What you need to know about CRISPR | Ellen Jorgensen

882,444 views ใƒป 2016-10-24

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Zeeva Livshitz ืžื‘ืงืจ: Ido Dekkers
00:12
So, has everybody heard of CRISPR?
0
12850
1903
ืื–, ื›ื•ืœื ืฉืžืขื• ืขืœ ืงืจื™ืกืคืจ?
00:15
I would be shocked if you hadn't.
1
15883
2602
ืื”ื™ื” ืžื•ืคืชืขืช ืื ืœื.
00:18
This is a technology -- it's for genome editing --
2
18509
3202
ื–ื•ื”ื™ ื˜ื›ื ื•ืœื•ื’ื™ื” --ืœืฆื•ืจืš ืขืจื™ื›ื” ื’ื ื•ืžื™ืช --
00:21
and it's so versatile and so controversial
3
21735
2834
ื•ื”ื™ื ื›ื” ืžื’ื•ื•ื ืช ื•ื›ื” ืฉื ื•ื™ื” ื‘ืžื—ืœื•ืงืช
00:24
that it's sparking all sorts of really interesting conversations.
4
24593
3241
ืฉื”ื™ื ืžืฆื™ืชื” ืกื•ื’ื™ ืฉื™ื— ืžืื•ื“ ืžืขื ื™ื™ื ื™ื.
00:28
Should we bring back the woolly mammoth?
5
28631
2063
ื”ืื ืขืœื™ื ื• ืœื”ื—ื–ื™ืจ ืืช ื”ืžืžื•ืชื” ื”ืฆืžืจื™ืช?
00:31
Should we edit a human embryo?
6
31281
2294
ื”ืื ืขืœื™ื ื• ืœืขืจื•ืš ืฉื™ื ื•ื™ื™ื ื‘ืขื•ื‘ืจ ืื ื•ืฉื™?
ื•ื”ืžื•ืขื“ืฃ ืขืœื™:
00:34
And my personal favorite:
7
34041
2122
00:36
How can we justify wiping out an entire species
8
36997
3651
ืื™ืš ื ื•ื›ืœ ืœื”ืฆื“ื™ืง ืžื—ื™ืงืช ืžื™ืŸ ืฉืœื
00:40
that we consider harmful to humans
9
40672
2444
ืฉื ืจืื” ืœื ื• ืžื–ื™ืง ืœื‘ื ื™ ืื“ื
ืžืขืœ ืคื ื™ ื”ืื“ืžื”,
00:43
off the face of the Earth,
10
43140
1302
00:44
using this technology?
11
44466
1517
ื‘ืืžืฆืขื•ืช ื˜ื›ื ื•ืœื•ื’ื™ื” ื–ื•?
ืขื ืฃ ื–ื” ืฉืœ ื”ืžื“ืข ื ืข ื”ืจื‘ื” ื™ื•ืชืจ ืžื”ืจ
00:47
This type of science is moving much faster
12
47165
3283
00:50
than the regulatory mechanisms that govern it.
13
50472
2844
ืžืืฉืจ ืžื ื’ื ื•ื ื™ ื”ื•ื™ืกื•ืช ืฉืฉื•ืœื˜ื™ื ื‘ื•.
00:53
And so, for the past six years,
14
53340
2067
ื•ื›ืš, ื‘ืฉืฉ ื”ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช,
00:55
I've made it my personal mission
15
55431
1945
ืœืงื—ืชื™ ืขืœ ืขืฆืžื™ ืืช ื”ืžืฉื™ืžื”
00:57
to make sure that as many people as possible understand
16
57863
3010
ืœื”ื‘ื˜ื™ื— ืฉืื ืฉื™ื ืจื‘ื™ื ื›ื›ืœ ื”ืืคืฉืจ ื™ื‘ื™ื ื•
01:00
these types of technologies and their implications.
17
60897
3100
ืกื•ื’ื™ื ืืœื” ืฉืœ ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ื•ื”ืฉืœื›ื•ืชื™ื”ืŸ.
ืงืจื™ืกืคืจ ื›ื‘ืจ ื”ื™ื•ื•ื” ื ื•ืฉื ืฉืœ ืกืขืจื” ืชืงืฉื•ืจืชื™ืช ืขื ืงื™ืช,
01:04
Now, CRISPR has been the subject of a huge media hype,
18
64021
4529
ื•ื”ืžื™ืœื™ื ืฉืžืฉืชืžืฉื™ื ื‘ื”ืŸ ืœืจื•ื‘ ื”ืŸ "ืงืœ" ื• "ื–ื•ืœ".
01:09
and the words that are used most often are "easy" and "cheap."
19
69089
4359
01:14
So what I want to do is drill down a little bit deeper
20
74337
3139
ืื– ืžื” ืฉืื ื™ ืจื•ืฆื” ืœืขืฉื•ืช ื–ื” ืœื”ืขืžื™ืง ืงืฆืช ื™ื•ืชืจ
01:17
and look into some of the myths and the realities around CRISPR.
21
77500
4184
ื•ืœื‘ื—ื•ืŸ ื›ืžื” ืžื”ืžื™ืชื•ืกื™ื ื•ื”ืžืฆื™ืื•ื™ื•ืช ืกื‘ื™ื‘ ืงืจื™ืกืคืจ.
01:22
If you're trying to CRISPR a genome,
22
82954
1950
ืื ืžื ืกื™ื ืœื‘ืฆืข ืงืจื™ืกืคืจ ื‘ื’ื ื•ื,
01:25
the first thing that you have to do is damage the DNA.
23
85594
2600
ื”ื“ื‘ืจ ื”ืจืืฉื•ืŸ ืฉืฆืจื™ืš ืœืขืฉื•ืช ื”ื•ื ืœื’ืจื•ื ื ื–ืง ืœื“ื "ื.
ื”ื ื–ืง ืžื’ื™ืข ื‘ืฆื•ืจืช ื—ื™ืชื•ืš ื’ื“ื™ืœ ื›ืคื•ืœ
01:29
The damage comes in the form of a double-strand break
24
89098
3042
ื“ืจืš ื”ืกืœื™ืœ ื”ื›ืคื•ืœ.
01:32
through the double helix.
25
92164
1564
01:33
And then the cellular repair processes kick in,
26
93752
2752
ื•ืื– ืชื”ืœื™ื›ื™ ืชื™ืงื•ืŸ ื”ืชื ื ื›ื ืกื™ื ืœืชืžื•ื ื”,
ื•ืื– ืื ื• ืžืฉื›ื ืขื™ื ืืช ืชื”ืœื™ื›ื™ ื”ืชื™ืงื•ืŸ ื”ืืœื•
01:37
and then we convince those repair processes
27
97088
2639
01:39
to make the edit that we want,
28
99751
1876
ืœืขืฉื•ืช ืืช ื”ืขืจื™ื›ื” ืฉืื ื• ืจื•ืฆื™ื,
ื•ืœื ืขืจื™ื›ื” ื˜ื‘ืขื™ืช.
01:42
and not a natural edit.
29
102054
1542
01:43
That's how it works.
30
103620
1245
ื›ืš ื–ื” ืขื•ื‘ื“,
01:45
It's a two-part system.
31
105929
1723
ื–ื•ื”ื™ ืžืขืจื›ืช ืฉืœ ืฉื ื™ ื—ืœืงื™ื.
01:47
You've got a Cas9 protein and something called a guide RNA.
32
107676
3371
ื™ืฉ ื—ืœื‘ื•ืŸ Cas9, ื•ืžืฉื”ื• ืฉื ืงืจื ืจื "ื ืžื•ื‘ื™ืœ .
ืื ื™ ืื•ื”ื‘ืช ืœื—ืฉื•ื‘ ืขืœ ื–ื” ื›ืขืœ ื˜ื™ืœ ืžื•ื ื—ื”.
01:51
I like to think of it as a guided missile.
33
111071
2462
01:53
So the Cas9 -- I love to anthropomorphize --
34
113557
2646
ืื– ื” -Cas9 -- ืื ื™ ืื•ื”ื‘ืช ืœืขืฉื•ืช ื”ืื ืฉื”--
01:56
so the Cas9 is kind of this Pac-Man thing
35
116227
3230
ืื– Cas9 ื”ื•ื ืกื•ื’ ืฉืœ ืคืง-ืžืŸ
01:59
that wants to chew DNA,
36
119481
1545
ืฉืจื•ืฆื” ืœืœืขื•ืก ื“ื "ื,
ื•ื”-ืจื "ื ื”ืžื›ื•ื•ืŸ, ื”ื•ื ื”ืจืฆื•ืขื” ืฉืžื•ื ืขืช ืืช ื–ื” ืžื”ื’ื ื•ื,
02:01
and the guide RNA is the leash that's keeping it out of the genome
37
121050
4156
02:05
until it finds the exact spot where it matches.
38
125230
2849
ืขื“ ืฉื™ืžืฆื ืืช ื”ื ืงื•ื“ื” ื”ืžื“ื•ื™ืงืช ืฉืืœื™ื” ื”ื•ื ืชื•ืื.
02:08
And the combination of those two is called CRISPR.
39
128912
2894
ื•ื”ืฉื™ืœื•ื‘ ืฉืœ ืฉื ื™ ืืœื” ื ืงืจื ืงืจื™ืกืคืจ.
02:11
It's a system that we stole
40
131830
1568
ื–ื• ืžืขืจื›ืช ืฉื’ื ื‘ื ื•
02:13
from an ancient, ancient bacterial immune system.
41
133422
2894
ืžืžืขืจื›ืช ื—ื™ืกื•ืŸ ื—ื™ื™ื“ืงื™ืช ืžืื•ื“ ืžืื•ื“ ืขืชื™ืงื”.
02:17
The part that's amazing about it is that the guide RNA,
42
137469
3740
ื”ื—ืœืง ืฉืžื“ื”ื™ื ื‘ื›ืš ื”ื•ื ืฉื›ืฉื”ืจื "ื ื”ืžื›ื•ื•ืŸ,
ืจืง 20 ืื•ืชื™ื•ืช ืžื”ืจืฆืฃ,
02:22
only 20 letters of it,
43
142041
1891
02:23
are what target the system.
44
143956
1638
ื”ืŸ ืžื” ืฉืžื›ื•ื•ื ื•ืช ืืช ื”ืžืขืจื›ืช ืœืžื˜ืจื”.
02:26
This is really easy to design,
45
146570
2143
ื–ื” ืžืžืฉ ืงืœ ืœืขืฆื‘,
02:28
and it's really cheap to buy.
46
148737
1819
ื•ื–ื” ืžืžืฉ ื–ื•ืœ ืœืงื ื•ืช.
02:30
So that's the part that is modular in the system;
47
150985
4005
ืื– ื–ื” ื”ื—ืœืง ื”ืžื•ื“ื•ืœืจื™ ื‘ืžืขืจื›ืช;
ื›ืœ ื”ืฉืืจ ื ืฉืืจ ืื•ืชื• ื”ื“ื‘ืจ.
02:35
everything else stays the same.
48
155014
1798
02:37
This makes it a remarkably easy and powerful system to use.
