Deb Roy: The birth of a word

421,291 views ・ 2011-03-14

TED


請雙擊下方英文字幕播放視頻。

譯者: Wenjer Leuschel 審譯者: Joyce Chou
00:15
Imagine if you could record your life --
0
15260
4000
想一想,如果你能記錄下你的生命-
00:19
everything you said, everything you did,
1
19260
3000
你的一言、你的一行
00:22
available in a perfect memory store at your fingertips,
2
22260
3000
指頭點按一下,即可從完美的記憶體取得
00:25
so you could go back
3
25260
2000
那麽你便能回顧
00:27
and find memorable moments and relive them,
4
27260
3000
重溫值得回憶的時刻
00:30
or sift through traces of time
5
30260
3000
或是在過去的時光中篩選
00:33
and discover patterns in your own life
6
33260
2000
並發現自己的生命中
00:35
that previously had gone undiscovered.
7
35260
3000
先前沒有注意到的模式
00:38
Well that's exactly the journey
8
38260
2000
那就是我的家庭
00:40
that my family began
9
40260
2000
在過去五年半以來
00:42
five and a half years ago.
10
42260
2000
經過的歷程
00:44
This is my wife and collaborator, Rupal.
11
44260
3000
這是我太太也是同事Rupal
00:47
And on this day, at this moment,
12
47260
2000
就是在那一天的那一刻
00:49
we walked into the house with our first child,
13
49260
2000
我們帶著第一個孩子
00:51
our beautiful baby boy.
14
51260
2000
漂亮的兒子進入家門
00:53
And we walked into a house
15
53260
3000
我們走進的房子是一棟
00:56
with a very special home video recording system.
16
56260
4000
裝配了非常特別的錄影系統的房子
01:07
(Video) Man: Okay.
17
67260
2000
(影片) 男聲:好了
01:10
Deb Roy: This moment
18
70260
1000
Deb Roy:這個時刻以及
01:11
and thousands of other moments special for us
19
71260
3000
其他無數個對我們而言是特別的時刻
01:14
were captured in our home
20
74260
2000
都在我們家被記錄下來了
01:16
because in every room in the house,
21
76260
2000
因爲在房裡的每個房間
01:18
if you looked up, you'd see a camera and a microphone,
22
78260
3000
如果往上看就會看到攝影機和麥克風
01:21
and if you looked down,
23
81260
2000
如果往下看
01:23
you'd get this bird's-eye view of the room.
24
83260
2000
就能鳥瞰這房間
01:25
Here's our living room,
25
85260
3000
這是我們的客廳
01:28
the baby bedroom,
26
88260
3000
這是嬰兒房
01:31
kitchen, dining room
27
91260
2000
廚房、飯廳
01:33
and the rest of the house.
28
93260
2000
還有房子的其他地方
01:35
And all of these fed into a disc array
29
95260
3000
這些都儲存到一組設計來
01:38
that was designed for a continuous capture.
30
98260
3000
攫取連續影音的硬碟中
01:41
So here we are flying through a day in our home
31
101260
3000
現在快速看一下我們家的一天
01:44
as we move from sunlit morning
32
104260
3000
從太陽升起的早晨
01:47
through incandescent evening
33
107260
2000
到點亮燈火的夜晚
01:49
and, finally, lights out for the day.
34
109260
3000
到最後熄燈就寢
01:53
Over the course of three years,
35
113260
3000
這整整三年裡
01:56
we recorded eight to 10 hours a day,
36
116260
2000
我們每天紀錄
01:58
amassing roughly a quarter-million hours
37
118260
3000
8到10個小時
02:01
of multi-track audio and video.
38
121260
3000
積聚了大約25萬小時的影音
02:04
So you're looking at a piece of what is by far
39
124260
2000
大家現在看到的是有史以來
02:06
the largest home video collection ever made.
40
126260
2000
最長的家庭影集的一小部分
02:08
(Laughter)
41
128260
3000
(笑聲)
02:11
And what this data represents
42
131260
2000
這些資料所代表的
02:13
for our family at a personal level,
43
133260
4000
對我的家庭而言,在個人的層面上
02:17
the impact has already been immense,
44
137260
2000
已有巨大的影響
02:19
and we're still learning its value.
45
139260
3000
我們仍須進一步了解其中的意義
02:22
Countless moments
46
142260
2000
有無數的時刻
02:24
of unsolicited natural moments, not posed moments,
47
144260
3000
無預期、不造作的自然時刻
02:27
are captured there,
48
147260
2000
都被記錄了起來
02:29
and we're starting to learn how to discover them and find them.
49
149260
3000
我們還在學習如何發現找到那些時刻
02:32
But there's also a scientific reason that drove this project,
50
152260
3000
不過這個專案也有其科學上的目的
02:35
which was to use this natural longitudinal data
51
155260
4000
爲的是要利用這個縱向紀錄的資料
02:39
to understand the process
52
159260
2000
來了解一個小孩
02:41
of how a child learns language --
53
161260
2000
如何學習語言-
02:43
that child being my son.
