Deb Roy: The birth of a word

413,398 views ใƒป 2011-03-14

TED


์•„๋ž˜ ์˜๋ฌธ์ž๋ง‰์„ ๋”๋ธ”ํด๋ฆญํ•˜์‹œ๋ฉด ์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค.

๋ฒˆ์—ญ: Jeong-Lan Kinser ๊ฒ€ํ† : Bianca Lee
00:15
Imagine if you could record your life --
0
15260
4000
๋งŒ์•ฝ ์—ฌ๋Ÿฌ๋ถ„์˜ ์‚ถ์„ ๊ธฐ๋ก ๊ฐ€๋Šฅํ•˜๋‹ค๊ณ  ์ƒ์ƒํ•ด ๋ณด์‹ญ์‹œ์˜ค --
00:19
everything you said, everything you did,
1
19260
3000
๋งํ•˜๋Š” ๋ชจ๋“  ๊ฒƒ, ํ–‰๋™ํ•˜๋Š” ๋ชจ๋“  ๊ฒƒ๋“ค์ด
00:22
available in a perfect memory store at your fingertips,
2
22260
3000
์—ฌ๋Ÿฌ๋ถ„ ์†๋์˜ ์™„๋ฒฝํ•œ ์ €์žฅ์žฅ์น˜ ์•ˆ์— ์žˆ๋‹ค๋ฉด,
00:25
so you could go back
3
25260
2000
์—ฌ๋Ÿฌ๋ถ„๋“ค์€ ๊ณผ๊ฑฐ๋กœ ๋Œ์•„๊ฐ€์„œ
00:27
and find memorable moments and relive them,
4
27260
3000
๊ธฐ์–ตํ•  ๋งŒ ํ•œ ์ˆœ๊ฐ„๋“ค์„ ์ฐพ์•„์„œ ๋‹ค์‹œ ์ฒดํ—˜ํ•  ์ˆ˜๋„ ์žˆ๊ณ ,
00:30
or sift through traces of time
5
30260
3000
๋˜๋Š” ์‹œ๊ฐ„์˜ ๊ถค์ ์„ ์ƒ…์ƒ…ํžˆ ์‚ดํŽด๋ด์„œ
00:33
and discover patterns in your own life
6
33260
2000
์ด์ „์—๋Š” ์ฐพ์ง€ ๋ชปํ•˜๊ณ  ํ˜๋ ค๋ณด๋ƒˆ๋˜
00:35
that previously had gone undiscovered.
7
35260
3000
์—ฌ๋Ÿฌ๋ถ„ ์ž์‹ ์˜ ์‚ถ ์†์˜ ํŒจํ„ด์„ ๋ฐœ๊ฒฌํ•  ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
00:38
Well that's exactly the journey
8
38260
2000
์Œ ๊ทธ๊ฑด ์ •ํ™•ํžˆ ์ €ํฌ ๊ฐ€์กฑ๋“ค์ด
00:40
that my family began
9
40260
2000
์˜ค๋…„ ๋ฐ˜ ์ „์— ์‹œ์ž‘ํ•œ
00:42
five and a half years ago.
10
42260
2000
์—ฌํ–‰์ž…๋‹ˆ๋‹ค.
00:44
This is my wife and collaborator, Rupal.
11
44260
3000
์—ฌ๊ธฐ๋Š” ์ œ ์•„๋‚ด์ด์ž ์กฐ๋ ฅ์ž์ธ, ๋ฃจํŒ” ์ž…๋‹ˆ๋‹ค.
00:47
And on this day, at this moment,
12
47260
2000
๊ทธ๋ฆฌ๊ณ  ์ด ๋‚ , ์ด ์ˆœ๊ฐ„์—,
00:49
we walked into the house with our first child,
13
49260
2000
์šฐ๋ฆฌ๋Š” ์šฐ๋ฆฌ ์ฒซ ์•„๊ธฐ, ์šฐ๋ฆฌ ์˜ˆ์œ ์‚ฌ๋‚ด์•„์ด์™€
00:51
our beautiful baby boy.
14
51260
2000
์ง‘์•ˆ์œผ๋กœ ๊ฑธ์–ด๋“ค์–ด๊ฐ”์Šต๋‹ˆ๋‹ค.
00:53
And we walked into a house
15
53260
3000
๋งค์šฐ ํŠน๋ณ„ํ•œ ํ™ˆ ๋น„๋””์˜ค ๋…นํ™”์žฅ๋น„๋ฅผ ๊ฐ€์ง€๊ณ 
00:56
with a very special home video recording system.
16
56260
4000
์ง‘ ์•ˆ์œผ๋กœ ๋“ค์–ด๊ฐ”์ง€์š”.
01:07
(Video) Man: Okay.
17
67260
2000
(์˜์ƒ) ๋‚จ์ž: ์ข‹์•„.
