Deb Roy: The birth of a word

410,607 views ・ 2011-03-14

TED


Dvaput kliknite na engleske titlove ispod za reprodukciju videozapisa.

Prevoditelj: Katarina Smetko Recezent: Tilen Pigac - EFZG
00:15
Imagine if you could record your life --
0
15260
4000
Zamislite da možete snimiti svoj život --
00:19
everything you said, everything you did,
1
19260
3000
sve što ste rekli, sve što ste učinili,
00:22
available in a perfect memory store at your fingertips,
2
22260
3000
dostupno savršeno pohranjeno, na dohvat ruke,
00:25
so you could go back
3
25260
2000
tako da se možete vratiti,
00:27
and find memorable moments and relive them,
4
27260
3000
pronaći značajne trenutke i ponovno ih proživjeti,
00:30
or sift through traces of time
5
30260
3000
ili preletjeti kroz tragove vremena
00:33
and discover patterns in your own life
6
33260
2000
i otkriti uzorke u vlastitom životu
00:35
that previously had gone undiscovered.
7
35260
3000
koje ranije niste ni primijetili.
00:38
Well that's exactly the journey
8
38260
2000
Točno je na takvo putovanje
00:40
that my family began
9
40260
2000
krenula moja obitelj
00:42
five and a half years ago.
10
42260
2000
prije pet i pol godina.
00:44
This is my wife and collaborator, Rupal.
11
44260
3000
Ovo je moja supruga i suradnica, Rupal.
00:47
And on this day, at this moment,
12
47260
2000
Ovog smo dana i u ovom trenutku
00:49
we walked into the house with our first child,
13
49260
2000
ušli u kuću s našim prvim djetetom,
00:51
our beautiful baby boy.
14
51260
2000
našim prekrasnim sinom.
00:53
And we walked into a house
15
53260
3000
Ušli smo u kuću
00:56
with a very special home video recording system.
16
56260
4000
s vrlo posebnim sustavom za kućno snimanje.
01:07
(Video) Man: Okay.
17
67260
2000
(Video) Muškarac: U redu.
01:10
Deb Roy: This moment
18
70260
1000
Deb Roy: Taj trenutak
01:11
and thousands of other moments special for us
19
71260
3000
i tisuće drugih posebnih trenutaka
01:14
were captured in our home
20
74260
2000
zabilježeni su u našem domu
01:16
because in every room in the house,
21
76260
2000
jer u svakoj sobi u našoj kući,
01:18
if you looked up, you'd see a camera and a microphone,
22
78260
3000
ako biste podigli pogled, vidjeli biste kameru i mikrofon,
01:21
and if you looked down,
23
81260
2000
a ako biste pogledali prema dolje,
01:23
you'd get this bird's-eye view of the room.
24
83260
2000
dobili biste ptičju perspektivu sobe.
01:25
Here's our living room,
25
85260
3000
Ovo je naša dnevna soba,
01:28
the baby bedroom,
26
88260
3000
dječja soba,
01:31
kitchen, dining room
27
91260
2000
kuhinja, blagovaonica,
01:33
and the rest of the house.
28
93260
2000
i ostatak kuće.
01:35
And all of these fed into a disc array
29
95260
3000
Sve se to spremalo na niz diskova
01:38
that was designed for a continuous capture.
30
98260
3000
izrađenih za trajno snimanje.
01:41
So here we are flying through a day in our home
31
101260
3000
Sada ubrzano gledamo jedan dan u našem domu.
01:44
as we move from sunlit morning
32
104260
3000
Krećemo od sunčanog jutra
01:47
through incandescent evening
33
107260
2000
preko osvijetljene večeri
01:49
and, finally, lights out for the day.
34
109260
3000
i na kraju gasimo svjetla.
01:53
Over the course of three years,
35
113260
3000
Tijekom tri godine
01:56
we recorded eight to 10 hours a day,
36
116260
2000
snimali smo 8 do 10 sati na dan,
01:58
amassing roughly a quarter-million hours
37
118260
3000
što na kraju čini oko četvrt milijuna sati
02:01
of multi-track audio and video.
38
121260
3000
paralelno snimanog audio i video materijala.
02:04
So you're looking at a piece of what is by far
39
124260
2000
Dakle, gledate dio daleko najveće
02:06
the largest home video collection ever made.
40
126260
2000
kolekcije kućnih videa ikad napravljene.
02:08
(Laughter)
41
128260
3000
(Smijeh)
02:11
And what this data represents
42
131260
2000
Ono što ovi podaci predstavljaju
02:13
for our family at a personal level,
43
133260
4000
našoj obitelji na osobnoj razini,
02:17
the impact has already been immense,
44
137260
2000
utjecaj je već do sada ogroman,
02:19
and we're still learning its value.
45
139260
3000
i još uvijek otkrivamo njihovu vrijednost.
02:22
Countless moments
46
142260
2000
Bezbrojni trenuci
02:24
of unsolicited natural moments, not posed moments,
47
144260
3000
neglumljenih prirodnih trenutaka, nenamještenih,
02:27
are captured there,
48
147260
2000
ovdje su zabilježeni,
02:29
and we're starting to learn how to discover them and find them.
49
149260
3000
i polako ih učimo otkrivati i tražiti.
02:32
But there's also a scientific reason that drove this project,
50
152260
3000
Ali postoji i znanstveni razlog za ovaj projekt,
02:35
which was to use this natural longitudinal data
51
155260
4000
a to je da upotrijebimo ove prirodne linearne podatke
02:39
to understand the process
52
159260
2000
kako bismo shvatili proces
02:41
of how a child learns language --
53
161260
2000
kojim dijete uči jezik --
02:43
that child being my son.
54
163260
2000
a to dijete je moj sin.