54
163260
2000
那個小孩就是我的兒子
02:45
And so with many privacy provisions put in place
55
165260
4000
在設置隱私保護的條件下
02:49
to protect everyone who was recorded in the data,
56
169260
3000
讓每個在影片中的人都受到保護
02:52
we made elements of the data available
57
172260
3000
我們讓我信任的MIT
02:55
to my trusted research team at MIT
58
175260
3000
研究團隊取用這些資料
02:58
so we could start teasing apart patterns
59
178260
3000
於是我們可以開始從這巨大的
03:01
in this massive data set,
60
181260
3000
資料集裡拆解出其中的模式
03:04
trying to understand the influence of social environments
61
184260
3000
試圖了解社交環境
03:07
on language acquisition.
62
187260
2000
對語言習得有哪些影響
03:09
So we're looking here
63
189260
2000
我們看到這裡
03:11
at one of the first things we started to do.
64
191260
2000
這是我們首先進行的
03:13
This is my wife and I cooking breakfast in the kitchen,
65
193260
4000
這是太太和我在廚房做早餐
03:17
and as we move through space and through time,
66
197260
3000
當我們在時空中移動
03:20
a very everyday pattern of life in the kitchen.
67
200260
3000
會出現一條在廚房裡的日常生活軌跡
03:23
In order to convert
68
203260
2000
爲了轉換
03:25
this opaque, 90,000 hours of video
69
205260
3000
這九萬小時的影像
03:28
into something that we could start to see,
70
208260
2000
成爲能辨識的東西
03:30
we use motion analysis to pull out,
71
210260
2000
我們利用動作分析
03:32
as we move through space and through time,
72
212260
2000
汲取我們的移動軌跡
03:34
what we call space-time worms.
73
214260
3000
我們稱之爲「時空蟲」
03:37
And this has become part of our toolkit
74
217260
3000
這是我們的工具之一
03:40
for being able to look and see
75
220260
3000
用來查看
03:43
where the activities are in the data,
76
223260
2000
資料中所發生的活動
03:45
and with it, trace the pattern of, in particular,
77
225260
3000
再利用此法去追蹤,特別是
03:48
where my son moved throughout the home,
78
228260
2000
我兒子在家中活動的軌跡
03:50
so that we could focus our transcription efforts,
79
230260
3000
好讓我們能聚焦在解讀
03:53
all of the speech environment around my son --
80
233260
3000
有關我兒子學說話的環境-
03:56
all of the words that he heard from myself, my wife, our nanny,
81
236260
3000
所有他聽到的我、我太太和保姆說的字詞
03:59
and over time, the words he began to produce.
82
239260
3000
然後經過長時間他開始說那樣的字詞
04:02
So with that technology and that data
83
242260
3000
利用那樣的科技和資料
04:05
and the ability to, with machine assistance,
84
245260
2000
再利用機器輔助
04:07
transcribe speech,
85
247260
2000
便能轉譯他說出的言語
04:09
we've now transcribed
86
249260
2000
我們現在已經轉譯完成
04:11
well over seven million words of our home transcripts.
87
251260
3000
足足超過700萬個家中言談的字詞
04:14
And with that, let me take you now
88
254260
2000
我們利用這樣的轉譯來
04:16
for a first tour into the data.
89
256260
3000
瀏覽一下這些資料
04:19
So you've all, I'm sure,
90
259260
2000
我相信各位一定
04:21
seen time-lapse videos
91
261260
2000
都看過時間推移影片
04:23
where a flower will blossom as you accelerate time.
92
263260
3000
加快時間推移就可以看到花朵綻放
04:26
I'd like you to now experience
93
266260
2000
我現在想讓各位體驗一下
04:28
the blossoming of a speech form.
94
268260
2000
言語的花朵是怎麽綻放的
04:30
My son, soon after his first birthday,
95
270260
2000
我兒子過第一個生日後不久
04:32
would say "gaga" to mean water.
96
272260
3000
會說「gaga」來表示「水」
04:35
And over the course of the next half-year,
97
275260
3000
再接下來的半年時間裡
04:38
he slowly learned to approximate
98
278260
2000
他慢慢學會說出接近
04:40
the proper adult form, "water."
99
280260
3000
成年人說的正確的「water」
04:43
So we're going to cruise through half a year
100
283260
2000
我們現在要用40秒
04:45
in about 40 seconds.
101
285260
2000
快步瀏覽半年的歷程
04:47
No video here,
102
287260
2000
這裡不播放影片
04:49
so you can focus on the sound, the acoustics,
103
289260
3000
這樣各位便能聚焦在聲音的
04:52
of a new kind of trajectory:
104
292260
2000
這種新的軌跡變化
04:54
gaga to water.
105
294260
2000
從gaga到水
04:56
(Audio) Baby: Gagagagagaga
106
296260
12000
(語音) 嬰兒:Gagagagagaga
05:08
Gaga gaga gaga
107
308260
4000
Gaga gaga gaga
05:12
guga guga guga
108
312260
5000
guga guga guga
05:17
wada gaga gaga guga gaga
109
317260
5000
wada gaga gaga guga gaga
05:22
wader guga guga
110
322260
4000
wader guga guga
05:26
water water water
111
326260
3000
water water water
05:29
water water water
112
329260
6000
water water water
05:35
water water
113
335260
4000
water water
05:39
water.
