Deb Roy: The birth of a word

411,325 views ・ 2011-03-14

TED


请双击下面的英文字幕来播放视频。

翻译人员: Jenny Yang 校对人员: Bear Jin
00:15
Imagine if you could record your life --
0
15260
4000
想象一下如果你能记录你的生活--
00:19
everything you said, everything you did,
1
19260
3000
你说的一切,做的一切
00:22
available in a perfect memory store at your fingertips,
2
22260
3000
就存储在一个完美的你触手可及的记忆库
00:25
so you could go back
3
25260
2000
你可以回到过去
00:27
and find memorable moments and relive them,
4
27260
3000
找寻那难忘一刻回顾这一切
00:30
or sift through traces of time
5
30260
3000
或者追寻时间的轨迹
00:33
and discover patterns in your own life
6
33260
2000
发现在属于你自己的生活模式
00:35
that previously had gone undiscovered.
7
35260
3000
那种以前没有发现的规律
00:38
Well that's exactly the journey
8
38260
2000
而那就是我们全家
00:40
that my family began
9
40260
2000
5年半前开始的
00:42
five and a half years ago.
10
42260
2000
家庭旅程
00:44
This is my wife and collaborator, Rupal.
11
44260
3000
这是我妻子和合作者, 鲁泊尔
00:47
And on this day, at this moment,
12
47260
2000
在这一天,从这一刻
00:49
we walked into the house with our first child,
13
49260
2000
我们带着我们第一个孩子走进了这个家
00:51
our beautiful baby boy.
14
51260
2000
我们美丽的儿子
00:53
And we walked into a house
15
53260
3000
我们走进了一个
00:56
with a very special home video recording system.
16
56260
4000
安装了特殊的家庭摄像系统的家
01:07
(Video) Man: Okay.
17
67260
2000
(录像) 男人:好
01:10
Deb Roy: This moment
18
70260
1000
戴·罗伊: 这一刻
01:11
and thousands of other moments special for us
19
71260
3000
和其他千万的我们的特殊时刻
01:14
were captured in our home
20
74260
2000
在我们家中被捕捉下来
01:16
because in every room in the house,
21
76260
2000
因为这个房子的每个屋子
01:18
if you looked up, you'd see a camera and a microphone,
22
78260
3000
如果你仰头看,你都可以看见一个摄像机和话筒
01:21
and if you looked down,
23
81260
2000
而你望下看
01:23
you'd get this bird's-eye view of the room.
24
83260
2000
你可以俯视整个房间
01:25
Here's our living room,
25
85260
3000
这是我们的客厅
01:28
the baby bedroom,
26
88260
3000
这是婴儿的房间
01:31
kitchen, dining room
27
91260
2000
厨房,餐厅
01:33
and the rest of the house.
28
93260
2000
这是其余的地方
01:35
And all of these fed into a disc array
29
95260
3000
这些都被装进了一排
01:38
that was designed for a continuous capture.
30
98260
3000
为持续拍摄设计的光盘中
01:41
So here we are flying through a day in our home
31
101260
3000
这里我们飞快地经历一遍我们家庭的一天
01:44
as we move from sunlit morning
32
104260
3000
我们从太阳初升的早晨
01:47
through incandescent evening
33
107260
2000
到亮起电灯的夜晚
01:49
and, finally, lights out for the day.
34
109260
3000
最后, 熄灯就寝
01:53
Over the course of three years,
35
113260
3000
历经3年的时间
01:56
we recorded eight to 10 hours a day,
36
116260
2000
我们每天记录8到10个小时
01:58
amassing roughly a quarter-million hours
37
118260
3000
积累了大约25万小时
02:01
of multi-track audio and video.
38
121260
3000
的多轨音频和视频资料
02:04
So you're looking at a piece of what is by far
39
124260
2000
所以你现在看到的是有史以来
02:06
the largest home video collection ever made.
40
126260
2000
最大的家庭录相集
02:08
(Laughter)
41
128260
3000
(笑声)
02:11
And what this data represents
42
131260
2000
从个人的角度而言,
02:13
for our family at a personal level,
43
133260
4000
这些代表了我们家庭的资料
02:17
the impact has already been immense,
44
137260
2000
已经产生了巨大的影响
02:19
and we're still learning its value.
45
139260
3000
我们还在继续学习其中的价值
02:22
Countless moments
46
142260
2000
无数的时刻
02:24
of unsolicited natural moments, not posed moments,
47
144260
3000
无预兆的,不造作的自然时刻
02:27
are captured there,
48
147260
2000
都记录在这里
02:29
and we're starting to learn how to discover them and find them.
49
149260
3000
我们正开始学习怎样发现和寻找它们
02:32
But there's also a scientific reason that drove this project,
50
152260
3000
而促使这个项目还有一个科学的原因
02:35
which was to use this natural longitudinal data
51
155260
4000
便是用这些纵向记录的数据
02:39
to understand the process
52
159260
2000
去了解一个
02:41
of how a child learns language --
53
161260
2000
孩子是怎样学习语言的--
02:43
that child being my son.