02:45
And so with many privacy provisions put in place
55
165260
4000
I tako, s mnogim ograničenjima zbog privatnosti,
02:49
to protect everyone who was recorded in the data,
56
169260
3000
kako bismo zaštitili sve koji su snimljeni,
02:52
we made elements of the data available
57
172260
3000
učinili smo dijelove podataka dostupnima
02:55
to my trusted research team at MIT
58
175260
3000
mojem istraživačkom timu na MIT-u
02:58
so we could start teasing apart patterns
59
178260
3000
kako bismo mogli početi izdvajati uzorke
03:01
in this massive data set,
60
181260
3000
u tom ogromnom skupu podataka,
03:04
trying to understand the influence of social environments
61
184260
3000
pokušavajući shvatiti utjecaj društvene sredine
03:07
on language acquisition.
62
187260
2000
na usvajanje jezika.
03:09
So we're looking here
63
189260
2000
Sada gledamo
03:11
at one of the first things we started to do.
64
191260
2000
jednu od prvih stvari koje smo počeli raditi.
03:13
This is my wife and I cooking breakfast in the kitchen,
65
193260
4000
Ovdje moja supruga i ja spremamo doručak u kuhinji.
03:17
and as we move through space and through time,
66
197260
3000
Kako se krećemo kroz prostor i vrijeme,
03:20
a very everyday pattern of life in the kitchen.
67
200260
3000
svakodnevni uzorak života u kuhinji.
03:23
In order to convert
68
203260
2000
Kako bismo pretvorili
03:25
this opaque, 90,000 hours of video
69
205260
3000
ovih mutnih 90.000 sati snimaka
03:28
into something that we could start to see,
70
208260
2000
u nešto što možemo jasno vidjeti,
03:30
we use motion analysis to pull out,
71
210260
2000
koristimo analizu pokreta kako bismo izvukli,
03:32
as we move through space and through time,
72
212260
2000
dok se krećemo kroz prostor i vrijeme,
03:34
what we call space-time worms.
73
214260
3000
ono što zovemo prostorno-vremenskim crvima.
03:37
And this has become part of our toolkit
74
217260
3000
I to je postao dio našeg alata
03:40
for being able to look and see
75
220260
3000
koji smo koristili kako bismo vidjeli
03:43
where the activities are in the data,
76
223260
2000
gdje se aktivnosti nalaze u podacima,
03:45
and with it, trace the pattern of, in particular,
77
225260
3000
i njima pratimo uzorke, konkretno,
03:48
where my son moved throughout the home,
78
228260
2000
kuda se moj sin kretao kroz kuću,
03:50
so that we could focus our transcription efforts,
79
230260
3000
kako bismo mogli rad na transkriptima
03:53
all of the speech environment around my son --
80
233260
3000
i govornu okolinu mogli usredotočiti na mojeg sina --
03:56
all of the words that he heard from myself, my wife, our nanny,
81
236260
3000
sve riječi koje je čuo od mene, moje supruge, naše dadilje,
03:59
and over time, the words he began to produce.
82
239260
3000
i, s vremenom, na riječi koje je počeo izgovarati.
04:02
So with that technology and that data
83
242260
3000
S tom tehnologijom i tim podacima
04:05
and the ability to, with machine assistance,
84
245260
2000
i s mogućnošću da
04:07
transcribe speech,
85
247260
2000
uz pomoć strojeva transkribiramo govor,
04:09
we've now transcribed
86
249260
2000
do sada smo transkribirali
04:11
well over seven million words of our home transcripts.
87
251260
3000
više od sedam milijuna riječi s naših kućnih transkripata.
04:14
And with that, let me take you now
88
254260
2000
S tim na umu, sad ću vam predstaviti
04:16
for a first tour into the data.
89
256260
3000
prvi pregled podataka.
04:19
So you've all, I'm sure,
90
259260
2000
Svi ste, siguran sam,
04:21
seen time-lapse videos
91
261260
2000
vidjeli ubrzane videosnimke,
04:23
where a flower will blossom as you accelerate time.
92
263260
3000
na kojima je ubrzano prikazan cvat cvijeta.
04:26
I'd like you to now experience
93
266260
2000
Sada bih vam volio dočarati
04:28
the blossoming of a speech form.
94
268260
2000
cvat govornog oblika.
04:30
My son, soon after his first birthday,
95
270260
2000
Moj sin je, nedugo nakon prvog rođendana,
04:32
would say "gaga" to mean water.
96
272260
3000
govorio "gaga", što je značilo "voda".
04:35
And over the course of the next half-year,
97
275260
3000
Tijekom narednih pola godine
04:38
he slowly learned to approximate
98
278260
2000
polako se približavao
04:40
the proper adult form, "water."
99
280260
3000
ispravnom obliku koji koriste odrasli, "voda".
04:43
So we're going to cruise through half a year
100
283260
2000
Sad ćemo proletjeti kroz pola godine
04:45
in about 40 seconds.
101
285260
2000
u otprilike 40 sekundi.
04:47
No video here,
102
287260
2000
Ovdje nema videozapisa,
04:49
so you can focus on the sound, the acoustics,
103
289260
3000
tako da se možete usredotočiti na zvuk, na akustiku
04:52
of a new kind of trajectory:
104
292260
2000
nove vrste putanje:
04:54
gaga to water.
105
294260
2000
od "gaga" do vode.
04:56
(Audio) Baby: Gagagagagaga
106
296260
12000
(Zvuk) Dijete: Gagagagagaga
05:08
Gaga gaga gaga
107
308260
4000
Gaga gaga gaga
05:12
guga guga guga
108
312260
5000
guga guga guga
05:17
wada gaga gaga guga gaga
109
317260
5000
wada gaga gaga guga gaga
05:22
wader guga guga
110
322260
4000
wada guga guga
05:26
water water water
111
326260
3000
voda voda voda
05:29
water water water
112
329260
6000
voda voda voda
05:35
water water
113
335260
4000
voda voda
05:39
water.