114
339260
2000
water
05:41
DR: He sure nailed it, didn't he.
115
341260
2000
DR: 他的確說中了吧
05:43
(Applause)
116
343260
7000
(掌聲)
05:50
So he didn't just learn water.
117
350260
2000
他不僅學到「水」這個字詞
05:52
Over the course of the 24 months,
118
352260
2000
在24個月的歷程裡
05:54
the first two years that we really focused on,
119
354260
3000
頭兩年我們專注在這事上
05:57
this is a map of every word he learned in chronological order.
120
357260
4000
這裡有張圖列出他學到的所有字詞的時序
06:01
And because we have full transcripts,
121
361260
3000
由於我們有完整的轉譯
06:04
we've identified each of the 503 words
122
364260
2000
我們辨識出他在第二個生日前學到的
06:06
that he learned to produce by his second birthday.
123
366260
2000
這503個字詞的每一個
06:08
He was an early talker.
124
368260
2000
他算是早說話的
06:10
And so we started to analyze why.
125
370260
3000
所以我們開始分析原因
06:13
Why were certain words born before others?
126
373260
3000
爲什麽有些字詞來得早?
06:16
This is one of the first results
127
376260
2000
這是最早發現的結果之一
06:18
that came out of our study a little over a year ago
128
378260
2000
大約一年前的研究結果
06:20
that really surprised us.
129
380260
2000
真的很讓我們吃驚
06:22
The way to interpret this apparently simple graph
130
382260
3000
這張圖看來簡單,但解讀起來
06:25
is, on the vertical is an indication
131
385260
2000
在垂直線上有一顯示
06:27
of how complex caregiver utterances are
132
387260
3000
從言語長度來看,照顧者的話語
06:30
based on the length of utterances.
133
390260
2000
是很複雜的
06:32
And the [horizontal] axis is time.
134
392260
3000
垂直軸線表示時間
06:35
And all of the data,
135
395260
2000
我們將所有的資料
06:37
we aligned based on the following idea:
136
397260
3000
根據下述的想法排列:
06:40
Every time my son would learn a word,
137
400260
3000
每當發現我兒子就要學會一個字詞
06:43
we would trace back and look at all of the language he heard
138
403260
3000
我們就回溯查看他先前聽到出現
06:46
that contained that word.
139
406260
2000
那個字詞的所有言語裡
06:48
And we would plot the relative length of the utterances.
140
408260
4000
我們就繪製出那個比較長的言語
06:52
And what we found was this curious phenomena,
141
412260
3000
結果我們發現這麽一個奇特的現象
06:55
that caregiver speech would systematically dip to a minimum,
142
415260
3000
照顧者都會有系統地把字詞減降到最少
06:58
making language as simple as possible,
143
418260
3000
讓語言儘量變得簡單
07:01
and then slowly ascend back up in complexity.
144
421260
3000
然後又逐漸升回到複雜
07:04
And the amazing thing was
145
424260
2000
令人訝異的是
07:06
that bounce, that dip,
146
426260
2000
那個升、那個降
07:08
lined up almost precisely
147
428260
2000
幾乎與每個字詞
07:10
with when each word was born --
148
430260
2000
誕生的時間恰恰吻合-
07:12
word after word, systematically.
149
432260
2000
一詞接一詞,很有系統
07:14
So it appears that all three primary caregivers --
150
434260
2000
因此看來所有三個主要的照顧者-
07:16
myself, my wife and our nanny --
151
436260
3000
我自己、太太和我們的保姆-
07:19
were systematically and, I would think, subconsciously
152
439260
3000
都有系統地,而且我認為是下意識地
07:22
restructuring our language
153
442260
2000
重新建構我們的語言
07:24
to meet him at the birth of a word
154
444260
3000
好迎接一個字詞的誕生
07:27
and bring him gently into more complex language.
155
447260
4000
然後讓我兒子慢慢學習更複雜的語言
07:31
And the implications of this -- there are many,
156
451260
2000
這之中蘊含了許多意義
07:33
but one I just want to point out,
157
453260
2000
但我現在想指出的一點是
07:35
is that there must be amazing feedback loops.
158
455260
3000
這過程中必有令人驚異的反應循環
07:38
Of course, my son is learning
159
458260
2000
當然,我的兒子正在
07:40
from his linguistic environment,
160
460260
2000
從他的語言環境中學習
07:42
but the environment is learning from him.
161
462260
3000
但他所處的環境也會跟著有調整
07:45
That environment, people, are in these tight feedback loops
162
465260
3000
環境和人也都在這緊密的反應循環裡
07:48
and creating a kind of scaffolding
163
468260
2000
彼此建立起某種
07:50
that has not been noticed until now.
164
470260
3000
以往沒有注意到的橋梁
07:54
But that's looking at the speech context.
165
474260
2000
不過,那是從言語情境來看
07:56
What about the visual context?
166
476260
2000
若從視覺情境來看又是如何呢?
07:58
We're not looking at --
167
478260
2000
現在看到的還不是-
08:00
think of this as a dollhouse cutaway of our house.