54
163260
2000
这个孩子是我的儿子
02:45
And so with many privacy provisions put in place
55
165260
4000
所以在设置了隐私保护的条件下
02:49
to protect everyone who was recorded in the data,
56
169260
3000
每个被记录到的人物都得到保护
02:52
we made elements of the data available
57
172260
3000
我们对我们信任的麻省理工研究团队
02:55
to my trusted research team at MIT
58
175260
3000
公开了部分数据
02:58
so we could start teasing apart patterns
59
178260
3000
因此我们可以从这个巨大的
03:01
in this massive data set,
60
181260
3000
数据资料中排除出一些多余的模式
03:04
trying to understand the influence of social environments
61
184260
3000
以此来试图理解社会环境
03:07
on language acquisition.
62
187260
2000
对语言形成的影响
03:09
So we're looking here
63
189260
2000
所以我们在这里看到
03:11
at one of the first things we started to do.
64
191260
2000
我们所做的第一件事情
03:13
This is my wife and I cooking breakfast in the kitchen,
65
193260
4000
这是我的妻子和我在厨房做早餐
03:17
and as we move through space and through time,
66
197260
3000
随着时间的流逝地点的变化
03:20
a very everyday pattern of life in the kitchen.
67
200260
3000
这是厨房里日常生活的轨迹
03:23
In order to convert
68
203260
2000
为了转换
03:25
this opaque, 90,000 hours of video
69
205260
3000
这个9万小时的录相
03:28
into something that we could start to see,
70
208260
2000
将它变成我们能识辨的东西
03:30
we use motion analysis to pull out,
71
210260
2000
我们用行动分析来抽取
03:32
as we move through space and through time,
72
212260
2000
我们在时空的移动
03:34
what we call space-time worms.
73
214260
3000
我们称之为 时空虫
03:37
And this has become part of our toolkit
74
217260
3000
这个成为了我们工具的一部分
03:40
for being able to look and see
75
220260
3000
用来观察和辨识
03:43
where the activities are in the data,
76
223260
2000
数据中的各种活动
03:45
and with it, trace the pattern of, in particular,
77
225260
3000
再利用这个办法,去追踪模型,特别是
03:48
where my son moved throughout the home,
78
228260
2000
我儿子在家去过哪些地方
03:50
so that we could focus our transcription efforts,
79
230260
3000
使得我们能够聚焦解读
03:53
all of the speech environment around my son --
80
233260
3000
我儿子学习语言的语境
03:56
all of the words that he heard from myself, my wife, our nanny,
81
236260
3000
他从我,我妻子和保姆那里听到的所有词汇
03:59
and over time, the words he began to produce.
82
239260
3000
渐渐的,他开始使用的词汇
04:02
So with that technology and that data
83
242260
3000
因此通过技术和数据
04:05
and the ability to, with machine assistance,
84
245260
2000
在机器的协助下
04:07
transcribe speech,
85
247260
2000
录制下对话
04:09
we've now transcribed
86
249260
2000
我们现在已经完成了
04:11
well over seven million words of our home transcripts.
87
251260
3000
超过7万字的家庭言谈的记录
04:14
And with that, let me take you now
88
254260
2000
现在,让我带你们
04:16
for a first tour into the data.
89
256260
3000
进入这些数据的第一个旅行
04:19
So you've all, I'm sure,
90
259260
2000
我相信,你们大家都
04:21
seen time-lapse videos
91
261260
2000
看过时间推移的影片
04:23
where a flower will blossom as you accelerate time.
92
263260
3000
加快时间的推移你可以看见花朵盛开
04:26
I'd like you to now experience
93
266260
2000
现在我让你们看看
04:28
the blossoming of a speech form.
94
268260
2000
语言的花朵是怎样绽放的
04:30
My son, soon after his first birthday,
95
270260
2000
我的儿子,在他的第一个生日后
04:32
would say "gaga" to mean water.
96
272260
3000
会说“gaga“来指水
04:35
And over the course of the next half-year,
97
275260
3000
在这之后的半年里
04:38
he slowly learned to approximate
98
278260
2000
他渐渐地学会了
04:40
the proper adult form, "water."
99
280260
3000
成年人说的正确的“水”
04:43
So we're going to cruise through half a year
100
283260
2000
我们现在来用40秒时间
04:45
in about 40 seconds.
101
285260
2000
快速浏览这半年
04:47
No video here,
102
287260
2000
没有影象
04:49
so you can focus on the sound, the acoustics,
103
289260
3000
所以你们可以专注听声音,声学上的
04:52
of a new kind of trajectory:
104
292260
2000
这种新的轨迹变化
04:54
gaga to water.
105
294260
2000
从“Gaga"到"Water"
04:56
(Audio) Baby: Gagagagagaga
106
296260
12000
(声音)婴儿:Gagagagagaga
05:08
Gaga gaga gaga
107
308260
4000
Gaga gaga gaga
05:12
guga guga guga
108
312260
5000
guga guga guga
05:17
wada gaga gaga guga gaga
109
317260
5000
wada gaga gaga guga gaga
05:22
wader guga guga
110
322260
4000
wader guga guga
05:26
water water water
111
326260
3000
water water water
05:29
water water water
112
329260
6000
water water water
05:35
water water
113
335260
4000
water water
05:39
water.
