Deb Roy: The birth of a word

412,384 views ・ 2011-03-14

TED


請雙擊下方英文字幕播放視頻。

譯者: Wenjer Leuschel 審譯者: Joyce Chou
00:15
Imagine if you could record your life --
0
15260
4000
想一想,如果你能記錄下你的生命-
00:19
everything you said, everything you did,
1
19260
3000
你的一言、你的一行
00:22
available in a perfect memory store at your fingertips,
2
22260
3000
指頭點按一下,即可從完美的記憶體取得
00:25
so you could go back
3
25260
2000
那麽你便能回顧
00:27
and find memorable moments and relive them,
4
27260
3000
重溫值得回憶的時刻
00:30
or sift through traces of time
5
30260
3000
或是在過去的時光中篩選
00:33
and discover patterns in your own life
6
33260
2000
並發現自己的生命中
00:35
that previously had gone undiscovered.
7
35260
3000
先前沒有注意到的模式
00:38
Well that's exactly the journey
8
38260
2000
那就是我的家庭
00:40
that my family began
9
40260
2000
在過去五年半以來
00:42
five and a half years ago.
10
42260
2000
經過的歷程
00:44
This is my wife and collaborator, Rupal.
11
44260
3000
這是我太太也是同事Rupal
00:47
And on this day, at this moment,
12
47260
2000
就是在那一天的那一刻
00:49
we walked into the house with our first child,
13
49260
2000
我們帶著第一個孩子
00:51
our beautiful baby boy.
14
51260
2000
漂亮的兒子進入家門
00:53
And we walked into a house
15
53260
3000
我們走進的房子是一棟
00:56
with a very special home video recording system.
16
56260
4000
裝配了非常特別的錄影系統的房子
01:07
(Video) Man: Okay.
17
67260
2000
(影片) 男聲:好了
01:10
Deb Roy: This moment
18
70260
1000
Deb Roy:這個時刻以及
01:11
and thousands of other moments special for us
19
71260
3000
其他無數個對我們而言是特別的時刻
01:14
were captured in our home
20
74260
2000
都在我們家被記錄下來了
01:16
because in every room in the house,
21
76260
2000
因爲在房裡的每個房間
01:18
if you looked up, you'd see a camera and a microphone,
22
78260
3000
如果往上看就會看到攝影機和麥克風
01:21
and if you looked down,
23
81260
2000
如果往下看
01:23
you'd get this bird's-eye view of the room.
24
83260
2000
就能鳥瞰這房間
01:25
Here's our living room,
25
85260
3000
這是我們的客廳
01:28
the baby bedroom,
26
88260
3000
這是嬰兒房
01:31
kitchen, dining room
27
91260
2000
廚房、飯廳
01:33
and the rest of the house.
28
93260
2000
還有房子的其他地方
01:35
And all of these fed into a disc array
29
95260
3000
這些都儲存到一組設計來
01:38
that was designed for a continuous capture.
30
98260
3000
攫取連續影音的硬碟中
01:41
So here we are flying through a day in our home
31
101260
3000
現在快速看一下我們家的一天
01:44
as we move from sunlit morning
32
104260
3000
從太陽升起的早晨
01:47
through incandescent evening
33
107260
2000
到點亮燈火的夜晚
01:49
and, finally, lights out for the day.
34
109260
3000
到最後熄燈就寢
01:53
Over the course of three years,
35
113260
3000
這整整三年裡
01:56
we recorded eight to 10 hours a day,
36
116260
2000
我們每天紀錄
01:58
amassing roughly a quarter-million hours
37
118260
3000
8到10個小時
02:01
of multi-track audio and video.
38
121260
3000
積聚了大約25萬小時的影音
02:04
So you're looking at a piece of what is by far
39
124260
2000
大家現在看到的是有史以來
02:06
the largest home video collection ever made.
40
126260
2000
最長的家庭影集的一小部分
02:08
(Laughter)
41
128260
3000
(笑聲)
02:11
And what this data represents
42
131260
2000
這些資料所代表的
02:13
for our family at a personal level,
43
133260
4000
對我的家庭而言,在個人的層面上
02:17
the impact has already been immense,
44
137260
2000
已有巨大的影響
02:19
and we're still learning its value.
45
139260
3000
我們仍須進一步了解其中的意義
02:22
Countless moments
46
142260
2000
有無數的時刻
02:24
of unsolicited natural moments, not posed moments,
47
144260
3000
無預期、不造作的自然時刻
02:27
are captured there,
48
147260
2000
都被記錄了起來
02:29
and we're starting to learn how to discover them and find them.
49
149260
3000
我們還在學習如何發現找到那些時刻
02:32
But there's also a scientific reason that drove this project,
50
152260
3000
不過這個專案也有其科學上的目的
02:35
which was to use this natural longitudinal data
51
155260
4000
爲的是要利用這個縱向紀錄的資料
02:39
to understand the process
52
159260
2000
來了解一個小孩
02:41
of how a child learns language --
53
161260
2000
如何學習語言-
02:43
that child being my son.