168
480260
2000
想像這是我家剪下來的玩具屋
08:02
We've taken those circular fish-eye lens cameras,
169
482260
3000
我們使用環狀連結的魚眼攝影機
08:05
and we've done some optical correction,
170
485260
2000
然後再做一些光學修正
08:07
and then we can bring it into three-dimensional life.
171
487260
4000
因此我們可以做成3D影像
08:11
So welcome to my home.
172
491260
2000
歡迎來到我家
08:13
This is a moment,
173
493260
2000
這是其中一個時刻
08:15
one moment captured across multiple cameras.
174
495260
3000
透過多重攝影機攫取的一個時刻
08:18
The reason we did this is to create the ultimate memory machine,
175
498260
3000
這樣做是要創造出最高端的記憶機器
08:21
where you can go back and interactively fly around
176
501260
3000
可在其中以互動方式前後快速地搜尋
08:24
and then breathe video-life into this system.
177
504260
3000
從而爲此系統的影像注入生息
08:27
What I'm going to do
178
507260
2000
我現在要讓各位
08:29
is give you an accelerated view of 30 minutes,
179
509260
3000
看的是壓縮30分鐘的加快影像
08:32
again, of just life in the living room.
180
512260
2000
這次也只在客廳裡
08:34
That's me and my son on the floor.
181
514260
3000
那是我和我兒子在地板上
08:37
And there's video analytics
182
517260
2000
加上了影片分析
08:39
that are tracking our movements.
183
519260
2000
追蹤我們的動作
08:41
My son is leaving red ink. I am leaving green ink.
184
521260
3000
我兒子留下紅色軌迹,我留下綠色軌迹
08:44
We're now on the couch,
185
524260
2000
我們現在在沙發上
08:46
looking out through the window at cars passing by.
186
526260
3000
看著窗外駛過的汽車
08:49
And finally, my son playing in a walking toy by himself.
187
529260
3000
最後我兒子獨自玩會動的玩具
08:52
Now we freeze the action, 30 minutes,
188
532260
3000
我們在此停格,這段有30分鐘
08:55
we turn time into the vertical axis,
189
535260
2000
我們把時間放到垂直軸上
08:57
and we open up for a view
190
537260
2000
然後從中來看一下
08:59
of these interaction traces we've just left behind.
191
539260
3000
剛才留下來的互動軌迹
09:02
And we see these amazing structures --
192
542260
3000
我們看到這個令人訝異的結構-
09:05
these little knots of two colors of thread
193
545260
3000
這些兩種顔色的小結點
09:08
we call "social hot spots."
194
548260
2000
我們稱之爲社交熱點
09:10
The spiral thread
195
550260
2000
這個蜿蜒交纏的點串
09:12
we call a "solo hot spot."
196
552260
2000
我們稱之爲單一熱點
09:14
And we think that these affect the way language is learned.
197
554260
3000
我們認爲這些熱點對語言學習有影響
09:17
What we'd like to do
198
557260
2000
我們想要做的是
09:19
is start understanding
199
559260
2000
開始理解
09:21
the interaction between these patterns
200
561260
2000
這些模式與我兒子接觸的
09:23
and the language that my son is exposed to
201
563260
2000
語言之間的互動關係
09:25
to see if we can predict
202
565260
2000
看看是否能夠預測
09:27
how the structure of when words are heard
203
567260
2000
聽到字詞時的結構
09:29
affects when they're learned --
204
569260
2000
如何影響到字詞的學習-
09:31
so in other words, the relationship
205
571260
2000
換句話說就是
09:33
between words and what they're about in the world.
206
573260
4000
字詞與現實世界之間的關係
09:37
So here's how we're approaching this.
207
577260
2000
這就是我們的解讀方法
09:39
In this video,
208
579260
2000
在這個影片裡
09:41
again, my son is being traced out.
209
581260
2000
同樣是追蹤我的兒子
09:43
He's leaving red ink behind.
210
583260
2000
他留下紅色的軌迹
09:45
And there's our nanny by the door.
211
585260
2000
門旁的是我們的保姆
09:47
(Video) Nanny: You want water? (Baby: Aaaa.)
212
587260
3000
(影片) 保姆:你要喝水?(嬰孩:Aaaa.)
09:50
Nanny: All right. (Baby: Aaaa.)
213
590260
3000
保姆:好的 (嬰孩:Aaaa.)
09:53
DR: She offers water,
214
593260
2000
DR:她問他要不要水
09:55
and off go the two worms
215
595260
2000
然後兩條時空蟲
09:57
over to the kitchen to get water.
216
597260
2000
開始蠕動到廚房拿水
09:59
And what we've done is use the word "water"
217
599260
2000
我們用來標示那個時刻
10:01
to tag that moment, that bit of activity.
218
601260
2000
那個活動的字詞是「water」
10:03
And now we take the power of data
219
603260
2000
我們現在有龐大的資料
10:05
and take every time my son
220
605260
3000
從中汲取我兒子何時聽到
10:08
ever heard the word water
221
608260
2000
「水」這個字以及
10:10
and the context he saw it in,
222
610260
2000
他看到水的情境
10:12
and we use it to penetrate through the video
223
612260
3000
我們利用來這些透析整個影片
10:15
and find every activity trace
224
615260
3000
找出每一個與水相關
10:18
that co-occurred with an instance of water.