114
339260
2000
water
05:41
DR: He sure nailed it, didn't he.
115
341260
2000
戴·罗伊: 他学会了啊,不是吗?
05:43
(Applause)
116
343260
7000
(掌声)
05:50
So he didn't just learn water.
117
350260
2000
而他并不只是学会了水
05:52
Over the course of the 24 months,
118
352260
2000
在24个月里
05:54
the first two years that we really focused on,
119
354260
3000
在最初的2年里,这才是我真正关注的
05:57
this is a map of every word he learned in chronological order.
120
357260
4000
这里有一张图按照时序列出了他所学到的词汇
06:01
And because we have full transcripts,
121
361260
3000
因为我们有全部的记录
06:04
we've identified each of the 503 words
122
364260
2000
我们为他到两岁前学会的503个单词
06:06
that he learned to produce by his second birthday.
123
366260
2000
都做了辨认和分析
06:08
He was an early talker.
124
368260
2000
他算是说话早的
06:10
And so we started to analyze why.
125
370260
3000
所以我们开始分析其原因
06:13
Why were certain words born before others?
126
373260
3000
为什么有些词他学得早
06:16
This is one of the first results
127
376260
2000
这是其中的一个研究结果
06:18
that came out of our study a little over a year ago
128
378260
2000
是一年多前出来的
06:20
that really surprised us.
129
380260
2000
让我们很吃惊
06:22
The way to interpret this apparently simple graph
130
382260
3000
解读这张看似简单的图表的方式
06:25
is, on the vertical is an indication
131
385260
2000
是横坐标表示
06:27
of how complex caregiver utterances are
132
387260
3000
照顾者的话语复杂程度
06:30
based on the length of utterances.
133
390260
2000
基于话语的长度
06:32
And the [horizontal] axis is time.
134
392260
3000
纵坐标代表了时间(演讲者口误)
06:35
And all of the data,
135
395260
2000
所有的数据
06:37
we aligned based on the following idea:
136
397260
3000
我们都用下述的方法排列:
06:40
Every time my son would learn a word,
137
400260
3000
每次我们发现儿子学了一个新的词
06:43
we would trace back and look at all of the language he heard
138
403260
3000
我们就会回溯他听过的这个词的
06:46
that contained that word.
139
406260
2000
所有的语言记录
06:48
And we would plot the relative length of the utterances.
140
408260
4000
然后我们绘制这些语言的长度
06:52
And what we found was this curious phenomena,
141
412260
3000
我们发现了一个奇特的现象
06:55
that caregiver speech would systematically dip to a minimum,
142
415260
3000
照顾者的讲话会系统地将语言简化
06:58
making language as simple as possible,
143
418260
3000
简化到最简单的程度
07:01
and then slowly ascend back up in complexity.
144
421260
3000
然后渐渐地回升到更复杂的句子
07:04
And the amazing thing was
145
424260
2000
而惊奇的事是
07:06
that bounce, that dip,
146
426260
2000
这种回升和下降
07:08
lined up almost precisely
147
428260
2000
正好精确的
07:10
with when each word was born --
148
430260
2000
吻合了每个词的诞生过程--
07:12
word after word, systematically.
149
432260
2000
一个词接一个词,很有系统规律
07:14
So it appears that all three primary caregivers --
150
434260
2000
似乎三个主要的照顾他的人
07:16
myself, my wife and our nanny --
151
436260
3000
我,我妻子,和我们的保姆--
07:19
were systematically and, I would think, subconsciously
152
439260
3000
都是有系统的,我想,也是下意识的
07:22
restructuring our language
153
442260
2000
重新构建我们的用语
07:24
to meet him at the birth of a word
154
444260
3000
去迎合他的新的词汇的诞生
07:27
and bring him gently into more complex language.
155
447260
4000
带他渐渐学习更为复杂的语言
07:31
And the implications of this -- there are many,
156
451260
2000
这其中蕴含的--有很多意义
07:33
but one I just want to point out,
157
453260
2000
但是我想指出的其中的一个
07:35
is that there must be amazing feedback loops.
158
455260
3000
就是这个过程中必定包涵了一个惊人的反馈循环
07:38
Of course, my son is learning
159
458260
2000
当然,我的儿子是
07:40
from his linguistic environment,
160
460260
2000
在他的语言环境中学习
07:42
but the environment is learning from him.
161
462260
3000
但是那个环境也在向他学习
07:45
That environment, people, are in these tight feedback loops
162
465260
3000
环境,人,都在这个紧密的反馈循环中
07:48
and creating a kind of scaffolding
163
468260
2000
并建立了一种类似脚手架的互相支撑关系
07:50
that has not been noticed until now.
164
470260
3000
这是之前没有被注意到的
07:54
But that's looking at the speech context.
165
474260
2000
这是关注讲话的语境来看
07:56
What about the visual context?
166
476260
2000
若是从视觉环境来看呢?