54
163260
2000
那個小孩就是我的兒子
02:45
And so with many privacy provisions put in place
55
165260
4000
在設置隱私保護的條件下
02:49
to protect everyone who was recorded in the data,
56
169260
3000
讓每個在影片中的人都受到保護
02:52
we made elements of the data available
57
172260
3000
我們讓我信任的MIT
02:55
to my trusted research team at MIT
58
175260
3000
研究團隊取用這些資料
02:58
so we could start teasing apart patterns
59
178260
3000
於是我們可以開始從這巨大的
03:01
in this massive data set,
60
181260
3000
資料集裡拆解出其中的模式
03:04
trying to understand the influence of social environments
61
184260
3000
試圖了解社交環境
03:07
on language acquisition.
62
187260
2000
對語言習得有哪些影響
03:09
So we're looking here
63
189260
2000
我們看到這裡
03:11
at one of the first things we started to do.
64
191260
2000
這是我們首先進行的
03:13
This is my wife and I cooking breakfast in the kitchen,
65
193260
4000
這是太太和我在廚房做早餐
03:17
and as we move through space and through time,
66
197260
3000
當我們在時空中移動
03:20
a very everyday pattern of life in the kitchen.
67
200260
3000
會出現一條在廚房裡的日常生活軌跡
03:23
In order to convert
68
203260
2000
爲了轉換
03:25
this opaque, 90,000 hours of video
69
205260
3000
這九萬小時的影像
03:28
into something that we could start to see,
70
208260
2000
成爲能辨識的東西
03:30
we use motion analysis to pull out,
71
210260
2000
我們利用動作分析
03:32
as we move through space and through time,
72
212260
2000
汲取我們的移動軌跡
03:34
what we call space-time worms.
73
214260
3000
我們稱之爲「時空蟲」
03:37
And this has become part of our toolkit
74
217260
3000
這是我們的工具之一
03:40
for being able to look and see
75
220260
3000
用來查看
03:43
where the activities are in the data,
76
223260
2000
資料中所發生的活動
03:45
and with it, trace the pattern of, in particular,
77
225260
3000
再利用此法去追蹤,特別是
03:48
where my son moved throughout the home,
78
228260
2000
我兒子在家中活動的軌跡
03:50
so that we could focus our transcription efforts,
79
230260
3000
好讓我們能聚焦在解讀
03:53
all of the speech environment around my son --
80
233260
3000
有關我兒子學說話的環境-
03:56
all of the words that he heard from myself, my wife, our nanny,
81
236260
3000
所有他聽到的我、我太太和保姆說的字詞
03:59
and over time, the words he began to produce.
82
239260
3000
然後經過長時間他開始說那樣的字詞
04:02
So with that technology and that data
83
242260
3000
利用那樣的科技和資料
04:05
and the ability to, with machine assistance,
84
245260
2000
再利用機器輔助
04:07
transcribe speech,
85
247260
2000
便能轉譯他說出的言語
04:09
we've now transcribed
86
249260
2000
我們現在已經轉譯完成
04:11
well over seven million words of our home transcripts.
87
251260
3000
足足超過700萬個家中言談的字詞
04:14
And with that, let me take you now
88
254260
2000
我們利用這樣的轉譯來
04:16
for a first tour into the data.
89
256260
3000
瀏覽一下這些資料
04:19
So you've all, I'm sure,
90
259260
2000
我相信各位一定
04:21
seen time-lapse videos
91
261260
2000
都看過時間推移影片
04:23
where a flower will blossom as you accelerate time.
92
263260
3000
加快時間推移就可以看到花朵綻放
04:26
I'd like you to now experience
93
266260
2000
我現在想讓各位體驗一下
04:28
the blossoming of a speech form.
94
268260
2000
言語的花朵是怎麽綻放的
04:30
My son, soon after his first birthday,
95
270260
2000
我兒子過第一個生日後不久
04:32
would say "gaga" to mean water.
96
272260
3000
會說「gaga」來表示「水」
04:35
And over the course of the next half-year,
97
275260
3000
再接下來的半年時間裡
04:38
he slowly learned to approximate
98
278260
2000
他慢慢學會說出接近
04:40
the proper adult form, "water."
99
280260
3000
成年人說的正確的「water」
04:43
So we're going to cruise through half a year
100
283260
2000
我們現在要用40秒
04:45
in about 40 seconds.
101
285260
2000
快步瀏覽半年的歷程
04:47
No video here,
102
287260
2000
這裡不播放影片
04:49
so you can focus on the sound, the acoustics,
103
289260
3000
這樣各位便能聚焦在聲音的
04:52
of a new kind of trajectory:
104
292260
2000
這種新的軌跡變化
04:54
gaga to water.
105
294260
2000
從gaga到水
04:56
(Audio) Baby: Gagagagagaga
106
296260
12000
(語音) 嬰兒:Gagagagagaga
05:08
Gaga gaga gaga
107
308260
4000
Gaga gaga gaga
05:12
guga guga guga
108
312260
5000
guga guga guga
05:17
wada gaga gaga guga gaga
109
317260
5000
wada gaga gaga guga gaga
05:22
wader guga guga
110
322260
4000
wader guga guga
05:26
water water water
111
326260
3000
water water water
05:29
water water water
112
329260
6000
water water water
05:35
water water
113
335260
4000
water water
05:39
water.