225
618260
3000
同時發生的活動的軌迹
10:21
And what this data leaves in its wake
226
621260
2000
這些資料留下了
10:23
is a landscape.
227
623260
2000
一幅風景
10:25
We call these wordscapes.
228
625260
2000
我們稱之爲「字詞風景」
10:27
This is the wordscape for the word water,
229
627260
2000
這就是water的「字詞風景」
10:29
and you can see most of the action is in the kitchen.
230
629260
2000
各位可以看到大多在廚房發生
10:31
That's where those big peaks are over to the left.
231
631260
3000
即是在左邊那個大尖峰所表示的
10:34
And just for contrast, we can do this with any word.
232
634260
3000
做個比較,也可以爲別的字詞做個風景
10:37
We can take the word "bye"
233
637260
2000
比方說「good bye」裡的
10:39
as in "good bye."
234
639260
2000
這個「bye」
10:41
And we're now zoomed in over the entrance to the house.
235
641260
2000
我們現在放大房子入口部分
10:43
And we look, and we find, as you would expect,
236
643260
3000
我們查找也發現,各位看得出來
10:46
a contrast in the landscape
237
646260
2000
可以作爲對比的風景
10:48
where the word "bye" occurs much more in a structured way.
238
648260
3000
在那兒「bye」的頻率建構出清楚的風景
10:51
So we're using these structures
239
651260
2000
所以我們利用這種風景結構
10:53
to start predicting
240
653260
2000
開始進行預測
10:55
the order of language acquisition,
241
655260
3000
語言習得的先後順序
10:58
and that's ongoing work now.
242
658260
2000
那就是在我們目前的工作
11:00
In my lab, which we're peering into now, at MIT --
243
660260
3000
我在MIT的研究室-即是現在看到的-
11:03
this is at the media lab.
244
663260
2000
那是在媒體實驗室裡
11:05
This has become my favorite way
245
665260
2000
從影片汲取任何空間影像
11:07
of videographing just about any space.
246
667260
2000
已經成爲我最喜歡的方法
11:09
Three of the key people in this project,
247
669260
2000
這個專案有三個主要人物
11:11
Philip DeCamp, Rony Kubat and Brandon Roy are pictured here.
248
671260
3000
即是影像裡的Philip DeCamp、Rony Kubat和Brandon Roy
11:14
Philip has been a close collaborator
249
674260
2000
Philip是大家看到的
11:16
on all the visualizations you're seeing.
250
676260
2000
影片製作的同事
11:18
And Michael Fleischman
251
678260
3000
還有Michael Fleischman是在我實驗室裡的
11:21
was another Ph.D. student in my lab
252
681260
2000
另一位博士生
11:23
who worked with me on this home video analysis,
253
683260
3000
他和我一同分析這支家庭影片
11:26
and he made the following observation:
254
686260
3000
他說了以下的意見:
11:29
that "just the way that we're analyzing
255
689260
2000
他說「我們分析
11:31
how language connects to events
256
691260
3000
語言如何與事件相關聯
11:34
which provide common ground for language,
257
694260
2000
以作爲語言的共通基礎
11:36
that same idea we can take out of your home, Deb,
258
696260
4000
同樣想法也可帶到你家之外,Deb
11:40
and we can apply it to the world of public media."
259
700260
3000
我們可以用它來分析外面世界的公衆媒體」
11:43
And so our effort took an unexpected turn.
260
703260
3000
結果我們的研究有了料想不到的轉折
11:46
Think of mass media
261
706260
2000
想到公衆媒體
11:48
as providing common ground
262
708260
2000
提供共同的基礎
11:50
and you have the recipe
263
710260
2000
那就可以將我們的
11:52
for taking this idea to a whole new place.
264
712260
3000
想法帶到嶄新的境地
11:55
We've started analyzing television content
265
715260
3000
於是我們開始採用相同的原則
11:58
using the same principles --
266
718260
2000
分析電視的內容-
12:00
analyzing event structure of a TV signal --
267
720260
3000
分析電視訊號的事件結構-
12:03
episodes of shows,
268
723260
2000
播出節目的分集、
12:05
commercials,
269
725260
2000
商業廣告、
12:07
all of the components that make up the event structure.
270
727260
3000
構成事件結構的所有元件
12:10
And we're now, with satellite dishes, pulling and analyzing
271
730260
3000
結果我們現在用衛星碟抽出並分析
12:13
a good part of all the TV being watched in the United States.
272
733260
3000
相當一大部分在美國被觀看的電視節目
12:16
And you don't have to now go and instrument living rooms with microphones
273
736260
3000
現在不用再到各個客廳去裝設麥克風
12:19
to get people's conversations,
274
739260
2000
來取得人們的談話
12:21
you just tune into publicly available social media feeds.
275
741260
3000
只要收聽公衆能取得的社交媒體訊息就行了
12:24
So we're pulling in
276
744260
2000
於是我們每個月抽取
12:26
about three billion comments a month,
277
746260
2000
大約三十億則電視評論
12:28
and then the magic happens.