49
157481
3431
ื–ื” ื”ื•ืคืš ืืช ื”ืžืขืจื›ืช ืœืขื•ืฆืžืชื™ืช ื‘ื™ื•ืชืจ ื•ืงืœื” ืžืื•ื“ ืœืฉื™ืžื•ืฉ
ืื– ื”ืจื "ื ื”ืžื›ื•ื•ืŸ ื•ื—ืœื‘ื•ืŸ ื” Cas9 ืฉืžื•ืจื›ื‘ื™ื ื™ื—ื“
02:42
The guide RNA and the Cas9 protein complex together
50
162047
4240
02:46
go bouncing along the genome,
51
166311
1932
ืžืงืคืฆื™ื ืœืื•ืจื›ื• ืฉืœ ื”ื’ื ื•ื,
02:48
and when they find a spot where the guide RNA matches,
52
168267
3493
ื•ื›ืืฉืจ ื”ื ืžื•ืฆืื™ื ื ืงื•ื“ื” ืฉื‘ื” ื”ืจื "ื ื”ืžื›ื•ื•ืŸ ืžืชืื™ื,
02:51
then it inserts between the two strands of the double helix,
53
171784
2855
ืื– ื”ื•ื ืžื—ื“ื™ืจ ื‘ื™ืŸ ืฉื ื™ ื”ื’ื“ื™ืœื™ื ืฉืœ ื”ืกืœื™ืœ ื”ื›ืคื•ืœ,
02:54
it rips them apart,
54
174663
1568
ื”ื•ื ืงื•ืจืข ืื•ืชื ื–ื” ืžื–ื”,
02:56
that triggers the Cas9 protein to cut,
55
176692
2688
ื–ื” ืžืชื ื™ืข ืืช ื—ืœื‘ื•ืŸ ื” Cas9 ืœื—ืชื•ืš,
02:59
and all of a sudden,
56
179962
1419
ื•ืœืคืชืข,
03:01
you've got a cell that's in total panic
57
181816
1900
ื™ืฉ ืœื›ื ืชื ืฉื ืžืฆื ื‘ื‘ื”ืœื” ืžื•ื—ืœื˜ืช
03:03
because now it's got a piece of DNA that's broken.
58
183740
2625
ื›ื™ ืขื›ืฉื™ื• ื™ืฉ ืœื• ื—ืชื™ื›ืช ื“ื "ื ืฉื ืฉื‘ืจื”.
ืžื” ื”ื•ื ืขื•ืฉื”?
03:07
What does it do?
59
187000
1296
03:08
It calls its first responders.
60
188320
2194
ื”ื•ื ืงื•ืจื ืœืžื’ื™ื‘ื™ื ื”ืจืืฉื•ื ื™ื ืฉืœื•.
03:10
There are two major repair pathways.
61
190959
2622
ื™ืฉ ืฉื ื™ ืžืกืœื•ืœื™ ืชื™ืงื•ืŸ ืขื™ืงืจื™ื™ื.
03:13
The first just takes the DNA and shoves the two pieces back together.
62
193605
5069
ื”ืจืืฉื•ืŸ ืคืฉื•ื˜ ืœื•ืงื— ืืช ื”- DNA ื•ื“ื•ื—ืง ืืช ืฉื ื™ ื”ื—ืœืงื™ื ื™ื—ื“.
03:18
This isn't a very efficient system,
63
198698
2098
ื–ื• ืœื ืฉื™ื˜ื” ื™ืขื™ืœื” ืžืื•ื“,
03:20
because what happens is sometimes a base drops out
64
200820
2729
ื›ื™ ืžื” ืฉืงื•ืจื” ื”ื•ื ืฉืœืคืขืžื™ื ื‘ืกื™ืก ืžื˜ืคื˜ืฃ ื”ื—ื•ืฆื”
03:23
or a base is added.
65
203573
1427
ืื• ืฉื‘ืกื™ืก ื ื•ืกืฃ.
ื–ื•ื”ื™ ื“ืจืš ื˜ื•ื‘ื” ืื•ืœื™, ืœื”ื‘ื™ืก ื’ืŸ,
03:25
It's an OK way to maybe, like, knock out a gene,
66
205024
3793
03:28
but it's not the way that we really want to do genome editing.
67
208841
3233
ืื‘ืœ ื–ื• ืœื ื”ื“ืจืš ืฉืื ื—ื ื• ื‘ืืžืช ืจื•ืฆื™ื ื›ื“ื™ ืœืขืจื•ืš ืืช ื”ื’ื ื•ื.
ืžืกืœื•ืœ ื”ืชื™ืงื•ืŸ ื”ืฉื ื™ ื”ื•ื ื”ืจื‘ื” ื™ื•ืชืจ ืžืขื ื™ื™ืŸ.
03:32
The second repair pathway is a lot more interesting.
68
212098
2895
ื‘ืžืกืœื•ืœ ืชื™ืงื•ืŸ ื–ื”,
03:35
In this repair pathway,
69
215017
1636
03:36
it takes a homologous piece of DNA.
70
216677
2681
ื–ื” ืœื•ืงื— ื—ืชื™ื›ืช ื“ื "ื ื”ื•ืžื•ืœื•ื’ื™ืช.
03:39
And now mind you, in a diploid organism like people,
71
219382
2640
ื•ื›ืขืช, ื‘ืื•ืจื’ื ื™ื–ื ื“ื™ืคืœื•ืื™ื“ื™ , ื›ืžื• ื‘ื ื™ ืื“ื,
ื™ืฉ ืœื ื• ืขื•ืชืง ืื—ื“ ืฉืœ ื”ื’ื ื•ื ืžืืžื ืฉืœื ื• ื•ืื—ื“ ืžืื‘ื ืฉืœื ื•,
03:42
we've got one copy of our genome from our mom and one from our dad,
72
222046
4248
03:46
so if one gets damaged,
73
226318
1275
ืื– ืื ืื—ื“ ื ืคื’ื,
03:47
it can use the other chromosome to repair it.
74
227617
2395
ื”ื•ื ื™ื›ื•ืœ ืœื”ืฉืชืžืฉ ื‘ื›ืจื•ืžื•ื–ื•ื ื”ืื—ืจ ื›ื“ื™ ืœืชืงืŸ ืื•ืชื•.
ืื– ื–ื” ื”ืžืงื•ื ืฉืžืžื ื• ื–ื” ืžื’ื™ืข,
03:50
So that's where this comes from.
75
230036
1633
03:52
The repair is made,
76
232518
1464
ื”ืชื™ืงื•ืŸ ื ืขืฉื”,
ื•ืขื›ืฉื™ื• ื”ื’ื ื•ื ื‘ื˜ื•ื— ืฉื•ื‘.
03:54
and now the genome is safe again.
77
234006
1951
03:56
The way that we can hijack this
78
236616
1523
ื”ื“ืจืš ืฉืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื—ื˜ื•ืฃ ืืช ื–ื”.
03:58
is we can feed it a false piece of DNA,
79
238497
3708
ื”ื™ื ืฉืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ืื›ื™ืœ ืื•ืชื• ื‘ืคื™ืกืช ื“ื "ื ืžื–ื•ื™ืคืช,
04:02
a piece that has homology on both ends
80
242229
2144
ื—ืชื™ื›ื” ืฉื”ื™ื ื”ื•ืžื•ืœื•ื’ื™ืช ื‘ืฉื ื™ ื”ืงืฆื•ื•ืช
04:04
but is different in the middle.
81
244397
1699
ืื‘ืœ ื”ื™ื ืฉื•ื ื” ื‘ืืžืฆืข.
ืื– ืขื›ืฉื™ื•, ื ื™ืชืŸ ืœืฉื‘ืฅ ื‘ืžืจื›ื–, ืžื” ืฉืจื•ืฆื™ื
04:06
So now, you can put whatever you want in the center
82
246120
2467
04:08
and the cell gets fooled.
83
248611
1515
ื•ื›ืš ืžื•ืœื™ื›ื™ื ืืช ื”ืชื ืฉื•ืœืœ.
ืื– ืืคืฉืจ ืœืฉื ื•ืช ืื•ืช,
04:10
So you can change a letter,
84
250150
2119
04:12
you can take letters out,
85
252293
1265
ืืคืฉืจ ืœื”ื•ืฆื™ื ืื•ืชื™ื•ืช ื”ื—ื•ืฆื”,
04:13
but most importantly, you can stuff new DNA in,
86
253582
2924
ืื‘ืœ ื”ื›ื™ ื—ืฉื•ื‘ ื–ื” ืฉื ื™ืชืŸ ืœื“ื—ื•ืก ืœืฉื ื“ื "ื ื—ื“ืฉ
04:16
kind of like a Trojan horse.
87
256530
1749
ืกื•ื’ ืฉืœ ืกื•ืก ื˜ืจื•ื™ืื ื™.
ืงืจื™ืกืคืจ ื”ื•ืœืš ืœื”ื™ื•ืช ืžื“ื”ื™ื,
04:19
CRISPR is going to be amazing,
88
259089
2185
04:21
in terms of the number of different scientific advances
89
261298
3618
ื‘ืžื•ื ื—ื™ื ืฉืœ ืžืกืคืจ ื”ื”ืชืงื“ืžื•ื™ื•ืช ื”ืžื“ืขื™ื•ืช ื”ืฉื•ื ื•ืช
04:24
that it's going to catalyze.
90
264940
1657
ืฉื”ื•ื ืขื•ืžื“ ืœื–ืจื–.
04:26
The thing that's special about it is this modular targeting system.
91
266621
3221
ื•ื”ืžื™ื•ื—ื“ ื‘ื–ื” ื”ื•ื ืžืขืจื›ืช ืžื™ืงื•ื“ ืžื•ื“ื•ืœืจื™ืช ื–ื•.
04:29
I mean, we've been shoving DNA into organisms for years, right?
92
269866
3767
ืื ื—ื ื• ื“ื•ื—ืกื™ื ืืช ื”ื“ื "ื ืœืชื•ืš ืื•ืจื’ื ื™ื–ืžื™ื ื›ื‘ืจ ืœืื•ืจืš ืฉื ื™ื, ื ื›ื•ืŸ?
04:33
But because of the modular targeting system,
93
273657
2127
ืื‘ืœ ื”ื•ื“ื•ืช ืœืžืขืจื›ืช ื”ืžื™ืงื•ื“ ื”ืžื•ื“ื•ืœืจื™ืช,
04:35
we can actually put it exactly where we want it.
94
275808
2425
ืื ื• ื™ื›ื•ืœื™ื ืœืฉื™ื ืืช ื–ื” ื‘ื“ื™ื•ืง ืื™ืคื” ืฉืื ื—ื ื• ืจื•ืฆื™ื.
04:39
The thing is that there's a lot of talk about it being cheap
95
279423
5669
ื”ืขื ื™ื™ืŸ ื”ื•ื ืฉื™ืฉ ื”ืจื‘ื” ื“ื™ื‘ื•ืจื™ื ืขืœ ื›ืš ืฉื–ื” ื–ื•ืœ
ื•ื–ื” ืงืœ.
04:45
and it being easy.
96
285116
1742
04:46
And I run a community lab.
97
286882
2812
ื•ืื ื™ ืžื ื”ืœืช ืžืขื‘ื“ื” ืงื”ื™ืœืชื™ืช.
04:50
I'm starting to get emails from people that say stuff like,
98
290242
3556
ื•ืžืชื—ื™ืœื” ืœืงื‘ืœ ื”ื•ื“ืขื•ืช ื“ื•ื"ืœ ืžืื ืฉื™ื ืฉืื•ืžืจื™ื ื“ื‘ืจื™ื ื›ืžื•,
04:53
"Hey, can I come to your open night
99
293822
2397
"ื”ื™ื™, ืืคืฉืจ ืœื‘ื•ื ืืœ ื”ืขืจื‘ ื”ืคืชื•ื— ืฉืœืš
04:56
and, like, maybe use CRISPR and engineer my genome?"
100
296243
3617
ื•ืื•ืœื™ ืœื”ืฉืชืžืฉ, ื‘ืงืจื™ืกืคืจ ื•ืœื”ื ื“ืก ืืช ื”ื’ื ื•ื ืฉืœื™?"
04:59
(Laugher)
101
299884
1110
(ืฆื—ื•ืง)
ื›ืื™ืœื•, ื‘ืจืฆื™ื ื•ืช.
05:01
Like, seriously.
102
301018
1501
05:03
I'm, "No, you can't."
103
303376
1803
ืื ื™, "ืœื, ืืชื” ืœื ื™ื›ื•ืœ."
05:05
(Laughter)
104
305203
1010
(ืฆื—ื•ืง)
05:06
"But I've heard it's cheap. I've heard it's easy."
105
306237
2355
"ืื‘ืœ ืฉืžืขืชื™ ืฉื–ื” ื–ื•ืœ. ืฉืžืขืชื™ ืฉื–ื” ืงืœ ".
05:08
We're going to explore that a little bit.
106
308616
2183
ืื– ื ื—ืงื•ืจ ืืช ื–ื” ืงืฆืช.
05:10
So, how cheap is it?
107
310823
1949
ืื–, ื›ืžื” ื–ื” ื–ื•ืœ?
05:12
Yeah, it is cheap in comparison.
108
312796
2410
ื›ืŸ, ื–ื” ื–ื•ืœ ื™ื—ืกื™ืช.
05:15
It's going to take the cost of the average materials for an experiment
109
315665
3619
ื–ื” ื™ื”ื™ื” ื‘ืžื—ื™ืจ ื”ืขืœื•ืช ื”ืžืžื•ืฆืขืช ืฉืœ ื”ื—ื•ืžืจื™ื ืœื ื™ืกื•ื™.
05:19
from thousands of dollars to hundreds of dollars,
110
319308
2532
ืžืืœืคื™ ื“ื•ืœืจื™ื ืขื“ ืžืื•ืช ื“ื•ืœืจื™ื,
05:21
and it cuts the time a lot, too.
111
321864
1936
ื•ื–ื” ืžืงืฆืฅ ืžืื•ื“ ื‘ื–ืžืŸ, ื’ื ื›ืŸ.
05:23
It can cut it from weeks to days.
112
323824
2080
ื–ื” ื™ื›ื•ืœ ืœื”ืคื—ื™ืช ืื•ืชื• ืžืฉื‘ื•ืขื•ืช ืœื™ืžื™ื.
05:26
That's great.
113
326246
1492
ื–ื” ืžืฆื•ื™ืŸ.
05:27
You still need a professional lab to do the work in;
114
327762
2690
ืขื“ื™ื™ืŸ ืฆืจื™ืš ืžืขื‘ื“ื” ืžืงืฆื•ืขื™ืช ืœืฆื•ืจืš ื”ืขื‘ื•ื“ื”;
05:30
you're not going to do anything meaningful outside of a professional lab.
115
330476
3512
ืœื ื ื™ืชืŸ ืœืขืฉื•ืช ืฉื•ื ื“ื‘ืจ ืžืฉืžืขื•ืชื™ ืžื—ื•ืฅ ืœืžืขื‘ื“ื” ืžืงืฆื•ืขื™ืช.
ื›ืœื•ืžืจ, ืืœ ืชืงืฉื™ื‘ื• ืœื›ืœ ืžื™ ืฉืื•ืžืจ
05:34
I mean, don't listen to anyone who says
116
334012
2004
ืฉืชื•ื›ืœื• ืœืขืฉื•ืช ื“ื‘ืจื™ื ื›ืืœื” ืขืœ ืฉื•ืœื—ืŸ ื”ืžื˜ื‘ื— ืฉืœื›ื.
05:36
you can do this sort of stuff on your kitchen table.
117
336040
2731
05:39
It's really not easy to do this kind of work.
118
339421
4508
ื–ื” ืžืžืฉ ืœื ืงืœ ืœืขืฉื•ืช ืกื•ื’ ื–ื” ืฉืœ ืขื‘ื•ื“ื”.
05:43
Not to mention, there's a patent battle going on,
119
343953
2308
ืžื‘ืœื™ ืœื”ื–ื›ื™ืจ ืฉืžืชื ื”ืœ ืงืจื‘ ืคื˜ื ื˜ื™ื ื‘ื ื•ืฉื,
05:46
so even if you do invent something,
120
346285
1826
ื›ืš ืฉื’ื ืื ืชืžืฆื™ืื• ืžืฉื”ื•,
ืžื›ื•ืŸ ื‘ืจื•ื“, ื•ืื•ื ื™ื‘ืจืกื™ื˜ืช ื‘ืจืงืœื™ ื ืžืฆืื™ื ื‘ืžืื‘ืง ื”ืคื˜ื ื˜ื™ื ื”ื‘ืœืชื™-ื™ืื•ืžืŸ ื”ื–ื”.
05:48
the Broad Institute and UC Berkeley are in this incredible patent battle.
121
348135
6636
05:54
It's really fascinating to watch it happen,
122
354795
2388
ื–ื” ื‘ืืžืช ืžืจืชืง ืœืจืื•ืช ืืช ื–ื” ืงื•ืจื”,
05:57
because they're accusing each other of fraudulent claims
123
357207
3248
ื›ื™ ื”ื ืžืืฉื™ืžื™ื ื–ื” ืืช ื–ื” ื‘ื˜ืขื ื•ืช ืฉืœ ืžืจืžื”
06:00
and then they've got people saying,
124
360479
1731
ื•ืื– ื™ืฉ ืœื”ื ืื ืฉื™ื ืฉืื•ืžืจื™ื,
06:02
"Oh, well, I signed my notebook here or there."
125
362234
2784
ืื”, ื˜ื•ื‘, ื—ืชืžืชื™ ื‘ืžื—ื‘ืจืช ืฉืœื™ ืคื” ืื• ืฉื ".
ื–ื” ืœื ื”ื•ืœืš ืœื”ื™ื•ืช ืžื™ื•ืฉื‘ ื‘ืžืฉืš ืฉื ื™ื.
06:05
This isn't going to be settled for years.
126
365042
2101
ื•ื›ืืฉืจ ื–ื” ื™ื™ื•ืฉื‘,
06:07
And when it is,
127
367167
1160
06:08
you can bet you're going to pay someone a really hefty licensing fee
128
368351
3285
ืื™ืŸ ืกืคืง ืฉืืชื ื”ื•ืœื›ื™ื ืœืฉืœื ืœืžื™ืฉื”ื• ื“ืžื™ ืจื™ืฉื•ื™ ื’ื“ื•ืœื™ื ืžืื•ื“
06:11
in order to use this stuff.
129
371660
1349
ื›ื“ื™ ืœื”ืฉืชืžืฉ ื‘ื–ื”.
06:13
So, is it really cheap?
130
373343
1781
ืื–, ื”ืื ื–ื” ื‘ืืžืช ื–ื•ืœ?
ื•ื‘ื›ืŸ, ื–ื” ื–ื•ืœ ืื ืืชื ืขื•ืฉื™ื ืžื—ืงืจ ื‘ืกื™ืกื™ ื•ื™ืฉ ืœื›ื ืžืขื‘ื“ื”.
06:15
Well, it's cheap if you're doing basic research and you've got a lab.
131
375148
5199
06:21
How about easy? Let's look at that claim.
132
381220
2276
ื•ืžื” ื‘ื ื•ื’ืข ืœื›ืš ืฉื–ื” ืงืœ? ื‘ื•ืื• ื ืชื‘ื•ื ืŸ ื‘ื˜ืขื ื” ื–ื•.
06:24
The devil is always in the details.
133
384417
2488
ื”ืฉื˜ืŸ ื ืžืฆื ืชืžื™ื“ ื‘ืคืจื˜ื™ื ื”ืงื˜ื ื™ื.
06:27
We don't really know that much about cells.
134
387881
3131
ืื ื—ื ื• ืœื ื‘ืืžืช ื™ื•ื“ืขื™ื ื›ืœ ื›ืš ื”ืจื‘ื” ืขืœ ื”ืชืื™ื.
ื”ื ืขื“ื™ื™ืŸ ืกื•ื’ ืฉืœ ืงื•ืคืกืื•ืช ืฉื—ื•ืจื•ืช.
06:31
They're still kind of black boxes.
135
391036
1670
06:32
For example, we don't know why some guide RNAs work really well
136
392730
4860
ืœื“ื•ื’ืžื”, ืื ื—ื ื• ืœื ื™ื•ื“ืขื™ื ืžื“ื•ืข ื›ืžื” ืจื "ื ืžื•ื‘ื™ืœื™ื ืขื•ื‘ื“ื™ื ืžืžืฉ ื˜ื•ื‘
06:37
and some guide RNAs don't.
137
397614
2063
ื•ื›ืžื” ืจื "ื ืžื•ื‘ื™ืœื™ื ืœื.
06:39
We don't know why some cells want to do one repair pathway
138
399701
3468
ืื™ื ื ื• ื™ื•ื“ืขื™ื ืœืžื” ื›ืžื” ืชืื™ื ืจื•ืฆื™ื ืœืขืฉื•ืช ืžืกืœื•ืœ ืชื™ืงื•ืŸ ืื—ื“
06:43
and some cells would rather do the other.
139
403193
2458
ื•ื›ืžื” ืชืื™ื ืžืขื“ื™ืคื™ื ืœืขืฉื•ืช ืืช ื”ืื—ืจ.
06:46
And besides that,
140
406270
1284
ื•ื—ื•ืฅ ืžื–ื”,
06:47
there's the whole problem of getting the system into the cell
141
407578
2869
ื™ืฉ ืืช ื”ื‘ืขื™ื™ื” ืฉืœ ื”ื—ื“ืจืช ื”ืžืขืจื›ืช ืœืชื•ืš ื”ืชื
06:50
in the first place.
142
410471
1264
ื‘ืžืงื•ื ื”ืจืืฉื•ืŸ.
06:51
In a petri dish, that's not that hard,
143
411759
2002
ื‘ืฆืœื—ืช ืคื˜ืจื™, ื–ื” ืœื ื›ืœ ื›ืš ืงืฉื”,
06:53
but if you're trying to do it on a whole organism,
144
413785
2445
ืื‘ืœ ืื ืžื ืกื™ื ืœืขืฉื•ืช ืืช ื–ื” ืขืœ ืื•ืจื’ื ื™ื–ื ืฉืœื,
06:56
it gets really tricky.
145
416254
1543
ื–ื” ื ื”ื™ื” ืžืžืฉ ืžืกื•ื‘ืš.
06:58
It's OK if you use something like blood or bone marrow --
146
418224
3186
ื–ื” ื‘ืกื“ืจ ืื ืžืฉืชืžืฉื™ื ื‘ืžืฉื”ื• ื›ืžื• ื“ื ืื• ืžื•ื— ืขืฆื -
07:01
those are the targets of a lot of research now.
147
421434
2227
ืืœื• ื”ืŸ ื”ืžื˜ืจื•ืช ืฉืœ ื”ืจื‘ื” ืžื—ืงืจื™ื ืขื›ืฉื™ื•.
07:03
There was a great story of some little girl
148
423685
2251
ื”ื™ื” ืกื™ืคื•ืจ ื ื”ื“ืจ ืขืœ ืื™ื–ื• ื™ืœื“ื” ืงื˜ื ื”
07:05
who they saved from leukemia
149
425960
1652
ืฉื”ืฆื™ืœื• ืžืœื•ืงืžื™ื”
07:07
by taking the blood out, editing it, and putting it back
150
427636
2674
ื›ืฉื”ื•ืฆื™ืื• ืืช ื”ื“ื ืฉืœื”, ืขืจื›ื• ืื•ืชื• ื•ื”ืฉื™ื‘ื• ื—ื–ืจื”
07:10
with a precursor of CRISPR.
151
430334
2049
ืขื ืงื•ื“ืžืŸ ืฉืœ ืงืจื™ืกืคืจ.
07:12
And this is a line of research that people are going to do.
152
432869
2796
ื•ื–ื”ื• ืงื• ืžื—ืงืจ ืฉืื ืฉื™ื ื”ื•ืœื›ื™ื ืœืขืฉื•ืช
07:15
But right now, if you want to get into the whole body,
153
435689
2553
ืื‘ืœ ื ื›ื•ืŸ ืœืขื›ืฉื™ื•, ืื ืจื•ืฆื™ื ืœื”ื’ื™ืข ืœืชื•ืš ื”ื’ื•ืฃ ื›ื•ืœื•,
07:18
you're probably going to have to use a virus.
154
438266
2144
ื™ื”ื™ื” ืฆืจื™ืš ื›ื ืจืื” ืœื”ืฉืชืžืฉ ื‘ื ื’ื™ืฃ.
07:20
So you take the virus, you put the CRISPR into it,
155
440434
2373
ืื– ืœื•ืงื—ื™ื ืืช ื”ื ื’ื™ืฃ, ื•ืžื›ื ื™ืกื™ื ืœืชื•ื›ื• ืืช ื”ืงืจื™ืกืคืจ
07:22
you let the virus infect the cell.
156
442831
1706
ื ื•ืชื ื™ื ืœื ื’ื™ืฃ ืœื”ื“ื‘ื™ืง ืืช ื”ืชื.
07:24
But now you've got this virus in there,
157
444561
2143
ืื‘ืœ ืขื›ืฉื™ื• ื™ืฉ ืœื›ื ืืช ื”ื•ื•ื™ืจื•ืก ื”ื–ื” ืฉื,
07:26
and we don't know what the long-term effects of that are.
158
446728
2688
ื•ืื ื—ื ื• ืœื ื™ื•ื“ืขื™ื ืžื”ืŸ ื”ื”ืฉืคืขื•ืช ืฉืœ ื–ื” ืœื˜ื•ื•ื— ื”ืืจื•ืš.
07:29
Plus, CRISPR has some off-target effects,
159
449440
2268
ื‘ื ื•ืกืฃ, ืœืงืจื™ืกืคืจ ื™ืฉ ื›ืžื” ื”ืฉืคืขื•ืช ืžื—ื•ืฅ ืœื™ืขื“,
07:31
a very small percentage, but they're still there.
160
451732
2961
ืื—ื•ื– ืงื˜ืŸ ืžืื•ื“, ืื‘ืœ ืขื“ื™ื™ืŸ ื™ืฉ.
07:34
What's going to happen over time with that?
161
454717
2798
ืื– ืžื” ื”ื•ืœืš ืœืงืจื•ืช ืขื ื–ื” ืœืื•ืจืš ื–ืžืŸ?
ืืœื• ืื™ื ืŸ ืฉืืœื•ืช ืงืœื•ืช ืขืจืš,
07:38
These are not trivial questions,
162
458039
2212
07:40
and there are scientists that are trying to solve them,
163
460275
2640
ื•ื™ืฉ ืžื“ืขื ื™ื ืฉืžื ืกื™ื ืœืคืชื•ืจ ืื•ืชืŸ,
07:42
and they will eventually, hopefully, be solved.
164
462939
2286
ื•ืื ื™ ืžืงื•ื•ื” ืฉื”ืŸ ื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ ื™ื™ืคืชืจื•
07:45
But it ain't plug-and-play, not by a long shot.
165
465249
3634
ืื‘ืœ ื–ื• ืื™ื ื” ื˜ื›ื ื•ืœื•ื’ื™ื” ืฉืœ "ื—ื‘ืจ-ื•ืฉื—ืง," ืžืžืฉ ืœื.
07:48
So: Is it really easy?
166
468907
1759
ืื– ื”ืื ื–ื” ื‘ืืžืช ืงืœ ืœื™ื™ืฉื•ื?
ื˜ื•ื‘, ืื ืชืฉืงื™ืขื• ืขื‘ื•ื“ื” ืฉืœ ืฉื ื™ื ืื—ื“ื•ืช, ื‘ืžืขืจื›ืช ื”ืกืคืฆื™ืคื™ืช ืฉืœื›ื
07:51
Well, if you spend a few years working it out in your particular system,
167
471032
4333
07:55
yes, it is.
168
475389
1425
ื›ืŸ, ื–ื” ืงืœ.
07:57
Now the other thing is,
169
477426
2084
ืขื›ืฉื™ื•, ื”ื“ื‘ืจ ื”ืฉื ื™ ื”ื•ื,
07:59
we don't really know that much about how to make a particular thing happen
170
479534
6359
ืื ื—ื ื• ืœื ื‘ืืžืช ื™ื•ื“ืขื™ื ื”ืจื‘ื” ื›ื™ืฆื“ ืœื’ืจื•ื ืœื“ื‘ืจ ืžืกื•ื™ื ืœืงืจื•ืช
08:05
by changing particular spots in the genome.
171
485917
2905
ืขืœ ื™ื“ื™ ืฉื™ื ื•ื™ ื ืงื•ื“ื•ืช ืžืกื•ื™ืžื•ืช ื‘ื’ื ื•ื.
08:09
We're a long way away from figuring out
172
489306
2167
ืื ื—ื ื• ืจื—ื•ืงื™ื ืžืื•ื“ ืžืœื”ื‘ื™ืŸ
08:11
how to give a pig wings, for example.
173
491497
2369
ืื™ืš ืœืชืช ืœื—ื–ื™ืจ ื›ื ืคื™ื™ื, ืœืžืฉืœ.
08:14
Or even an extra leg -- I'd settle for an extra leg.
174
494364
2864
ืื• ืืคื™ืœื• ืจื’ืœ ื ื•ืกืคืช - ื”ื™ื™ืชื™ ืžืกืชืคืงืช ื‘ืจื’ืœ ื ื•ืกืคืช.
08:17
That would be kind of cool, right?
175
497252
1646
ื–ื” ื™ื”ื™ื” ื“ื™ ืžื’ื ื™ื‘, ื ื›ื•ืŸ?
08:18
But what is happening
176
498922
1536
ืื‘ืœ ืžื” ืฉืงื•ืจื” ื–ื”
08:20
is that CRISPR is being used by thousands and thousands of scientists
177
500482
4350
ืฉืงืจื™ืกืคืจ ื ืžืฆื ื‘ืฉื™ืžื•ืฉ ืขืœ ื™ื“ื™ ืืœืคื™ ืืœืคื™ื ืฉืœ ืžื“ืขื ื™ื
08:24
to do really, really important work,
178
504856
2372
ื›ื“ื™ ื‘ืืžืช ืœืขืฉื•ืช ืขื‘ื•ื“ื” ืžืžืฉ ื—ืฉื•ื‘ื”,
08:27
like making better models of diseases in animals, for example,
179
507252
5444
ื›ืžื• ืœืžืฉืœ ืœื™ืฆื•ืจ ืžื•ื“ืœื™ื ื˜ื•ื‘ื™ื ื™ื•ืชืจ ืฉืœ ืžื—ืœื•ืช ื‘ื‘ืขืœื™ ื—ื™ื™ื,
08:32
or for taking pathways that produce valuable chemicals
180
512720
4982
ืื• ืœืงื—ืช ื ืชื™ื‘ื™ื ืฉืžื™ื™ืฆืจื™ื ื›ื™ืžื™ืงืœื™ื ื™ืงืจื™ ืขืจืš
08:37
and getting them into industrial production in fermentation vats,
181
517726
3882
ื•ืœื”ื›ื ื™ืก ืื•ืชื ืœื™ื™ืฆื•ืจ ืชืขืฉื™ื™ืชื™ ื‘ื—ื‘ื™ื•ืช ื”ืชืกืกื”,
ืื• ืืคื™ืœื• ืœืขืฉื•ืช ืžื—ืงืจ ืžืžืฉ ื‘ืกื™ืกื™ ืขืœ ืžื” ืฉื”ื’ื ื™ื ืขื•ืฉื™ื.
08:42
or even doing really basic research on what genes do.
182
522021
3461
ื–ื” ื”ืกื™ืคื•ืจ ืฉืœ ืงืจื™ืกืคืจ ืฉืขืœื™ื ื• ืœืกืคืจ,
08:46
This is the story of CRISPR we should be telling,
183
526022
2929
08:48
and I don't like it that the flashier aspects of it
184
528975
3464
ื•ืื™ื ื ื™ ืื•ื”ื‘ืช ืืช ื–ื” ืฉื”ื”ื™ื‘ื˜ื™ื ื”ืจืื•ื•ืชื ื™ื™ื ืฉืœ ื–ื”
08:52
are drowning all of this out.
185
532463
1756
ืžื˜ื‘ื™ืขื™ื ืืช ื›ืœ ื–ื” ืžื˜ื”.
08:54
Lots of scientists did a lot of work to make CRISPR happen,
186
534243
4574
ื”ืจื‘ื” ืžื“ืขื ื™ื ืขืฉื• ืขื‘ื•ื“ื” ืจื‘ื” ื›ื“ื™ ืœื’ืจื•ื ืœืงืจื™ืกืคืจ ืœืงืจื•ืช,
08:58
and what's interesting to me
187
538841
1619
ื•ืžื” ืฉืžืขื ื™ื™ืŸ ื‘ื–ื” ื‘ืฉื‘ื™ืœื™ ื”ื•ื
09:00
is that these scientists are being supported by our society.
188
540484
4510
ืฉืžื“ืขื ื™ื ืืœื” ื ืชืžื›ื™ื ืขืœ ื™ื“ื™ ื”ื—ื‘ืจื” ืฉืœื ื•.
09:05
Think about it.
189
545423
1159
ื—ื™ืฉื‘ื• ืขืœ ื›ืš.
09:06
We've got an infrastructure that allows a certain percentage of people
190
546606
4019
ื™ืฉ ืœื ื• ืชืฉืชื™ืช ืฉืžืืคืฉืจืช ืœืื—ื•ื– ืžืกื•ื™ื ืฉืœ ืื ืฉื™ื
09:10
to spend all their time doing research.
191
550983
3309
ืœื”ืฉืงื™ืข ืืช ื›ืœ ื–ืžื ื ื‘ืžื—ืงืจ.
09:14
That makes us all the inventors of CRISPR,
192
554984
3371
ืฉื”ื•ืคืš ืืช ื›ื•ืœื ื• ืœืžืžืฆื™ืื™ื ืฉืœ ืงืจื™ืกืคืจ,
09:18
and I would say that makes us all the shepherds of CRISPR.
193
558998
4468
ื•ื”ื™ื™ืชื™ ืื•ืžืจืช ืฉื–ื” ื”ื•ืคืš ืืช ื›ื•ืœื ื• ืœืžื•ื‘ื™ืœื™ื ืฉืœ ืงืจื™ืกืคืจ.
09:23
We all have a responsibility.
194
563490
1807
ืœื›ื•ืœื ื• ื™ืฉ ืื—ืจื™ื•ืช.
09:25
So I would urge you to really learn about these types of technologies,
195
565749
3956
ืื– ืื ื™ ืžืื™ืฆื” ื‘ื›ื, ืžืžืฉ ืœืœืžื•ื“ ืขืœ ืกื•ื’ื™ื ืืœื” ืฉืœ ื˜ื›ื ื•ืœื•ื’ื™ื•ืช,
ื›ื™, ื‘ืืžืช, ืจืง ื‘ื“ืจืš ื–ื•
09:30
because, really, only in that way
196
570010
2019
09:32
are we going to be able to guide the development of these technologies,
197
572415
4352
ื ื”ื™ื” ืžืกื•ื’ืœื™ื ืœื”ื•ื‘ื™ืœ ืืช ื”ืคื™ืชื•ื— ืฉืœ ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ืืœื”,
09:36
the use of these technologies
198
576791
1932
ืืช ื”ืฉื™ืžื•ืฉ ื‘ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ืืœื”
09:38
and make sure that, in the end, it's a positive outcome --
199
578747
3755
ื•ืœื•ื•ื“ื ืฉื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ, ื”ืชื•ืฆืื” ืชื”ื™ื” ื—ื™ื•ื‘ื™ืช -
ื”ืŸ ื‘ืขื‘ื•ืจ ื”ืคืœื ื˜ื” ื•ื”ืŸ ืขื‘ื•ืจื ื•.
09:43
for both the planet and for us.
200
583034
3132
09:46
Thanks.
201
586698
1192
ืชื•ื“ื”,
09:47
(Applause)
202
587914
3902
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7