114
339260
2000
water
05:41
DR: He sure nailed it, didn't he.
115
341260
2000
DR: 他的確說中了吧
05:43
(Applause)
116
343260
7000
(掌聲)
05:50
So he didn't just learn water.
117
350260
2000
他不僅學到「水」這個字詞
05:52
Over the course of the 24 months,
118
352260
2000
在24個月的歷程裡
05:54
the first two years that we really focused on,
119
354260
3000
頭兩年我們專注在這事上
05:57
this is a map of every word he learned in chronological order.
120
357260
4000
這裡有張圖列出他學到的所有字詞的時序
06:01
And because we have full transcripts,
121
361260
3000
由於我們有完整的轉譯
06:04
we've identified each of the 503 words
122
364260
2000
我們辨識出他在第二個生日前學到的
06:06
that he learned to produce by his second birthday.
123
366260
2000
這503個字詞的每一個
06:08
He was an early talker.
124
368260
2000
他算是早說話的
06:10
And so we started to analyze why.
125
370260
3000
所以我們開始分析原因
06:13
Why were certain words born before others?
126
373260
3000
爲什麽有些字詞來得早?
06:16
This is one of the first results
127
376260
2000
這是最早發現的結果之一
06:18
that came out of our study a little over a year ago
128
378260
2000
大約一年前的研究結果
06:20
that really surprised us.
129
380260
2000
真的很讓我們吃驚
06:22
The way to interpret this apparently simple graph
130
382260
3000
這張圖看來簡單,但解讀起來
06:25
is, on the vertical is an indication
131
385260
2000
在垂直線上有一顯示
06:27
of how complex caregiver utterances are
132
387260
3000
從言語長度來看,照顧者的話語
06:30
based on the length of utterances.
133
390260
2000
是很複雜的
06:32
And the [horizontal] axis is time.
134
392260
3000
垂直軸線表示時間
06:35
And all of the data,
135
395260
2000
我們將所有的資料
06:37
we aligned based on the following idea:
136
397260
3000
根據下述的想法排列:
06:40
Every time my son would learn a word,
137
400260
3000
每當發現我兒子就要學會一個字詞
06:43
we would trace back and look at all of the language he heard
138
403260
3000
我們就回溯查看他先前聽到出現
06:46
that contained that word.
139
406260
2000
那個字詞的所有言語裡
06:48
And we would plot the relative length of the utterances.
140
408260
4000
我們就繪製出那個比較長的言語
06:52
And what we found was this curious phenomena,
141
412260
3000
結果我們發現這麽一個奇特的現象
06:55
that caregiver speech would systematically dip to a minimum,
142
415260
3000
照顧者都會有系統地把字詞減降到最少
06:58
making language as simple as possible,
143
418260
3000
讓語言儘量變得簡單
07:01
and then slowly ascend back up in complexity.
144
421260
3000
然後又逐漸升回到複雜
07:04
And the amazing thing was
145
424260
2000
令人訝異的是
07:06
that bounce, that dip,
146
426260
2000
那個升、那個降
07:08
lined up almost precisely
147
428260
2000
幾乎與每個字詞
07:10
with when each word was born --
148
430260
2000
誕生的時間恰恰吻合-
07:12
word after word, systematically.
149
432260
2000
一詞接一詞,很有系統
07:14
So it appears that all three primary caregivers --
150
434260
2000
因此看來所有三個主要的照顧者-
07:16
myself, my wife and our nanny --
151
436260
3000
我自己、太太和我們的保姆-
07:19
were systematically and, I would think, subconsciously
152
439260
3000
都有系統地,而且我認為是下意識地
07:22
restructuring our language
153
442260
2000
重新建構我們的語言
07:24
to meet him at the birth of a word
154
444260
3000
好迎接一個字詞的誕生
07:27
and bring him gently into more complex language.
155
447260
4000
然後讓我兒子慢慢學習更複雜的語言
07:31
And the implications of this -- there are many,
156
451260
2000
這之中蘊含了許多意義
07:33
but one I just want to point out,
157
453260
2000
但我現在想指出的一點是
07:35
is that there must be amazing feedback loops.
158
455260
3000
這過程中必有令人驚異的反應循環
07:38
Of course, my son is learning
159
458260
2000
當然,我的兒子正在
07:40
from his linguistic environment,
160
460260
2000
從他的語言環境中學習
07:42
but the environment is learning from him.
161
462260
3000
但他所處的環境也會跟著有調整
07:45
That environment, people, are in these tight feedback loops
162
465260
3000
環境和人也都在這緊密的反應循環裡
07:48
and creating a kind of scaffolding
163
468260
2000
彼此建立起某種
07:50
that has not been noticed until now.
164
470260
3000
以往沒有注意到的橋梁
07:54
But that's looking at the speech context.
165
474260
2000
不過,那是從言語情境來看
07:56
What about the visual context?
166
476260
2000
若從視覺情境來看又是如何呢?
07:58
We're not looking at --
167
478260
2000
現在看到的還不是-
08:00
think of this as a dollhouse cutaway of our house.