278
748260
2000
然後美妙的事發生了
12:30
You have the event structure,
279
750260
2000
這當中可以找到事件結構
12:32
the common ground that the words are about,
280
752260
2000
那些字詞內容的共同基礎
12:34
coming out of the television feeds;
281
754260
3000
從這些電視訊息裡透露出來
12:37
you've got the conversations
282
757260
2000
我們取得了關於
12:39
that are about those topics;
283
759260
2000
那些話題的談話
12:41
and through semantic analysis --
284
761260
3000
再經過語意分析-大家現在看到的
12:44
and this is actually real data you're looking at
285
764260
2000
確實是來自於我們進行
12:46
from our data processing --
286
766260
2000
資料處理的真實資料-
12:48
each yellow line is showing a link being made
287
768260
3000
每一條黃線顯示一則評論
12:51
between a comment in the wild
288
771260
3000
在外間造成的連結
12:54
and a piece of event structure coming out of the television signal.
289
774260
3000
於是從電視訊號逐漸顯出一點事件的結構
12:57
And the same idea now
290
777260
2000
同樣的想法現在
12:59
can be built up.
291
779260
2000
可以用來建構關聯
13:01
And we get this wordscape,
292
781260
2000
於是我們得到了這個「字詞風景」
13:03
except now words are not assembled in my living room.
293
783260
3000
只不過這些字詞並非在我家客廳裡組造出來的
13:06
Instead, the context, the common ground activities,
294
786260
4000
而是情境,即共同基礎的活動
13:10
are the content on television that's driving the conversations.
295
790260
3000
即電視的內容在推動談話
13:13
And what we're seeing here, these skyscrapers now,
296
793260
3000
我們現在看到的這些高聳的結構
13:16
are commentary
297
796260
2000
都是電視評論
13:18
that are linked to content on television.
298
798260
2000
在電視內容上有相互關聯
13:20
Same concept,
299
800260
2000
同樣的構想
13:22
but looking at communication dynamics
300
802260
2000
但請看它在另一個
13:24
in a very different sphere.
301
804260
2000
非常不同的空間所造成的溝通動態
13:26
And so fundamentally, rather than, for example,
302
806260
2000
而且深入根本,舉例來說,
13:28
measuring content based on how many people are watching,
303
808260
3000
與測量收視率所得的結果極爲不同
13:31
this gives us the basic data
304
811260
2000
此研究讓我們得到了
13:33
for looking at engagement properties of content.
305
813260
3000
用來檢視內容「佔用特性」的基本資料
13:36
And just like we can look at feedback cycles
306
816260
3000
如同我們可以檢視一個
13:39
and dynamics in a family,
307
819260
3000
家庭裡的反應循環和動態
13:42
we can now open up the same concepts
308
822260
3000
我們現在可以利用同樣的構想
13:45
and look at much larger groups of people.
309
825260
3000
檢視更大的人群
13:48
This is a subset of data from our database --
310
828260
3000
這是從我們資料庫來的一個子集-
13:51
just 50,000 out of several million --
311
831260
3000
只是透過公衆媒體來源取得的
13:54
and the social graph that connects them
312
834260
2000
幾百萬則訊息中的五萬則
13:56
through publicly available sources.
313
836260
3000
以及其間互相關聯的「社交圖」
13:59
And if you put them on one plain,
314
839260
2000
如果把它們放到一個平面上
14:01
a second plain is where the content lives.
315
841260
3000
另一個平面是內容活躍的地方
14:04
So we have the programs
316
844260
3000
於是我們有了節目
14:07
and the sporting events
317
847260
2000
和體育運動事件
14:09
and the commercials,
318
849260
2000
以及商業廣告
14:11
and all of the link structures that tie them together
319
851260
2000
還有所有把它們綁在一起的連結結構
14:13
make a content graph.
320
853260
2000
形成了一個「內容圖」
14:15
And then the important third dimension.
321
855260
4000
然後是重要的第三個面向
14:19
Each of the links that you're seeing rendered here
322
859260
2000
大家在這裡看到的每個連結
14:21
is an actual connection made
323
861260
2000
是某個人說了某東西
14:23
between something someone said
324
863260
3000
和某一件內容之間的
14:26
and a piece of content.
325
866260
2000
真實關聯
14:28
And there are, again, now tens of millions of these links
326
868260
3000
這裡又有這些關聯的幾千萬條連結
14:31
that give us the connective tissue of social graphs
327
871260
3000
這讓我們看見「社交圖」的「關聯組織」
14:34
and how they relate to content.
328
874260
3000
以及它們是如何與內容相關的情況
14:37
And we can now start to probe the structure
329
877260
2000
我們現在可以開始用
14:39
in interesting ways.
330
879260
2000
有趣的方式來探索這個結構
14:41
So if we, for example, trace the path
331
881260
3000
例如,如果我們追蹤
14:44
of one piece of content
332
884260
2000
某一件內容的路徑
14:46
that drives someone to comment on it,
333
886260
2000
那個內容讓某個人對它評論
14:48
and then we follow where that comment goes,
334
888260
3000
然後我們隨著那個評論的走向
14:51
and then look at the entire social graph that becomes activated
335
891260
3000
然後檢視整個啓動的「社交圖」
14:54
and then trace back to see the relationship
336
894260
3000
然後又回頭追蹤查看那個「社交圖」
14:57
between that social graph and content,
337
897260
2000
和內容之間的關係
14:59
a very interesting structure becomes visible.