07:58
We're not looking at --
167
478260
2000
我们现在看到的是
08:00
think of this as a dollhouse cutaway of our house.
168
480260
2000
想象这是用我们家做样板做的洋娃娃屋
08:02
We've taken those circular fish-eye lens cameras,
169
482260
3000
我们使用环状鱼眼睛摄像机
08:05
and we've done some optical correction,
170
485260
2000
我们还做了些光学修正
08:07
and then we can bring it into three-dimensional life.
171
487260
4000
然后我们就可以把它做成三维录像
08:11
So welcome to my home.
172
491260
2000
欢迎到我家来
08:13
This is a moment,
173
493260
2000
这是其中的一刻
08:15
one moment captured across multiple cameras.
174
495260
3000
通过几个录相机拍下的同一时刻
08:18
The reason we did this is to create the ultimate memory machine,
175
498260
3000
我们这样做是为了创造出终极的记忆机器
08:21
where you can go back and interactively fly around
176
501260
3000
你可以用互动的方式前后快速搜寻
08:24
and then breathe video-life into this system.
177
504260
3000
然后用这系统体验录像生活
08:27
What I'm going to do
178
507260
2000
我要做的是
08:29
is give you an accelerated view of 30 minutes,
179
509260
3000
是给你们看一段压缩了30分钟的速放录像
08:32
again, of just life in the living room.
180
512260
2000
这次也是在客厅
08:34
That's me and my son on the floor.
181
514260
3000
这是我和我儿子在地上
08:37
And there's video analytics
182
517260
2000
这是影片分析
08:39
that are tracking our movements.
183
519260
2000
跟踪我们的移动
08:41
My son is leaving red ink. I am leaving green ink.
184
521260
3000
我儿子的留下了红色的轨迹,我的是绿色的
08:44
We're now on the couch,
185
524260
2000
我们在沙发上
08:46
looking out through the window at cars passing by.
186
526260
3000
看着窗外汽车开过
08:49
And finally, my son playing in a walking toy by himself.
187
529260
3000
最后,我儿子自己玩他的学步玩具
08:52
Now we freeze the action, 30 minutes,
188
532260
3000
现在定格,30分钟
08:55
we turn time into the vertical axis,
189
535260
2000
我们将时间放到垂直轴上
08:57
and we open up for a view
190
537260
2000
然后我们打开
08:59
of these interaction traces we've just left behind.
191
539260
3000
刚才留下的互动的轨迹
09:02
And we see these amazing structures --
192
542260
3000
我们看见令人惊讶的结构
09:05
these little knots of two colors of thread
193
545260
3000
这是两种颜色的小结点
09:08
we call "social hot spots."
194
548260
2000
我们把它称为社交热点
09:10
The spiral thread
195
550260
2000
那些螺旋线
09:12
we call a "solo hot spot."
196
552260
2000
我们称为单一热点
09:14
And we think that these affect the way language is learned.
197
554260
3000
我们觉得这个影响语言学习
09:17
What we'd like to do
198
557260
2000
我们要做的是
09:19
is start understanding
199
559260
2000
是开始去了解
09:21
the interaction between these patterns
200
561260
2000
这些模式与我儿子接触的
09:23
and the language that my son is exposed to
201
563260
2000
语言间的关系
09:25
to see if we can predict
202
565260
2000
看我们是否能预测
09:27
how the structure of when words are heard
203
567260
2000
什么时候听到怎样的单词结构
09:29
affects when they're learned --
204
569260
2000
会影响到什么时候学会字词
09:31
so in other words, the relationship
205
571260
2000
换句话说,就是
09:33
between words and what they're about in the world.
206
573260
4000
词汇和他们所表示的世界的关系
09:37
So here's how we're approaching this.
207
577260
2000
这是我们的解读方法
09:39
In this video,
208
579260
2000
在这个录像中
09:41
again, my son is being traced out.
209
581260
2000
同样是跟踪我的儿子
09:43
He's leaving red ink behind.
210
583260
2000
他留下了红色的轨迹
09:45
And there's our nanny by the door.
211
585260
2000
我们的保姆在门边
09:47
(Video) Nanny: You want water? (Baby: Aaaa.)
212
587260
3000
(录像)保姆:你要喝水妈? (宝宝:Aaaa)
09:50
Nanny: All right. (Baby: Aaaa.)
213
590260
3000
保姆:好。(宝宝:Aaaa)
09:53
DR: She offers water,
214
593260
2000
戴·罗伊:她给他水
09:55
and off go the two worms
215
595260
2000
然后两条时空虫
09:57
over to the kitchen to get water.
216
597260
2000
开始移动到厨房拿水
09:59
And what we've done is use the word "water"
217
599260
2000
同时我们所做的就和“水”这个词
10:01
to tag that moment, that bit of activity.
218
601260
2000
联系上了,随着一些动作
10:03
And now we take the power of data
219
603260
2000
然后我们用数据的力量
10:05
and take every time my son
220
605260
3000
每次我儿子
10:08
ever heard the word water
221
608260
2000
听到水这个字
10:10
and the context he saw it in,
222
610260
2000
以及他看见的情景
10:12
and we use it to penetrate through the video
223
612260
3000
我们利用这些来分析整个影片
10:15
and find every activity trace
224
615260
3000
找到每个跟
10:18
that co-occurred with an instance of water.
