘ื•ืื• ื ืืžืจ ืฉืืชื ื‘ื—ื•ืจ ื‘ืŸ 30 -- ืื• ื‘ืฉื ื•ืช ื”ืฉืœื•ืฉื™ื --
03:21
and you're a bachelor and you're dating people.
77
201260
2000
ื•ืืชื” ืจื•ื•ืง ื•ืืชื” ื™ื•ืฆื ืขื ื ืฉื™ื.
03:23
And you meet someone you really like, you get to know her.
78
203260
3000
ื•ืืชื” ืคื•ื’ืฉ ืžื™ืฉื”ื™ ืฉืืชื” ืžืžืฉ ืื•ื”ื‘.
03:26
And you're in a restaurant, and you say, "Well how old are you?"
79
206260
3000
ื•ืืชื” ื‘ืžืกืขื“ื”, ื•ืืชื” ืื•ืžืจ "ืื– ื‘ืช ื›ืžื” ืืช?"
03:29
She says, "I'm 60."
80
209260
2000
ื•ื”ื™ื ืื•ืžืจืช, "ืื ื™ ื‘ืช 60."
03:31
That's what it's like. And you would never know.
81
211260
2000
ื›ื›ื” ื–ื”. ื•ืœืขื•ืœื ืœื ืชื“ืข.
03:33
You would never know, until she told you.
82
213260
2000
ืœืขื•ืœื ืœื ืชื“ืข , ืขื“ ืฉื”ื™ื ืชืืžืจ ืœืš.
03:35
(Laughter)
83
215260
4000
(ืฆื—ื•ืง)
03:39
Okay.
84
219260
2000
ืื• ืงื™ื™
03:41
So what is the daf-2 gene?
85
221260
2000
ืื– ืžื”ื• ื’ืŸ ื” daf-2?
03:43
Well as you know, genes, which are part of the DNA,
86
223260
2000
ื›ืžื• ืฉืืชื ื™ื•ื“ืขื™ื, ื’ื ื™ื, ืฉื”ื ื—ืœืง ืžื” DNA,
03:45
they're instructions to make a protein that does something.
87
225260
3000
ื”ื”ื•ืจืื•ืช ืฉืœื”ื ื”ื ืœื™ืฆืจ ื—ืœื‘ื•ืŸ ืฉื’ื•ืจื ืœืžืฉื”ื•
03:48
And the daf-2 gene
88
228260
2000
ื•ื’ืŸ ื” daf-2
03:50
encodes a hormone receptor.
89
230260
2000
ืžืงื•ื“ื“ ืงื•ืœื˜ืŸ ื”ื•ืจืžื•ื ืœื™.
03:52
So what you see in the picture there
90
232260
2000
ื›ืš ืฉืžื” ืฉืืชื ืจื•ืื™ื ื‘ืชืžื•ื ื” ื›ืืŸ
03:54
is a cell with a hormone receptor in red
91
234260
2000
ื”ื•ื ืชื ืขื ืงื•ืœื˜ืŸ ื”ื•ืจืžื•ื ืœื™ ื‘ืื“ื•ื
03:56
punching through the edge of the cell.
92
236260
2000
ื—ื•ื“ืจ ืœืชื•ืš ืงืฆื” ื‘ืชื.
03:58
So part of it is like a baseball glove.
93
238260
2000
ื›ืš ืฉื—ืœืง ืžื–ื” ื”ื•ื ื›ืžื• ื›ืคืคืช ื‘ื™ื™ืกื‘ื•ืœ
04:00
Part of it's on the outside,
94
240260
2000
ื—ืœืง ืžื–ื” ื ืžืฆื ื‘ื—ื•ืฅ,
04:02
and it's catching the hormone as it comes by in green.
95
242260
2000
ื•ื”ื™ื ืชื•ืคืกืช ืืช ื”ื”ื•ืจืžื•ืŸ ื›ืฉื”ื•ื ืขื•ื‘ืจ ื‘ื™ืจื•ืง.
04:04
And the other part is on the inside
96
244260
2000
ื•ื”ื—ืœืง ื”ืฉื ื™ ื”ื•ื ื‘ืฆื“ ื”ืฉื ื™
04:06
where it sends signals into the cell.
97
246260
2000
ืžืฉื ื”ื•ื ืฉื•ืœื— ืื•ืชื•ืช ืœืชื•ืš ื”ืชื
04:08
Okay, so what is the daf-2 receptor
98
248260
2000
ืื• ืงื™ื™, ืื– ืžื” ืงื•ืœื˜ืŸ ื” daf-2
04:10
telling the inside of the cell?
99
250260
2000
ืžืื•ืชืช ืœืชื•ืš ื”ืชื?
04:12
I just told you that, if you make a mutation in the daf-2 gene cell,
100
252260
3000
ื”ืจื’ืข ืืžืจืชื™ ืœื›ื, ืฉืื ืืชื ื™ื•ืฆืจื™ื ืžื•ื˜ืฆื™ื” ื‘ื’ืŸ ื”ืชื daf-2
04:15
that you get a receptor that doesn't work as well;
101
255260
2000
ืชืงื‘ืœื• ืงื•ืœื˜ืŸ ืฉืœื ืขื•ื‘ื“ ื˜ื•ื‘;
04:17
the animal lives longer.
102
257260
2000
ื”ื—ื™ื” ื—ื™ื” ื–ืžืŸ ืืจื•ืš ื™ื•ืชืจ.
04:19
So that means that the normal function of this hormone receptor
103
259260
3000
ื›ืš ืฉื–ื” ืื•ืžืจ ืฉื”ืคืขื•ืœื” ื”ืจื’ื™ืœื” ืฉืœ ื”ืงื•ืœื˜ืŸ ื”ื”ื•ืจืžื•ื ืœื™
04:22
is to speed up aging.
104
262260
2000
ื”ื™ื ืœื”ืื™ืฅ ืืช ื”ื”ื–ื“ืงื ื•ืช.
04:24
That's what that arrow means.
105
264260
2000
ื–ื” ืžื” ืฉื”ื—ืฅ ื”ื–ื” ืžืฆื‘ื™ืข.
04:26
It speeds up aging. It makes it go faster.
106
266260
2000
ื”ื•ื ืžืื™ืฅ ืืช ื”ื”ื–ื“ืงื ื•ืช. ื”ื•ื ื’ื•ืจื ืœื• ืœื”ื™ื•ืช ืžื”ื™ืจ ื™ื•ืชืจ.
04:28
So it's like the animal has the grim reaper inside of itself,
107
268260
2000
ื›ืš ืฉื–ื” ื›ืžื• ืฉืœื—ื™ื” ื™ืฉ ืืช ืžืœืืš ื”ืžื•ื•ืช ื‘ืชื•ื›ื”,
04:30
speeding up aging.
108
270260
2000
ืฉืžืื™ืฅ ืืช ื”ื”ื–ื“ืงื ื•ืช.
04:32
So this is altogether really, really interesting.
109
272260
3000
ื›ืœ ื–ื” ืžืื“ ืžืื“ ืžืขื ื™ื™ืŸ.
04:35
It says that aging is subject to control by the genes,
110
275260
3000
ื ืืžืจ ืฉื”ื–ื“ืงื ื•ืช ื›ืคื•ืคื” ืœืฉืœื™ื˜ื” ื‘ื™ื“ื™ ื”ื’ื ื™ื,
04:38
and specifically by hormones.
111
278260
3000
ื•ื‘ื™ื—ื•ื“ ื‘ื™ื“ื™ ื”ื”ื•ืจืžื•ื ื™ื.
04:41
So what kind of hormones are these?
112
281260
2000
ืื– ืื™ื–ื” ืกื•ื’ ื”ื ืื•ืชื ื”ื•ืจืžื•ื ื™ื?
04:43
There's lots of hormones. There's testosterone, adrenalin.
113
283260
2000
ื™ืฉื ื ื”ื•ืจืžื•ื ื™ื ืจื‘ื™ื, ื™ืฉื ื• ื˜ืกื˜ืกื˜ืจื•ืŸ, ืื“ืจื ืœื™ืŸ.
04:45
You know about a lot of them.
114
285260
2000
ืืชื ืžื›ื™ืจื™ื ืจื‘ื™ื ืžื”ื.
04:47
These hormones are similar
115
287260
2000
ื”ื•ืจืžื•ื ื™ื ืืœื• ื“ื•ืžื™ื
04:49
to hormones that we have in our bodies.
116
289260
2000
ืœื”ื•ืจืžื•ื ื™ื ืฉื™ืฉ ืœื ื• ื‘ื’ื•ืฃ.
04:51
The daf-2 hormone receptor
117
291260
2000
ืงื•ืœื˜ืŸ ื”ื•ืจืžื•ืŸ ื” daf-2
04:53
is very similar to the receptor
118
293260
2000
ื“ื•ืžื” ืžืื“ ืœืงื•ืœื˜ืŸ
04:55
for the hormone insulin and IGF-1.