114
339260
2000
voda.
05:41
DR: He sure nailed it, didn't he.
115
341260
2000
DR: Odlično je to svladao, za ne?
05:43
(Applause)
116
343260
7000
(Pljesak)
05:50
So he didn't just learn water.
117
350260
2000
I nije naučio samo vodu.
05:52
Over the course of the 24 months,
118
352260
2000
Tijekom 24 mjeseca,
05:54
the first two years that we really focused on,
119
354260
3000
prve dvije godine, na koje smo se najviše usredotočili,
05:57
this is a map of every word he learned in chronological order.
120
357260
4000
ovo je prikaz svih riječi koje je naučio, kronološkim redom.
06:01
And because we have full transcripts,
121
361260
3000
A budući da imamo potpune transkripte,
06:04
we've identified each of the 503 words
122
364260
2000
identificirali smo svaku od 503 riječi
06:06
that he learned to produce by his second birthday.
123
366260
2000
koje je naučio do drugog rođendana.
06:08
He was an early talker.
124
368260
2000
Rano je progovorio.
06:10
And so we started to analyze why.
125
370260
3000
I počeli smo analizirati zašto.
06:13
Why were certain words born before others?
126
373260
3000
Zašto su se neke riječi "rodile" prije drugih?
06:16
This is one of the first results
127
376260
2000
Ovo je jedan od prvih rezultata koje smo dobili
06:18
that came out of our study a little over a year ago
128
378260
2000
iz našeg istraživanja prije nešto više od godinu dana
06:20
that really surprised us.
129
380260
2000
i koji nas je zaista iznenadio.
06:22
The way to interpret this apparently simple graph
130
382260
3000
Na ovom naizgled jednostavnom grafu
06:25
is, on the vertical is an indication
131
385260
2000
na okomitoj osi prikazana je kompleksnost
06:27
of how complex caregiver utterances are
132
387260
3000
rečenica koje su izgovarali odrasli,
06:30
based on the length of utterances.
133
390260
2000
a temeljeno na dužini rečenica.
06:32
And the [horizontal] axis is time.
134
392260
3000
A na horizontalnoj osi je vrijeme.
06:35
And all of the data,
135
395260
2000
I sve smo podatke
06:37
we aligned based on the following idea:
136
397260
3000
poredali prema sljedećem principu:
06:40
Every time my son would learn a word,
137
400260
3000
svaki put kad bi moj sin naučio riječ,
06:43
we would trace back and look at all of the language he heard
138
403260
3000
pratili bismo podatke unatrag i gledali sav govor koji je čuo
06:46
that contained that word.
139
406260
2000
i koji je sadržavao tu riječ
06:48
And we would plot the relative length of the utterances.
140
408260
4000
i ucrtali bismo relativnu duljinu tih rečenica.
06:52
And what we found was this curious phenomena,
141
412260
3000
Tako smo otkrili ovaj zanimljiv fenomen:
06:55
that caregiver speech would systematically dip to a minimum,
142
415260
3000
govor odrasle osobe sustavno se svodio na minimum,
06:58
making language as simple as possible,
143
418260
3000
čineći govor što jednostavnijim,
07:01
and then slowly ascend back up in complexity.
144
421260
3000
a zatim bi ponovno postupno postao sve složeniji.
07:04
And the amazing thing was
145
424260
2000
Ono što nas je zadivilo
07:06
that bounce, that dip,
146
426260
2000
bio je taj pad, to pojednostavljenje,
07:08
lined up almost precisely
147
428260
2000
koje se gotovo potpuno poklapa
07:10
with when each word was born --
148
430260
2000
s trenutkom "rođenja" svake riječi --
07:12
word after word, systematically.
149
432260
2000
i tako sustavno, za svaku riječ.
07:14
So it appears that all three primary caregivers --
150
434260
2000
Tako izgleda da su sva tri primarna skrbnika --
07:16
myself, my wife and our nanny --
151
436260
3000
ja, moja supruga i naša dadilja --
07:19
were systematically and, I would think, subconsciously
152
439260
3000
sustavno i, rekao bih, podsvjesno,
07:22
restructuring our language
153
442260
2000
rekonstruirala jezik
07:24
to meet him at the birth of a word
154
444260
3000
kako bi se susreli s njim prilikom rođenja riječi
07:27
and bring him gently into more complex language.
155
447260
4000
i nježno ga uveli u složeniji govor.
07:31
And the implications of this -- there are many,
156
451260
2000
Pretpostavka je sljedeća -- ima ih više,
07:33
but one I just want to point out,
157
453260
2000
ali ovu želim istaknuti:
07:35
is that there must be amazing feedback loops.
158
455260
3000
postoje zadivljujuće petlje povratnih informacija.
07:38
Of course, my son is learning
159
458260
2000
Naravno, moj sin uči
07:40
from his linguistic environment,
160
460260
2000
od svoje jezične okoline,
07:42
but the environment is learning from him.
161
462260
3000
ali i okolina uči od njega.
07:45
That environment, people, are in these tight feedback loops
162
465260
3000
Ta okolina, ljudi, dio su petlji povratnih informacija
07:48
and creating a kind of scaffolding
163
468260
2000
i grade neku vrstu skele
07:50
that has not been noticed until now.
164
470260
3000
koja do sad još nije bila uočena.
07:54
But that's looking at the speech context.
165
474260
2000
Ali to se odnosi samo na govorni kontekst.
07:56
What about the visual context?
166
476260
2000
Što je s vizualnim kontekstom?
07:58
We're not looking at --
167
478260
2000
Sad gledamo --
08:00
think of this as a dollhouse cutaway of our house.
168
480260
2000
zamislite ovo kao presjek naše kuće, poput kućice za lutke.