225
618260
3000
“水”字出现时发生的活动
10:21
And what this data leaves in its wake
226
621260
2000
这个数据勾勒出了
10:23
is a landscape.
227
623260
2000
这么一幅风景
10:25
We call these wordscapes.
228
625260
2000
我们把这个叫做 词景
10:27
This is the wordscape for the word water,
229
627260
2000
这是水字的词景
10:29
and you can see most of the action is in the kitchen.
230
629260
2000
你可以看见大多数行动是在厨房
10:31
That's where those big peaks are over to the left.
231
631260
3000
就是左边的这些高峰
10:34
And just for contrast, we can do this with any word.
232
634260
3000
相对,你也可以为其他词汇勾勒词景
10:37
We can take the word "bye"
233
637260
2000
比如“goog bye”(再见)里的
10:39
as in "good bye."
234
639260
2000
”bye"字
10:41
And we're now zoomed in over the entrance to the house.
235
641260
2000
我们放大到房子大门口附近
10:43
And we look, and we find, as you would expect,
236
643260
3000
我们看到,我们发现,你也会想到
10:46
a contrast in the landscape
237
646260
2000
一幅相对的景象
10:48
where the word "bye" occurs much more in a structured way.
238
648260
3000
在那儿你看到“bye“高频率出现的结构
10:51
So we're using these structures
239
651260
2000
我们用这些结构
10:53
to start predicting
240
653260
2000
开始预言
10:55
the order of language acquisition,
241
655260
3000
学会语言的顺序
10:58
and that's ongoing work now.
242
658260
2000
这是在持续进行的工作
11:00
In my lab, which we're peering into now, at MIT --
243
660260
3000
在我麻省理工学院的研究室-就是现在看到
11:03
this is at the media lab.
244
663260
2000
那是在媒体实验室里
11:05
This has become my favorite way
245
665260
2000
这成了我最喜欢的空间
11:07
of videographing just about any space.
246
667260
2000
视频制图方法
11:09
Three of the key people in this project,
247
669260
2000
这个项目的关键人物都在
11:11
Philip DeCamp, Rony Kubat and Brandon Roy are pictured here.
248
671260
3000
就是图片里的菲利普·迪坎普, 罗尼·库巴特和布兰登·罗伊
11:14
Philip has been a close collaborator
249
674260
2000
菲利普是一个密切的合作者
11:16
on all the visualizations you're seeing.
250
676260
2000
你们看到的视觉化功能就是他负责的
11:18
And Michael Fleischman
251
678260
3000
还有麦克尔·菲莱舍曼
11:21
was another Ph.D. student in my lab
252
681260
2000
是我实验室的另一个博士生
11:23
who worked with me on this home video analysis,
253
683260
3000
和我一起做了家庭视频的分析
11:26
and he made the following observation:
254
686260
3000
是他发表了以下的观点:
11:29
that "just the way that we're analyzing
255
689260
2000
“我们分析
11:31
how language connects to events
256
691260
3000
语言如何于事件相关
11:34
which provide common ground for language,
257
694260
2000
这是语言的共同的基础
11:36
that same idea we can take out of your home, Deb,
258
696260
4000
我们可以把同样的思路带出你的家,戴
11:40
and we can apply it to the world of public media."
259
700260
3000
我们可以把它用到公共媒体上”
11:43
And so our effort took an unexpected turn.
260
703260
3000
所以我们的研究有了个意想不到的转折
11:46
Think of mass media
261
706260
2000
想到大众媒体
11:48
as providing common ground
262
708260
2000
提供共同的基础
11:50
and you have the recipe
263
710260
2000
你就可以把我们的方法
11:52
for taking this idea to a whole new place.
264
712260
3000
运用到一个崭新的地方
11:55
We've started analyzing television content
265
715260
3000
我们开始分析电视内容
11:58
using the same principles --
266
718260
2000
用同样的原则--
12:00
analyzing event structure of a TV signal --
267
720260
3000
分析一个电视信号的事件结构--
12:03
episodes of shows,
268
723260
2000
电视剧集
12:05
commercials,
269
725260
2000
广告
12:07
all of the components that make up the event structure.
270
727260
3000
所有的组成事件结构的成分
12:10
And we're now, with satellite dishes, pulling and analyzing
271
730260
3000
我们现在, 通过卫星电视,抽出分析了
12:13
a good part of all the TV being watched in the United States.
272
733260
3000
在美国高收视率的电视节目
12:16
And you don't have to now go and instrument living rooms with microphones
273
736260
3000
你不再需要把麦克风装在起居室里来
12:19
to get people's conversations,
274
739260
2000
记录人们的对话
12:21
you just tune into publicly available social media feeds.
275
741260
3000
你只要去听公开的社交媒体讯息就可以了
12:24
So we're pulling in
276
744260
2000
我们每个月抽出
12:26
about three billion comments a month,
277
746260
2000
大概30亿个评论
12:28
and then the magic happens.