119
295260
3000
ืฉืœ ื”ื•ืจืžื•ืŸ ื”ืื™ื ืกื•ืœื™ืŸ ื• IGF-1
04:58
Now you've all heard of at least insulin.
120
298260
2000
ื›ื•ืœื›ื ืœืคื—ื•ืช ืฉืžืขืชื ืขืœ ื”ืื™ื ืกื•ืœื™ืŸ.
05:00
Insulin is a hormone that promotes the uptake of nutrients
121
300260
3000
ื”ื•ืจืžื•ืŸ ื”ืื™ื ืกื•ืœื™ืŸ ืžืงื“ื ืืช ืกืคื™ื’ืช ื”ื—ื•ืžืจื™ื ื”ืžื–ื™ื ื™ื
05:03
into your tissues after you eat a meal.
122
303260
2000
ืœืชื•ืš ื”ืจืงืžื•ืช ืฉืœื›ื ืœืื—ืจ ืื›ื™ืœืช ืืจื•ื—ื”.
05:05
And the hormone IGF-1 promotes growth.
123
305260
3000
ื•ื”ื•ืจืžื•ืŸ ื” IGF -1 ืžืงื“ื ื’ื“ื™ืœื”
05:08
So these functions were known for these hormones for a long time,
124
308260
3000
ืคืขื•ืœื•ืช ื”ื•ืจืžื•ื ืœื™ื•ืช ืืœื• ื™ื“ื•ืขื•ืช ื–ืžืŸ ืจื‘,
05:11
but our studies suggested
125
311260
2000
ืืš ื”ืžื—ืงืจื™ื ืฉืœื ื• ืžืจืžื–ื™ื
05:13
that maybe they had a third function that nobody knew about --
126
313260
2000
ืฉืื•ืœื™ ื™ืฉ ืœื”ื ืคืขื•ืœื” ืฉืœื™ืฉื™ืช ืฉืืฃ ืื—ื“ ืœื ื™ื•ื“ืข ืขืœื™ื” --
05:15
maybe they also affect aging.
127
315260
2000
ืื•ืœื™ ื”ื ื’ื ืžืฉืคื™ืขื™ื ืขืœ ื”ื–ื™ืงื ื”.
05:17
And it's looking like that's the case.
128
317260
2000
ื•ืื›ืŸ ื›ืš ื ืจืื” ื”ื“ื‘ืจ.
05:19
So after we made our discoveries with little C. elegans,
129
319260
3000
ืœืื—ืจ ื›ืœ ืชื’ืœื™ื•ืชื™ื ื• ืขื C. elegans ื”ืงื˜ื ื”,
05:22
people who worked on other kinds of animals
130
322260
2000
ืื ืฉื™ื ืฉืขื‘ื“ื• ืขืœ ื—ื™ื•ืช ืื—ืจื•ืช
05:24
started asking, if we made the same daf-2 mutation,
131
324260
3000
ื”ืชื—ื™ืœื• ืœืฉืื•ืœ, ืื ื”ื™ื™ื ื• ืžื‘ืฆืขื™ื ืืช ืื•ืชื” ืžื•ื˜ืฆื™ื” ื‘ daf -2
05:27
the hormone receptor mutation, in other animals,
132
327260
3000
ืžื•ื˜ืฆื™ืช ืงื•ืœื˜ืŸ ื”ื”ื•ืจืžื•ืŸ, ื‘ื—ื™ื•ืช ืื—ืจื•ืช,
05:30
will they live longer?
133
330260
2000
ื”ืื ื”ืŸ ื™ื—ื™ื• ื–ืžืŸ ืจื‘ ื™ื•ืชืจ?
05:32
And that is the case in flies.
134
332260
2000
ื•ื–ื”ื• ื”ืžืงืจื” ื‘ื–ื‘ื•ื‘ื™ื.
05:34
If you change this hormone pathway in flies, they live longer.
135
334260
3000
ืื ื ืฉื ื” ืืช ื ืชื™ื‘ ื”ื”ื•ืจืžื•ืŸ ื‘ื–ื‘ื•ื‘ื™ื, ื”ื ื™ื—ื™ื• ื™ื•ืชืจ.
05:37
And also in mice -- and mice are mammals like us.
136
337260
3000
ื•ื’ื ื‘ืขื›ื‘ืจื™ื -- ื•ืขื›ื‘ืจื™ื ื”ื ื™ื•ื ืงื™ื ื›ืžื•ื ื•.
05:40
So it's an ancient pathway,
137
340260
2000
ื›ืš ืฉื–ื”ื• ื ืชื™ื‘ ืขืชื™ืง,
05:42
because it must have arisen a long time ago in evolution
138
342260
2000
ืžืคื ื™ ืฉืžื—ื•ื™ื™ื‘ ืœื”ื™ื•ืช ืฉื”ืชืขื•ืจืจ ืœืคื ื™ ื–ืžืŸ ืจื‘ ื‘ืื‘ื•ืœื•ืฆื™ื”
05:44
such that it still works in all these animals.
139
344260
3000
ื›ืš ืฉื”ื•ื ืขื“ื™ื™ืŸ ืคื•ืขืœ ื‘ื›ืœ ืฉืœื•ืฉืช ื”ื—ื™ื•ืช.
05:47
And also, the common precursor also gave rise to people.
140
347260
3000
ื•ื’ื, ื”ืžื—ื ื” ื”ืžืฉื•ืชืฃ ื”ื•ืœื™ื“ ืื ืฉื™ื
05:50
So maybe it's working in people the same way.
141
350260
2000
ื›ืš ืฉืื•ืœื™ ื–ื” ืขื•ื‘ื“ ื‘ืื•ืชื” ืฉื™ื˜ื” ืืฆืœ ืื ืฉื™ื.
05:52
And there are hints of this.
142
352260
2000
ื•ื™ืฉ ืœื›ืš ืจืžื–ื™ื.
05:54
So for example, there was one study that was done
143
354260
2000
ืœื“ื•ื’ืžื”, ื”ื™ื” ืžื—ืงืจ ืื—ื“ ืฉื ืขืฉื”
05:56
in a population of Ashkenazi Jews in New York City.
144
356260
3000
ื‘ืื•ื›ืœื•ืกื™ื” ืืฉื›ื ื–ื™ืช ื™ื”ื•ื“ื™ืช ื‘ื ื™ื• ื™ื•ืจืง.
05:59
And just like any population,
145
359260
2000
ื•ื›ืžื• ื›ืœ ืื•ื›ืœื•ืกื™ื”,
06:01
most of the people live to be about 70 or 80,
146
361260
3000
ืจื•ื‘ ื”ืื ืฉื™ื ื—ื™ื• ืขื“ ื’ื™ืœ 70 ืื• 80
06:04
but some live to be 90 or 100.
147
364260
2000
ืืš ื›ืžื” ื—ื™ื• ืขื“ 90 ืื• 100
06:06
And what they found
148
366260
2000
ื•ืžื” ืฉื”ื ื’ื™ืœื•
06:08
was that people who lived to 90 or 100
149
368260
3000
ื”ื™ื” ืฉื”ืื ืฉื™ื ืฉื—ื™ื• ืขื“ ื’ื™ืœ 90 ืื• 100
06:11
were more likely to have daf-2 mutations --
150
371260
3000
ื”ื™ื• ื‘ืขืœื™ ืกื™ื›ื•ื™ ื’ื‘ื•ื” ื™ื•ืชืจ ืœื”ื™ื•ืช ื‘ืขืœื™ ืžื•ื˜ืฆื™ื•ืช ืฉืœ ื” daf-2
06:14
that is, changes in the gene
151
374260
2000
ืฉื–ื”, ืฉื™ื ื•ื™ ื‘ื’ืŸ
06:16
that encodes the receptor for IGF-1.
152
376260
2000
ืฉืžืงื•ื“ื“ ืืช ื”ืงื•ืœื˜ืŸ ืฉืœ ื” IGF-1
06:18
And these changes made the gene not act as well
153
378260
5000
ืฉื™ื ื•ื™ื™ื ืืœื” ื’ืจืžื• ืœื’ืŸ ืœื”ืชื ื”ื’ ืคื—ื•ืช ื˜ื•ื‘
06:23
as the normal gene would have acted.
154
383260
2000
ืžืืฉืจ ืœื”ืชื ื”ื’ื•ืช ื”ื’ืŸ ื”ื ื•ืจืžืœื™.
06:25
It damaged the gene.
155
385260
2000
ื–ื” ืคื’ืข ื‘ื’ืŸ.
06:27
So those are hints
156
387260
2000
ืืœื• ื”ื ืจืžื–ื™ื
06:29
suggesting that humans are susceptible
157
389260
2000
ื”ืžืจืžื–ื™ื ืฉืื ืฉื™ื ื”ื ืจื’ื™ืฉื™ื
06:31
to the effects of the hormones for aging.
158
391260
2000
ืœืชื•ืคืขื•ืช ื”ื•ืจืžื•ื ื™ื ืฉืœ ื”ื–ื“ืงื ื•ืช.
06:33
So the next question, of course, is:
159
393260
2000
ื”ืฉืืœื” ื”ื‘ืื”, ื”ืจื™ ื”ื™ื:
06:35
Is there any effect on age-related disease?
160
395260
3000
ื”ืื ื™ืฉ ื”ืฉืคืขื” ืขืœ ืžื—ืœื•ืช ื”ืงืฉื•ืจื•ืช ืœื–ื™ืงื ื”?
06:38
As you age, you're much more likely
161
398260
2000
ื›ืฉืื ื• ืžื–ื“ืงื ื™ื, ืื ื• ืงืจื•ื‘ ืœื•ื“ืื™
06:40
to get cancer, Alzheimer's disease,
162
400260
2000
ื ื—ืœื” ื‘ืกืจื˜ืŸ, ืžื—ืœืช ืืœืฆื”ื™ื™ืžืจ,
06:42
heart disease, all sorts of diseases.
163
402260
2000
ืžื—ืœืช ืœื‘, ื›ืœ ืžื™ื ื™ ืžื—ืœื•ืช.
06:44
It turns out that these long-lived mutants
164
404260
2000
ืžืกืชื‘ืจ ืฉืžื•ื˜ืฆื™ื•ืช ืืจื•ื›ื•ืช ื—ื™ื™ื ืืœื”
06:46
are more resistant to all these diseases.
165
406260
2000
ืขืžื™ื“ื•ืช ื™ื•ืชืจ ืžืคื ื™ ื›ืœ ื”ืžื—ืœื•ืช ื”ืœืœื•.
06:48
They hardly get cancer,
166
408260
2000
ื ื“ื™ืจ ืฉื™ื—ืœื• ื‘ืกืจื˜ืŸ,
06:50
and when they do it's not as severe.
167
410260
2000
ื•ืื ื›ืŸ ืื– ื”ื•ื ืœื ืงืฉื”.
06:52
So it's really interesting, and it makes sense in a way,
168
412260
2000
ื›ืš ืฉื–ื” ืžืขื ื™ื™ืŸ ืžืื“, ื•ื–ื” ื”ื’ื™ื•ื ื™ ื‘ื“ืจืš ืžืกื•ื™ื™ืžืช,
06:54
that they're still young,
169
414260
2000
ืฉื”ื ืขื“ื™ื™ืŸ ืฆืขื™ืจื™ื,
06:56
so why would they be getting diseases of aging until their old?
170
416260
3000
ืื– ืœืžื” ืฉื”ื ื™ื—ืœื• ื‘ืžื—ืœื•ืช ื”ื–ื™ืงื ื” ืขื“ ืฉื™ื–ื“ืงื ื•?
07:00
So it suggests
171
420260
2000
ื–ื” ืžืจืžื–
07:02
that, if we could have a therapeutic or a pill to take
172
422260
3000
ืฉืื ื”ื™ื” ืœื ื• ืžืจืคื ืื• ื›ื“ื•ืจ ืœืงื—ืช
07:05
to replicate some of these effects in humans,
173
425260
2000
ื›ื“ื™ ืœืฉื›ืคืœ ื—ืœืง ืžืชื•ืคืขื•ืช ืืœื• ืืฆืœ ืื ืฉื™ื,
07:07
maybe we would have a way
174
427260
2000
ืื•ืœื™ ืชื”ื™ื” ืœื ื• ื“ืจืš
07:09
of combating lots of different age-related diseases
175
429260
2000
ืœื—ื‘ืจ ื”ืžื•ืŸ ืžื—ืœื•ืช ื”ืงืฉื•ืจื•ืช ื‘ื–ื™ืงื ื”
07:11
all at once.
176
431260
2000
ื‘ืคืขื ืื—ืช.
07:13
So how can a hormone ultimately affect the rate of aging?
177
433260
2000
ืื– ืื™ืš ืœื‘ืกื•ืฃ ื”ื•ืจืžื•ืŸ ื™ืฉืคื™ืข ืขืœ ืžื”ื™ืจื•ืช ื”ื”ื–ื“ืงื ื•ืช?
07:15
How could that work?
178
435260
2000
ืื™ืš ื–ื” ืืžื•ืจ ืœืขื‘ื•ื“?
07:17
Well it turns out that in the daf-2 mutants,
179
437260
3000
ืžืกืชื‘ืจ ืฉื‘ืžื•ื˜ืฆื™ืช ื” daf-2
07:20
a whole lot of genes are switched on in the DNA
180
440260
3000
ื›ืžื•ืช ื’ื“ื•ืœื” ืฉืœ ื’ื ื™ื ืžื•ืคืขืœื™ื ื‘ืชื•ืš DNA
07:23
that encode proteins that protect the cells and the tissues,
181
443260
3000
ื”ืžืงื•ื“ื“ื™ื ื—ืœื‘ื•ื ื™ื ื”ืžื’ื ื™ื ืขืœ ื”ืชื ื•ื”ืจืงืžื•ืช
07:26
and repair damage.
182
446260
2000
ื•ืžืชืงื ื™ื ื ื–ืงื™ื.
07:28
And the way that they're switched on
183
448260
3000
ื•ื”ื“ืจืš ื‘ื” ื”ื ืžื•ืคืขืœื™ื
07:31
is by a gene regulator protein called FOXO.
184
451260
3000
ื”ื™ื ืขืœ ื™ื“ื™ ื’ืŸ ื•ืกืช ื—ืœื‘ื•ืŸ ื”ื ืงืจื FOXO
07:34
So in a daf-2 mutant --
185
454260
2000
ื›ืš ืฉื‘ืžื•ื˜ืฆื™ืช ื” daf-2
07:36
you see that I have the X drawn here through the receptor.
186
456260
2000
ืืชื ืจื•ืื™ื ื”ื™ื›ืŸ ืฉืกื™ืžื ืชื™ X ื›ืืŸ ื“ืจืš ื”ืงื•ืœื˜ืŸ.
07:38
The receptor isn't working as well.
187
458260
2000
ื”ืงื•ืœื˜ืŸ ืœื ืžืชืคืงื“ ื˜ื•ื‘ ื›ืœ ื›ืš
07:40
Under those conditions, the FOXO protein in blue
188
460260
3000
ื‘ืชื ืื™ื ื”ืœืœื•, ื—ืœื‘ื•ืŸ ื” FOXO ื‘ื›ื—ื•ืœ
07:43
has gone into the nucleus --
189
463260
2000
ื ื›ื ืก ืœืชื•ืš ื”ื’ืจืขื™ืŸ --
07:45
that little compartment there in the middle of the cell --
190
465260
2000
ื”ื›ื™ืก ื”ืงื˜ืŸ ื”ื–ื” ื‘ืืžืฆืข ื”ืชื --
07:47
and it's sitting down on a gene binding to it.
191
467260
2000
ื•ื”ื•ื ืžืชื™ื™ืฉื‘ ืขืœ ื”ื’ืŸ ื•ืžืชื—ื‘ืจ ืืœื™ื•.
07:49
You see one gene. There are lots of genes actually that bind on FOXO.
192
469260
2000
ืจื•ืื™ื ื’ืŸ ืื—ื“, ื™ืฉื ื ื’ื ื™ื ืจื‘ื™ื ืœืžืขืฉื” ืฉืžืชื—ื‘ืจื™ื ืืœ ื” FOXO
07:51
And it's just sitting on one of them.
193
471260
2000
ื•ื”ื•ื ืžืชื™ื™ืฉื‘ ืขืœ ืื—ื“ ืžื”ื.
07:53
So FOXO turns on a lot of genes.
194
473260
2000
ื›ืš ืฉ FOXO ืžืคืขื™ืœ ื’ื ื™ื ืจื‘ื™ื.
07:55
And the genes it turns on includes antioxidant genes,
195
475260
3000
ื•ื”ื’ื ื™ื ืฉื”ื•ื ืžืคืขื™ืœ ื›ื•ืœืœื™ื ื’ื ื™ื ื ื•ื’ื“ื™ ื—ืžืฆื•ืŸ,
07:58
genes I call carrot-giver genes,
196
478260
2000
ื’ื ื™ื ืฉืื ื™ ืงื•ืจืืช ืœื”ื ื ื•ืชื ื™ ื”ื’ื–ืจ,
08:00
whose protein products
197
480260
2000
ืฉื”ืžื•ืฆืจ ื”ื—ืœื‘ื•ื ื™ ืฉืœื”ื
08:02
actually help other proteins to function well --
198
482260
2000
ืœืžืขืฉื” ืขื•ื–ืจ ืœื—ืœื‘ื•ื ื™ื ืื—ืจื™ื ืœืคืขื•ืœ ื‘ืฆื•ืจื” ื˜ื•ื‘ื” --
08:04
to fold correctly and function correctly.
199
484260
2000
ืœื”ืชืงืคืœ ื ื›ื•ืŸ ื•ืœืคืขื•ืœ ื ื›ื•ืŸ.
08:06
And it can also escort them to the garbage cans of the cell
200
486260
3000
ื•ื”ื ื’ื ื™ื›ื•ืœื™ื ืœืœื•ื•ืช ืื•ืชื ืืœ ืคื— ื”ืืฉืคื” ืฉืœ ื”ืชื
08:09
and recycle them if they're damaged.
201
489260
2000
ื•ืœืžื—ื–ืจ ืื•ืชื ืื ื”ื ื ื™ื–ื•ืงื•.
08:11
DNA repair genes
202
491260
2000
ื” DNA ืžืชืงืŸ ื’ื ื™ื
08:13
are more active in these animals.
203
493260
2000
ื•ื‘ืฆื•ืจื” ืคืขื™ืœื” ื‘ื™ื•ื ืงื™ื ืืœื”.
08:15
And the immune system is more active.
204
495260
2000
ื•ืžืขืจื›ืช ื”ื—ื™ืกื•ืŸ ื™ื•ืชืจ ืคืขื™ืœื”.
08:17
And many of these different genes, we've shown,
205
497260
3000
ื•ื”ืจื‘ื” ืžื”ื’ื ื™ื ื”ืฉื•ื ื™ื, ืฉื”ืจืื ื•,
08:20
actually contribute to the long lifespan of the daf-2 mutant.
206
500260
3000
ืœืžืขืฉื” ืชื•ืจืžื™ื ืœืื•ืจืš ื”ื—ื™ื™ื ื”ืืจื•ืš ืฉืœ ืžื•ื˜ืฆื™ืช ื” daf-2
08:23
So it's really interesting.
207
503260
2000
ื›ืš ืฉื–ื” ืžืื“ ืžืขื ื™ื™ืŸ.
08:25
These animals have within them
208
505260
2000
ืœื™ื•ื ืงื™ื ื”ืœืœื• ื™ืฉ ื‘ืชื•ื›ื
08:27
the latent capacity to live much longer than they normally do.
209
507260
3000
ื™ื›ื•ืœืช ืกืžื•ื™ื” ืœื—ื™ื•ืช ื”ืจื‘ื” ื™ื•ืชืจ ืžืืฉืจ ื”ื ื”ื™ื• ื—ื™ื™ื.
08:30
They have the ability
210
510260
2000
ื™ืฉ ืœื”ื ืืช ื”ื™ื›ื•ืœืช
08:32
to protect themselves from many kinds of damage,
211
512260
2000
ืœื”ื’ืŸ ืขืœ ืขืฆืžื ืžืกื•ื’ื™ื ืจื‘ื™ื ืฉืœ ื ื–ืงื™ื,
08:34
which we think makes them live longer.
212
514260
3000
ืžื” ืฉืื ื—ื ื• ื—ื•ืฉื‘ื™ื ื’ื•ืจื ืœื”ื ืœื—ื™ื•ืช ื–ืžืŸ ืืจื•ืš ื™ื•ืชืจ.
08:37
So what about the normal worm?
213
517260
2000
ืื– ืžื” ืœื’ื‘ื™ ื”ืชื•ืœืขืช ื”ืจื’ื™ืœื”?
08:39
Well when the daf-2 receptor is active,
214
519260
3000
ื•ื‘ื›ืŸ ื›ืฉืงื•ืœื˜ืŸ ื” daf-2 ืคืขื™ืœ,
08:42
then it triggers a series of events
215
522260
2000
ื”ื•ื ืžืชื ื™ืข ืกื“ืจื” ืฉืœ ืืจื•ืขื™ื
08:44
that prevent FOXO
216
524260
2000
ืฉืžื•ื ืขื™ื ืžื” FOXO
08:46
from getting into the nucleus where the DNA is.
217
526260
3000
ืœื”ื™ื›ื ืก ืืœ ื”ื’ืจืขื™ืŸ ื”ื™ื›ืŸ ืฉื” DNA ื ืžืฆื.
08:49
So it can't turn the genes on.
218
529260
2000
ื›ืš ืฉื”ื•ื ืœื ื™ื•ื›ืœ ืœื”ืคืขื™ืœ ืืช ื”ื’ื ื™ื.
08:51
That's how it works. That's why we don't see the long lifespan,
219
531260
2000
ื›ืš ื–ื” ืขื•ื‘ื“. ื–ื• ื”ืกื™ื‘ื” ืฉืื ื• ืœื ืจื•ืื™ื ืื•ืจืš ื—ื™ื™ื ืืจื•ืš,
08:53
until we have the daf-2 mutant.
220
533260
2000
ืขื“ ืฉื”ื™ื” ืœื ื• ืืช ืžื•ื˜ืฆื™ืช ื” daf-2.
08:55
But what good is this for the worm?
221
535260
2000
ืืš ื”ืื ื–ื” ื˜ื•ื‘ ืœืชื•ืœืขืช?
08:57
Well we think that insulin and IGF-1 hormones
222
537260
3000
ืื ื• ื—ื•ืฉื‘ื™ื ืฉืื™ื ืกื•ืœื™ืŸ ื•ื”ื•ืจืžื•ื ื™ ื” IGF-1
09:00
are hormones that are particularly active
223
540260
2000
ื”ื ื”ื•ืจืžื•ื ื™ื ืคืขื™ืœื™ื ื‘ืžื™ื•ื—ื“
09:02
under favorable conditions -- in the good times --
224
542260
2000
ื‘ืชื ืื™ื ื—ื™ื•ื‘ื™ื™ื -- ื‘ื–ืžืŸ ื˜ื•ื‘ --
09:04
when food is plentiful and there's not a lot of stress in the environment.
225
544260
3000
ื›ืืฉืจ ื™ืฉ ืื•ื›ืœ ื‘ืฉืคืข ื•ืื™ืŸ ืœื—ืฅ ืกื‘ื™ื‘ืชื™.
09:07
Then they promote the uptake of nutrients.
226
547260
2000
ืื– ื”ื ืžืงื“ืžื™ื ืืช ืกืคื™ื’ืช ื”ื—ื•ืžืจื™ื ื”ืžื–ื™ื ื™ื.
09:09
You can store the food, use it for energy,
227
549260
3000
ืืคืฉืจ ืœืื—ืกืŸ ืืช ื”ืื•ื›ืœ, ื•ืœื”ืฉืชืžืฉ ื‘ื• ืœืื ืจื’ื™ื”,
09:12
grow, etc.
228
552260
2000
ื’ื“ื™ืœื”, ื•ื›'ื•.
09:14
But what we think is that, under conditions of stress,
229
554260
3000
ืื‘ืœ ืžื” ืฉืื ื• ื—ื•ืฉื‘ื™ื, ืฉืชื—ืช ืชื ืื™ ืœื—ืฅ,
09:17
the levels of these hormones drop --
230
557260
2000
ืจืžื•ืช ื”ื”ื•ืจืžื•ื ื™ื ื”ืœืœื• ืฆื•ื ื—ื•ืช --
09:19
for example, having limited food supply.
231
559260
3000
ืœื“ื•ื’ืžื”, ื›ืืฉืจ ื™ืฉ ืืกืคืงืช ืžื–ื•ืŸ ืžื•ื’ื‘ืœืช.
09:22
And that, we think,
232
562260
2000
ื•ื–ืืช, ืื ื• ื—ื•ืฉื‘ื™ื,
09:24
is registered by the animal as a danger signal,
233
564260
2000
ื ืจืฉื ืืฆืœ ื”ื—ื™ื” ื›ืื™ืชื•ืช ืกื›ื ื”,
09:26
a signal that things are not okay
234
566260
2000
ืื™ืชื•ืช ืขืœ ื›ืš ืฉืžืฉื”ื• ืœื ื›ืฉื•ืจื”
09:28
and that it should roll out its protective capacity.
235
568260
3000
ื•ืฉื”ื•ื ืืžื•ืจ ืœืคืจื•ืก ืืช ื™ื›ื•ืœืช ื”ื”ื’ื ื”.
09:31
So it activates FOXO, FOXO goes to the DNA,
236
571260
3000
ืื– ื”ื•ื ืžืคืขื™ืœ ืืช FOXO, FOXO ื ื™ื’ืฉ ืœ DNA,
09:34
and that triggers the expression of these genes
237
574260
2000
ื•ื–ื” ืžืชื ื™ืข ืืช ื”ื‘ื™ื˜ื•ื™ ืฉืœ ื”ื’ื ื™ื ื”ืœืœื•
09:36
that improves the ability of the cell
238
576260
2000
ืžื” ืฉืžืฉืคืจ ืืช ื™ื›ื•ืœืช ื”ืชื
09:38
to protect itself and repair itself.
239
578260
2000
ืœื”ื’ืŸ ืขืœ ืขืฆืžื• ื•ืœืชืงืŸ ืืช ืขืฆืžื•.
09:40
And that's why we think the animals live longer.
240
580260
2000
ื•ืœื›ืŸ ืื ื• ื—ื•ืฉื‘ื™ื ืฉื”ื—ื™ื•ืช ื—ื™ื•ืช ื–ืžืŸ ืืจื•ืš ื™ื•ืชืจ.
09:42
So you can think of FOXO
241
582260
2000
ืื– ืืชื ื™ื›ื•ืœื™ื ืœื—ืฉื•ื‘ ืขืœ FOXO
09:44
as being like a building superintendent.
242
584260
3000
ื›ืขืœ ืื‘ ื‘ื™ืช.
09:47
So maybe he's a little bit lazy,
243
587260
2000
ืื•ืœื™ ื”ื•ื ืงืฆืช ืขืฆืœืŸ,
09:49
but he's there, he's taking care of the building.
244
589260
2000
ืื‘ืœ ื”ื•ื ืฉื, ื•ื”ื•ื ื“ื•ืื’ ืœื‘ื ื™ื™ืŸ.
09:51
But it's deteriorating.
245
591260
2000
ืื‘ืœ ื”ื•ื ืžืชื“ืจื“ืจ.
09:53
And then suddenly, he learns that there's going to be a hurricane.
246
593260
3000
ื•ืื– ืœืคืชืข, ื”ื•ื ืœื•ืžื“ ืฉืขื•ืžื“ืช ืœื”ื™ื•ืช ืกื•ืคืช ื”ื•ืจื™ืงืŸ.
09:56
So he doesn't actually do anything himself.
247
596260
2000
ื›ืš ืฉื”ื•ื ืœื ืขื•ืฉื” ื›ืœื•ื ื‘ืขืฆืžื• ืœืžืขืฉื”.
09:58
He gets on the telephone --
248
598260
2000
ื”ื•ื ืžืจื™ื ื˜ืœืคื•ืŸ --
10:00
just like FOXO gets on the DNA --
249
600260
2000
ื‘ื“ื™ื•ืง ื›ืžื• ื” FOXO ื‘ DNA --
10:02
and he calls up
250
602260
2000
ื•ื”ื•ื ืžืชืงืฉืจ
10:04
the roofer, the window person,
251
604260
2000
ืืœ ื”ืื—ืจืื™ ืขืœ ื”ื’ื’, ื”ื–ื’ื’,
10:06
the painter, the floor person.
252
606260
3000
ื”ืฆื‘ืขื™, ื”ืจืฆืฃ.
10:09
And they all come and they fortify the house.
253
609260
2000
ื•ื›ื•ืœื ื‘ืื™ื ื•ืžื‘ืฆืจื™ื ืืช ื”ื‘ื™ืช.
10:11
And then the hurricane comes through,
254
611260
2000
ื•ืื– ืžื’ื™ืข ืกื•ืคืช ื”ื”ื•ืจื™ืงืŸ
10:13
and the house is in much better condition than it would normally have been in.
255
613260
2000
ื•ื”ื‘ื™ืช ื‘ืžืฆื‘ ื”ืจื‘ื” ื™ื•ืชืจ ื˜ื•ื‘ ืžืืฉืจ ื‘ืžืฆื‘ ื ื•ืจืžืœื™.
10:15
And not only that, it can also just last longer,
256
615260
3000
ื•ืœื ืจืง ื–ื”, ื”ื•ื ื’ื ืžื—ื–ื™ืง ื–ืžืŸ ืจื‘ ื™ื•ืชืจ,
10:18
even if there isn't a hurricane.
257
618260
2000
ื’ื ืื ืื™ืŸ ืกื•ืคืช ื”ื•ืจื™ืงืŸ.
10:20
So that's the concept here
258
620260
2000
ื›ืš ืฉื–ื”ื• ื”ืจืขื™ื•ืŸ ื›ืืŸ
10:22
for how we think this life extension ability exists.
259
622260
4000
ืœืื™ืš ืฉืื ื• ื—ื•ืฉื‘ื™ื ืขืœ ืฉื™ื›ื•ืœืช ืœื”ืืจื™ืš ื—ื™ื™ื ืงื™ื™ืžืช.
10:26
Now the really cool thing about FOXO
260
626260
2000
ืขื›ืฉื™ื• ื”ื“ื‘ืจ ื”ืžื’ื ื™ื‘ ื‘ืืžืช ื‘ FOXO
10:28
is that there are different forms of it.
261
628260
2000
ื”ื•ื ืฉืงื™ื™ืžื•ืช ืœื• ืฆื•ืจื•ืช ืฉื•ื ื•ืช.
10:30
We all have FOXO genes,
262
630260
3000
ืœื›ื•ืœื ื• ื™ืฉ ืืช ื’ื ื™ื ืฉืœ FOXO
10:33
but we don't all have exactly the same form of the FOXO gene.
263
633260
3000
ืื‘ืœ ืœื ืœื›ื•ืœื ื• ื™ืฉ ืืช ืื•ืชื” ื”ืฆื•ืจื” ื‘ื“ื™ื•ืง ืฉืœ ื’ืŸ ื” FOXO.
10:36
Just like we all have eyes,
264
636260
2000
ื‘ื“ื™ื•ืง ื›ืžื• ืฉืœื›ื•ืœื ื• ื™ืฉ ืขื™ื ื™ื™ื,
10:38
but some of us have blue eyes and some of us have brown eyes.
265
638260
3000
ืื‘ืœ ืœื—ืœืง ืžืื™ืชื ื• ื™ืฉ ืขื™ื ื™ื™ื ื›ื—ื•ืœื•ืช ื•ื—ืœืง ืขื™ื ื™ื™ื ื—ื•ืžื•ืช.
10:41
And there are certain forms of the FOXO gene
266
641260
3000
ื•ื™ืฉื ื ืฆื•ืจื•ืช ืžืกื•ื™ืžื•ืช ืฉืœ ื’ืŸ ื” FOXO
10:44
that have found to be more frequently present
267
644260
2000
ืืฉืจ ื ืžืฆืื• ื ื•ื›ื—ื™ื ืœืขื™ืชื™ื ืงืจื•ื‘ื•ืช
10:46
in people who live to be 90 or 100.
268
646260
2000
ืืฆืœ ืื ืฉื™ื ืืฉืจ ื—ื™ื• ืขื“ ื’ื™ืœ 90 ืื• 100.
10:48
And that's the case all over the world,
269
648260
2000
ื•ื–ื” ื›ืš ื‘ื›ืœ ื”ืขื•ืœื,
10:50
as you can see from these stars.
270
650260
2000
ื›ืžื• ืฉืืคืฉืจ ืœืจืื•ืช ืžื›ื•ื›ื‘ื™ื ืืœื•.
10:52
And each one of these stars represents a population
271
652260
2000
ื•ื›ืœ ืื—ื“ ืžื”ื›ื•ื›ื‘ื™ื ื”ืœืœื• ืžื™ื™ืฆื’ ืื•ื›ืœื•ืกื™ื”
10:54
where scientists have asked,
272
654260
2000
ื›ืืฉืจ ืžื“ืขื ื™ื ืฉืืœื•,
10:56
"Okay, are there differences in the type of FOXO genes
273
656260
2000
"ืื• ืงื™ื™, ื”ืื ื™ืฉื ื ืฉื™ื ื•ื™ื™ื ื‘ืกื•ื’ื™ ื’ื ื™ื ืฉืœ ื” FOXO
10:58
among people who live a really long time?" and there are.
274
658260
3000
ืืฆืœ ืื ืฉื™ื ืฉื—ื™ื• ื–ืžืŸ ืจื‘?" ื•ื™ืฉื ื.
11:01
We don't know the details of how this works,
275
661260
2000
ืื™ื ื ื• ื™ื•ื“ืขื™ื ืืช ื”ืคืจื˜ื™ื ืขืœ ืื™ืš ื–ื” ืขื•ื‘ื“,
11:03
but we do know then
276
663260
2000
ืื‘ืœ ืื ื• ื™ื•ื“ืขื™ื ืขืœ ื›ืš
11:05
that FOXO genes can impact
277
665260
2000
ืฉื’ื ื™ื ืฉืœ FOXO ื™ื›ื•ืœื™ื ืœื”ืฉืคื™ืข
11:07
the lifespan of people.
278
667260
2000
ืขืœ ืื•ืจืš ื—ื™ื™ื”ื ืฉืœ ืื ืฉื™ื.
11:09
And that means that, maybe if we tweak it a little bit,
279
669260
3000
ื•ื–ื” ืื•ืžืจ ืฉืื•ืœื™ ืื ื ืฉื ื” ืื•ืชื• ืžืขื˜,
11:12
we can increase the health and longevity of people.
280
672260
4000
ื ื•ื›ืœ ืœืฉืคืจ ืืช ื”ื‘ืจื™ืื•ืช ื•ืื•ืจืš ื”ื—ื™ื™ื ืฉืœ ืื ืฉื™ื.
11:16
So this is really exciting to me.
281
676260
2000
ื›ืš ืฉื–ื” ืžืื“ ืžืจื’ืฉ ื‘ืฉื‘ื™ืœื™.
11:18
A FOXO is a protein that we found in these little, round worms
282
678260
2000
ื” FOXO ื”ื•ื ื—ืœื‘ื•ืŸ ืฉืžืฆืื ื• ื‘ืชื•ืœืขื™ื ื”ืงื˜ื ื•ืช, ื•ื”ืขื’ื•ืœื•ืช ื”ืœืœื•
11:20
to affect lifespan,
283
680260
2000
ืฉืžืฉืคื™ืข ืขืœ ืื•ืจืš ื”ื—ื™ื™ื,
11:22
and here it affects lifespan in people.
284
682260
2000
ื•ื›ืืŸ ื”ื•ื ืžืฉืคื™ืข ืขืœ ืื•ืจืš ื—ื™ื™ื”ื ืฉืœ ืื ืฉื™ื.
11:24
So we've been trying in our lab now
285
684260
2000
ืื– ืื ื• ืžื ืกื™ื ื‘ืžืขื‘ื“ืชื™ื ื• ืขื›ืฉื™ื•
11:26
to develop drugs
286
686260
2000
ืœืคืชื— ืชืจื•ืคื•ืช
11:28
that will activate this FOXO cell
287
688260
2000
ืืฉืจ ื™ืคืขื™ืœื• ืืช ืชื ื” FOXO
11:30
using human cells now
288
690260
2000
ื‘ืฉื™ืžื•ืฉ ื”ืชืื™ ืื“ื
11:32
in order to try and come up with drugs
289
692260
2000
ื‘ื›ื“ื™ ืœื ืกื•ืช ื•ืœื”ืžืฆื™ื ืชืจื•ืคื•ืช
11:34
that will delay aging and age-related diseases.
290
694260
3000
ืืฉืจ ื™ืขื›ื‘ื• ื–ื™ืงื ื” ื•ืžื—ืœื•ืช ื”ืงืฉื•ืจื•ืช ื‘ื–ื™ืงื ื”.
11:37
And I'm really optimistic that this is going to work.
291
697260
3000
ื•ืื ื™ ืžืื“ ืื•ืคื˜ื™ืžื™ืช ืฉื–ื” ื”ื•ืœืš ืœืขื‘ื•ื“.
11:40
There are lots of different proteins that are known to affect aging.
292
700260
3000
ื™ืฉื ื ืกื•ื’ื™ื ืจื‘ื™ื ืฉืœ ื—ืœื‘ื•ื ื™ื ืืฉืจ ื™ื“ื•ืขื™ื ื‘ื”ืฉืคืขืชื ืขืœ ื”ื”ื–ื“ืงื ื•ืช.
11:43
And for at least one of them, there is a drug.
293
703260
3000
ื•ืœืคื—ื•ืช ืœืื—ื“ ืžื”ื, ื™ืฉื ื” ืชืจื•ืคื”.
11:46
There's one called TOR, which is another nutrient sensor,
294
706260
2000
ื™ืฉื ื” ืื—ืช ื”ื ืงืจืืช TOR, ืฉื”ื•ื ื—ื™ื™ืฉืŸ ื—ื•ืžืจ ืžื–ื™ืŸ,
11:48
like the insulin pathway.
295
708260
2000
ื›ืžื• ื ืชื™ื‘ ื”ืื™ื ืกื•ืœื™ืŸ.
11:50
And mutations that damage the TOR gene --
296
710260
2000
ื•ืžื•ื˜ืฆื™ื•ืช ื”ืžื–ื™ืงื•ืช ืœื’ืŸ ื” TOR --
11:52
just like the daf-2 mutations --
297
712260
2000
ื‘ื“ื™ื•ืง ื›ืžื• ืžื•ื˜ืฆื™ื•ืช ื” daf-2 --
11:54
extend lifespan in worms
298
714260
2000
ืžืืจื™ื›ื•ืช ื—ื™ื™ื ื‘ืชื•ืœืขื™ื
11:56
and flies and mice.
299
716260
3000
ื‘ื–ื‘ื•ื‘ื™ื ื•ื‘ืขื›ื‘ืจื™ื.
11:59
But in this case, there's already a drug called rapamycin
300
719260
2000
ืืš ื‘ืžืงืจื” ื”ื–ื”, ื™ืฉื ื” ืชืจื•ืคื” ื”ื ืงืจืืช rapamycin
12:01
that binds to the TOR protein
301
721260
2000
ืืฉืจ ืžืงืฉืจืช ืืœ ื—ืœื‘ื•ืŸ ื” TOR
12:03
and inhibits its activity.
302
723260
2000
ื•ืžืขื›ื‘ืช ืืช ืคืขื•ืœืชื•.
12:05
And you can take rapamycin and give it to a mouse --
303
725260
3000
ื•ืืชื ื™ื›ื•ืœื™ื ืœืงื—ืช rapamycin ื•ืœืชืช ืื•ืชื• ืœืขื›ื‘ืจ --
12:08
even when it's pretty old, like age 60 for a human,
304
728260
2000
ืืคื™ืœื• ื›ืืฉืจ ื”ื•ื ื–ืงืŸ ืžืื“, ื›ืžื• ื’ื™ืœ 60 ืืฆืœ ืื“ื,
12:10
that old for a mouse --
305
730260
2000
ืขื›ื‘ืจ ื–ืงืŸ ื›ื–ื” --
12:12
if you give the mouse rapamycin,
306
732260
2000
ืื ืชืชื ื• ืœืขื›ื‘ืจ paramycin,
12:14
it will live longer.
307
734260
2000
ื”ื•ื ื™ื—ื™ื” ื–ืžืŸ ืืจื•ืš ื™ื•ืชืจ.
12:16
Now I don't want you all to go out taking rapamycin.
308
736260
2000
ืขื›ืฉื™ื• ืื ื™ ืœื ืจื•ืฆื” ืฉื›ื•ืœื›ื ืชืฆืื• ืœืงื—ืช paramycin.
12:18
It is a drug for people,
309
738260
2000
ื–ื•ื”ื™ ืชืจื•ืคื” ืœืื ืฉื™ื,
12:20
but the reason is it suppresses the immune system.
310
740260
3000
ืืš ื”ืกื™ื‘ื” ืœื›ืš ื”ื™ื ืฉืžื“ื›ืืช ืืช ืžืขืจื›ืช ื”ื—ื™ืกื•ืŸ.
12:23
So people take it to prevent organ transplants from being rejected.
311
743260
4000
ื›ืš ืฉืื ืฉื™ื ื ื•ื˜ืœื™ื ืืช ื–ื” ื‘ื›ื“ื™ ืœืžื ื•ืข ื“ื—ื™ื™ืช ืื‘ืจื™ื ืžื•ืฉืชืœื™ื.
12:27
So this may not be the perfect drug
312
747260
2000
ืื– ื–ื• ืœื ื”ืชืจื•ืคื” ื”ืžื•ืฉืœืžืช
12:29
for staying young longer.
313
749260
2000
ื‘ื›ื“ื™ ืœื”ืฉืืจ ืฆืขื™ืจื™ื ื–ืžืŸ ืืจื•ืš ื™ื•ืชืจ.
12:31
But still, here in the year 2011,
314
751260
3000
ืื‘ืœ ืขื“ื™ื™ืŸ, ื›ืืŸ ื‘ืฉื ืช 2011,
12:34
there's a drug that you can give to mice at a pretty old age
315
754260
2000
ื™ืฉื ื” ืชืจื•ืคื” ืฉืืคืฉืจ ืœืชืช ืื•ืชื” ืœืขื›ื‘ืจื™ื ื–ืงื ื™ื ืœืžื“ื™
12:36
that will extend their lifespan,
316
756260
2000
ืืฉืจ ืชืืจื™ืš ืืช ื—ื™ื™ื”ื,
12:38
which comes out of this science
317
758260
2000
ื›ืคื•ืขืœ ื™ื•ืฆื ืžืชื•ืš ื”ืžื“ืข
12:40
that's been done in all these different animals.
318
760260
2000
ืืฉืจ ื ืขืฉื” ื‘ื›ืœ ืื•ืชื ื—ื™ื•ืช ืฉื•ื ื•ืช.
12:42
So I'm really optimistic,
319
762260
2000
ื›ืš ืฉืื ื™ ืžืื“ ืื•ืคื˜ื™ืžื™ืช,
12:44
and I think it won't be too long, I hope,
320
764260
2000
ื•ืื ื™ ื—ื•ืฉื‘ืช ืฉืœื ื™ืืจืš ื”ื–ืžืŸ, ืื ื™ ืžืงื•ื•ื”,
12:46
before this age-old dream begins to come true.
321
766260
3000
ืฉื—ืœื•ื ืขืชื™ืง ื™ื•ืžื™ืŸ ื–ื” ื™ืชื’ืฉื.
12:49
Thank you.
322
769260
2000
ืชื•ื“ื”.
12:51
(Applause)
323
771260
9000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
13:00
Matt Ridley: Thank you, Cynthia.
324
780260
3000
ืžืื˜ ืจื™ื“ืœื™: ืชื•ื“ื” ืกื™ื ืชื™ื”.
13:03
Let me get this straight.
325
783260
2000
ืชื ื™ ืœื™ ืœื”ื‘ื™ืŸ.
13:05
Although you're looking for a drug
326
785260
2000
ืœืžืจื•ืช ืฉืืช ืžื—ืคืฉืช ืชืจื•ืคื”
13:07
that can solve aging
327
787260
2000
ืืฉืจ ื™ื›ื•ืœื” ืœืคืชื•ืจ ืืช ื”ื–ื™ืงื ื”
13:09
in old men like me,
328
789260
3000
ื‘ืื ืฉื™ื ื–ืงื ื™ื ื›ืžื•ื ื™
13:12
what you could do now pretty well in the lab,
329
792260
3000
ืžื” ืฉืืช ื™ื›ื•ืœื” ืœืขืฉื•ืช ื›ืจื’ืข ื‘ืžืขื‘ื“ื”,
13:15
if you were allowed ethically,
330
795260
2000
ืื ื”ื™ื” ืžื•ืชืจ ืœืš ืืชื™ืช
13:17
is start a human life from scratch
331
797260
3000
ื”ื™ื ืœื”ืชื—ื™ืœ ื—ื™ื™ื ืฉืœ ืื“ื ืžืืคืก
13:20
with altered genes that would make it live for a lot longer?
332
800260
3000
ืขื ื’ื ื™ื ืฉืฉื•ื ื• ื›ืš ืฉื™ื•ื›ืœ ืœื—ื™ื•ืช ื–ืžืŸ ืืจื•ืš ื‘ื”ืจื‘ื”?
13:23
CK: Ah, so the kinds of drugs I was talking about
333
803260
3000
ืก.ืง.: ืื”, ืกื•ื’ื™ ื”ืชืจื•ืคื•ืช ืขืœื™ื”ื ื“ื™ื‘ืจืชื™
13:26
would not change the genes,
334
806260
2000
ืœื ื™ืฉื ื• ืืช ื”ื’ื ื™ื,
13:28
they would just bind to the protein itself
335
808260
3000
ื”ืŸ ืคืฉื•ื˜ ื™ืชื—ื‘ืจื• ืืœ ื”ื—ืœื‘ื•ืŸ ืขืฆืžื•
13:31
and change its activity.
336
811260
2000
ื•ื™ืฉื ื• ืืช ืคืขื™ืœื•ืชื•.
13:33
So if you stop taking the drug, the protein would go back to normal.
337
813260
3000
ื›ืš ืฉืื ืชืคืกื™ืง ืœืงื—ืช ืืช ื”ืชืจื•ืคื”, ื”ื—ืœื‘ื•ืŸ ื™ื—ื–ื•ืจ ืœืžืฆื‘ ื ื•ืจืžืœื™.
13:36
You could change the genes in principle.
338
816260
3000
ื‘ืขืงืจื•ืŸ ืืชื” ื™ื›ื•ืœ ืœืฉื ื•ืช ืืช ื”ื’ื ื™ื.
13:39
There isn't the technology to do that.
339
819260
2000
ืขื“ื™ื™ืŸ ืœื ืงื™ื™ืžืช ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ืœืขืฉื•ืช ื–ืืช.
13:41
But I don't think that's a good idea.
340
821260
2000
ืื‘ืœ ืื ื™ ืœื ื—ื•ืฉื‘ืช ืฉื–ื” ืจืขื™ื•ืŸ ื˜ื•ื‘.
13:43
And the reason is
341
823260
2000
ื•ื”ืกื™ื‘ื” ืœื›ืš ื”ื™ื
13:45
that these hormones,
342
825260
2000
ืฉื”ื”ื•ืจืžื•ื ื™ื ื”ืœืœื•,
13:47
like the insulin and the IGF hormones and the TOR pathway,
343
827260
3000
ื›ืžื• ื”ืื™ื ืกื•ืœื™ืŸ ื•ื”ื•ืจืžื•ืŸ ื” IGF ื•ื ืชื™ื‘ ื” TOR,
13:50
they're essential.
344
830260
2000
ื”ื ื”ื›ืจื—ื™ื™ื.
13:52
If you knock them out completely, then you're very sick.
345
832260
3000
ืื ืชื‘ื˜ืœ ืื•ืชื ืœื—ืœื•ื˜ื™ืŸ, ืชื”ื™ื” ื—ื•ืœื” ืžืื“.
13:55
So it might be that you would just have to fine tune it very carefully
346
835260
3000
ื›ืš ืฉื™ื›ื•ืœ ืœื”ื™ื•ืช ืฉืชืฆื˜ืจื›ื• ืœื›ื•ื•ื ืŸ ืืช ื–ื” ื‘ื–ื”ื™ืจื•ืช
13:58
to get the benefits without getting any problems.
347
838260
3000
ื‘ื›ื“ื™ ืœื”ืฉื™ื’ ืชื•ืขืœืช ืœืœื ื‘ืขื™ื•ืช.
14:01
And I think that's much better,
348
841260
2000
ื•ืื ื™ ื—ื•ืฉื‘ืช ืฉื–ื” ื˜ื•ื‘ ื‘ื”ืจื‘ื”,
14:03
that kind of control would be much better as a drug.
349
843260
2000
ืกื•ื’ ื›ื–ื” ืฉืœ ืฉืœื™ื˜ื” ืชื”ื™ื” ืชืจื•ืคื” ื˜ื•ื‘ื” ื™ื•ืชืจ.
14:05
And also, there are other ways of activating FOXO
350
845260
3000
ื•ื’ื, ื™ืฉื ื ื“ืจื›ื™ื ื ื•ืกืคื•ืช ืœื”ืคืขื™ืœ ืืช ื” FOXO
14:08
that don't even involve insulin or IGF-1
351
848260
2000
ืืฉืจ ืœื ืžืขืจื‘ื•ืช ืื™ื ืกื•ืœื™ืŸ ืื• IGF-1
14:10
that might even be safer.
352
850260
2000
ืฉื™ื›ื•ืœื™ื ืœื”ื™ื•ืช ืืคื™ืœื• ื‘ื˜ื•ื—ื™ื ื™ื•ืชืจ.
14:12
MR: I wasn't suggesting that I was going to go and do it, but ...
353
852260
3000
ืž.ืจ.: ืœื ื”ื™ืชื›ื•ื•ื ืชื™ ืœื•ืžืจ ืฉืื ื™ ื”ื•ืœืš ืœืขืฉื•ืช ืืช ื–ื”, ืื‘ืœ...
14:15
(Laughter)
354
855260
2000
(ืฆื—ื•ืง)
14:19
There's a phenomenon which you have written about and spoken about,
355
859260
4000
ื™ืฉื ื” ืชื•ืคืขื” ืืฉืจ ื›ืชื‘ืช ืขืœื™ื” ื•ื“ื™ื‘ืจืช ืขืœื™ื”,
14:23
which is a negligible senescence.
356
863260
3000
ืฉื”ื™ื ื”ื–ื“ืงื ื•ืช ื–ื ื™ื—ื”.
14:26
There are some creatures on this planet already
357
866260
2000
ื™ืฉื ื ื™ืฆื•ืจื™ื ืขืœ ื”ื›ื•ื›ื‘ ื”ื–ื”
14:28
that don't really do aging.
358
868260
3000
ืืฉืจ ืœื ืžืžืฉ ืžื–ื“ืงื ื™ื.
14:31
Just move to one side for us, if you would.
359
871260
3000
ืจืง ืขื™ื‘ืจื™ ืœืฆื“ ืื—ื“ ื‘ืฉื‘ื™ืœื ื•, ื‘ื‘ืงืฉื”.
14:34
CK: There are. There are some animals that don't seem to age.
360
874260
3000
ืก.ืง.: ื™ืฉื ื. ื™ืฉื ื ื—ื™ื•ืช ืฉืœื ืžื–ื“ืงื ื•ืช.
14:37
For example, there are some tortoises called Blanding's turtles.
361
877260
4000
ืœื“ื•ื’ืžื”, ื™ืฉื ื ืฆื‘ื™ื ื”ื ืงืจืื™ื ืฆื‘ื™ ื‘ืœื ื“ื™ื ื’.
14:41
And they grow to be about this size.
362
881260
2000
ื•ื”ื ื’ื“ืœื™ื ืœื’ื•ื“ืœ ื›ื–ื” ื‘ืขืจืš.