168
480260
2000
想像這是我家剪下來的玩具屋
08:02
We've taken those circular fish-eye lens cameras,
169
482260
3000
我們使用環狀連結的魚眼攝影機
08:05
and we've done some optical correction,
170
485260
2000
然後再做一些光學修正
08:07
and then we can bring it into three-dimensional life.
171
487260
4000
因此我們可以做成3D影像
08:11
So welcome to my home.
172
491260
2000
歡迎來到我家
08:13
This is a moment,
173
493260
2000
這是其中一個時刻
08:15
one moment captured across multiple cameras.
174
495260
3000
透過多重攝影機攫取的一個時刻
08:18
The reason we did this is to create the ultimate memory machine,
175
498260
3000
這樣做是要創造出最高端的記憶機器
08:21
where you can go back and interactively fly around
176
501260
3000
可在其中以互動方式前後快速地搜尋
08:24
and then breathe video-life into this system.
177
504260
3000
從而爲此系統的影像注入生息
08:27
What I'm going to do
178
507260
2000
我現在要讓各位
08:29
is give you an accelerated view of 30 minutes,
179
509260
3000
看的是壓縮30分鐘的加快影像
08:32
again, of just life in the living room.
180
512260
2000
這次也只在客廳裡
08:34
That's me and my son on the floor.
181
514260
3000
那是我和我兒子在地板上
08:37
And there's video analytics
182
517260
2000
加上了影片分析
08:39
that are tracking our movements.
183
519260
2000
追蹤我們的動作
08:41
My son is leaving red ink. I am leaving green ink.
184
521260
3000
我兒子留下紅色軌迹,我留下綠色軌迹
08:44
We're now on the couch,
185
524260
2000
我們現在在沙發上
08:46
looking out through the window at cars passing by.
186
526260
3000
看著窗外駛過的汽車
08:49
And finally, my son playing in a walking toy by himself.
187
529260
3000
最後我兒子獨自玩會動的玩具
08:52
Now we freeze the action, 30 minutes,
188
532260
3000
我們在此停格,這段有30分鐘
08:55
we turn time into the vertical axis,
189
535260
2000
我們把時間放到垂直軸上
08:57
and we open up for a view
190
537260
2000
然後從中來看一下
08:59
of these interaction traces we've just left behind.
191
539260
3000
剛才留下來的互動軌迹
09:02
And we see these amazing structures --
192
542260
3000
我們看到這個令人訝異的結構-
09:05
these little knots of two colors of thread
193
545260
3000
這些兩種顔色的小結點
09:08
we call "social hot spots."
194
548260
2000
我們稱之爲社交熱點
09:10
The spiral thread
195
550260
2000
這個蜿蜒交纏的點串
09:12
we call a "solo hot spot."
196
552260
2000
我們稱之爲單一熱點
09:14
And we think that these affect the way language is learned.
197
554260
3000
我們認爲這些熱點對語言學習有影響
09:17
What we'd like to do
198
557260
2000
我們想要做的是
09:19
is start understanding
199
559260
2000
開始理解
09:21
the interaction between these patterns
200
561260
2000
這些模式與我兒子接觸的
09:23
and the language that my son is exposed to
201
563260
2000
語言之間的互動關係
09:25
to see if we can predict
202
565260
2000
看看是否能夠預測
09:27
how the structure of when words are heard
203
567260
2000
聽到字詞時的結構
09:29
affects when they're learned --
204
569260
2000
如何影響到字詞的學習-
09:31
so in other words, the relationship
205
571260
2000
換句話說就是
09:33
between words and what they're about in the world.
206
573260
4000
字詞與現實世界之間的關係
09:37
So here's how we're approaching this.
207
577260
2000
這就是我們的解讀方法
09:39
In this video,
208
579260
2000
在這個影片裡
09:41
again, my son is being traced out.
209
581260
2000
同樣是追蹤我的兒子
09:43
He's leaving red ink behind.
210
583260
2000
他留下紅色的軌迹
09:45
And there's our nanny by the door.
211
585260
2000
門旁的是我們的保姆
09:47
(Video) Nanny: You want water? (Baby: Aaaa.)
212
587260
3000
(影片) 保姆:你要喝水?(嬰孩:Aaaa.)
09:50
Nanny: All right. (Baby: Aaaa.)
213
590260
3000
保姆:好的 (嬰孩:Aaaa.)
09:53
DR: She offers water,
214
593260
2000
DR:她問他要不要水
09:55
and off go the two worms
215
595260
2000
然後兩條時空蟲
09:57
over to the kitchen to get water.
216
597260
2000
開始蠕動到廚房拿水
09:59
And what we've done is use the word "water"
217
599260
2000
我們用來標示那個時刻
10:01
to tag that moment, that bit of activity.
218
601260
2000
那個活動的字詞是「water」
10:03
And now we take the power of data
219
603260
2000
我們現在有龐大的資料
10:05
and take every time my son
220
605260
3000
從中汲取我兒子何時聽到
10:08
ever heard the word water
221
608260
2000
「水」這個字以及
10:10
and the context he saw it in,
222
610260
2000
他看到水的情境
10:12
and we use it to penetrate through the video
223
612260
3000
我們利用來這些透析整個影片
10:15
and find every activity trace
224
615260
3000
找出每一個與水相關
10:18
that co-occurred with an instance of water.
225
618260
3000
同時發生的活動的軌迹
10:21
And what this data leaves in its wake
226
621260
2000
這些資料留下了
10:23
is a landscape.
227
623260
2000
一幅風景
10:25
We call these wordscapes.
228
625260
2000
我們稱之爲「字詞風景」
10:27
This is the wordscape for the word water,
229
627260
2000
這就是water的「字詞風景」
10:29
and you can see most of the action is in the kitchen.
230
629260
2000
各位可以看到大多在廚房發生
10:31
That's where those big peaks are over to the left.
231
631260
3000
即是在左邊那個大尖峰所表示的
10:34
And just for contrast, we can do this with any word.
232
634260
3000
做個比較,也可以爲別的字詞做個風景
10:37
We can take the word "bye"
233
637260
2000
比方說「good bye」裡的
10:39
as in "good bye."
234
639260
2000
這個「bye」
10:41
And we're now zoomed in over the entrance to the house.
235
641260
2000
我們現在放大房子入口部分
10:43
And we look, and we find, as you would expect,
236
643260
3000
我們查找也發現,各位看得出來
10:46
a contrast in the landscape
237
646260
2000
可以作爲對比的風景
10:48
where the word "bye" occurs much more in a structured way.
238
648260
3000
在那兒「bye」的頻率建構出清楚的風景
10:51
So we're using these structures
239
651260
2000
所以我們利用這種風景結構
10:53
to start predicting
240
653260
2000
開始進行預測
10:55
the order of language acquisition,
241
655260
3000
語言習得的先後順序
10:58
and that's ongoing work now.
242
658260
2000
那就是在我們目前的工作
11:00
In my lab, which we're peering into now, at MIT --
243
660260
3000
我在MIT的研究室-即是現在看到的-
11:03
this is at the media lab.
244
663260
2000
那是在媒體實驗室裡
11:05
This has become my favorite way
245
665260
2000
從影片汲取任何空間影像
11:07
of videographing just about any space.
246
667260
2000
已經成爲我最喜歡的方法
11:09
Three of the key people in this project,
247
669260
2000
這個專案有三個主要人物
11:11
Philip DeCamp, Rony Kubat and Brandon Roy are pictured here.
248
671260
3000
即是影像裡的Philip DeCamp、Rony Kubat和Brandon Roy
11:14
Philip has been a close collaborator
249
674260
2000
Philip是大家看到的
11:16
on all the visualizations you're seeing.
250
676260
2000
影片製作的同事
11:18
And Michael Fleischman
251
678260
3000
還有Michael Fleischman是在我實驗室裡的
11:21
was another Ph.D. student in my lab
252
681260
2000
另一位博士生
11:23
who worked with me on this home video analysis,
253
683260
3000
他和我一同分析這支家庭影片
11:26
and he made the following observation:
254
686260
3000
他說了以下的意見:
11:29
that "just the way that we're analyzing
255
689260
2000
他說「我們分析
11:31
how language connects to events
256
691260
3000
語言如何與事件相關聯
11:34
which provide common ground for language,
257
694260
2000
以作爲語言的共通基礎
11:36
that same idea we can take out of your home, Deb,
258
696260
4000
同樣想法也可帶到你家之外,Deb
11:40
and we can apply it to the world of public media."
259
700260
3000
我們可以用它來分析外面世界的公衆媒體」
11:43
And so our effort took an unexpected turn.
260
703260
3000
結果我們的研究有了料想不到的轉折
11:46
Think of mass media
261
706260
2000
想到公衆媒體
11:48
as providing common ground
262
708260
2000
提供共同的基礎
11:50
and you have the recipe
263
710260
2000
那就可以將我們的
11:52
for taking this idea to a whole new place.
264
712260
3000
想法帶到嶄新的境地
11:55
We've started analyzing television content
265
715260
3000
於是我們開始採用相同的原則
11:58
using the same principles --
266
718260
2000
分析電視的內容-
12:00
analyzing event structure of a TV signal --
267
720260
3000
分析電視訊號的事件結構-
12:03
episodes of shows,
268
723260
2000
播出節目的分集、
12:05
commercials,
269
725260
2000
商業廣告、
12:07
all of the components that make up the event structure.
270
727260
3000
構成事件結構的所有元件
12:10
And we're now, with satellite dishes, pulling and analyzing
271
730260
3000
結果我們現在用衛星碟抽出並分析
12:13
a good part of all the TV being watched in the United States.
272
733260
3000
相當一大部分在美國被觀看的電視節目
12:16
And you don't have to now go and instrument living rooms with microphones
273
736260
3000
現在不用再到各個客廳去裝設麥克風
12:19
to get people's conversations,
274
739260
2000
來取得人們的談話
12:21
you just tune into publicly available social media feeds.
275
741260
3000
只要收聽公衆能取得的社交媒體訊息就行了
12:24
So we're pulling in
276
744260
2000
於是我們每個月抽取
12:26
about three billion comments a month,
277
746260
2000
大約三十億則電視評論
12:28
and then the magic happens.
278
748260
2000
然後美妙的事發生了
12:30
You have the event structure,
279
750260
2000
這當中可以找到事件結構
12:32
the common ground that the words are about,
280
752260
2000
那些字詞內容的共同基礎
12:34
coming out of the television feeds;
281
754260
3000
從這些電視訊息裡透露出來
12:37
you've got the conversations
282
757260
2000
我們取得了關於
12:39
that are about those topics;
283
759260
2000
那些話題的談話
12:41
and through semantic analysis --
284
761260
3000
再經過語意分析-大家現在看到的
12:44
and this is actually real data you're looking at
285
764260
2000
確實是來自於我們進行
12:46
from our data processing --
286
766260
2000
資料處理的真實資料-
12:48
each yellow line is showing a link being made
287
768260
3000
每一條黃線顯示一則評論
12:51
between a comment in the wild
288
771260
3000
在外間造成的連結
12:54
and a piece of event structure coming out of the television signal.
289
774260
3000
於是從電視訊號逐漸顯出一點事件的結構
12:57
And the same idea now
290
777260
2000
同樣的想法現在
12:59
can be built up.
291
779260
2000
可以用來建構關聯
13:01
And we get this wordscape,
292
781260
2000
於是我們得到了這個「字詞風景」
13:03
except now words are not assembled in my living room.
293
783260
3000
只不過這些字詞並非在我家客廳裡組造出來的
13:06
Instead, the context, the common ground activities,
294
786260
4000
而是情境,即共同基礎的活動
13:10
are the content on television that's driving the conversations.
295
790260
3000
即電視的內容在推動談話
13:13
And what we're seeing here, these skyscrapers now,
296
793260
3000
我們現在看到的這些高聳的結構
13:16
are commentary
297
796260
2000
都是電視評論
13:18
that are linked to content on television.
298
798260
2000
在電視內容上有相互關聯
13:20
Same concept,
299
800260
2000
同樣的構想
13:22
but looking at communication dynamics
300
802260
2000
但請看它在另一個
13:24
in a very different sphere.
301
804260
2000
非常不同的空間所造成的溝通動態
13:26
And so fundamentally, rather than, for example,
302
806260
2000
而且深入根本,舉例來說,
13:28
measuring content based on how many people are watching,
303
808260
3000
與測量收視率所得的結果極爲不同
13:31
this gives us the basic data
304
811260
2000
此研究讓我們得到了
13:33
for looking at engagement properties of content.
305
813260
3000
用來檢視內容「佔用特性」的基本資料
13:36
And just like we can look at feedback cycles
306
816260
3000
如同我們可以檢視一個
13:39
and dynamics in a family,
307
819260
3000
家庭裡的反應循環和動態
13:42
we can now open up the same concepts
308
822260
3000
我們現在可以利用同樣的構想
13:45
and look at much larger groups of people.
309
825260
3000
檢視更大的人群
13:48
This is a subset of data from our database --
310
828260
3000
這是從我們資料庫來的一個子集-
13:51
just 50,000 out of several million --
311
831260
3000
只是透過公衆媒體來源取得的
13:54
and the social graph that connects them
312
834260
2000
幾百萬則訊息中的五萬則
13:56
through publicly available sources.
313
836260
3000
以及其間互相關聯的「社交圖」
13:59
And if you put them on one plain,
314
839260
2000
如果把它們放到一個平面上
14:01
a second plain is where the content lives.
315
841260
3000
另一個平面是內容活躍的地方
14:04
So we have the programs
316
844260
3000
於是我們有了節目
14:07
and the sporting events
317
847260
2000
和體育運動事件
14:09
and the commercials,
318
849260
2000
以及商業廣告
14:11
and all of the link structures that tie them together
319
851260
2000
還有所有把它們綁在一起的連結結構
14:13
make a content graph.
320
853260
2000
形成了一個「內容圖」
14:15
And then the important third dimension.
321
855260
4000
然後是重要的第三個面向
14:19
Each of the links that you're seeing rendered here
322
859260
2000
大家在這裡看到的每個連結
14:21
is an actual connection made
323
861260
2000
是某個人說了某東西
14:23
between something someone said
324
863260
3000
和某一件內容之間的
14:26
and a piece of content.
325
866260
2000
真實關聯
14:28
And there are, again, now tens of millions of these links
326
868260
3000
這裡又有這些關聯的幾千萬條連結
14:31
that give us the connective tissue of social graphs
327
871260
3000
這讓我們看見「社交圖」的「關聯組織」
14:34
and how they relate to content.
328
874260
3000
以及它們是如何與內容相關的情況
14:37
And we can now start to probe the structure
329
877260
2000
我們現在可以開始用
14:39
in interesting ways.
330
879260
2000
有趣的方式來探索這個結構
14:41
So if we, for example, trace the path
331
881260
3000
例如,如果我們追蹤
14:44
of one piece of content
332
884260
2000
某一件內容的路徑
14:46
that drives someone to comment on it,
333
886260
2000
那個內容讓某個人對它評論
14:48
and then we follow where that comment goes,
334
888260
3000
然後我們隨著那個評論的走向
14:51
and then look at the entire social graph that becomes activated
335
891260
3000
然後檢視整個啓動的「社交圖」
14:54
and then trace back to see the relationship
336
894260
3000
然後又回頭追蹤查看那個「社交圖」
14:57
between that social graph and content,
337
897260
2000
和內容之間的關係
14:59
a very interesting structure becomes visible.
338
899260
2000
於是顯現出一個非常有趣的結構
15:01
We call this a co-viewing clique,
339
901260
2000
我們稱之爲「共看集團」
15:03
a virtual living room if you will.
340
903260
3000
要說是一個虛擬客廳也可以
15:06
And there are fascinating dynamics at play.
341
906260
2000
這裡頭上演著引人注目的戲劇
15:08
It's not one way.
342
908260
2000
這不是單向的
15:10
A piece of content, an event, causes someone to talk.
343
910260
3000
一件內容,一個事件讓某個人說了話
15:13
They talk to other people.
344
913260
2000
這讓其他的人有感
15:15
That drives tune-in behavior back into mass media,
345
915260
3000
那就驅動了大衆傳媒的收視行爲
15:18
and you have these cycles
346
918260
2000
於是出現了這樣的循環
15:20
that drive the overall behavior.
347
920260
2000
驅動了整體的收視行爲
15:22
Another example -- very different --
348
922260
2000
另一個例子-情況很不同
15:24
another actual person in our database --
349
924260
3000
我們的資料庫裡有一位人士-
15:27
and we're finding at least hundreds, if not thousands, of these.
350
927260
3000
其實我們可以找到成千上百個例子
15:30
We've given this person a name.
351
930260
2000
我們給這位人士一個名字
15:32
This is a pro-amateur, or pro-am media critic
352
932260
3000
這是一位專業業餘者,或專業美國媒體評論員
15:35
who has this high fan-out rate.
353
935260
3000
此人有高度的粉絲收視率
15:38
So a lot of people are following this person -- very influential --
354
938260
3000
許多人追隨這位人士-他很有影響力-
15:41
and they have a propensity to talk about what's on TV.
355
941260
2000
那些追隨者傾向於在電視上說話
15:43
So this person is a key link
356
943260
3000
那麽這位人士是關聯大衆傳媒
15:46
in connecting mass media and social media together.
357
946260
3000
和社交媒體的一個主要連結
15:49
One last example from this data:
358
949260
3000
這份資料的最後一個例子是:
15:52
Sometimes it's actually a piece of content that is special.
359
952260
3000
有時確實是一件特別的內容
15:55
So if we go and look at this piece of content,
360
955260
4000
因此我們現在來檢視這一件內容
15:59
President Obama's State of the Union address
361
959260
3000
才幾個星期前的歐巴馬總統
16:02
from just a few weeks ago,
362
962260
2000
國情咨文演講
16:04
and look at what we find in this same data set,
363
964260
3000
再檢視我們在這組資料中發現些什麽
16:07
at the same scale,
364
967260
3000
用同樣的尺度來衡量
16:10
the engagement properties of this piece of content
365
970260
2000
這件內容的「佔用特性」
16:12
are truly remarkable.
366
972260
2000
真是令人驚奇
16:14
A nation exploding in conversation
367
974260
2000
整個國家頓時同步
16:16
in real time
368
976260
2000
爆發了談話
16:18
in response to what's on the broadcast.
369
978260
3000
那是對廣播的訊息所做出的反應
16:21
And of course, through all of these lines
370
981260
2000
當然,所有這些連結線也
16:23
are flowing unstructured language.
371
983260
2000
也流動著缺乏結構的語言
16:25
We can X-ray
372
985260
2000
我們可以在「社交圖」上
16:27
and get a real-time pulse of a nation,
373
987260
2000
透視一下
16:29
real-time sense
374
989260
2000
在不同的圈子裡
16:31
of the social reactions in the different circuits in the social graph
375
991260
3000
這個被這件內容啓動的國家
16:34
being activated by content.
376
994260
3000
有怎樣的即時脈動和即時官感
16:37
So, to summarize, the idea is this:
377
997260
3000
總結來說,我們的想法是這樣的:
16:40
As our world becomes increasingly instrumented
378
1000260
3000
正當我們的世界變得越來越工具化
16:43
and we have the capabilities
379
1003260
2000
我們有能力搜集
16:45
to collect and connect the dots
380
1005260
2000
並在人們說了些什麽
16:47
between what people are saying
381
1007260
2000
和他們說話的情境之間
16:49
and the context they're saying it in,
382
1009260
2000
將那些點連結起來
16:51
what's emerging is an ability
383
1011260
2000
那麽呈現的將會是洞悉
16:53
to see new social structures and dynamics
384
1013260
3000
社交結構和社交動態的新視野
16:56
that have previously not been seen.
385
1016260
2000
那將是前所未有的能力
16:58
It's like building a microscope or telescope
386
1018260
2000
這像是製造了麥克風
17:00
and revealing new structures
387
1020260
2000
和望遠鏡而顯現了
17:02
about our own behavior around communication.
388
1022260
3000
我們的溝通行爲的新結構
17:05
And I think the implications here are profound,
389
1025260
3000
我認爲其中隱含深遠的意義
17:08
whether it's for science,
390
1028260
2000
無論是對科學而言
17:10
for commerce, for government,
391
1030260
2000
對商業而言,對政府而言
17:12
or perhaps most of all,
392
1032260
2000
或也許最重要的是
17:14
for us as individuals.
393
1034260
3000
對我們個人而言
17:17
And so just to return to my son,
394
1037260
3000
那麽我們回到我的兒子
17:20
when I was preparing this talk, he was looking over my shoulder,
395
1040260
3000
我在準備這個談話時,他就在我身後看著
17:23
and I showed him the clips I was going to show to you today,
396
1043260
2000
我讓他看今天給大家看的短片
17:25
and I asked him for permission -- granted.
397
1045260
3000
也徵求他的准許-他同意了
17:28
And then I went on to reflect,
398
1048260
2000
然後我開始醒思
17:30
"Isn't it amazing,
399
1050260
3000
「這不是很令人訝異的嗎?
17:33
this entire database, all these recordings,
400
1053260
3000
這整個資料庫,所有這些錄影紀錄
17:36
I'm going to hand off to you and to your sister" --
401
1056260
2000
我把它們交給你和妹妹」
17:38
who arrived two years later --
402
1058260
3000
妹妹晚了兩年出生
17:41
"and you guys are going to be able to go back and re-experience moments
403
1061260
3000
「你們倆將能夠回顧並重溫
17:44
that you could never, with your biological memory,
404
1064260
3000
你們的生物記憶可能
17:47
possibly remember the way you can now?"
405
1067260
2000
不會記得的那些時刻」
17:49
And he was quiet for a moment.
406
1069260
2000
他沈默了半响
17:51
And I thought, "What am I thinking?
407
1071260
2000
我想「我想到哪裡去了
17:53
He's five years old. He's not going to understand this."
408
1073260
2000
他不過才五歲,不會懂的」
17:55
And just as I was having that thought, he looked up at me and said,
409
1075260
3000
我才剛這麽想,他抬頭看著我
17:58
"So that when I grow up,
410
1078260
2000
說:「那麽,我長大了
18:00
I can show this to my kids?"
411
1080260
2000
可以讓我的孩子看這個?」
18:02
And I thought, "Wow, this is powerful stuff."
412
1082260
3000
我想「哇,這說得可真好」
18:05
So I want to leave you
413
1085260
2000
那麽,我要給各位
18:07
with one last memorable moment
414
1087260
2000
留下最後一個
18:09
from our family.
415
1089260
3000
我們家值得回憶的時刻
18:12
This is the first time our son
416
1092260
2000
這是我兒子第一次
18:14
took more than two steps at once --
417
1094260
2000
走出兩步以上的情況-
18:16
captured on film.
418
1096260
2000
拍攝在影片裡
18:18
And I really want you to focus on something
419
1098260
3000
我真的希望讓大家看的時候
18:21
as I take you through.
420
1101260
2000
要注意到其中一點
18:23
It's a cluttered environment; it's natural life.
421
1103260
2000
周遭有點吵,這是自然的生活環境
18:25
My mother's in the kitchen, cooking,
422
1105260
2000
我媽在廚房做飯
18:27
and, of all places, in the hallway,
423
1107260
2000
就在走道上
18:29
I realize he's about to do it, about to take more than two steps.
424
1109260
3000
我感覺到他就要走出兩步以上
18:32
And so you hear me encouraging him,
425
1112260
2000
因此各位聽到我鼓勵他
18:34
realizing what's happening,
426
1114260
2000
感到有事就要發生
18:36
and then the magic happens.
427
1116260
2000
然後美妙的事發生了
18:38
Listen very carefully.
428
1118260
2000
請仔細聽
18:40
About three steps in,
429
1120260
2000
大概在走三步後
18:42
he realizes something magic is happening,
430
1122260
2000
他感到發生了美妙的事
18:44
and the most amazing feedback loop of all kicks in,
431
1124260
3000
這時最令人訝異的反應循環全都作動了
18:47
and he takes a breath in,
432
1127260
2000
他鬆了一口氣
18:49
and he whispers "wow"
433
1129260
2000
輕輕地說了「哇」
18:51
and instinctively I echo back the same.
434
1131260
4000
我直覺反應地也說了同樣的話
18:56
And so let's fly back in time
435
1136260
3000
我們現在重回那個時光
18:59
to that memorable moment.
436
1139260
2000
回到那個難忘的時刻
19:05
(Video) DR: Hey.
437
1145260
2000
(影片) DR:喂
19:07
Come here.
438
1147260
2000
來,過來
19:09
Can you do it?
439
1149260
3000
你辦得到嗎?
19:13
Oh, boy.
440
1153260
2000
啊,孩子
19:15
Can you do it?
441
1155260
3000
你辦得到嗎?
19:18
Baby: Yeah.
442
1158260
2000
嬰孩:可以
19:20
DR: Ma, he's walking.
443
1160260
3000
DR:媽,他走路了
19:24
(Laughter)
444
1164260
2000
(笑聲)
19:26
(Applause)
445
1166260
2000
(掌聲)
19:28
DR: Thank you.
446
1168260
2000
DR:謝謝大家
19:30
(Applause)
447
1170260
15000
(掌聲)

Original video on YouTube.com
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7