338
899260
2000
於是顯現出一個非常有趣的結構
15:01
We call this a co-viewing clique,
339
901260
2000
我們稱之爲「共看集團」
15:03
a virtual living room if you will.
340
903260
3000
要說是一個虛擬客廳也可以
15:06
And there are fascinating dynamics at play.
341
906260
2000
這裡頭上演著引人注目的戲劇
15:08
It's not one way.
342
908260
2000
這不是單向的
15:10
A piece of content, an event, causes someone to talk.
343
910260
3000
一件內容,一個事件讓某個人說了話
15:13
They talk to other people.
344
913260
2000
這讓其他的人有感
15:15
That drives tune-in behavior back into mass media,
345
915260
3000
那就驅動了大衆傳媒的收視行爲
15:18
and you have these cycles
346
918260
2000
於是出現了這樣的循環
15:20
that drive the overall behavior.
347
920260
2000
驅動了整體的收視行爲
15:22
Another example -- very different --
348
922260
2000
另一個例子-情況很不同
15:24
another actual person in our database --
349
924260
3000
我們的資料庫裡有一位人士-
15:27
and we're finding at least hundreds, if not thousands, of these.
350
927260
3000
其實我們可以找到成千上百個例子
15:30
We've given this person a name.
351
930260
2000
我們給這位人士一個名字
15:32
This is a pro-amateur, or pro-am media critic
352
932260
3000
這是一位專業業餘者,或專業美國媒體評論員
15:35
who has this high fan-out rate.
353
935260
3000
此人有高度的粉絲收視率
15:38
So a lot of people are following this person -- very influential --
354
938260
3000
許多人追隨這位人士-他很有影響力-
15:41
and they have a propensity to talk about what's on TV.
355
941260
2000
那些追隨者傾向於在電視上說話
15:43
So this person is a key link
356
943260
3000
那麽這位人士是關聯大衆傳媒
15:46
in connecting mass media and social media together.
357
946260
3000
和社交媒體的一個主要連結
15:49
One last example from this data:
358
949260
3000
這份資料的最後一個例子是:
15:52
Sometimes it's actually a piece of content that is special.
359
952260
3000
有時確實是一件特別的內容
15:55
So if we go and look at this piece of content,
360
955260
4000
因此我們現在來檢視這一件內容
15:59
President Obama's State of the Union address
361
959260
3000
才幾個星期前的歐巴馬總統
16:02
from just a few weeks ago,
362
962260
2000
國情咨文演講
16:04
and look at what we find in this same data set,
363
964260
3000
再檢視我們在這組資料中發現些什麽
16:07
at the same scale,
364
967260
3000
用同樣的尺度來衡量
16:10
the engagement properties of this piece of content
365
970260
2000
這件內容的「佔用特性」
16:12
are truly remarkable.
366
972260
2000
真是令人驚奇
16:14
A nation exploding in conversation
367
974260
2000
整個國家頓時同步
16:16
in real time
368
976260
2000
爆發了談話
16:18
in response to what's on the broadcast.
369
978260
3000
那是對廣播的訊息所做出的反應
16:21
And of course, through all of these lines
370
981260
2000
當然,所有這些連結線也
16:23
are flowing unstructured language.
371
983260
2000
也流動著缺乏結構的語言
16:25
We can X-ray
372
985260
2000
我們可以在「社交圖」上
16:27
and get a real-time pulse of a nation,
373
987260
2000
透視一下
16:29
real-time sense
374
989260
2000
在不同的圈子裡
16:31
of the social reactions in the different circuits in the social graph
375
991260
3000
這個被這件內容啓動的國家
16:34
being activated by content.
376
994260
3000
有怎樣的即時脈動和即時官感
16:37
So, to summarize, the idea is this:
377
997260
3000
總結來說,我們的想法是這樣的:
16:40
As our world becomes increasingly instrumented
378
1000260
3000
正當我們的世界變得越來越工具化
16:43
and we have the capabilities
379
1003260
2000
我們有能力搜集
16:45
to collect and connect the dots
380
1005260
2000
並在人們說了些什麽
16:47
between what people are saying
381
1007260
2000
和他們說話的情境之間
16:49
and the context they're saying it in,
382
1009260
2000
將那些點連結起來
16:51
what's emerging is an ability
383
1011260
2000
那麽呈現的將會是洞悉
16:53
to see new social structures and dynamics
384
1013260
3000
社交結構和社交動態的新視野
16:56
that have previously not been seen.
385
1016260
2000
那將是前所未有的能力
16:58
It's like building a microscope or telescope
386
1018260
2000
這像是製造了麥克風
17:00
and revealing new structures
387
1020260
2000
和望遠鏡而顯現了
17:02
about our own behavior around communication.
388
1022260
3000
我們的溝通行爲的新結構
17:05
And I think the implications here are profound,
389
1025260
3000
我認爲其中隱含深遠的意義
17:08
whether it's for science,
390
1028260
2000
無論是對科學而言
17:10
for commerce, for government,
391
1030260
2000
對商業而言,對政府而言
17:12
or perhaps most of all,
392
1032260
2000
或也許最重要的是
17:14
for us as individuals.