14:43
And they've been tagged, and they've been found to be 70 years old.
363
883260
3000
ื•ื”ื ืชื•ื™ื™ื’ื•, ื•ื”ืชื’ืœื” ืฉื”ื ื—ื™ื™ื ืขื“ ื’ื™ืœ 70.
14:46
And when you look at these 70 year-old turtles,
364
886260
2000
ื•ื›ืฉื—ื•ืฉื‘ื™ื ืขืœ ื”ืฆื‘ื™ื ื‘ื ื™ ื” 70
14:48
you can't tell the difference, just by looking,
365
888260
3000
ืื™ ืืคืฉืจ ืœืจืื•ืช ืืช ื”ืฉื•ื ื™, ืžื”ืชื‘ื•ื ื ื•ืช ื‘ืœื‘ื“.
14:51
between those turtles and 20 year-old turtles.
366
891260
2000
ื‘ื™ืŸ ื”ืฆื‘ื™ื ื”ืœืœื• ืœื‘ื™ืŸ ืฆื‘ื™ื ื‘ื ื™ 20.
14:53
And the 70 year-old ones,
367
893260
2000
ื•ื”ืฆื‘ื™ื ื‘ื ื™ ื” 70,
14:55
actually they're better at scouting out the good nesting places,
368
895260
3000
ืœืžืขืฉื” ื˜ื•ื‘ื™ื ื™ื•ืชืจ ื‘ื—ื™ืคื•ืฉ ืžืงื•ืžื•ืช ื“ื’ื™ืจื” ื˜ื•ื‘ื™ื,
14:58
and they also have more progeny every year.
369
898260
3000
ื•ื™ืฉ ืœื”ื ื™ื•ืชืจ ืฆืืฆืื™ื ื›ืœ ืฉื ื”.
15:01
And there are other examples of these kinds of animals,
370
901260
3000
ื•ื™ืฉ ื“ื•ื’ืžืื•ืช ื ื•ืกืคื•ืช ืœื—ื™ื•ืช ืžืกื•ื’ ื–ื”,
15:04
like turns, certain kinds of birds are like this.
371
904260
3000
ืกื•ื’ ืžืกื•ื™ื ืฉืœ ืฆื™ืคื•ืจื™ื ื”ืŸ ื›ืืœื”.
15:07
And nobody knows if they really can live forever,
372
907260
2000
ื•ืื™ืฉ ืœื ื™ื•ื“ืข ืื ื‘ืืžืช ื”ืŸ ื™ื›ื•ืœื•ืช ืœื—ื™ื•ืช ืœื ืฆื—,
15:09
or what keeps them from aging.
373
909260
2000
ืื• ืžื” ืžื•ื ืข ืžื”ืŸ ืœื”ื–ื“ืงืŸ.
15:11
It's not clear.
374
911260
2000
ื–ื” ืœื ื‘ืจื•ืจ.
15:13
If you look at birds, which live a long time,
375
913260
3000
ืื ื ืกืชื›ืœ ื‘ืฆืคื•ืจื™ื, ืืฉืจ ื—ื™ื•ืช ื–ืžืŸ ืืจื•ืš,
15:16
cells from the birds tend to be more resistant
376
916260
3000
ืชืื™ื ืžืฆื™ืคื•ืจื™ื ื ื•ื˜ื™ื ืœื”ื™ื•ืช ื™ื•ืชืจ ื—ืกื™ื ื™ื
15:19
to a lot of different environmental stresses
377
919260
2000
ืœื”ืžื•ืŸ ืกื•ื’ื™ื ืฉืœ ืœื—ืฆื™ื ืกื‘ื™ื‘ืชื™ื™ื
15:21
like high temperature
378
921260
2000
ื›ืžื• ื˜ืžืคืจื˜ื•ืจื” ื’ื‘ื•ื”ื”
15:23
or hydrogen peroxide, things like that.
379
923260
2000
ืื• ืžื™ืžืŸ ื—ืžืฆื ื™, ื“ื‘ืจื™ื ื›ื’ื•ืŸ ืืœื”.
15:25
And our long-lived mutants are too.
380
925260
2000
ื•ืžื•ื˜ืฆื™ื•ืช ืืจื•ื›ื•ืช ื”ื—ื™ื™ื ืฉืœื ื• ื’ื ื›ืŸ.
15:27
They're more resistant to these kinds of stresses.
381
927260
2000
ื”ืŸ ื—ืกื™ื ื•ืช ื™ื•ืชืจ ืœืกื•ื’ื™ื ื›ืืœื” ืฉืœ ืœื—ืฆื™ื.
15:29
So it could be that the pathways that I've been talking about,
382
929260
3000
ื›ืš ืฉื™ื›ื•ืœ ืœื”ื™ื•ืช ืฉื”ื ืชื™ื‘ ืฉื“ื™ื‘ืจืชื™ ืขืœื™ื•,
15:32
which are set to run really quickly in the worm,
383
932260
3000
ืืฉืจ ืžื›ื•ื•ืŸ ืœืคืขื•ืœ ืžื”ืจ ืžืื“ ื‘ืชื•ืœืขืช,
15:35
have a different normal set point
384
935260
3000
ื™ืฉ ื ืงื•ื“ืช ืงื‘ื™ืขื” ืฉื•ื ื” ืฉืœ ื ื•ืจืžืœื™ื•ืช
15:38
in something like a bird, so that a bird can live a lot longer.
385
938260
3000
ื‘ืžืฉื”ื• ื›ืžื• ืฆื™ืคื•ืจ, ื›ืš ืฉื”ืฆื™ืคื•ืจ ื™ื›ื•ืœื” ืœื—ื™ื•ืช ื–ืžืŸ ืจื‘ ื™ื•ืชืจ.
15:41
And maybe they're even set really differently
386
941260
2000
ื•ืื•ืœื™ ื”ืŸ ืงื‘ื•ืขื•ืช ืžืžืฉ ืฉื•ื ื”
15:43
in animals with no senescence at all -- but we don't know.
387
943260
3000
ื‘ื—ื™ื•ืช ืœืœื ื–ื™ืงื ื” ื‘ื›ืœืœ -- ืื‘ืœ ืื™ื ื ื• ื™ื•ื“ืขื™ื.
15:46
MR: But what you're talking about here
388
946260
2000
ืž.ืจ.: ืื‘ืœ ืžื” ืฉืืช ืžื“ื‘ืจืช ืขืœื™ื• ื›ืืŸ
15:48
is not extending human lifespan
389
948260
3000
ื”ื•ื ืœื ืœื”ืืจื™ืš ื—ื™ื™ ืื“ื
15:51
by preventing death,
390
951260
2000
ืขืœ ื™ื“ื™ ืžื ื™ืขืช ื”ืžื•ื•ืช,
15:53
so much as extending human youthspan.
391
953260
2000
ืืœื ืขืœ ื”ืืจื›ืช ื—ื™ื™ ื”ืฆืขื™ืจื•ืช.
15:55
CK: Yes, that's right.
392
955260
2000
ืก.ืง.: ื›ืŸ ื–ื” ื ื›ื•ืŸ.
15:57
It's more like, say, if you were a dog.
393
957260
2000
ื“ื•ืžื” ื”ื“ื‘ืจ, ื ื•ืžืจ, ืื ื”ื™ื™ืช ื›ืœื‘.
15:59
You notice that you're getting old, and you look at your human
394
959260
2000
ืืชื” ืžืจื’ื™ืฉ ืฉืืชื” ืžื–ื“ืงืŸ, ื•ืืชื” ืžืกืชื›ืœ ืขืœ ื”ืื“ื ืฉืœืš
16:01
and you think, "Why isn't this human getting old?"
395
961260
2000
ื•ืืชื” ื—ื•ืฉื‘, "ืœืžื” ื”ืื“ื ื”ื–ื” ืœื ืžื–ื“ืงืŸ?"
16:03
They're not getting old in the dog's lifespan.
396
963260
2000
ื”ื ืœื ืžื–ื“ืงื ื™ื ืžื‘ื—ื™ื ืช ื—ื™ื™ ื”ื›ืœื‘.
16:05
It's more like that.
397
965260
2000
ื–ื” ื“ื•ืžื” ืœื–ื”.
16:07
But now we're the human looking out and imagining a different human.
398
967260
4000
ืืš ืขื›ืฉื™ื• ืื ื• ื”ืื ืฉื™ื ืžื—ืคืฉื™ื ื•ืžื“ืžื™ื™ื ื™ื ืื“ื ืฉื•ื ื”.
16:11
MR: Thank you very much indeed, Cynthia Kenyon.
399
971260
3000
ืž.ืจ.: ื”ืžื•ืŸ ืชื•ื“ื”, ืกื™ื ืชื™ื” ืงื ื™ื•ืŸ.
16:14
(Applause)
400
974260
3000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7