08:02
We've taken those circular fish-eye lens cameras,
169
482260
3000
Uzeli smo kružne leće u obliku ribljeg oka
08:05
and we've done some optical correction,
170
485260
2000
i napravili smo neke optičke korekcije,
08:07
and then we can bring it into three-dimensional life.
171
487260
4000
nakon čega smo mogli stvoriti stvaran trodimenzionalni prikaz.
08:11
So welcome to my home.
172
491260
2000
Pa, dobrodošli u moj dom.
08:13
This is a moment,
173
493260
2000
Ovo je trenutak,
08:15
one moment captured across multiple cameras.
174
495260
3000
jedan trenutak zabilježen na više kamera.
08:18
The reason we did this is to create the ultimate memory machine,
175
498260
3000
Razlog zbog kojeg smo to učinili jest da bismo stvorili najbolji memorijski stroj,
08:21
where you can go back and interactively fly around
176
501260
3000
u kojem se možete vraćati i interaktivno se kretati
08:24
and then breathe video-life into this system.
177
504260
3000
i zatim udahnuti život ovom sustavu.
08:27
What I'm going to do
178
507260
2000
Sada ću vam prikazati
08:29
is give you an accelerated view of 30 minutes,
179
509260
3000
ubrzan pregled 30 minuta
08:32
again, of just life in the living room.
180
512260
2000
svakodnevnog života u dnevnom boravku.
08:34
That's me and my son on the floor.
181
514260
3000
To smo ja i moj sin na podu.
08:37
And there's video analytics
182
517260
2000
A ovo su videoanalize
08:39
that are tracking our movements.
183
519260
2000
koje prate naše pokrete.
08:41
My son is leaving red ink. I am leaving green ink.
184
521260
3000
Moj sin ostavlja crveni trag, a ja ostavljam zeleni trag.
08:44
We're now on the couch,
185
524260
2000
Sad smo na kauču,
08:46
looking out through the window at cars passing by.
186
526260
3000
gledamo kroz prozor automobile koji prolaze.
08:49
And finally, my son playing in a walking toy by himself.
187
529260
3000
I na kraju, moj sin se sam igra u hodalici.
08:52
Now we freeze the action, 30 minutes,
188
532260
3000
Sad zamrznemo snimku, 30 minuta,
08:55
we turn time into the vertical axis,
189
535260
2000
prikažemo vrijeme na okomitoj osi,
08:57
and we open up for a view
190
537260
2000
i dobivamo pregled
08:59
of these interaction traces we've just left behind.
191
539260
3000
interaktivnih tragova koje smo ostavljali.
09:02
And we see these amazing structures --
192
542260
3000
Vidimo te zadivljujuće strukture --
09:05
these little knots of two colors of thread
193
545260
3000
te male čvorove dviju boja,
09:08
we call "social hot spots."
194
548260
2000
koje nazivamo društvenim žarištima.
09:10
The spiral thread
195
550260
2000
Spiralni trag
09:12
we call a "solo hot spot."
196
552260
2000
nazivamo samostalnim žarištem.
09:14
And we think that these affect the way language is learned.
197
554260
3000
Mislimo da to utječe na način na koji se uči jezik.
09:17
What we'd like to do
198
557260
2000
Htjeli bismo
09:19
is start understanding
199
559260
2000
početi shvaćati
09:21
the interaction between these patterns
200
561260
2000
interakciju između ovih uzoraka
09:23
and the language that my son is exposed to
201
563260
2000
i govora kojem je moj sin izložen
09:25
to see if we can predict
202
565260
2000
kako bismo pokušali predvidjeti
09:27
how the structure of when words are heard
203
567260
2000
kako struktura vremena u kojem se riječi čuju
09:29
affects when they're learned --
204
569260
2000
utječe na vrijeme u kojem se nauče --
09:31
so in other words, the relationship
205
571260
2000
odnosno, drugim riječima, vezu
09:33
between words and what they're about in the world.
206
573260
4000
između riječi i onoga što one znače u svijetu.
09:37
So here's how we're approaching this.
207
577260
2000
Evo kako mi pristupamo tome.
09:39
In this video,
208
579260
2000
U ovom videu,
09:41
again, my son is being traced out.
209
581260
2000
ponovno, pratimo mog sina.
09:43
He's leaving red ink behind.
210
583260
2000
On ostavlja crveni trag.
09:45
And there's our nanny by the door.
211
585260
2000
Ovo je naša dadilja, pored vrata.
09:47
(Video) Nanny: You want water? (Baby: Aaaa.)
212
587260
3000
(Video) Dadilja: Hoćeš vode? (Dijete: Aaaa.)
09:50
Nanny: All right. (Baby: Aaaa.)
213
590260
3000
Dadilja: U redu. (Dijete: Aaaa.)
09:53
DR: She offers water,
214
593260
2000
DR: Ona nudi vodu,
09:55
and off go the two worms
215
595260
2000
i dva crva odlaze
09:57
over to the kitchen to get water.
216
597260
2000
u kuhinju po vodu.
09:59
And what we've done is use the word "water"
217
599260
2000
Upotrijebili smo riječ "voda"
10:01
to tag that moment, that bit of activity.
218
601260
2000
da bismo označili taj trenutak, taj dio aktivnosti.
10:03
And now we take the power of data
219
603260
2000
A sada koristimo moć podataka
10:05
and take every time my son
220
605260
3000
i dobivamo svaki trenutak kad je moj sin
10:08
ever heard the word water
221
608260
2000
čuo riječ voda
10:10
and the context he saw it in,
222
610260
2000
i kontekst u kojem ju je vidio.
10:12
and we use it to penetrate through the video
223
612260
3000
Koristimo to kako bismo prošli kroz video
10:15
and find every activity trace
224
615260
3000
i pronašli svaki trag aktivnosti
10:18
that co-occurred with an instance of water.
225
618260
3000
koja se pojavila u istom trenutku kad i voda.