393
1034260
3000
對我們個人而言
17:17
And so just to return to my son,
394
1037260
3000
那麽我們回到我的兒子
17:20
when I was preparing this talk, he was looking over my shoulder,
395
1040260
3000
我在準備這個談話時,他就在我身後看著
17:23
and I showed him the clips I was going to show to you today,
396
1043260
2000
我讓他看今天給大家看的短片
17:25
and I asked him for permission -- granted.
397
1045260
3000
也徵求他的准許-他同意了
17:28
And then I went on to reflect,
398
1048260
2000
然後我開始醒思
17:30
"Isn't it amazing,
399
1050260
3000
「這不是很令人訝異的嗎?
17:33
this entire database, all these recordings,
400
1053260
3000
這整個資料庫,所有這些錄影紀錄
17:36
I'm going to hand off to you and to your sister" --
401
1056260
2000
我把它們交給你和妹妹」
17:38
who arrived two years later --
402
1058260
3000
妹妹晚了兩年出生
17:41
"and you guys are going to be able to go back and re-experience moments
403
1061260
3000
「你們倆將能夠回顧並重溫
17:44
that you could never, with your biological memory,
404
1064260
3000
你們的生物記憶可能
17:47
possibly remember the way you can now?"
405
1067260
2000
不會記得的那些時刻」
17:49
And he was quiet for a moment.
406
1069260
2000
他沈默了半响
17:51
And I thought, "What am I thinking?
407
1071260
2000
我想「我想到哪裡去了
17:53
He's five years old. He's not going to understand this."
408
1073260
2000
他不過才五歲,不會懂的」
17:55
And just as I was having that thought, he looked up at me and said,
409
1075260
3000
我才剛這麽想,他抬頭看著我
17:58
"So that when I grow up,
410
1078260
2000
說:「那麽,我長大了
18:00
I can show this to my kids?"
411
1080260
2000
可以讓我的孩子看這個?」
18:02
And I thought, "Wow, this is powerful stuff."
412
1082260
3000
我想「哇,這說得可真好」
18:05
So I want to leave you
413
1085260
2000
那麽,我要給各位
18:07
with one last memorable moment
414
1087260
2000
留下最後一個
18:09
from our family.
415
1089260
3000
我們家值得回憶的時刻
18:12
This is the first time our son
416
1092260
2000
這是我兒子第一次
18:14
took more than two steps at once --
417
1094260
2000
走出兩步以上的情況-
18:16
captured on film.
418
1096260
2000
拍攝在影片裡
18:18
And I really want you to focus on something
419
1098260
3000
我真的希望讓大家看的時候
18:21
as I take you through.
420
1101260
2000
要注意到其中一點
18:23
It's a cluttered environment; it's natural life.
421
1103260
2000
周遭有點吵,這是自然的生活環境
18:25
My mother's in the kitchen, cooking,
422
1105260
2000
我媽在廚房做飯
18:27
and, of all places, in the hallway,
423
1107260
2000
就在走道上
18:29
I realize he's about to do it, about to take more than two steps.
424
1109260
3000
我感覺到他就要走出兩步以上
18:32
And so you hear me encouraging him,
425
1112260
2000
因此各位聽到我鼓勵他
18:34
realizing what's happening,
426
1114260
2000
感到有事就要發生
18:36
and then the magic happens.
427
1116260
2000
然後美妙的事發生了
18:38
Listen very carefully.
428
1118260
2000
請仔細聽
18:40
About three steps in,
429
1120260
2000
大概在走三步後
18:42
he realizes something magic is happening,
430
1122260
2000
他感到發生了美妙的事
18:44
and the most amazing feedback loop of all kicks in,
431
1124260
3000
這時最令人訝異的反應循環全都作動了
18:47
and he takes a breath in,
432
1127260
2000
他鬆了一口氣
18:49
and he whispers "wow"
433
1129260
2000
輕輕地說了「哇」
18:51
and instinctively I echo back the same.
434
1131260
4000
我直覺反應地也說了同樣的話
18:56
And so let's fly back in time
435
1136260
3000
我們現在重回那個時光
18:59
to that memorable moment.
436
1139260
2000
回到那個難忘的時刻
19:05
(Video) DR: Hey.
437
1145260
2000
(影片) DR:喂
19:07
Come here.
438
1147260
2000
來,過來
19:09
Can you do it?
439
1149260
3000
你辦得到嗎?
19:13
Oh, boy.
440
1153260
2000
啊,孩子
19:15
Can you do it?
441
1155260
3000
你辦得到嗎?
19:18
Baby: Yeah.
442
1158260
2000
嬰孩:可以
19:20
DR: Ma, he's walking.
443
1160260
3000
DR:媽,他走路了
19:24
(Laughter)
444
1164260
2000
(笑聲)
19:26
(Applause)
445
1166260
2000
(掌聲)
19:28
DR: Thank you.
446
1168260
2000
DR:謝謝大家
19:30
(Applause)
447
1170260
15000
(掌聲)

Original video on YouTube.com
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog