Francis Collins: We need better drugs -- now

62,446 views ใƒป 2013-03-21

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

00:00
Translator: Joseph Geni Reviewer: Morton Bast
0
0
7000
ืžืชืจื’ื: Shlomo Adam ืžื‘ืงืจ: Sigal Tifferet
00:16
So let me ask for a show of hands.
1
16053
2176
ืื ื™ ืžื‘ืงืฉ ืœืจืื•ืช ื™ื“ื™ื™ื:
00:18
How many people here are over the age of 48?
2
18229
4192
ื›ืžื” ืื ืฉื™ื ื›ืืŸ ืขื‘ืจื• ืืช ื’ื™ืœ 48?
00:22
Well, there do seem to be a few.
3
22421
2881
ื ืจืื” ืฉื™ืฉ ื“ื™ ื”ืจื‘ื”.
00:25
Well, congratulations,
4
25302
2175
ืื™ื—ื•ืœื™.
00:27
because if you look at this particular slide of U.S. life expectancy,
5
27477
3870
ื›ื™ ืื ืชื‘ื™ื˜ื• ื‘ืฉืงื•ืคื™ืช ื”ื–ื• ืฉืœ ืชื•ื—ืœืช ื”ื—ื™ื™ื ื‘ืืจื”"ื‘
00:31
you are now in excess of the average life span
6
31347
3098
ืžืฉืš ื”ื—ื™ื™ื ืฉืœื›ื ืืจื•ืš ื™ื•ืชืจ ื‘ืžืžื•ืฆืข
00:34
of somebody who was born in 1900.
7
34445
2787
ืžืžื™ ืฉื ื•ืœื“ ื‘ืฉื ืช 1900.
00:37
But look what happened in the course of that century.
8
37232
3534
ืื‘ืœ ืจืื• ืžื” ืงืจื” ื‘ืžืจื•ืฆืช ืื•ืชื” ืžืื”.
00:40
If you follow that curve,
9
40766
1662
ืื ืชืขืงื‘ื• ืื—ืจื™ ื”ืขืงื•ืžื”,
00:42
you'll see that it starts way down there.
10
42428
2614
ืชืจืื• ืฉื”ื™ื ืžืชื—ื™ืœื” ืื™-ืฉื ื”ืจื—ืง ืœืžื˜ื”.
00:45
There's that dip there for the 1918 flu.
11
45042
2469
ื”ื ืคื™ืœื” ื”ื–ื• ื”ื™ื ื‘ื’ืœืœ ืžื’ืคืช ื”ืฉืคืขืช ืฉืœ 1918.
00:47
And here we are at 2010,
12
47511
2422
ื•ื›ืืŸ ืื ื• ื‘ืฉื ืช 2010.
00:49
average life expectancy of a child born today, age 79,
13
49933
3056
ืชื•ื—ืœืช ื”ื—ื™ื™ื ืฉืœ ื™ืœื“ ืฉื ื•ืœื“ ื”ื™ื•ื ื”ื™ื 79 ืฉื ื™ื,
00:52
and we are not done yet.
14
52989
1896
ื•ื”ื–ืจื•ืข ืขื•ื“ ื ื˜ื•ื™ื”.
00:54
Now, that's the good news.
15
54885
1335
ืืœื” ื”ื‘ืฉื•ืจื•ืช ื”ื˜ื•ื‘ื•ืช.
00:56
But there's still a lot of work to do.
16
56220
1841
ืืš ื™ืฉ ืขื•ื“ ื”ืจื‘ื” ืขื‘ื•ื“ื”.
00:58
So, for instance, if you ask,
17
58061
1634
ืœืžืฉืœ, ืื ืชืฉืืœื•,
00:59
how many diseases do we now know
18
59695
2726
ื‘ื›ืžื” ืžื—ืœื•ืช ืื ื• ืžื›ื™ืจื™ื
01:02
the exact molecular basis?
19
62421
2059
ืืช ื”ื‘ืกื™ืก ื”ืžื•ืœืงื•ืœืจื™ ื”ืžื“ื•ื™ืง,
01:04
Turns out it's about 4,000, which is pretty amazing,
20
64480
3558
ืžืกืชื‘ืจ ืฉืžื“ื•ื‘ืจ ื‘ื›-4,000, ืฉื–ื” ื“ื™ ืžื“ื”ื™ื,
01:08
because most of those molecular discoveries
21
68038
2236
ื›ื™ ืจื•ื‘ ื”ืชื’ืœื™ื•ืช ื”ืžื•ืœืงื•ืœืจื™ื•ืช ื”ืืœื”
01:10
have just happened in the last little while.
22
70274
2665
ื ืชื’ืœื• ืžืžืฉ ืœืื—ืจื•ื ื”.
01:12
It's exciting to see that in terms of what we've learned,
23
72939
3296
ืžืจื’ืฉ ืœืจืื•ืช ื–ืืช, ืžื‘ื—ื™ื ืช ืžื” ืฉืœืžื“ื ื•,
01:16
but how many of those 4,000 diseases
24
76235
2107
ืื‘ืœ ืœื›ืžื” ืž-4,000 ื”ืžื—ืœื•ืช ื”ืืœื”
01:18
now have treatments available?
25
78342
2348
ื™ืฉ ื˜ื™ืคื•ืœ?
01:20
Only about 250.
26
80690
1888
ืจืง ืœ-250 ื‘ืขืจืš.
01:22
So we have this huge challenge, this huge gap.
27
82578
2758
ืื– ื™ืฉ ืœื ื• ืืชื’ืจ ืขืฆื•ื, ืคืขืจ ืขื ืง.
01:25
You would think this wouldn't be too hard,
28
85336
2580
ืื•ืœื™ ืืชื ื—ื•ืฉื‘ื™ื ืฉื–ื” ืœื ื™ื”ื™ื” ืงืฉื” ื›ืœ-ื›ืš,
01:27
that we would simply have the ability
29
87916
1526
ืฉื•ื•ื“ืื™ ื™ืฉ ืœื ื• ื”ื™ื›ื•ืœืช
01:29
to take this fundamental information that we're learning
30
89442
3026
ืœืงื—ืช ืืช ื”ืžื™ื“ืข ื”ื‘ืกื™ืกื™ ื”ื–ื” ืฉืื ื• ืžืคื™ืงื™ื
01:32
about how it is that basic biology teaches us
31
92468
3145
ืžืชื•ืš ืžื” ืฉื”ื‘ื™ื•ืœื•ื’ื™ื” ื”ืคืฉื•ื˜ื” ืžืœืžื“ืช ืื•ืชื ื•
01:35
about the causes of disease
32
95613
1902
ืœื’ื‘ื™ ื’ื•ืจืžื™ ื”ืžื—ืœื•ืช
01:37
and build a bridge across this yawning gap
33
97515
3026
ื•ื ืงื™ื ื‘ืขื–ืจืชื• ื’ืฉืจ ืขืœ ืคื ื™ ื”ืคืขืจ ื”ื›ื‘ื™ืจ ื”ื–ื”
01:40
between what we've learned about basic science
34
100541
2380
ื‘ื™ืŸ ืžื” ืฉืœืžื“ื ื• ืื•ื“ื•ืช ื”ืžื“ืข ื”ื‘ืกื™ืกื™
01:42
and its application,
35
102921
1495
ืœื‘ื™ืŸ ื™ื™ืฉื•ืžื•,
01:44
a bridge that would look maybe something like this,
36
104416
3257
ื’ืฉืจ ืฉืื•ืœื™ ื™ื™ืจืื” ื›ืš,
01:47
where you'd have to put together a nice shiny way
37
107673
3612
ื ื‘ื ื” ืœื ื• ื ืชื™ื‘ ื ื•ืฆืฅ ื•ื ื—ืžื“
01:51
to get from one side to the other.
38
111285
2968
ื›ื“ื™ ืœื”ื’ื™ืข ืžืงืฆื” ืœืงืฆื”.
01:54
Well, wouldn't it be nice if it was that easy?
39
114253
2600
ื ื›ื•ืŸ ืฉื”ื™ื” ื ื—ืžื“ ืื™ืœื• ื–ื” ื”ื™ื” ื›ืœ-ื›ืš ืงืœ?
01:56
Unfortunately, it's not.
40
116853
2145
ืœืžืจื‘ื” ื”ืฆืขืจ, ื–ื” ืœื ื”ืžืฆื‘.
01:58
In reality, trying to go from fundamental knowledge
41
118998
2591
ื‘ืžืฆื™ืื•ืช, ื”ื ืกื™ื•ืŸ ืœืขื‘ื•ืจ ืžื”ื™ื“ืข ื”ื‘ืกื™ืกื™ ืœื™ื™ืฉื•ืžื•
02:01
to its application is more like this.
42
121589
2664
ื ืจืื” ื™ื•ืชืจ ื›ืš.
02:04
There are no shiny bridges.
43
124253
1915
ืื™ืŸ ื’ืฉืจื™ื ื ื•ืฆืฆื™ื.
02:06
You sort of place your bets.
44
126168
1652
ื–ื” ื™ื•ืชืจ ื›ืžื• ื”ื™ืžื•ืจ:
02:07
Maybe you've got a swimmer and a rowboat
45
127820
1961
ื™ืฉ ืœื›ื ืื•ืœื™ ืฉื—ื™ื™ืŸ, ืกื™ืจืช ืžืฉื•ื˜ื™ื,
02:09
and a sailboat and a tugboat
46
129781
1524
ืกื™ืจืช ืžืคืจืฉ ื•ืกืคื™ื ืช-ื’ืจืจ
02:11
and you set them off on their way,
47
131305
1728
ื•ืืชื ืฉื•ืœื—ื™ื ืื•ืชื ืœื“ืจื›ื.