10:21
And what this data leaves in its wake
226
621260
2000
Ono što je nastalo kao posljedica tih podataka
10:23
is a landscape.
227
623260
2000
jest krajolik.
10:25
We call these wordscapes.
228
625260
2000
Ovo nazivamo "rječolikom".
10:27
This is the wordscape for the word water,
229
627260
2000
Ovo je rječolik za riječ voda,
10:29
and you can see most of the action is in the kitchen.
230
629260
2000
i možete vidjeti da je većina aktivnosti u kuhinji.♫
10:31
That's where those big peaks are over to the left.
231
631260
3000
Tu se nalaze ovi veliki vrhovi s lijeve strane.
10:34
And just for contrast, we can do this with any word.
232
634260
3000
Samo za usporedbu, tako možemo prikazati svaku riječ.
10:37
We can take the word "bye"
233
637260
2000
Možemo uzeti riječ "đenja",
10:39
as in "good bye."
234
639260
2000
kao u "do viđenja".
10:41
And we're now zoomed in over the entrance to the house.
235
641260
2000
I sad smo prebačeni pred ulaz u kuću.
10:43
And we look, and we find, as you would expect,
236
643260
3000
Otkrivamo, kao što bi se i očekivalo,
10:46
a contrast in the landscape
237
646260
2000
da postoji razlika u krajoliku,
10:48
where the word "bye" occurs much more in a structured way.
238
648260
3000
pri čemu se riječ "đenja" pojavljuje mnogo pravilnije.
10:51
So we're using these structures
239
651260
2000
Dakle, koristimo te strukture
10:53
to start predicting
240
653260
2000
kako bismo počeli predviđati
10:55
the order of language acquisition,
241
655260
3000
redoslijed usvajanja jezika,
10:58
and that's ongoing work now.
242
658260
2000
i još uvijek radimo na tome.
11:00
In my lab, which we're peering into now, at MIT --
243
660260
3000
U mojem laboratoriju na MIT-u, koji sada gledamo --
11:03
this is at the media lab.
244
663260
2000
ovo je u medijskom laboratoriju.
11:05
This has become my favorite way
245
665260
2000
Ovo je postao moj omiljeni način
11:07
of videographing just about any space.
246
667260
2000
grafičkog videoprikaza svakog prostora.
11:09
Three of the key people in this project,
247
669260
2000
Troje ključnih ljudi u ovom projektu,
11:11
Philip DeCamp, Rony Kubat and Brandon Roy are pictured here.
248
671260
3000
Philip DeCamp, Rony Kubat i Brandon Roy prikazani su ovdje.
11:14
Philip has been a close collaborator
249
674260
2000
Philip mi je bio bliski suradnik
11:16
on all the visualizations you're seeing.
250
676260
2000
pri izradi vizualizacija koje gledate.
11:18
And Michael Fleischman
251
678260
3000
A Michael Fleischman
11:21
was another Ph.D. student in my lab
252
681260
2000
također je bio student na doktoratu u mojem laboratoriju
11:23
who worked with me on this home video analysis,
253
683260
3000
koji je sa mnom radio na ovoj analizi kućnog videa,
11:26
and he made the following observation:
254
686260
3000
i on je primijetio sljedeće:
11:29
that "just the way that we're analyzing
255
689260
2000
"način na koji analiziramo
11:31
how language connects to events
256
691260
3000
kako je jezik povezan s događajima
11:34
which provide common ground for language,
257
694260
2000
koji predstavljaju zajednički temelj jezika,
11:36
that same idea we can take out of your home, Deb,
258
696260
4000
tu istu ideju možemo primijeniti i izvan tvoje kuće, Deb,
11:40
and we can apply it to the world of public media."
259
700260
3000
i možemo je primijeniti na svijet javnih medija."
11:43
And so our effort took an unexpected turn.
260
703260
3000
I tako je naš rad krenuo u neočekivanom smjeru.
11:46
Think of mass media
261
706260
2000
Zamislite kako masovni mediji
11:48
as providing common ground
262
708260
2000
tvore zajednički temelj,
11:50
and you have the recipe
263
710260
2000
a vi imate recept
11:52
for taking this idea to a whole new place.
264
712260
3000
kako tu ideju prenijeti na neku višu razinu.
11:55
We've started analyzing television content
265
715260
3000
Počeli smo analizirati televizijski sadržaj
11:58
using the same principles --
266
718260
2000
koristeći iste principe --
12:00
analyzing event structure of a TV signal --
267
720260
3000
analizu strukture događaja TV signala --
12:03
episodes of shows,
268
723260
2000
epizode emisija,
12:05
commercials,
269
725260
2000
reklame,
12:07
all of the components that make up the event structure.
270
727260
3000
sve sastavnice koje čine strukturu događaja.
12:10
And we're now, with satellite dishes, pulling and analyzing
271
730260
3000
Sada, pomoću satelitskih tanjura, skupljamo i analiziramo
12:13
a good part of all the TV being watched in the United States.
272
733260
3000
dobar dio cjelokupnog TV programa koji se gleda u SAD-u.
12:16
And you don't have to now go and instrument living rooms with microphones
273
736260
3000
I sad ne trebate opremati dnevne boravke mikrofonima
12:19
to get people's conversations,
274
739260
2000
da biste čuli razgovore drugih ljudi,
12:21
you just tune into publicly available social media feeds.
275
741260
3000
samo se uključite u javno dostupne društvene medije.
12:24
So we're pulling in
276
744260
2000
Tako da prikupljamo
12:26
about three billion comments a month,
277
746260
2000
oko tri milijuna komentara mjesečno.
12:28
and then the magic happens.
278
748260
2000
I tada se događa čarolija.