278
748260
2000
奇迹发生了
12:30
You have the event structure,
279
750260
2000
这中间可以找到事件结构
12:32
the common ground that the words are about,
280
752260
2000
这些词汇的共同基础
12:34
coming out of the television feeds;
281
754260
3000
那些从这次电视讯息里透露出的反馈
12:37
you've got the conversations
282
757260
2000
你得到有关这些
12:39
that are about those topics;
283
759260
2000
话题的对话
12:41
and through semantic analysis --
284
761260
3000
通过语意分析
12:44
and this is actually real data you're looking at
285
764260
2000
你们看到的这个是根据我们的数据处理过后
12:46
from our data processing --
286
766260
2000
的真实的数据结果--
12:48
each yellow line is showing a link being made
287
768260
3000
每条黄线显示一个链接
12:51
between a comment in the wild
288
771260
3000
连接着外界的评论
12:54
and a piece of event structure coming out of the television signal.
289
774260
3000
和电视信号发出的事件结构间的关系
12:57
And the same idea now
290
777260
2000
这都是用同样的思路
12:59
can be built up.
291
779260
2000
构建起来的
13:01
And we get this wordscape,
292
781260
2000
我们得到了这个词汇背景
13:03
except now words are not assembled in my living room.
293
783260
3000
不过现在词汇不是从我的客厅里来的
13:06
Instead, the context, the common ground activities,
294
786260
4000
取而代之的情境,共同基础活动
13:10
are the content on television that's driving the conversations.
295
790260
3000
是电视内容带动的对话
13:13
And what we're seeing here, these skyscrapers now,
296
793260
3000
我们现在看到的这些高耸的结构
13:16
are commentary
297
796260
2000
都是电视评论
13:18
that are linked to content on television.
298
798260
2000
它们跟电视上播放的内容联系着
13:20
Same concept,
299
800260
2000
同样的概念
13:22
but looking at communication dynamics
300
802260
2000
但是你们看见的是它在不同的领域
13:24
in a very different sphere.
301
804260
2000
展现的交流动态
13:26
And so fundamentally, rather than, for example,
302
806260
2000
从根本上,而不是,比如
13:28
measuring content based on how many people are watching,
303
808260
3000
根据收视率衡量内容
13:31
this gives us the basic data
304
811260
2000
这个给了我们观察这些
13:33
for looking at engagement properties of content.
305
813260
3000
内容参与性的最基本的资料
13:36
And just like we can look at feedback cycles
306
816260
3000
就跟我们可以看见家里的
13:39
and dynamics in a family,
307
819260
3000
反馈循环和互动一样
13:42
we can now open up the same concepts
308
822260
3000
我们现在可以利用同样的构想
13:45
and look at much larger groups of people.
309
825260
3000
来观察更大的群体
13:48
This is a subset of data from our database --
310
828260
3000
这是我们资料库里的一个子集
13:51
just 50,000 out of several million --
311
831260
3000
只是几百万信息中的5万条
13:54
and the social graph that connects them
312
834260
2000
社交图是和公开资缘
13:56
through publicly available sources.
313
836260
3000
来自于对大众公开的来源
13:59
And if you put them on one plain,
314
839260
2000
如果你把它们放到平面上
14:01
a second plain is where the content lives.
315
841260
3000
第二个平面是内容活跃的地方
14:04
So we have the programs
316
844260
3000
于是我们有了节目
14:07
and the sporting events
317
847260
2000
体育活动
14:09
and the commercials,
318
849260
2000
广告
14:11
and all of the link structures that tie them together
319
851260
2000
所有的链接结构将它们连在一起
14:13
make a content graph.
320
853260
2000
形成了内容图表
14:15
And then the important third dimension.
321
855260
4000
然后是重要的第三个面向
14:19
Each of the links that you're seeing rendered here
322
859260
2000
大家在这里看到的每个连接
14:21
is an actual connection made
323
861260
2000
是一段内容和有些人评论
14:23
between something someone said
324
863260
3000
和有些人评论
14:26
and a piece of content.
325
866260
2000
间构成的真实联系
14:28
And there are, again, now tens of millions of these links
326
868260
3000
这里的几千万条链
14:31
that give us the connective tissue of social graphs
327
871260
3000
让我们看见了社交图表中的关联组织
14:34
and how they relate to content.
328
874260
3000
和它们跟内容的关系
14:37
And we can now start to probe the structure
329
877260
2000
于是我们可以用有趣的办法来
14:39
in interesting ways.
330
879260
2000
探索这个结构
14:41
So if we, for example, trace the path
331
881260
3000
所以,比如,我们跟踪
14:44
of one piece of content
332
884260
2000
某个内容的发展途经
14:46
that drives someone to comment on it,
333
886260
2000
这促使有人对此发表评论
14:48
and then we follow where that comment goes,
334
888260
3000
然后我们跟踪这些评论的去向
14:51
and then look at the entire social graph that becomes activated
335
891260
3000
然后观察整个活跃的社交图
14:54
and then trace back to see the relationship
336
894260
3000
然后又回头追踪查看那个社交图
14:57
between that social graph and content,
337
897260
2000
和内容之间的关系
14:59
a very interesting structure becomes visible.
338
899260
2000
于是显现出一个非常有趣的结构
15:01
We call this a co-viewing clique,
339
901260
2000
我们称之为 共视团体
15:03
a virtual living room if you will.
340
903260
3000
你可以把它当成一个虚拟的客厅
15:06
And there are fascinating dynamics at play.
341
906260
2000
这里头上演着引人注目的戏剧
15:08
It's not one way.
342
908260
2000
它不是单向的
15:10
A piece of content, an event, causes someone to talk.
343
910260
3000
一个内容,一个事件促使某人发表了意见
15:13
They talk to other people.
344
913260
2000
他们和其他人对话
15:15
That drives tune-in behavior back into mass media,
345
915260
3000
就驱动了大众传媒的收视行为
15:18
and you have these cycles
346
918260
2000
于是出现了这样的循环
15:20
that drive the overall behavior.
347
920260
2000
驱动了整体的收视行为
15:22
Another example -- very different --
348
922260
2000
另一个例子--情况很不同--
15:24
another actual person in our database --
349
924260
3000
我们的资料库里有一位人士--
15:27
and we're finding at least hundreds, if not thousands, of these.
350
927260
3000
其实我们可以找到成千上百个例子
15:30
We've given this person a name.
351
930260
2000
我们给这个人一个名字
15:32
This is a pro-amateur, or pro-am media critic
352
932260
3000
这是一个专业的媒体评论员
15:35
who has this high fan-out rate.
353
935260
3000
有很多粉丝
15:38
So a lot of people are following this person -- very influential --
354
938260
3000
很多人都追随他 -- 很有影响力--
15:41
and they have a propensity to talk about what's on TV.
355
941260
2000
他们很喜欢讨论电视上在播的东西
15:43
So this person is a key link
356
943260
3000
于是这个人就是一个关键的链接
15:46
in connecting mass media and social media together.
357
946260
3000
将大众媒体和社交媒体联系在了一起
15:49
One last example from this data:
358
949260
3000
这份资料的最后一个例子是:
15:52
Sometimes it's actually a piece of content that is special.
359
952260
3000
有时确实是一件特别的内容
15:55
So if we go and look at this piece of content,
360
955260
4000
如果我们回顾这个内容
15:59
President Obama's State of the Union address
361
959260
3000
几个星期前的欧巴马总统
16:02
from just a few weeks ago,
362
962260
2000
国情咨文演讲
16:04
and look at what we find in this same data set,
363
964260
3000
再来看看我们在这组资料中发现些什么
16:07
at the same scale,
364
967260
3000
用同样的尺度来衡量
16:10
the engagement properties of this piece of content
365
970260
2000
这个内容的可参与属性
16:12
are truly remarkable.
366
972260
2000
真的是很神奇的
16:14
A nation exploding in conversation
367
974260
2000
整个国家顿时同步
16:16
in real time
368
976260
2000
爆发了谈话
16:18
in response to what's on the broadcast.
369
978260
3000
是针对广播的东西
16:21
And of course, through all of these lines
370
981260
2000
当然,通过这些线路
16:23
are flowing unstructured language.
371
983260
2000
涌现出了结构的语言
16:25
We can X-ray
372
985260
2000
我们可以在 社交点 上
16:27
and get a real-time pulse of a nation,
373
987260
2000
感受一下这个国家即时的动脉
16:29
real-time sense
374
989260
2000
即时的感受
16:31
of the social reactions in the different circuits in the social graph
375
991260
3000
不同的社会圈的社会反应被内容所激活
16:34
being activated by content.
376
994260
3000
都展示在社会图表上
16:37
So, to summarize, the idea is this:
377
997260
3000
所以, 总结来说,观点是:
16:40
As our world becomes increasingly instrumented
378
1000260
3000
当我们的世界变得越来越工具化
16:43
and we have the capabilities
379
1003260
2000
我们有能力
16:45
to collect and connect the dots
380
1005260
2000
搜集和链接一个一个小点
16:47
between what people are saying
381
1007260
2000
将人们的话语
16:49
and the context they're saying it in,
382
1009260
2000
和他们说这些话时所处得环境联系起来
16:51
what's emerging is an ability
383
1011260
2000
那么呈现的将是洞悉
16:53
to see new social structures and dynamics
384
1013260
3000
社会结构和社交动态的新视野
16:56
that have previously not been seen.
385
1016260
2000
那是以前我们没有看见过的
16:58
It's like building a microscope or telescope
386
1018260
2000
这好像是造一个显微镜或者望远镜
17:00
and revealing new structures
387
1020260
2000
展示了我们交流和行为间
17:02
about our own behavior around communication.
388
1022260
3000
的新结构
17:05
And I think the implications here are profound,
389
1025260
3000
我觉得其意义是深远的
17:08
whether it's for science,
390
1028260
2000
无论是对科学而言
17:10
for commerce, for government,
391
1030260
2000
还是对商业,政府而言
17:12
or perhaps most of all,
392
1032260
2000
或许更重要的是
17:14
for us as individuals.
393
1034260
3000
对我们每个人而言
17:17
And so just to return to my son,
394
1037260
3000
所以我们把话题回到我的儿子
17:20
when I was preparing this talk, he was looking over my shoulder,
395
1040260
3000
当我在准备这个演讲时,他在我身后看着
17:23
and I showed him the clips I was going to show to you today,
396
1043260
2000
我给他看了这段我今天将要给你们看的录相
17:25
and I asked him for permission -- granted.
397
1045260
3000
我征求他的同意,他同意了
17:28
And then I went on to reflect,
398
1048260
2000
然后我想
17:30
"Isn't it amazing,
399
1050260
3000
“这真是神奇的事情
17:33
this entire database, all these recordings,
400
1053260
3000
整个数据库, 所有这些录相
17:36
I'm going to hand off to you and to your sister" --
401
1056260
2000
我会给交给你和你的妹妹”
17:38
who arrived two years later --
402
1058260
3000
妹妹是两年后出生的
17:41
"and you guys are going to be able to go back and re-experience moments
403
1061260
3000
“你们两个将能够回顾重温
17:44
that you could never, with your biological memory,
404
1064260
3000
你们生物记忆无法
17:47
possibly remember the way you can now?"
405
1067260
2000
记得的这些时刻。”
17:49
And he was quiet for a moment.
406
1069260
2000
那一刻他很安静
17:51
And I thought, "What am I thinking?
407
1071260
2000
我想:”我在想什么啊?
17:53
He's five years old. He's not going to understand this."
408
1073260
2000
他才5岁, 他不会理解这些。 “
17:55
And just as I was having that thought, he looked up at me and said,
409
1075260
3000
而正当我怎么想着,他抬头对我说:
17:58
"So that when I grow up,
410
1078260
2000
“那等我长大了,
18:00
I can show this to my kids?"
411
1080260
2000
我可以给我的孩子们看,是吗?”
18:02
And I thought, "Wow, this is powerful stuff."
412
1082260
3000
我想:“哇, 这玩意儿真是太强大了。”
18:05
So I want to leave you
413
1085260
2000
所以,我要给各位
18:07
with one last memorable moment
414
1087260
2000
留下最后一个值得回忆的
18:09
from our family.
415
1089260
3000
家庭记忆
18:12
This is the first time our son
416
1092260
2000
这是我儿子第一次
18:14
took more than two steps at once --
417
1094260
2000
走了迈出两步的情形
18:16
captured on film.
418
1096260
2000
拍摄在录像中
18:18
And I really want you to focus on something
419
1098260
3000
我希望你们看的时候
18:21
as I take you through.
420
1101260
2000
注意到其中的一点
18:23
It's a cluttered environment; it's natural life.
421
1103260
2000
周围有点闹,这是自然的环境
18:25
My mother's in the kitchen, cooking,
422
1105260
2000
我妈在厨房做饭
18:27
and, of all places, in the hallway,
423
1107260
2000
就在过道里
18:29
I realize he's about to do it, about to take more than two steps.
424
1109260
3000
我意识到他就要迈步了,大概一两步的样子
18:32
And so you hear me encouraging him,
425
1112260
2000
因此各位可以听到我在鼓励他
18:34
realizing what's happening,
426
1114260
2000
我感到有事要发生
18:36
and then the magic happens.
427
1116260
2000
然后妙事发生了
18:38
Listen very carefully.
428
1118260
2000
请仔细听
18:40
About three steps in,
429
1120260
2000
大概在走了三步后
18:42
he realizes something magic is happening,
430
1122260
2000
他感到了美妙的事情发生了
18:44
and the most amazing feedback loop of all kicks in,
431
1124260
3000
令人惊讶的反应循环作用全部启动
18:47
and he takes a breath in,
432
1127260
2000
他松了一口气
18:49
and he whispers "wow"
433
1129260
2000
轻轻地说了声:“哇”
18:51
and instinctively I echo back the same.
434
1131260
4000
我也凭着直觉说了同样的话
18:56
And so let's fly back in time
435
1136260
3000
我们现在回到那一刻
18:59
to that memorable moment.
436
1139260
2000
回到那个令人难忘的一刻
19:05
(Video) DR: Hey.
437
1145260
2000
(录像) 戴·罗伊:嗨
19:07
Come here.
438
1147260
2000
过来
19:09
Can you do it?
439
1149260
3000
你行吗?
19:13
Oh, boy.
440
1153260
2000
哇,宝贝
19:15
Can you do it?
441
1155260
3000
你行吗?
19:18
Baby: Yeah.
442
1158260
2000
宝宝:好
19:20
DR: Ma, he's walking.
443
1160260
3000
戴1罗伊:妈,他走路了
19:24
(Laughter)
444
1164260
2000
(笑声)
19:26
(Applause)
445
1166260
2000
(掌声)
19:28
DR: Thank you.
446
1168260
2000
戴·罗伊:谢谢大家
19:30
(Applause)
447
1170260
15000
(掌声)

Original video on YouTube.com
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7