02:13
and the rains come and the lightning flashes,
48
133033
2664
ื•ื”ื’ืฉื ื™ื•ืจื“ ื•ื”ื‘ืจืง ืžื‘ื–ื™ืง,
02:15
and oh my gosh, there are sharks in the water
49
135697
1514
ื•ืื•ื™ ื•ืื‘ื•ื™, ื™ืฉ ื‘ืžื™ื ื’ื ื›ืจื™ืฉื™ื
02:17
and the swimmer gets into trouble,
50
137211
2021
ื•ื”ืฉื—ื™ื™ืŸ ื ืงืœืข ืœืฆืจื”,
02:19
and, uh oh, the swimmer drowned
51
139232
1584
ื•ื”ื ื” ื”ืฉื—ื™ื™ืŸ ื˜ื‘ืข
02:20
and the sailboat capsized,
52
140816
3212
ื•ืกื™ืจืช ื”ืžืคืจืฉ ื”ืชื”ืคื›ื”,
02:24
and that tugboat, well, it hit the rocks,
53
144028
1701
ื•ืกืคื™ื ืช ื”ื’ืจืจ ืขืœืชื” ืขืœ ืฉืจื˜ื•ืŸ,
02:25
and maybe if you're lucky, somebody gets across.
54
145729
2640
ื•ืื ื™ืฉ ืœื›ื ืžื–ืœ, ืžื™ืฉื”ื• ื™ืฆืœื™ื— ืœืฆืœื•ื—.
02:28
Well, what does this really look like?
55
148369
1989
ืื– ืื™ืš ื–ื” ื‘ืืžืช ื ืจืื”?
02:30
Well, what is it to make a therapeutic, anyway?
56
150358
2054
ื•ื‘ื›ืŸ, ืžื” ื–ื” ืœื™ื™ืฆืจ ืชืจื•ืคื”?
02:32
What's a drug? A drug is made up
57
152412
3001
ืžื”ื™ ืชืจื•ืคื”? ืชืจื•ืคื” ืขืฉื•ื™ื”
02:35
of a small molecule of hydrogen, carbon,
58
155413
2325
ืžืžื•ืœืงื•ืœื” ืงื˜ื ื” ืฉืœ ืžื™ืžืŸ, ืคื—ืžืŸ,
02:37
oxygen, nitrogen, and a few other atoms
59
157738
2251
ื—ืžืฆืŸ, ื—ื ืงืŸ ื•ืขื•ื“ ื›ืžื” ืื˜ื•ืžื™ื
02:39
all cobbled together in a shape,
60
159989
2223
ื›ื•ืœื ืžืกื•ื“ืจื™ื ื‘ืฆื•ืจื” ืžืกื•ื™ืžืช,
02:42
and it's those shapes that determine whether, in fact,
61
162212
2377
ื•ื”ืฆื•ืจื•ืช ื”ืืœื” ื”ืŸ ืฉืงื•ื‘ืขื•ืช ื‘ืขืฆื
02:44
that particular drug is going to hit its target.
62
164589
3313
ืื ืื•ืชื” ืชืจื•ืคื” ืชืคื’ืข ื‘ืžื˜ืจืชื”.
02:47
Is it going to land where it's supposed to?
63
167902
2223
ื”ืื ื”ื™ื ืชื ื—ืช ื‘ืžืงื•ืžื” ื”ืžื™ื•ืขื“?
02:50
So look at this picture here -- a lot of shapes dancing around for you.
64
170125
3156
ื”ื‘ื™ื˜ื• ื‘ืชืžื•ื ื” ื”ื–ื•-- ื”ืžื•ืŸ ืฆื•ืจื•ืช ืฉืจื•ืงื“ื•ืช ืœืคื ื™ื›ื.
02:53
Now what you need to do, if you're trying to develop
65
173281
2387
ืžื” ืฉืขืœื™ื›ื ืœืขืฉื•ืช, ืื ืืชื ืžื ืกื™ื ืœืคืชื—
02:55
a new treatment for autism
66
175668
1457
ื˜ื™ืคื•ืœ ื—ื“ืฉ ืœืื•ื˜ื™ื–ื,
02:57
or Alzheimer's disease or cancer
67
177125
2219
ืื• ืœืืœืฆื”ื™ื™ืžืจ ืื• ืกืจื˜ืŸ,
02:59
is to find the right shape in that mix
68
179344
1792
ื”ื•ื ืœืžืฆื•ื ืืช ื”ืฆื•ืจื” ื”ื ื›ื•ื ื” ื‘ืชืขืจื•ื‘ืช ื”ื–ื•
03:01
that will ultimately provide benefit and will be safe.
69
181136
2917
ืฉืชื‘ื™ื ืชื•ืขืœืช ื•ืชื”ื™ื” ื‘ื˜ื•ื—ื”.
03:04
And when you look at what happens to that pipeline,
70
184053
3167
ื•ืื ืชืกืชื›ืœื• ืžื” ืงื•ืจื” ื‘ืžืฉืคืš ื”ื–ื”,
03:07
you start out maybe with thousands,
71
187220
1501
ืืชื ืžืชื—ื™ืœื™ื ืื•ืœื™ ืขื ืืœืคื™ื,
03:08
tens of thousands of compounds.
72
188721
1642
ืขืฉืจื•ืช ืืœืคื™ ืชืจื›ื•ื‘ื•ืช.
03:10
You weed down through various steps
73
190363
2149
ืืชื ืžืขืฉื‘ื™ื ื•ืžืฆืžืฆืžื™ื ื‘ื›ืœ ืžื™ื ื™ ืฉืœื‘ื™ื
03:12
that cause many of these to fail.
74
192512
1383
ืฉื’ื•ืจืžื™ื ืœืจื‘ื•ืช ืžืืœื” ืœื”ื™ื›ืฉืœ.
03:13
Ultimately, maybe you can run a clinical trial with four or five of these,
75
193895
3340
ื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ ืื•ืœื™ ืชืขืจื›ื• ื ื™ืกื•ื™ ืงืœื™ื ื™ ืขื 4 ืื• 5 ืžืืœื”,
03:17
and if all goes well, 14 years after you started,
76
197235
3042
ื•ืื ื”ื›ืœ ื™ืชื ื”ืœ ื›ืฉื•ืจื”, 14 ืฉื ื” ืื—ืจื™ ืฉื”ืชื—ืœืชื,
03:20
you will get one approval.
77
200277
2011
ืชืงื‘ืœื• ืื™ืฉื•ืจ ืื—ื“ ื•ื™ื—ื™ื“.
03:22
And it will cost you upwards of a billion dollars
78
202288
2030
ื•ื–ื” ื™ืขืœื” ืœื›ื ื‘ืกื‘ื™ื‘ื•ืช ื”ืžื™ืœื™ืืจื“ ื“ื•ืœืจ
03:24
for that one success.
79
204318
2144
ื‘ืฉื‘ื™ืœ ื”ื”ืฆืœื—ื” ื”ื‘ื•ื“ื“ืช ื”ื–ื•.
03:26
So we have to look at this pipeline the way an engineer would,
80
206462
3304
ืื– ืขืœื™ื ื• ืœืจืื•ืช ืืช ื”ืชื”ืœื™ืš ื”ื–ื” ื‘ืขื™ื ื™ื• ืฉืœ ืžื”ื ื“ืก,
03:29
and say, "How can we do better?"
81
209766
1208
ื•ืœืฉืื•ืœ, "ืื™ืš ืืคืฉืจ ืœืฉืคืจ ืืช ื–ื”?"
03:30
And that's the main theme of what I want to say to you this morning.
82
210974
2677
ื•ื–ื” ื”ื ื•ืฉื ื”ืžืจื›ื–ื™ ืฉืœ ืžื” ืฉืื ื™ ืจื•ืฆื” ืœื•ืžืจ ืœื›ื ื”ื‘ื•ืงืจ.
03:33
How can we make this go faster?
83
213651
1813
ืื™ืš ืืคืฉืจ ืœื”ืื™ืฅ ืืช ื–ื”?
03:35
How can we make it more successful?
84
215464
3065
ืื™ืš ืืคืฉืจ ืœืขืฉื•ืช ืืช ื–ื” ืžื•ืฆืœื— ื™ื•ืชืจ?
03:38
Well, let me tell you about a few examples
85
218529
1341
ืืกืคืจ ืœื›ื ืขืœ ื›ืžื” ื“ื•ื’ืžืื•ืช
03:39
where this has actually worked.
86
219870
2256
ืฉื‘ื”ืŸ ื–ื” ื‘ืืžืช ืขื‘ื“.
03:42
One that has just happened in the last few months
87
222126
2951
ืื—ืช ืžื”ืŸ, ืฉืื™ืจืขื” ืžืžืฉ ื‘ื—ื•ื“ืฉื™ื ื”ืื—ืจื•ื ื™ื,
03:45
is the successful approval of a drug for cystic fibrosis.
88
225077
3710
ื”ื™ื ื”ืื™ืฉื•ืจ ื”ืžื•ืฆืœื— ืฉืœ ืชืจื•ืคื” ืœืกื™ืกื˜ื™ืง ืคื™ื‘ืจื•ื–ื™ืก.
03:48
But it's taken a long time to get there.
89
228787
1654
ืื‘ืœ ืืจืš ื–ืžืŸ ืจื‘ ืœื”ื’ื™ืข ืœื›ืš.
03:50
Cystic fibrosis had its molecular cause discovered in 1989
90
230441
4602
ื”ื’ื•ืจื ื”ืžื•ืœืงื•ืœืจื™ ืฉืœ ื”ืกื™ืกื˜ื™ืง ืคื™ื‘ืจื•ื–ื™ืก ื ืชื’ืœื” ื‘-1989
03:55
by my group working with another group in Toronto,
91
235043
2328
ืข"ื™ ืงื‘ื•ืฆืชื™ ืฉืขื‘ื“ื” ืขื ืงื‘ื•ืฆื” ื ื•ืกืคืช ื‘ื˜ื•ืจื•ื ื˜ื•,
03:57
discovering what the mutation was in a particular gene
92
237371
2135
ื•ื”ื ื’ื™ืœื• ืืช ื”ืžื•ื˜ืฆื™ื” ื‘ื’ืŸ ืžืกื•ื™ื
03:59
on chromosome 7.
93
239506
1628
ื‘ื›ืจื•ืžื•ื–ื•ื ืžืก' 7.
04:01
That picture you see there?
94
241134
2038
ื”ืชืžื•ื ื” ื”ื–ื•?
04:03
Here it is. That's the same kid.
95
243172
2103
ื”ื ื” ื–ื”. ื–ื” ืื•ืชื• ื™ืœื“.
04:05
That's Danny Bessette, 23 years later,
96
245275
3344
ื–ื”ื• ื“ื ื™ ื‘ืืกื˜ ื›ืขื‘ื•ืจ 23 ืฉื ื”,
04:08
because this is the year,
97
248619
1279
ื›ื™ ื–ื• ื”ืฉื ื” -
04:09
and it's also the year where Danny got married,
98
249898
2438
ื•ื’ื ื”ืฉื ื” ื‘ื” ื“ื ื™ ื”ืชื—ืชืŸ -
04:12
where we have, for the first time, the approval by the FDA
99
252336
3057
ืฉื‘ื” ื™ืฉ ืœื ื• ืœืจืืฉื•ื ื” ืื™ืฉื•ืจ ืฉืœ ืžื™ื ื”ืœ ื”ืžื–ื•ืŸ ื•ื”ืชืจื•ืคื•ืช ื”ืืžืจื™ืงืื™
04:15
of a drug that precisely targets the defect in cystic fibrosis
100
255393
3737
ืœืชืจื•ืคื” ืฉืงื•ืœืขืช ื‘ืžื“ื•ื™ืง ืœืžื•ื ืฉืœ ื”ืกื™ืกื˜ื™ืง ืคื™ื‘ืจื•ื–ื™ืก
04:19
based upon all this molecular understanding.
101
259130
1938
ืขืœ ื™ืกื•ื“ ื›ืœ ื”ื”ื‘ื ื” ื”ืžื•ืœืงื•ืœืจื™ืช ื”ื–ื•.
04:21
That's the good news.
102
261068
1424
ืืœื• ื”ื‘ืฉื•ืจื•ืช ื”ื˜ื•ื‘ื•ืช.
04:22
The bad news is, this drug doesn't actually treat all cases of cystic fibrosis,
103
262492
3629
ื”ื‘ืฉื•ืจื•ืช ื”ืจืขื•ืช ื”ืŸ ืฉื”ืชืจื•ืคื” ื”ื–ื• ืœื ืžื˜ืคืœืช ื‘ื›ืœ ืžืงืจื™ ื”ืกื™ืกื˜ื™ืง ืคื™ื‘ืจื•ื–ื™ืก,
04:26
and it won't work for Danny, and we're still waiting
104
266121
2209
ื•ื”ื™ื ืœื ืขื•ื–ืจืช ืœื“ื ื™, ื•ืื ื• ืขื“ื™ื™ืŸ ืžืžืชื™ื ื™ื
04:28
for that next generation to help him.
105
268330
2335
ืœืชืจื•ืคืช ื”ื“ื•ืจ ื”ื‘ื ืฉืชืขื–ื•ืจ ืœื•.
04:30
But it took 23 years to get this far. That's too long.
106
270665
3195
ืืš ื ื“ืจืฉื• 23 ืฉื ื™ื ืœื”ื’ื™ืข ืœื›ืš. ื–ื” ื™ื•ืชืจ ืžื“ื™.
04:33
How do we go faster?
107
273860
1693
ืื™ืš ื ื•ื›ืœ ืœืคืขื•ืœ ืžื”ืจ ื™ื•ืชืจ?
04:35
Well, one way to go faster is to take advantage of technology,
108
275553
2698
ื“ืจืš ืื—ืช ืœืคืขื•ืœ ืžื”ืจ ื™ื•ืชืจ ื”ื™ื ืœื ืฆืœ ืืช ื”ื˜ื›ื ื•ืœื•ื’ื™ื”,
04:38
and a very important technology that we depend on
109
278251
2664
ื•ื˜ื›ื ื•ืœื•ื’ื™ื” ื—ืฉื•ื‘ื” ืžืื“ ืฉืื ื• ืžืกืชืžื›ื™ื ืขืœื™ื”
04:40
for all of this is the human genome,
110
280915
2296
ืœืฆื•ืจืš ื›ืœ ื–ื” ื”ื™ื ื”ื’ื ื•ื ื”ืื ื•ืฉื™,
04:43
the ability to be able to look at a chromosome,
111
283211
2588
ื”ื™ื›ื•ืœืช ืœื”ืชื‘ื•ื ืŸ ื‘ื›ืจื•ืžื•ื–ื•ื ืžืกื•ื™ื,
04:45
to unzip it, to pull out all the DNA,
112
285799
2670
ืœืคืจื•ื ืื•ืชื•, ืœื”ื•ืฆื™ื ืืช ื›ืœ ื”ื“ื "ื,
04:48
and to be able to then read out the letters in that DNA code,
113
288469
2950
ื•ืื– ืœื”ื™ื•ืช ืžืกื•ื’ืœื™ื ืœืงืจื•ื ืืช ื”ืื•ืชื™ื•ืช ืฉืœ ืื•ืชื• ืงื•ื“ ื“ื "ื,
04:51
the A's, C's, G's and T's
114
291419
2081
ืืช ืื•ืชื™ื•ืช ื”ืื™ื™, ืกื™, ื’'ื™ ื•ื˜ื™
04:53
that are our instruction book and the instruction book for all living things,
115
293500
3271
ืฉื”ืŸ ืกืคืจ ื”ื”ื•ืจืื•ืช ืฉืœื ื• ื•ืกืคืจ ื”ื”ื•ืจืื•ืช ืฉืœ ื›ืœ ื”ื“ื‘ืจื™ื ื”ื—ื™ื™ื,
04:56
and the cost of doing this,
116
296771
1514
ื•ื”ืขืœื•ืช ื”ื›ืจื•ื›ื” ื‘ื›ืš,
04:58
which used to be in the hundreds of millions of dollars,
117
298285
2655
ืฉื”ื™ืชื” ืคืขื ื‘ืกื‘ื™ื‘ื•ืช ืžืื•ืช ืžื™ืœื™ื•ื ื™ ื“ื•ืœืจื™ื,
05:00
has in the course of the last 10 years
118
300940
1913
ืฆื ื—ื” ื‘ืžื”ืœืš 10 ื”ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช
05:02
fallen faster than Moore's Law, down to the point
119
302853
2399
ืžื”ืจ ื™ื•ืชืจ ืžื—ื•ืง ืžื•ืจ, ืขื“ ืœื ืงื•ื“ื” ืฉื‘ื”
05:05
where it is less than 10,000 dollars today to have your genome sequenced, or mine,
120
305252
4007
ืขื•ืœื” ืคื—ื•ืช ืž-10,000 ื“ื•ืœืจ ืœืจืฆืฃ ืืช ื”ื’ื ื•ื ืฉืœื›ื, ืื• ืืช ืฉืœื™,
05:09
and we're headed for the $1,000 genome fairly soon.
121
309259
3799
ื•ืื ื• ืžืชืงืจื‘ื™ื ื‘ืžื”ื™ืจื•ืช ืœืื–ื•ืจ ื”ื’ื ื•ื ื‘-1,000 ื“ื•ืœืจ.
05:13
Well, that's exciting.
122
313058
1326
ื–ื” ืžืจื’ืฉ.
05:14
How does that play out in terms of application to a disease?
123
314384
3810
ืžื” ื”ืžืฉืžืขื•ืช ืฉืœ ื–ื” ืžื‘ื—ื™ื ืช ื™ื™ืฉื•ื ืขื‘ื•ืจ ืžื—ืœื”?
05:18
I want to tell you about another disorder.
124
318194
2280
ืื ื™ ืจื•ืฆื” ืœืกืคืจ ืœื›ื ืขืœ ืžื—ืœื” ื ื•ืกืคืช.
05:20
This one is a disorder which is quite rare.
125
320474
2312
ืžื“ื•ื‘ืจ ื‘ืœื™ืงื•ื™ ื ื“ื™ืจ ืœืžื“ื™.
05:22
It's called Hutchinson-Gilford progeria,
126
322786
2768
ื”ื•ื ืงืจื•ื™ ืชืกืžื•ื ืช ืคืจื•ื’ืจื™ื” ืข"ืฉ ื”ื˜ืฆ'ื™ื ืกื•ืŸ-ื’ื™ืœืคื•ืจื“,
05:25
and it is the most dramatic form of premature aging.
127
325554
3305
ื•ื–ื• ื”ืฆื•ืจื” ื”ื—ืžื•ืจื” ื‘ื™ื•ืชืจ ืฉืœ ื”ื–ื“ืงื ื•ืช ืžื•ืงื“ืžืช.
05:28
Only about one in every four million kids has this disease,
128
328859
3783
ื‘ืขืจืš ืื—ื“ ื‘ืœื‘ื“ ืžื›ืœ 4 ืžื™ืœื™ื•ืŸ ื™ืœื“ื™ื ื—ื•ืœื” ื‘ืžื—ืœื” ื”ื–ื•,
05:32
and in a simple way, what happens is,
129
332642
3360
ื•ื‘ืœืฉื•ืŸ ืคืฉื•ื˜ื”, ืžื” ืฉืงื•ืจื” ื”ื•ื,
05:36
because of a mutation in a particular gene,
130
336002
2701
ืฉืขืงื‘ ืžื•ื˜ืฆื™ื” ื‘ื’ืŸ ืžืกื•ื™ื,
05:38
a protein is made that's toxic to the cell
131
338703
2667
ื ื•ืฆืจ ื—ืœื‘ื•ืŸ ืฉืจืขื™ืœ ืœืชื
05:41
and it causes these individuals to age
132
341370
2297
ื•ื”ื•ื ื’ื•ืจื ืœืื•ืชื ื‘ื ื™-ืื“ื ืœื”ื–ื“ืงืŸ
05:43
at about seven times the normal rate.
133
343667
2584
ื‘ืงืฆื‘ ืžื”ื™ืจ ืคื™ 7 ื‘ืขืจืš ืžื”ืงืฆื‘ ื”ืจื’ื™ืœ.
05:46
Let me show you a video of what that does to the cell.
134
346251
3143
ืืฆื™ื’ ืœื›ื ืกืจื˜ื•ืŸ ืฉืœ ืžื” ืฉื–ื” ืขื•ืฉื” ืœืชื.
05:49
The normal cell, if you looked at it under the microscope,
135
349394
3135
ื‘ืชื ื”ืชืงื™ืŸ, ืื ืžื‘ื™ื˜ื™ื ื‘ื• ืžืชื—ืช ืœืžื™ืงืจื•ืกืงื•ืค,
05:52
would have a nucleus sitting in the middle of the cell,
136
352529
2889
ื™ืฉ ื’ืจืขื™ืŸ ืฉื ืžืฆื ื‘ืžืจื›ื– ื”ืชื,
05:55
which is nice and round and smooth in its boundaries
137
355418
3879
ื•ื”ื•ื ื ื—ืžื“ ื•ืขื’ื•ืœ ื•ื‘ืขืœ ื’ื‘ื•ืœื•ืช ื—ืœืงื™ื
05:59
and it looks kind of like that.
138
359297
1755
ื•ื ืจืื” ื‘ืขืจืš ื›ืš.
06:01
A progeria cell, on the other hand,
139
361052
1864
ื‘ืชื ืคืจื•ื’ืจื™ื”, ืœืขื•ืžืช ื–ืืช,
06:02
because of this toxic protein called progerin,
140
362916
3102
ื‘ื’ืœืœ ื”ื—ืœื‘ื•ืŸ ื”ืจืขืœื ื™ ื”ืงืจื•ื™ "ืคืจื•ื’ืจื™ืŸ",
06:06
has these lumps and bumps in it.
141
366018
2284
ื™ืฉ ื’ื‘ืฉื•ืฉื™ื•ืช ื•ื‘ืœื™ื˜ื•ืช ื›ืืœื”.
06:08
So what we would like to do after discovering this
142
368302
3015
ืื– ืžื” ืฉืื ื• ืจื•ืฆื™ื ืœืขืฉื•ืช, ืื—ืจื™ ืฉื’ื™ืœื™ื ื• ืืช ื–ื”
06:11
back in 2003
143
371317
1852
ื›ื‘ืจ ื‘-2003,
06:13
is to come up with a way to try to correct that.
144
373169
3218
ื”ื•ื ืœืžืฆื•ื ื“ืจืš ืœืชืงืŸ ืืช ื–ื”.
06:16
Well again, by knowing something about the molecular pathways,
145
376387
3088
ืื– ืฉื•ื‘, ื›ืฉื™ื•ื“ืขื™ื ืžืฉื”ื• ืื•ื“ื•ืช ื”ืžืกืœื•ืœื™ื ื”ืžื•ืœืงื•ืœืจื™ื™ื,
06:19
it was possible to pick
146
379475
1999
ืืคืฉืจ ืœื‘ื—ื•ืจ
06:21
one of those many, many compounds that might have been useful
147
381474
2617
ืื—ืช ืžื”ืชืจื›ื•ื‘ื•ืช ื”ืจื‘ื•ืช ื”ืืœื” ืฉืื•ืœื™ ืชื•ืขื™ืœ ื›ืืŸ
06:24
and try it out.
148
384091
1461
ื•ืœื ืกื•ืชื”.
06:25
In an experiment done in cell culture
149
385552
2575
ื‘ื ื™ืกื•ื™ ืฉื‘ื•ืฆืข ื‘ืชืจื‘ื™ืช ืชืื™ื
06:28
and shown here in a cartoon,
150
388127
2042
ื•ืžื•ืฆื’ ื›ืืŸ ื‘ืกืจื˜ื•ืŸ ื”ื ืคืฉื”,
06:30
if you take that particular compound
151
390169
2694
ืื ืœื•ืงื—ื™ื ืืช ื”ืชืจื›ื•ื‘ืช ื”ืžืกื•ื™ืžืช ื”ื–ื•
06:32
and you add it to that cell that has progeria,
152
392863
3256
ื•ืžื•ืกื™ืคื™ื ืื•ืชื” ืœืชื ืขื ื”ืคืจื•ื’ืจื™ื”,
06:36
and you watch to see what happened,
153
396119
2221
ื•ืžืชื‘ื•ื ื ื™ื ื›ื“ื™ ืœืจืื•ืช ืžื” ืงื•ืจื”,
06:38
in just 72 hours, that cell becomes,
154
398340
2962
ืชื•ืš 72 ืฉืขื•ืช ื‘ืœื‘ื“ ื”ืชื ื”ื•ืคืš,
06:41
for all purposes that we can determine,
155
401302
2268
ืขื‘ื•ืจ ื›ืœ ื”ืžื˜ืจื•ืช ืฉืงื‘ืขื ื• ืœื•,
06:43
almost like a normal cell.
156
403570
1842
ืœื”ื™ื•ืช ื›ืžืขื˜ ื›ืžื• ืชื ืชืงื™ืŸ.
06:45
Well that was exciting, but would it actually work in a real human being?
157
405412
4341
ื–ื” ื”ื™ื” ืžืจื’ืฉ, ืื‘ืœ ื”ืื ื–ื” ืื›ืŸ ื™ืขื‘ื•ื“ ืืฆืœ ืื“ื ืืžื™ืชื™?
06:49
This has led, in the space of only four years
158
409753
3385
ื–ื” ื”ื•ื‘ื™ืœ, ืชื•ืš 4 ืฉื ื™ื ื‘ืœื‘ื“
06:53
from the time the gene was discovered to the start of a clinical trial,
159
413138
3501
ืžื’ื™ืœื•ื™ ื”ื’ืŸ, ืœืชื—ื™ืœืชื• ืฉืœ ื ื™ืกื•ื™ ืงืœื™ื ื™,
06:56
to a test of that very compound.
160
416639
2197
ื•ืœื‘ื“ื™ืงื” ืฉืœ ืื•ืชื” ืชืจื›ื•ื‘ืช.
06:58
And the kids that you see here
161
418836
1963
ื•ื”ืฆืขื™ืจื™ื ืฉืืชื ืจื•ืื™ื ื›ืืŸ
07:00
all volunteered to be part of this,
162
420799
2562
ื”ืชื ื“ื‘ื• ื›ื•ืœื ืœื”ืฉืชืชืฃ ื‘ื•,
07:03
28 of them,
163
423361
1461
28 ืžื”ื,
07:04
and you can see as soon as the picture comes up
164
424822
3095
ื•ืชื•ื›ืœื• ืœืจืื•ืช, ืžื™ื“ ื›ืฉื”ืชืžื•ื ื” ืชื•ืคื™ืข,
07:07
that they are in fact a remarkable group of young people
165
427917
3382
ืฉื–ื• ืงื‘ื•ืฆื” ื ื”ื“ืจืช ืฉืœ ืฆืขื™ืจื™ื
07:11
all afflicted by this disease,
166
431299
1419
ืฉื ืคื’ืขื• ื›ื•ืœื ื‘ืžื—ืœื” ื”ื–ื•,
07:12
all looking quite similar to each other.
167
432718
2249
ื›ื•ืœื ื ืจืื™ื ืžืื“ ื“ื•ืžื™ื ื–ื” ืœื–ื”.
07:14
And instead of telling you more about it,
168
434967
1674
ื•ื‘ืžืงื•ื ืฉืืžืฉื™ืš ืœื“ื‘ืจ ืขืœ ื›ืš,
07:16
I'm going to invite one of them, Sam Berns from Boston,
169
436641
3986
ืื–ืžื™ืŸ ืื—ื“ ืžื”ื, ืกืื ื‘ืจื ืก ืžื‘ื•ืกื˜ื•ืŸ,
07:20
who's here this morning, to come up on the stage
170
440627
2433
ืฉื ืžืฆื ื›ืืŸ ื”ื‘ื•ืงืจ, ืœืขืœื•ืช ืœื‘ืžื”
07:23
and tell us about his experience
171
443060
2220
ื•ืœืกืคืจ ืœื ื• ืขืœ ื ืกื™ื•ืŸ ื—ื™ื™ื•
07:25
as a child affected with progeria.
172
445280
1910
ื›ื™ืœื“ ืฉื ืคื’ืข ืžืคืจื•ื’ืจื™ื”.
07:27
Sam is 15 years old. His parents, Scott Berns and Leslie Gordon,
173
447190
4058
ืกืื ื”ื•ื ื‘ืŸ 15. ื”ื•ืจื™ื•, ืกืงื•ื˜ ื‘ืจื ืก ื•ืœืกืœื™ ื’ื•ืจื“ื•ืŸ,
07:31
both physicians, are here with us this morning as well.
174
451248
2121
ืจื•ืคืื™ื ืฉื ื™ื”ื, ื ืžืฆืื™ื ืื™ืชื ื• ื”ื‘ื•ืงืจ ื’ื ื”ื.
07:33
Sam, please have a seat.
175
453369
2538
ืกืื, ืฉื‘ ื‘ื‘ืงืฉื”.
07:35
(Applause)
176
455907
7320
[ืžื—ื™ืื•ืช ื›ืคื™ื™ื]
07:43
So Sam, why don't you tell these folks
177
463227
2178
ืกืื, ืื•ืœื™ ืชืกืคืจ ืœืื ืฉื™ื ื›ืืŸ
07:45
what it's like being affected with this condition called progeria?
178
465405
3375
ืื™ืš ื–ื” ืœื”ื™ื•ืช ื—ื•ืœื” ื‘ืžื—ืœื” ื”ื–ื•, ืคืจื•ื’ืจื™ื”?
07:48
Sam Burns: Well, progeria limits me in some ways.
179
468780
3808
ืกืื ื‘ืจื ืก: ื”ืคืจื•ื’ืจื™ื” ืžื’ื‘ื™ืœื” ืื•ืชื™ ื‘ืฆื•ืจื•ืช ืžืกื•ื™ืžื•ืช.
07:52
I cannot play sports or do physical activities,
180
472588
3964
ืื ื™ ืœื ื™ื›ื•ืœ ืœืขืฉื•ืช ืกืคื•ืจื˜ ืื• ืคืขื™ืœื•ื™ื•ืช ื’ื•ืคื ื™ื•ืช,
07:56
but I have been able to take interest in things
181
476552
3204
ืื‘ืœ ื”ืฆืœื—ืชื™ ืœื”ืชืขื ื™ื™ืŸ ื‘ื“ื‘ืจื™ื
07:59
that progeria, luckily, does not limit.
182
479756
2979
ืฉื”ืคืจื•ื’ืจื™ื”, ืœืžื–ืœื™, ืœื ืžื’ื‘ื™ืœื” ืื•ืชื™ ื‘ื”ื.
08:02
But when there is something that I really do want to do
183
482735
2557
ืื‘ืœ ื›ืฉื™ืฉ ืžืฉื”ื• ืฉืื ื™ ืžืžืฉ ืจื•ืฆื” ืœืขืฉื•ืช
08:05
that progeria gets in the way of, like marching band
184
485292
3017
ื•ืฉื”ืคืจื•ื’ืจื™ื” ืžืคืจื™ืขื” ืœื™, ื›ืžื• ืœื ื’ืŸ ื‘ืชื–ืžื•ืจืช ืžืฆืขื“ื™ื
08:08
or umpiring, we always find a way to do it,
185
488309
3426
ืื• ืœืชืคืงื“ ื›ืฉื•ืคื˜, ืื ื• ืชืžื™ื“ ืžื•ืฆืื™ื ื“ืจืš ืœืขืฉื•ืช ื–ืืช,
08:11
and that just shows that progeria isn't in control of my life.
186
491735
3517
ื•ื–ื• ื”ื•ื›ื—ื” ืฉื”ืคืจื•ื’ืจื™ื” ืœื ืžื ื”ืœืช ืœื™ ืืช ื”ื—ื™ื™ื.
08:15
(Applause)
187
495252
1710
[ืžื—ื™ืื•ืช ื›ืคื™ื™ื]
08:16
Francis Collins: So what would you like to say to researchers
188
496962
2036
ืคืจื ืกื™ืก ืงื•ืœื™ื ืก: ืžื” ื”ื™ื™ืช ืจื•ืฆื” ืœื•ืžืจ ืœื—ื•ืงืจื™ื
08:18
here in the auditorium and others listening to this?
189
498998
3097
ื›ืืŸ ื‘ืื•ืœื, ื•ืœืื—ืจื™ื ืฉืžืื–ื™ื ื™ื ืœื ื•?
08:22
What would you say to them both about research on progeria
190
502095
2597
ืžื” ื”ื™ื™ืช ืื•ืžืจ ืœื”ื ื’ื ื‘ืงืฉืจ ืœื—ืงืจ ื”ืคืจื•ื’ืจื™ื”
08:24
and maybe about other conditions as well?
191
504692
1886
ื•ืื•ืœื™ ื’ื ื‘ืงืฉืจ ืœืžื—ืœื•ืช ื ื•ืกืคื•ืช?
08:26
SB: Well, research on progeria has come so far
192
506578
3146
ืก"ื‘: ื—ืงืจ ื”ืคืจื•ื’ืจื™ื” ืขื‘ืจ ื“ืจืš ืืจื•ื›ื”
08:29
in less than 15 years,
193
509724
2242
ื‘ืคื—ื•ืช ืž-15 ืฉื ื”,
08:31
and that just shows the drive that researchers can have
194
511966
4369
ื•ื–ื” ืžื•ื›ื™ื— ืื™ื–ื” ื“ื—ืฃ ืขืฉื•ื™ ืœื”ื™ื•ืช ืœื—ื•ืงืจื™ื
08:36
to get this far, and it really means a lot
195
516335
3418
ืœื”ืชืงื“ื ื›ืœ-ื›ืš, ื•ื™ืฉ ืœื›ืš ื”ืžื•ืŸ ืžืฉืžืขื•ืช
08:39
to myself and other kids with progeria,
196
519753
3251
ืขื‘ื•ืจื™ ื•ืขื‘ื•ืจ ื ืขืจื™ื ืื—ืจื™ื ืขื ืคืจื•ื’ืจื™ื”,
08:43
and it shows that if that drive exists,
197
523004
2824
ื•ื–ื” ืžืจืื” ืฉืื ื”ื“ื—ืฃ ืงื™ื™ื,
08:45
anybody can cure any disease,
198
525828
2601
ื›ืœ ืื—ื“ ื™ื›ื•ืœ ืœืจืคื ื›ืœ ืžื—ืœื”,
08:48
and hopefully progeria can be cured in the near future,
199
528429
3947
ื•ืื ื™ ืžืงื•ื•ื” ืฉืชื™ืžืฆื ืชืจื•ืคื” ืœืคืจื•ื’ืจื™ื” ื‘ืขืชื™ื“ ื”ืงืจื•ื‘,
08:52
and so we can eliminate those 4,000 diseases
200
532376
3757
ื›ื“ื™ ืฉื ื•ื›ืœ ืœื—ืกืœ ืืช 4,000 ื”ืžื—ืœื•ืช ื”ืœืœื•
08:56
that Francis was talking about.
201
536133
3007
ืฉืคืจื ืกื™ืก ื”ื–ื›ื™ืจ.
08:59
FC: Excellent. So Sam took the day off from school today
202
539140
3129
ืค"ืง: ืžืฆื•ื™ืŸ. ืกืื ืœืงื— ื”ื™ื•ื ื™ื•ื ื—ื•ืคืฉ ืžื‘ื™ื”"ืก
09:02
to be here, and he is โ€” (Applause) --
203
542269
5135
ื›ื“ื™ ืœื‘ื•ื ืœื›ืืŸ, ื•ื”ื•ื-- [ืžื—ื™ืื•ืช ื›ืคื™ื™ื]--
09:07
He is, by the way, a straight-A+ student in the ninth grade
204
547404
4816
ื”ื•ื, ืื’ื‘, ืชืœืžื™ื“ ืžืฆื˜ื™ื™ืŸ ื‘ื›ื™ืชื” ื˜'
09:12
in his school in Boston.
205
552220
1333
ื‘ื‘ื™ืช ืกืคืจื• ื‘ื‘ื•ืกื˜ื•ืŸ.
09:13
Please join me in thanking and welcoming Sam.
206
553553
2201
ื”ืฆื˜ืจืคื•-ื ื ืืœื™ ื‘ืืžื™ืจืช ืชื•ื“ื” ื•ื‘ืจื›ืช ื‘ืจื•ืš ื”ื‘ื ืœืกืื.
09:15
SB: Thank you very much. FC: Well done. Well done, buddy.
207
555754
3653
ืก"ื‘: ืชื•ื“ื” ืจื‘ื” ืœื›ื. ืค"ืง: ื™ืคื” ืžืื“, ื™ืคื” ืžืื“, ื—ื‘ื™ื‘ื™.
09:19
(Applause)
208
559407
11818
[ืžื—ื™ืื•ืช ื›ืคื™ื™ื]
09:32
So I just want to say a couple more things
209
572216
1716
ืื ื™ ืจื•ืฆื” ืจืง ืœื•ืžืจ ืขื•ื“ ื›ืžื” ืžืœื™ื
09:33
about that particular story, and then try to generalize
210
573932
3132
ืขืœ ื”ืกื™ืคื•ืจ ื”ืžืกื•ื™ื ื”ื–ื”, ื•ืื– ืื ืกื” ืœื”ืงื™ืฉ ืžืžื ื•
09:37
how could we have stories of success
211
577064
2496
ืื™ืš ื ื•ื›ืœ ืœื–ื›ื•ืช ื‘ืกื™ืคื•ืจื™ ื”ืฆืœื—ื” ื ื•ืกืคื™ื
09:39
all over the place for these diseases, as Sam says,
212
579560
3513
ื‘ื›ืœ ืžืงื•ื ื•ืžืงื•ื ื‘ื˜ื™ืคื•ืœ ื‘ืžื—ืœื•ืช ืืœื”, ื›ืคื™ ืฉืื•ืžืจ ืกืื,
09:43
these 4,000 that are waiting for answers.
213
583073
2519
ื‘-4,000 ื”ืžื—ืœื•ืช ื”ืœืœื• ืฉืžื—ื›ื•ืช ืœืคืชืจื•ืŸ.
09:45
You might have noticed that the drug
214
585592
1872
ื•ื“ืื™ ืฉืžืชื ืœื‘ ืฉื”ืชืจื•ืคื”
09:47
that is now in clinical trial for progeria
215
587464
2769
ืฉื ืžืฆืืช ื›ืจื’ืข ื‘ื ื™ืกื•ื™ ืงืœื™ื ื™ ืœื˜ื™ืคื•ืœ ื‘ืคืจื•ื’ืจื™ื”
09:50
is not a drug that was designed for that.
216
590233
1764
ืื™ื ื” ืชืจื•ืคื” ืฉืชื•ื›ื ื ื” ืœื›ืš.
09:51
It's such a rare disease, it would be hard for a company
217
591997
2862
ื”ืžื—ืœื” ื”ื™ื ื›ื” ื ื“ื™ืจื”, ืฉืœื—ื‘ืจืช ืชืจื•ืคื•ืช ื™ื”ื™ื” ืงืฉื”
09:54
to justify spending hundreds of millions of dollars to generate a drug.
218
594859
3730
ืœื”ืฆื“ื™ืง ื”ื•ืฆืื” ืฉืœ ืžืื•ืช ืžื™ืœื™ื•ื ื™ ื“ื•ืœืจื™ื ืขืœ ื™ื™ืฆื•ืจ ืชืจื•ืคื”.
09:58
This is a drug that was developed for cancer.
219
598589
2160
ื–ื• ืชืจื•ืคื” ืฉืคื•ืชื—ื” ืœื˜ื™ืคื•ืœ ื‘ืกืจื˜ืŸ.
10:00
Turned out, it didn't work very well for cancer,
220
600749
2165
ื”ืชื‘ืจืจ ืฉื”ื™ื ืœื ืžื•ืฆืœื—ืช ื›ืœ-ื›ืš ืœื˜ื™ืคื•ืœ ื‘ืกืจื˜ืŸ,
10:02
but it has exactly the right properties, the right shape,
221
602914
2323
ืื‘ืœ ื™ืฉ ืœื” ื”ืชื›ื•ื ื•ืช ื”ืžื“ื•ื™ืงื•ืช, ื”ืฆื•ืจื” ื”ืžื“ื•ื™ืงืช,
10:05
to work for progeria, and that's what's happened.
222
605237
2892
ืœื˜ื™ืคื•ืœ ื‘ืคืจื•ื’ืจื™ื”, ื•ื–ื” ืžื” ืฉืงืจื”.
10:08
Wouldn't it be great if we could do that more systematically?
223
608129
3228
ื”ืื ืœื ื™ื”ื™ื” ื ืคืœื ืื ื ื•ื›ืœ ืœืขืฉื•ืช ื–ืืช ื‘ืื•ืคืŸ ื™ื•ืชืจ ืฉื™ื˜ืชื™?
10:11
Could we, in fact, encourage all the companies that are out there
224
611357
3796
ื”ืื ื ื•ื›ืœ ื‘ืขืฆื ืœืขื•ื“ื“ ืืช ื›ืœ ื—ื‘ืจื•ืช ื”ืชืจื•ืคื•ืช
10:15
that have drugs in their freezers
225
615153
1838
ืฉืฉื•ืžืจื•ืช ืชืจื•ืคื•ืช ื‘ืžืงืคื™ืื™ื ืฉืœื”ืŸ
10:16
that are known to be safe in humans
226
616991
2202
ืฉื™ื“ื•ืข ืฉื”ืŸ ื‘ื˜ื•ื—ื•ืช ืœื‘ื ื™-ืื“ื,
10:19
but have never actually succeeded in terms
227
619193
2292
ืืš ืžืขื•ืœื ืœื ื”ืจืื• ื”ืฆืœื—ื”
10:21
of being effective for the treatments they were tried for?
228
621485
2856
ื‘ื›ืœ ื”ืงืฉื•ืจ ื‘ื˜ื™ืคื•ืœื™ื ืฉื‘ื”ื ื ื•ืกื•?
10:24
Now we're learning about all these new molecular pathways --
229
624341
2384
ื”ื™ื•ื ืื ื• ืœื•ืžื“ื™ื ืขืœ ื›ืœ ื”ืžืกืœื•ืœื™ื ื”ืžื•ืœืงื•ืœืจื™ื™ื ื”ื—ื“ืฉื™ื ื”ืืœื”--
10:26
some of those could be repositioned or repurposed,
230
626725
3079
ืœื—ืœืงื ื ื™ืชืŸ ืœืฉื ื•ืช ืืช ื”ืžื™ืงื•ื ื•ื”ื™ื™ืขื•ื“,
10:29
or whatever word you want to use, for new applications,
231
629804
2399
ืื• ื›ืœ ืžื™ืœื” ืื—ืจืช ืฉืชืจืฆื•, ืขื‘ื•ืจ ื™ื™ืฉื•ืžื™ื ื—ื“ืฉื™ื,
10:32
basically teaching old drugs new tricks.
232
632203
2969
ื•ื‘ืขืฆื ืœืœืžื“ ืืช ื”ืชืจื•ืคื•ืช ื”ื™ืฉื ื•ืช ืชื›ืกื™ืกื™ื ื—ื“ืฉื™ื.
10:35
That could be a phenomenal, valuable activity.
233
635172
2687
ื–ื• ื™ื›ื•ืœื” ืœื”ื™ื•ืช ืขืฉื™ื™ื” ื ืคืœืื” ื•ืจื‘ืช-ืขืจืš.
10:37
We have many discussions now between NIH and companies
234
637859
3046
ื™ืฉ ื”ื™ื•ื ื”ืจื‘ื” ื“ื™ื•ื ื™ื ื‘ื™ืŸ ืžื›ื•ื ื™ ื”ื‘ืจื™ืื•ืช ื”ืœืื•ืžื™ื™ื ื•ื”ื—ื‘ืจื•ืช
10:40
about doing this that are looking very promising.
235
640905
2124
ื‘ืงืฉืจ ืœื›ืš, ื•ื–ื” ื ืจืื” ืžื‘ื˜ื™ื— ืžืื“.
10:43
And you could expect quite a lot to come from this.
236
643029
2614
ื•ืืชื ื™ื›ื•ืœื™ื ืœืฆืคื•ืช ืฉื™ื™ืฆื ืžื–ื” ื“ื™ ื”ืจื‘ื”.
10:45
There are quite a number of success stories one can point to
237
645643
3039
ื™ืฉ ื“ื™ ื”ืจื‘ื” ืกื™ืคื•ืจื™ ื”ืฆืœื—ื” ืฉืืคืฉืจ ืœืฆื™ื™ืŸ,
10:48
about how this has led to major advances.
238
648682
2353
ื•ืฉืžืขื™ื“ื™ื ืื™ืš ื–ื” ื”ื‘ื™ื ืœื”ืชืงื“ืžื•ืช ืจื‘ื”.
10:51
The first drug for HIV/AIDS
239
651035
2207
ื”ืชืจื•ืคื” ื”ืจืืฉื•ื ื” ืœืื™ื™ื“ืก
10:53
was not developed for HIV/AIDS.
240
653242
1729
ืœื ืคื•ืชื—ื” ืขื‘ื•ืจ ื”ืื™ื™ื“ืก.
10:54
It was developed for cancer. It was AZT.
241
654971
2518
ื”ื™ื ืคื•ืชื—ื” ื‘ืฉื‘ื™ืœ ื”ืกืจื˜ืŸ. ื–ื• ื”ื™ืชื” ื”ืื™ื™-ื–ื™-ื˜ื™.
10:57
It didn't work very well for cancer, but became
242
657489
2001
ื”ื™ื ืœื ืคืขืœื” ื”ื™ื˜ื‘ ื ื’ื“ ื”ืกืจื˜ืŸ, ืื‘ืœ ื”ืคื›ื”
10:59
the first successful antiretroviral,
243
659490
2116
ืœืชืจื•ืคื” ื ื•ื’ื“ืช ื”ืจื˜ืจื•-ื•ื™ืจื•ืก ื”ืžื•ืฆืœื—ืช ื”ืจืืฉื•ื ื”,
11:01
and you can see from the table there are others as well.
244
661606
2572
ื•ืœืคื™ ื”ื˜ื‘ืœื” ืืชื ืจื•ืื™ื ืฉื™ืฉ ืขื•ื“ ื›ืืœื”.
11:04
So how do we actually make that a more generalizable effort?
245
664178
3644
ืื– ืื™ืš ื ื”ืคื•ืš ืืช ื–ื” ืœืžืืžืฅ ืžืงื™ืฃ ื™ื•ืชืจ?
11:07
Well, we have to come up with a partnership
246
667822
2224
ื•ื‘ื›ืŸ, ืขืœื™ื ื• ืœื”ืงื™ื ืฉื•ืชืคื•ืช
11:10
between academia, government, the private sector,
247
670046
2860
ื‘ื™ืŸ ื”ืืงื“ืžื™ื”, ื”ืžืžืฉืœ, ื”ืžื’ื–ืจ ื”ืคืจื˜ื™
11:12
and patient organizations to make that so.
248
672906
2453
ื•ืืจื’ื•ื ื™ ื”ื—ื•ืœื™ื ืœืฉื ื›ืš.
11:15
At NIH, we have started this new
249
675359
1650
ื‘ืžื›ื•ื ื™ื ื”ืœืื•ืžื™ื™ื ืœื‘ืจื™ืื•ืช ื”ืงืžื ื• ื›ืขืช
11:17
National Center for Advancing Translational Sciences.
250
677009
3200
ืืช "ื”ืžืจื›ื– ื”ืœืื•ืžื™ ืœืงื™ื“ื•ื ื”ืžื“ืข ื”ืขืœ-ืœืื•ืžื™".
11:20
It just started last December, and this is one of its goals.
251
680209
3615
ื–ื” ื”ื•ืงื ืžืžืฉ ื‘ื“ืฆืžื‘ืจ ื”ืื—ืจื•ืŸ, ื•ื–ื• ืื—ืช ื”ืžื˜ืจื•ืช ืฉืœื•.
11:23
Let me tell you another thing we could do.
252
683824
1441
ืื•ืžืจ ืœื›ื ืžื” ืขื•ื“ ื ื•ื›ืœ ืœืขืฉื•ืช.
11:25
Wouldn't it be nice to be able to a test a drug
253
685265
2919
ื ื›ื•ืŸ ืฉื”ื™ื” ื ื—ืžื“ ืื™ืœื• ื™ื›ื•ืœื ื• ืœื‘ื—ื•ืŸ ืชืจื•ืคื”
11:28
to see if it's effective and safe
254
688184
2371
ื›ื“ื™ ืœืจืื•ืช ืื ื”ื™ื ื™ืขื™ืœื” ื•ื‘ื˜ื•ื—ื”
11:30
without having to put patients at risk,
255
690555
2101
ืžื‘ืœื™ ืœืกื›ืŸ ืืช ื”ื—ื•ืœื™ื,
11:32
because that first time you're never quite sure?
256
692656
2553
ื›ื™ ื‘ืคืขื ื”ืจืืฉื•ื ื” ืื™ืŸ ืืฃ ืคืขื ื‘ื˜ื—ื•ืŸ ืžื•ื—ืœื˜?
11:35
How do we know, for instance, whether drugs are safe
257
695209
2151
ืื™ืš ื ื“ืข, ืœืžืฉืœ, ืื ื”ืชืจื•ืคื•ืช ื‘ื˜ื•ื—ื•ืช
11:37
before we give them to people? We test them on animals.
258
697360
3245
ืœืคื ื™ ืฉื ื™ืชืŸ ืื•ืชืŸ ืœื‘ื ื™-ืื“ื? ืื ื• ืžื ืกื™ื ืื•ืชืŸ ืขืœ ื‘ืขืœื™-ื—ื™ื™ื.
11:40
And it's not all that reliable, and it's costly,
259
700605
2642
ื•ื–ื” ืœื ื”ื›ื™ ืืžื™ืŸ, ื•ื–ื” ื™ืงืจ,
11:43
and it's time-consuming.
260
703247
1690
ื•ื–ื” ื’ื•ื–ืœ ื–ืžืŸ.
11:44
Suppose we could do this instead on human cells.
261
704937
2863
ื ื ื™ื— ืฉื™ื›ื•ืœื ื• ืœืขืฉื•ืช ื–ืืช ืขืœ ืชืื™ื ืื ื•ืฉื™ื™ื.
11:47
You probably know, if you've been paying attention
262
707800
2232
ืืชื ื•ื“ืื™ ื™ื•ื“ืขื™ื, ืื ืขืงื‘ืชื
11:50
to some of the science literature
263
710032
1300
ืื—ืจื™ ื—ืœืง ืžื”ืกืคืจื•ืช ื”ืžื“ืขื™ืช,
11:51
that you can now take a skin cell
264
711332
1656
ืฉืืคืฉืจ ื”ื™ื•ื ืœืงื—ืช ืชื-ืขื•ืจ
11:52
and encourage it to become a liver cell
265
712988
2881
ื•ืœืขื•ื“ื“ ืื•ืชื• ืœื”ืคื•ืš ืœืชื-ื›ื‘ื“,
11:55
or a heart cell or a kidney cell or a brain cell for any of us.
266
715869
3075
ืชื-ืœื‘, ืชื-ื›ืœื™ื” ืื• ืชื-ืžื•ื— ืขื‘ื•ืจ ื›ืœ ืื—ื“ ืžืื™ืชื ื•.
11:58
So what if you used those cells as your test
267
718944
3152
ืžื” ืื ื ืฉืชืžืฉ ื‘ืชืื™ื ืืœื” ื›ื“ื™ ืœื‘ื—ื•ืŸ
12:02
for whether a drug is going to work and whether it's going to be safe?
268
722096
2945
ืื ืชืจื•ืคื” ื›ืœืฉื”ื™ ืชืขื‘ื•ื“ ื•ืื ื”ื™ื ืชื”ื™ื” ื‘ื˜ื•ื—ื”?
12:05
Here you see a picture of a lung on a chip.
269
725041
4231
ืืชื ืจื•ืื™ื ื›ืืŸ ืชืžื•ื ื” ืฉืœ ืจื™ืื” ืขืœ ื’ื‘ื™ ืฉื‘ื‘.
12:09
This is something created by the Wyss Institute in Boston,
270
729272
3521
ื–ื” ืžืฉื”ื• ืฉื ื•ืฆืจ ืข"ื™ ืžื›ื•ืŸ "ื•ื•ื™ืก" ืฉื‘ื‘ื•ืกื˜ื•ืŸ,
12:12
and what they have done here, if we can run the little video,
271
732793
3175
ื•ืžื” ืฉื”ื ืขืฉื• ื›ืืŸ, ืื ื ืจื™ืฅ ืืช ื”ืกืจื˜ื•ืŸ,
12:15
is to take cells from an individual,
272
735968
2136
ื–ื” ืœืงื—ืช ืชืื™ื ืžืžื™ืฉื”ื•,
12:18
turn them into the kinds of cells that are present in the lung,
273
738104
3109
ืœื”ืคื•ืš ืื•ืชื ืœืกื•ื’ ื”ืชืื™ื ืฉืงื™ื™ืžื™ื ื‘ืจื™ืื”,
12:21
and determine what would happen
274
741213
1805
ื•ืœืงื‘ื•ืข ืžื” ื™ืงืจื”
12:23
if you added to this various drug compounds
275
743018
3077
ืื ืžื•ืกื™ืคื™ื ืœื–ื” ืชืจื›ื•ื‘ื•ืช ืชืจื•ืคืชื™ื•ืช ืฉื•ื ื•ืช
12:26
to see if they are toxic or safe.
276
746095
2465
ื›ื“ื™ ืœืจืื•ืช ืื ื”ืŸ ืจืขื™ืœื•ืช ืื• ื‘ื˜ื•ื—ื•ืช.
12:28
You can see this chip even breathes.
277
748560
2271
ืืชื ืจื•ืื™ื ืฉื”ืฉื‘ื‘ ื”ื–ื” ืืคื™ืœื• ื ื•ืฉื.
12:30
It has an air channel. It has a blood channel.
278
750831
2617
ื™ืฉ ืœื• ืขืจื•ืฅ ืื•ื•ื™ืจ. ื™ืฉ ืœื• ืขืจื•ืฅ ื“ื.
12:33
And it has cells in between
279
753448
1703
ื•ื‘ื™ื ื™ื”ื ื™ืฉ ืœื• ืชืื™ื
12:35
that allow you to see what happens when you add a compound.
280
755151
2438
ืฉืžืืคืฉืจื™ื ืœืจืื•ืช ืžื” ืงื•ืจื” ื›ืฉืžื•ืกื™ืคื™ื ืื™ื–ื• ืชืจื›ื•ื‘ืช.
12:37
Are those cells happy or not?
281
757589
1772
ื”ืื ื”ืชืื™ื ื”ืืœื” ืฉืžื—ื™ื ืื• ืœื?
12:39
You can do this same kind of chip technology
282
759361
3031
ืืคืฉืจ ืœื”ืฉืชืžืฉ ื‘ืกื•ื’ ื–ื” ืฉืœ ื˜ื›ื ื•ืœื•ื’ื™ื™ืช ืฉื‘ื‘ื™ื
12:42
for kidneys, for hearts, for muscles,
283
762392
2209
ืขื‘ื•ืจ ื›ืœื™ื•ืช, ืœื‘, ืฉืจื™ืจื™ื,
12:44
all the places where you want to see whether a drug
284
764601
2464
ื›ืœ ืžืงื•ื ืฉื‘ื• ืจื•ืฆื™ื ืœืจืื•ืช ืื ืชืจื•ืคื” ื›ืœืฉื”ื™
12:47
is going to be a problem, for the liver.
285
767065
2281
ืขืชื™ื“ื” ืœื”ื•ื•ืช ื‘ืขื™ื”, ืขื‘ื•ืจ ื”ื›ื‘ื“.
12:49
And ultimately, because you can do this for the individual,
286
769346
3048
ื•ื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ, ื”ื™ื•ืช ืฉืืคืฉืจ ืœืขืฉื•ืช ื–ืืช ืขื‘ื•ืจ ืื“ื ืžืกื•ื™ื,
12:52
we could even see this moving to the point
287
772394
2214
ืืคืฉืจ ืืคื™ืœื• ืœื—ื–ื•ืช ืฉื–ื” ื™ื’ื™ืข ืœืฉืœื‘
12:54
where the ability to develop and test medicines
288
774608
3441
ืฉื‘ื” ื”ื™ื›ื•ืœืช ืœืคืชื— ื•ืœื‘ื“ื•ืง ืชืจื•ืคื•ืช
12:58
will be you on a chip, what we're trying to say here is
289
778049
3186
ืชื”ื™ื” ืืชื ืขืœ ื’ื‘ื™ ืฉื‘ื‘ื™ื, ืžื” ืฉืื ื• ืžื ืกื™ื ืœื•ืžืจ ื›ืืŸ
13:01
the individualizing of the process of developing drugs
290
781235
3501
ื”ื•ื ื”ืคื™ื›ืช ืคื™ืชื•ื— ื”ืชืจื•ืคื•ืช ืœืื™ืฉื™
13:04
and testing their safety.
291
784736
2248
ื™ื—ื“ ืขื ื‘ื“ื™ืงืช ื‘ื˜ื™ื—ื•ืชืŸ.
13:06
So let me sum up.
292
786984
1652
ืื– ื”ื‘ื” ื•ืืกื›ื.
13:08
We are in a remarkable moment here.
293
788636
2260
ืื ื• ื ืžืฆืื™ื ื‘ืจื’ืข ืžื™ื•ื—ื“.
13:10
For me, at NIH now for almost 20 years,
294
790896
2103
ืžื‘ื—ื™ื ืชื™, ื›ืื™ืฉ ื”ืžื›ื•ื ื™ื ื”ืœืื•ืžื™ื™ื ืœื‘ืจื™ืื•ืช ืžื–ื” ื›ืžืขื˜ 20 ืฉื ื”,
13:12
there has never been a time where there was more excitement
295
792999
2601
ืžืขื•ืœื ืœื ื”ื™ืชื” ืชืงื•ืคื” ืขื ื”ืชืจื’ืฉื•ืช ื›ื” ืจื‘ื”
13:15
about the potential that lies in front of us.
296
795600
2585
ืกื‘ื™ื‘ ื”ืคื•ื˜ื ืฆื™ืืœ ืฉืงื™ื™ื ืžื•ืœื ื•.
13:18
We have made all these discoveries
297
798185
1792
ื”ื’ืขื ื• ืœื›ืœ ื”ืชื’ืœื™ื•ืช ื”ืืœื”
13:19
pouring out of laboratories across the world.
298
799977
2365
ืฉื ืฉืคื›ื•ืช ืžืชื•ืš ืžืขื‘ื“ื•ืช ื‘ื›ืœ ืจื—ื‘ื™ ื”ืขื•ืœื.
13:22
What do we need to capitalize on this? First of all, we need resources.
299
802342
3362
ืžื” ื ื“ืจืฉ ื›ื“ื™ ืœื”ืชืงื“ื? ืจืืฉื™ืช, ืื ื• ื–ืงื•ืงื™ื ืœืžืฉืื‘ื™ื.
13:25
This is research that's high-risk, sometimes high-cost.
300
805704
3555
ื–ื”ื• ืžื—ืงืจ ืขืชื™ืจ-ืกื™ื›ื•ื ื™ื, ืœืคืขืžื™ื ืขืชื™ืจ-ืขืœื•ื™ื•ืช.
13:29
The payoff is enormous, both in terms of health
301
809259
1971
ื”ื’ืžื•ืœ ื”ื•ื ื›ื‘ื™ืจ, ื”ืŸ ื‘ืžื•ื ื—ื™ ื”ื‘ืจื™ืื•ืช
13:31
and in terms of economic growth. We need to support that.
302
811230
2880
ื•ื”ืŸ ื‘ืžื•ื ื—ื™ ื”ืฆืžื™ื—ื” ื”ื›ืœื›ืœื™ืช. ืขืœื™ื ื• ืœืชืžื•ืš ื‘ื›ืš.
13:34
Second, we need new kinds of partnerships
303
814110
2301
ืฉื ื™ืช, ื ื—ื•ืฆื™ื ืœื ื• ืกื•ื’ื™ื ื—ื“ืฉื™ื ืฉืœ ืฉื•ืชืคื•ื™ื•ืช
13:36
between academia and government and the private sector
304
816411
2221
ื‘ื™ืŸ ื”ืืงื“ืžื™ื”, ื”ืžืžืฉืœ, ื”ืžื’ื–ืจ ื”ืคืจื˜ื™
13:38
and patient organizations, just like the one I've been describing here,
305
818632
3347
ื•ืืจื’ื•ื ื™ ื”ื—ื•ืœื™ื, ื‘ื“ื™ื•ืง ื›ืžื• ืžื” ืฉืชื™ืืจืชื™ ื›ืืŸ,
13:41
in terms of the way in which we could go after repurposing new compounds.
306
821979
3580
ืžื‘ื—ื™ื ืช ื”ื“ืจืš ืฉื‘ื” ืขืœื™ื ื• ืœืœื›ืช ืื—ืจื™ ืฉื™ื ื•ื™ ื™ื™ืขื•ื“ืŸ ืฉืœ ืชืจื›ื•ื‘ื•ืช ื—ื“ืฉื•ืช.
13:45
And third, and maybe most important, we need talent.
307
825559
3236
ื•ืฉืœื™ืฉื™ืช, ื•ืื•ืœื™ ื”ื›ื™ ื—ืฉื•ื‘, ืื ื• ื–ืงื•ืงื™ื ืœื›ืฉืจื•ื ื•ืช.
13:48
We need the best and the brightest
308
828795
2141
ืื ื• ืฆืจื™ื›ื™ื ืฉื”ื˜ื•ื‘ื™ื ื•ื”ืžื‘ืจื™ืงื™ื ื‘ื™ื•ืชืจ
13:50
from many different disciplines to come and join this effort --
309
830936
2857
ืžื›ืœ ื”ืชื—ื•ืžื™ื ื™ื‘ื•ืื• ื•ื™ืฆื˜ืจืคื• ืœืžืืžืฅ ื”ื–ื”--
13:53
all ages, all different groups --
310
833793
2446
ืžื›ืœ ื”ื’ื™ืœื™ื, ืžื›ืœ ื”ืงื‘ื•ืฆื•ืช--
13:56
because this is the time, folks.
311
836239
2087
ื›ื™ ืขื›ืฉื™ื• ื”ื–ืžืŸ, ื—ื‘ืจื™ื.
13:58
This is the 21st-century biology that you've been waiting for,
312
838326
3625
ื–ืืช ื”ื™ื ื”ื‘ื™ื•ืœื•ื’ื™ื” ืฉืœ ื”ืžืื” ื”-21 ืฉื—ื™ื›ื™ื ื• ืœื”,
14:01
and we have the chance to take that
313
841951
2462
ื•ื™ืฉ ืœื ื• ื”ื–ื“ืžื ื•ืช ืœืงื—ืช ืื•ืชื”
14:04
and turn it into something which will, in fact,
314
844413
2490
ื•ืœื”ืคื•ืš ืื•ืชื” ืœืžืฉื”ื•, ืฉืœืžืขืฉื”,
14:06
knock out disease. That's my goal.
315
846903
2330
ื™ื—ืกืœ ืืช ื”ืžื—ืœื•ืช. ื–ืืช ืžื˜ืจืชื™.
14:09
I hope that's your goal.
316
849233
1884
ืื ื™ ืžืงื•ื•ื” ืฉื–ื• ื’ื ืžื˜ืจืชื›ื.
14:11
I think it'll be the goal of the poets and the muppets
317
851117
2680
ืœื“ืขืชื™ ื–ื• ืชื”ื™ื” ืžื˜ืจืชื ืฉืœ ื”ืžืฉื•ืจืจื™ื ื•ืฉืœ ื”ื—ื‘ื•ื‘ื•ืช
14:13
and the surfers and the bankers
318
853797
2009
ื•ืฉืœ ื”ื’ื•ืœืฉื™ื ื•ืฉืœ ื”ื‘ื ืงืื™ื
14:15
and all the other people who join this stage
319
855806
2278
ื•ืฉืœ ื›ืœ ืฉืืจ ื”ืื ืฉื™ื ืฉื™ืขืœื• ืขืœ ื”ื‘ืžื” ื”ื–ืืช
14:18
and think about what we're trying to do here
320
858084
1750
ื•ื™ื—ืฉื‘ื• ืžื” ืื ื• ืžื ืกื™ื ืœื—ื•ืœืœ ื›ืืŸ
14:19
and why it matters.
321
859834
1165
ื•ืžื“ื•ืข ื–ื” ื—ืฉื•ื‘.
14:20
It matters for now. It matters as soon as possible.
322
860999
2770
ื–ื” ื—ืฉื•ื‘ ื‘ืžื™ื™ื“ื™. ื–ื” ื—ืฉื•ื‘ ืžื”ืจ ื›ื›ืœ ื”ืืคืฉืจ.
14:23
If you don't believe me, just ask Sam.
323
863769
3118
ื•ืื ืื™ื ื›ื ืžืืžื™ื ื™ื ืœื™, ืฉืืœื• ืืช ืกืื.
14:26
Thank you all very much.
324
866887
1443
ืชื•ื“ื” ืจื‘ื” ืœื›ื•ืœื›ื.
14:28
(Applause)
325
868330
4831
[ืžื—ื™ืื•ืช ื›ืคื™ื™ื]
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7