12:30
You have the event structure,
279
750260
2000
Imate strukturu događaja,
12:32
the common ground that the words are about,
280
752260
2000
zajedničku točku svih riječi
12:34
coming out of the television feeds;
281
754260
3000
koje dolaze iz televizijskih emisija;
12:37
you've got the conversations
282
757260
2000
Imate razgovore
12:39
that are about those topics;
283
759260
2000
koji su o tim temama;
12:41
and through semantic analysis --
284
761260
3000
i kroz semantičku analizu --
12:44
and this is actually real data you're looking at
285
764260
2000
sad gledate prave, stvarne podatke
12:46
from our data processing --
286
766260
2000
iz naše obrade podataka --
12:48
each yellow line is showing a link being made
287
768260
3000
svaka žuta linija označuje vezu koja se stvara
12:51
between a comment in the wild
288
771260
3000
između nevezanog komentara
12:54
and a piece of event structure coming out of the television signal.
289
774260
3000
i dijela strukture događaja koja dolazi iz televizijskog signala.
12:57
And the same idea now
290
777260
2000
I ta se ista ideja
12:59
can be built up.
291
779260
2000
sad može nadograditi.
13:01
And we get this wordscape,
292
781260
2000
Tako da dobivamo ovaj rječolik,
13:03
except now words are not assembled in my living room.
293
783260
3000
osim što riječi sada nisu složene u mojem dnevnom boravku.
13:06
Instead, the context, the common ground activities,
294
786260
4000
Umjesto toga, kontekst, zajedničke aktivnosti,
13:10
are the content on television that's driving the conversations.
295
790260
3000
sadržaj su na televiziji koji stvara razgovore.
13:13
And what we're seeing here, these skyscrapers now,
296
793260
3000
Ovo što ovdje vidimo, ovi neboderi,
13:16
are commentary
297
796260
2000
jesu komentari
13:18
that are linked to content on television.
298
798260
2000
koji su povezani s televizijskim sadržajem.
13:20
Same concept,
299
800260
2000
Isti koncept,
13:22
but looking at communication dynamics
300
802260
2000
osim što se gleda dinamika komunikacije
13:24
in a very different sphere.
301
804260
2000
u vrlo različitoj sferi.
13:26
And so fundamentally, rather than, for example,
302
806260
2000
Tako da, u biti, umjesto da, primjerice
13:28
measuring content based on how many people are watching,
303
808260
3000
mjerimo sadržaj na temelju broja gledatelja,
13:31
this gives us the basic data
304
811260
2000
ovo nam daje osnovne podatke
13:33
for looking at engagement properties of content.
305
813260
3000
za razumijevanje poticajnih svojstava sadržaja.
13:36
And just like we can look at feedback cycles
306
816260
3000
I baš kao što možemo gledati povratne cikluse
13:39
and dynamics in a family,
307
819260
3000
i dinamiku u obitelji,
13:42
we can now open up the same concepts
308
822260
3000
sad možemo proširiti iste koncepte
13:45
and look at much larger groups of people.
309
825260
3000
i obrađivati mnogo veće grupe ljudi.
13:48
This is a subset of data from our database --
310
828260
3000
Ovo je podskup podataka iz naše baze --
13:51
just 50,000 out of several million --
311
831260
3000
samo 50.000 od nekoliko milijuna --
13:54
and the social graph that connects them
312
834260
2000
i društveni graf koji ih povezuje
13:56
through publicly available sources.
313
836260
3000
kroz javno dostupne izvore.
13:59
And if you put them on one plain,
314
839260
2000
Ako ih stavite u jednu ravninu,
14:01
a second plain is where the content lives.
315
841260
3000
na drugoj ravnini nalazi se sadržaj.
14:04
So we have the programs
316
844260
3000
Tako imamo programe
14:07
and the sporting events
317
847260
2000
i sportske događaje
14:09
and the commercials,
318
849260
2000
i reklame
14:11
and all of the link structures that tie them together
319
851260
2000
a sve strukture povezivanja koje ih međusobno vežu
14:13
make a content graph.
320
853260
2000
zajedno čine graf sadržaja.
14:15
And then the important third dimension.
321
855260
4000
I sada, važna treća dimenzija.
14:19
Each of the links that you're seeing rendered here
322
859260
2000
Svaka od poveznica koje ovdje vidite prikazane
14:21
is an actual connection made
323
861260
2000
stvarna je veza koja je nastala
14:23
between something someone said
324
863260
3000
između nečega što je netko rekao
14:26
and a piece of content.
325
866260
2000
i dijela sadržaja.
14:28
And there are, again, now tens of millions of these links
326
868260
3000
A sada ponovno vidimo desetke milijuna tih poveznica
14:31
that give us the connective tissue of social graphs
327
871260
3000
koje sačinjavaju vezivno tkivo društvenih grafova
14:34
and how they relate to content.
328
874260
3000
i načina na koji su povezani sa sadržajem.
14:37
And we can now start to probe the structure
329
877260
2000
Sad možemo početi ispitivati strukturu
14:39
in interesting ways.
330
879260
2000
na zanimljive načine.
14:41
So if we, for example, trace the path
331
881260
3000
Ako, primjerice, pratimo put
14:44
of one piece of content
332
884260
2000
jednog dijela sadržaja
14:46
that drives someone to comment on it,
333
886260
2000
koji potiče nekoga da ga komentira,
14:48
and then we follow where that comment goes,
334
888260
3000
i zatim slijedimo put kojim taj komentar ide,
14:51
and then look at the entire social graph that becomes activated
335
891260
3000
i zatim pogledamo cijeli društveni graf koji se aktivira
14:54
and then trace back to see the relationship
336
894260
3000
i zatim se vratimo kako bismo vidjeli odnos
14:57
between that social graph and content,
337
897260
2000
između tog društvenog grafa i sadržaja,
14:59
a very interesting structure becomes visible.
338
899260
2000
pojavljuje se vrlo zanimljiva struktura.
15:01
We call this a co-viewing clique,
339
901260
2000
To zovemo ekipom za zajedničko promatranje,
15:03
a virtual living room if you will.
340
903260
3000
virtualni dnevni boravak.
15:06
And there are fascinating dynamics at play.
341
906260
2000
Odvija se fascinantna dinamika.
15:08
It's not one way.
342
908260
2000
I to nije jednosmjerno.
15:10
A piece of content, an event, causes someone to talk.
343
910260
3000
Dio sadržaja, neki događaj, potakne nekoga da govori.
15:13
They talk to other people.
344
913260
2000
Ta osoba razgovara s drugim ljudima.
15:15
That drives tune-in behavior back into mass media,
345
915260
3000
To potiče ponovno uključenje u masovne medije
15:18
and you have these cycles
346
918260
2000
tako da postoje ciklusi
15:20
that drive the overall behavior.
347
920260
2000
koji potiču cjelokupno ponašanje.
15:22
Another example -- very different --
348
922260
2000
Drugi primjer -- vrlo različit --
15:24
another actual person in our database --
349
924260
3000
druga stvarna osoba u našoj bazi --
15:27
and we're finding at least hundreds, if not thousands, of these.
350
927260
3000
a pronalazimo barem stotine, ako ne i tisuće takvih.
15:30
We've given this person a name.
351
930260
2000
Dali smo toj osobi ime.
15:32
This is a pro-amateur, or pro-am media critic
352
932260
3000
On je pro-amater, pro-am, medijski kritičar
15:35
who has this high fan-out rate.
353
935260
3000
koji dopire do velikog dijela javnosti.
15:38
So a lot of people are following this person -- very influential --
354
938260
3000
Tako da mnogi ljudi slijede tu osobu -- vrlo utjecajnu --
15:41
and they have a propensity to talk about what's on TV.
355
941260
2000
i imaju sklonost komentiranju sadržaja na TV-u.
15:43
So this person is a key link
356
943260
3000
Ta je osoba ključna poveznica
15:46
in connecting mass media and social media together.
357
946260
3000
između masovnih medija i društvenih medija.
15:49
One last example from this data:
358
949260
3000
Posljednji primjer iz ovih podataka:
15:52
Sometimes it's actually a piece of content that is special.
359
952260
3000
Ponekad je poseban upravo dio sadržaja.
15:55
So if we go and look at this piece of content,
360
955260
4000
Pa ako promotrimo taj sadržaj,
15:59
President Obama's State of the Union address
361
959260
3000
govor predsjednika Obame o stanju Unije
16:02
from just a few weeks ago,
362
962260
2000
od prije samo nekoliko tjedana,
16:04
and look at what we find in this same data set,
363
964260
3000
pogledajte što pronalazimo u tom istom skupu podataka,
16:07
at the same scale,
364
967260
3000
na istoj razini,
16:10
the engagement properties of this piece of content
365
970260
2000
poticajna svojstva tog dijela sadržaja
16:12
are truly remarkable.
366
972260
2000
zaista su izuzetne.
16:14
A nation exploding in conversation
367
974260
2000
Narod koji odjednom počinje komentirati
16:16
in real time
368
976260
2000
u stvarnom vremenu
16:18
in response to what's on the broadcast.
369
978260
3000
potaknut onime što se emitira.
16:21
And of course, through all of these lines
370
981260
2000
I naravno, kroz sve te linije
16:23
are flowing unstructured language.
371
983260
2000
teče nestrukturiran jezik.
16:25
We can X-ray
372
985260
2000
Možemo napraviti rentgensku snimku
16:27
and get a real-time pulse of a nation,
373
987260
2000
i dobiti stvarni puls naroda,
16:29
real-time sense
374
989260
2000
stvarne podatke
16:31
of the social reactions in the different circuits in the social graph
375
991260
3000
o društvenim reakcijama u različitim krugovima društvenog grafa
16:34
being activated by content.
376
994260
3000
koje aktivira sadržaj.
16:37
So, to summarize, the idea is this:
377
997260
3000
Dakle, da sažmem, ideja je sljedeća:
16:40
As our world becomes increasingly instrumented
378
1000260
3000
Kako nam je svijet sve više automatiziran
16:43
and we have the capabilities
379
1003260
2000
i imamo mogućnosti
16:45
to collect and connect the dots
380
1005260
2000
prikupljati i povezivati točkice
16:47
between what people are saying
381
1007260
2000
između onoga što ljudi govore
16:49
and the context they're saying it in,
382
1009260
2000
i konteksta u kojem to govore,
16:51
what's emerging is an ability
383
1011260
2000
pojavljuje se i mogućnost
16:53
to see new social structures and dynamics
384
1013260
3000
da vidimo nove društvene strukture i dinamiku
16:56
that have previously not been seen.
385
1016260
2000
koje prije nismo mogli vidjeti.
16:58
It's like building a microscope or telescope
386
1018260
2000
To je kao kad sklapate mikroskop ili teleskop
17:00
and revealing new structures
387
1020260
2000
i otkrivate nove strukture
17:02
about our own behavior around communication.
388
1022260
3000
našeg vlastitog ponašanja tijekom komunikacije.
17:05
And I think the implications here are profound,
389
1025260
3000
I mislim da ovo ima duboke implikacije,
17:08
whether it's for science,
390
1028260
2000
bilo za znanost,
17:10
for commerce, for government,
391
1030260
2000
trgovinu, vladu,
17:12
or perhaps most of all,
392
1032260
2000
ili možda, najviše od svega,
17:14
for us as individuals.
393
1034260
3000
za nas kao pojedince.
17:17
And so just to return to my son,
394
1037260
3000
I samo da se vratim na svog sina,
17:20
when I was preparing this talk, he was looking over my shoulder,
395
1040260
3000
dok sam pripremao ovo predavanje, gledao mi je preko ramena
17:23
and I showed him the clips I was going to show to you today,
396
1043260
2000
i pokazao sam mu videozapise koje sam mislio pokazati vama danas
17:25
and I asked him for permission -- granted.
397
1045260
3000
i tražio sam ga dopuštenje -- i dobio ga.
17:28
And then I went on to reflect,
398
1048260
2000
Nakon toga sam razmišljao,
17:30
"Isn't it amazing,
399
1050260
3000
"Nije li to fantastično,
17:33
this entire database, all these recordings,
400
1053260
3000
cijelu ovu bazu, sve snimke,
17:36
I'm going to hand off to you and to your sister" --
401
1056260
2000
predat ću tebi i tvojoj sestri",
17:38
who arrived two years later --
402
1058260
3000
koju smo dobili dvije godine kasnije.
17:41
"and you guys are going to be able to go back and re-experience moments
403
1061260
3000
"A vi ćete se moći vratiti i ponovno proživjeti trenutke
17:44
that you could never, with your biological memory,
404
1064260
3000
kojih se inače, sa svojim biološkim pamćenjem,
17:47
possibly remember the way you can now?"
405
1067260
2000
nikako ne biste mogli sjećati kao što to možete sada."
17:49
And he was quiet for a moment.
406
1069260
2000
On je zašutio na trenutak,
17:51
And I thought, "What am I thinking?
407
1071260
2000
pa sam pomislio, "Što je meni?
17:53
He's five years old. He's not going to understand this."
408
1073260
2000
Ima pet godina. Neće razumjeti ništa od ovoga."
17:55
And just as I was having that thought, he looked up at me and said,
409
1075260
3000
I upravo u trenutku kad sam to pomislio, pogledao me i rekao,
17:58
"So that when I grow up,
410
1078260
2000
"Znači, kad narastem,
18:00
I can show this to my kids?"
411
1080260
2000
mogu ovo pokazati svojoj djeci?"
18:02
And I thought, "Wow, this is powerful stuff."
412
1082260
3000
I pomislio sam "Opa, ovo je moćna stvar."
18:05
So I want to leave you
413
1085260
2000
Za kraj vam želim pokazati
18:07
with one last memorable moment
414
1087260
2000
posljednji trenutak za pamćenje
18:09
from our family.
415
1089260
3000
iz naše obitelji.
18:12
This is the first time our son
416
1092260
2000
Ovo je prvi put da je naš sin
18:14
took more than two steps at once --
417
1094260
2000
napravio više od dva koraka odjednom --
18:16
captured on film.
418
1096260
2000
zabilježeno na filmu.
18:18
And I really want you to focus on something
419
1098260
3000
Želim da obratite pažnju na nešto
18:21
as I take you through.
420
1101260
2000
dok vas vodim kroz snimku.
18:23
It's a cluttered environment; it's natural life.
421
1103260
2000
To je natrpana okolina, svakodnevni život.
18:25
My mother's in the kitchen, cooking,
422
1105260
2000
Moja majka je u kuhinji, kuha,
18:27
and, of all places, in the hallway,
423
1107260
2000
i baš u hodniku
18:29
I realize he's about to do it, about to take more than two steps.
424
1109260
3000
shvaćam da će to učiniti, napraviti više od dva koraka.
18:32
And so you hear me encouraging him,
425
1112260
2000
Čujete me kako ga ohrabrujem,
18:34
realizing what's happening,
426
1114260
2000
shvaćam što se događa,
18:36
and then the magic happens.
427
1116260
2000
i tad nastupa čarolija.
18:38
Listen very carefully.
428
1118260
2000
Slušajte pažljivo.
18:40
About three steps in,
429
1120260
2000
Nakon oko tri koraka,
18:42
he realizes something magic is happening,
430
1122260
2000
on shvaća da se događa nešto čarobno.
18:44
and the most amazing feedback loop of all kicks in,
431
1124260
3000
I uključuje se zadivljujuća petlja povratnih informacija,
18:47
and he takes a breath in,
432
1127260
2000
on udahne,
18:49
and he whispers "wow"
433
1129260
2000
i prošapće "opa"
18:51
and instinctively I echo back the same.
434
1131260
4000
a ja instiktivno odgovorim isto to.
18:56
And so let's fly back in time
435
1136260
3000
Vratimo se nazad u vremenu
18:59
to that memorable moment.
436
1139260
2000
do tog trenutka za pamćenje.
19:05
(Video) DR: Hey.
437
1145260
2000
(Video) DR: Hej.
19:07
Come here.
438
1147260
2000
Dođi ovamo.
19:09
Can you do it?
439
1149260
3000
Možeš li?
19:13
Oh, boy.
440
1153260
2000
Ajme meni.
19:15
Can you do it?
441
1155260
3000
Možeš li?
19:18
Baby: Yeah.
442
1158260
2000
Dijete: Da.
19:20
DR: Ma, he's walking.
443
1160260
3000
DR: Mama, on hoda.
19:24
(Laughter)
444
1164260
2000
(Smijeh)
19:26
(Applause)
445
1166260
2000
(Pljesak)
19:28
DR: Thank you.
446
1168260
2000
DR: Hvala.
19:30
(Applause)
447
1170260
15000
(Pljesak)

Original video on YouTube.com
O ovoj web stranici

Ova stranica će vas upoznati s YouTube videozapisima koji su korisni za učenje engleskog jezika. Vidjet ćete lekcije engleskog koje vode vrhunski profesori iz cijelog svijeta. Dvaput kliknite na engleske titlove prikazane na svakoj video stranici da biste reproducirali video s tog mjesta. Titlovi se pomiču sinkronizirano s reprodukcijom videozapisa. Ako imate bilo kakvih komentara ili zahtjeva, obratite nam se putem ovog obrasca za kontakt.

https://forms.gle/WvT1wiN1qDtmnspy7