01:10
Deb Roy: This moment
18
70260
1000
๋ฐ๋ธŒ ๋กœ์ด: ์ด ์ˆœ๊ฐ„
01:11
and thousands of other moments special for us
19
71260
3000
๊ทธ๋ฆฌ๊ณ  ์šฐ๋ฆฌ์—๊ฒŒ ํŠน๋ณ„ํ•œ ์ˆ˜์ฒœ๋ฒˆ์˜ ๋‹ค๋ฅธ ์ˆœ๊ฐ„๋“ค์ด
01:14
were captured in our home
20
74260
2000
์ €ํฌ ์ง‘์—์„œ ๋…นํ™”๋˜์—ˆ๋Š”๋ฐ
01:16
because in every room in the house,
21
76260
2000
์ด ์ง‘์˜ ๋ชจ๋“  ๋ฐฉ ์•ˆ์—,
01:18
if you looked up, you'd see a camera and a microphone,
22
78260
3000
์œ„๋ฅผ ์˜ฌ๋ ค๋‹ค๋ณด์‹œ๋ฉด, ์นด๋ฉ”๋ผ์™€ ๋งˆ์ดํฌ๋ฅผ ๋ณด์‹ค ์ˆ˜ ์žˆ๊ณ ,
01:21
and if you looked down,
23
81260
2000
์•„๋ž˜๋ฅผ ๋‚ด๋ ค๋‹ค๋ณด๋ฉด,
01:23
you'd get this bird's-eye view of the room.
24
83260
2000
๊ทธ ๋ฐฉ์˜ ๋ถ€๊ฐํ’๊ฒฝ์„ ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
01:25
Here's our living room,
25
85260
3000
์—ฌ๊ธฐ๋Š” ์ €ํฌ ๊ฑฐ์‹ค์ด๊ตฌ์š”,
01:28
the baby bedroom,
26
88260
3000
์•„๊ธฐ ์นจ์‹ค,
01:31
kitchen, dining room
27
91260
2000
์ฃผ๋ฐฉ, ์‹๋‹น
01:33
and the rest of the house.
28
93260
2000
๊ทธ๋ฆฌ๊ณ  ๋‚˜๋จธ์ง€ ์ง‘์•ˆ์ž…๋‹ˆ๋‹ค.
01:35
And all of these fed into a disc array
29
95260
3000
๊ทธ๋ฆฌ๊ณ  ์ด ๋ชจ๋“  ๊ฒƒ๋“ค์„ ์—ฐ์† ๋…นํ™”๋ฅผ ์œ„ํ•ด
01:38
that was designed for a continuous capture.
30
98260
3000
ํŠน๋ณ„ํžˆ ์ œ์ž‘๋œ ๋””์Šคํฌ ์žฅ์น˜๋“ค๋กœ ๊ณต๊ธ‰ํ•ฉ๋‹ˆ๋‹ค.
01:41
So here we are flying through a day in our home
31
101260
3000
์ž ์ด์ œ ์ €ํฌ ์ง‘์˜ ํ•˜๋ฃจ๋กœ ๋‚ ์•„๊ฐ€๋Š”๋ฐ์š”
01:44
as we move from sunlit morning
32
104260
3000
ํ•ด๊ฐ€ ๋ฐ์€ ์•„์นจ๋ถ€ํ„ฐ
01:47
through incandescent evening
33
107260
2000
๋ถˆ์ผœ์ง„ ์ €๋…์„ ๊ฑฐ์ณ
01:49
and, finally, lights out for the day.
34
109260
3000
๊ฒฐ๊ตญ ๋ถˆ์„ ๋„๋Š” ๋•Œ ๊นŒ์ง€ ์ด๋™ ํ•ด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.
01:53
Over the course of three years,
35
113260
3000
์‚ผ๋…„์ด๋ผ๋Š” ๊ณผ์ • ๋™์•ˆ,
01:56
we recorded eight to 10 hours a day,
36
116260
2000
ํ•˜๋ฃจ์— 8-10 ์‹œ๊ฐ„ ๋™์•ˆ ๋…นํ™”๋ฅผ ํ–ˆ๋Š”๋ฐ,
01:58
amassing roughly a quarter-million hours
37
118260
3000
๋‹ค์ค‘ํŠธ๋ž™ ์Œํ–ฅ๊ณผ ์˜์ƒ์œผ๋กœ
02:01
of multi-track audio and video.
38
121260
3000
๋Œ€๋žต 25๋งŒ ์‹œ๊ฐ„ ์ •๋„๋ฅผ ๋ชจ์•˜์Šต๋‹ˆ๋‹ค.
02:04
So you're looking at a piece of what is by far
39
124260
2000
๋”ฐ๋ผ์„œ ์—ฌ๋Ÿฌ๋ถ„๊ป˜์„œ๋Š” ์‚ฌ์ƒ ์ตœ๋Œ€ ๊ทœ๋ชจ์˜
02:06
the largest home video collection ever made.
40
126260
2000
ํ™ˆ๋น„๋””์˜ค ๋ชจ์Œ์ง‘์„ ๋ณด๊ณ  ๊ณ„์‹œ๋Š” ๊ฒ๋‹ˆ๋‹ค.
02:08
(Laughter)
41
128260
3000
(์›ƒ์Œ)
02:11
And what this data represents
42
131260
2000
๊ทธ๋ฆฌ๊ณ  ๊ฐœ์ธ์ ์œผ๋กœ ์ €ํฌ ๊ฐ€์กฑ์„ ์œ„ํ•ด์„œ
02:13
for our family at a personal level,
43
133260
4000
์ด ๋ฐ์ดํ„ฐ๊ฐ€ ์–ด๋–ป๊ฒŒ ๋ณด์—ฌ์ง€๋“ ์ง€,
02:17
the impact has already been immense,
44
137260
2000
๊ทธ ์˜ํ–ฅ์€ ์ด๋ฏธ ํ—ค์•„๋ฆด ์ˆ˜ ์—†์„ ์ •๋„๋กœ ํฌ๊ณ ,
02:19
and we're still learning its value.
45
139260
3000
์ €ํฌ๋Š” ์—ฌ์ „ํžˆ ๊ทธ ๊ฐ€์น˜์— ๋Œ€ํ•ด ๋ฐฐ์šฐ๊ณ  ์žˆ๋Š” ์ค‘์ž…๋‹ˆ๋‹ค.
02:22
Countless moments
46
142260
2000
์…€ ์ˆ˜ ์—†๋Š” ์ˆœ๊ฐ„๋“ค์ด,
02:24
of unsolicited natural moments, not posed moments,
47
144260
3000
์›์น˜ ์•Š๋˜ ์ž์—ฐ์Šค๋Ÿฌ์šด ์ˆœ๊ฐ„๋“ค, ํฌ์ฆˆ๋ฅผ ์žก์ง€ ์•Š์€ ์ˆœ๊ฐ„๋“ค์ด
02:27
are captured there,
48
147260
2000
๊ฑฐ๊ธฐ ๋‹ด๊ฒจ ์žˆ์Šต๋‹ˆ๋‹ค.
02:29
and we're starting to learn how to discover them and find them.
49
149260
3000
๊ทธ๋ฆฌ๊ณ  ์–ด๋–ป๊ฒŒ ๊ทธ๋“ค์„ ๋ฐœ๊ฒฌํ•˜๊ณ  ์ฐพ์•„๋‚ด๋Š”์ง€์— ๋Œ€ํ•ด ๋ฐฐ์›Œ๋ณด๋ ค ํ•ฉ๋‹ˆ๋‹ค.
02:32
But there's also a scientific reason that drove this project,
50
152260
3000
ํ•˜์ง€๋งŒ ์ด ํ”„๋กœ์ ํŠธ๋ฅผ ์šด์˜ํ•˜๋Š” ๋˜๋‹ค๋ฅธ ๊ณผํ•™์ ์ธ ์ด์œ ๊ฐ€ ์žˆ๋Š”๋ฐ,
02:35
which was to use this natural longitudinal data
51
155260
4000
๊ทธ๊ฒƒ์€ ์•„์ด๊ฐ€ ์–ธ์–ด๋ฅผ ๋ฐฐ์šฐ๋Š” ๊ณผ์ •์— ๋Œ€ํ•ด ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•ด
02:39
to understand the process
52
159260
2000
์ด ์ž์—ฐ ๋Œ€์šฉ๋Ÿ‰ ๋ฐ์ดํ„ฐ๋ฅผ
02:41
of how a child learns language --
53
161260
2000
์ด์šฉํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. --
02:43
that child being my son.
54
163260
2000
๊ทธ ์•„์ด๊ฐ€ ์ œ ์•„๋“ค์ด๊ตฌ์š”.
02:45
And so with many privacy provisions put in place
55
165260
4000
๋”ฐ๋ผ์„œ ์ด ๋ฐ์ดํ„ฐ์— ๋…นํ™”๋œ ๋ชจ๋“  ์‚ฌ๋žŒ๋“ค์„ ๋ณดํ˜ธํ•˜๊ธฐ ์œ„ํ•œ
02:49
to protect everyone who was recorded in the data,
56
169260
3000
๋งŽ์€ ๊ฐœ์ธ์ •๋ณด ๋ณดํ˜ธ ๊ทœ์ •์„ ๋‘๊ณ ,
02:52
we made elements of the data available
57
172260
3000
์šฐ๋ฆฌ๋Š” ๋ฐ์ดํ„ฐ ์š”์†Œ๋“ค์„ MIT์— ์žˆ๋Š”
02:55
to my trusted research team at MIT
58
175260
3000
์ œ๊ฐ€ ๋ฏฟ์„๋งŒํ•œ ์—ฐ๊ตฌํŒ€์— ๋‘๊ณ  ๋‚˜์„œ
02:58
so we could start teasing apart patterns
59
178260
3000
์–ธ์–ด ์Šต๋“์— ์žˆ์–ด ์‚ฌํšŒ ํ™˜๊ฒฝ์ด ์ฃผ๋Š” ์˜ํ–ฅ์— ๋Œ€ํ•œ
03:01
in this massive data set,
60
181260
3000
์ดํ•ด์— ๋Œ€ํ•ด ์‹œ๋„ํ•˜๋Š”,
03:04
trying to understand the influence of social environments
61
184260
3000
์ด ๊ฑฐ๋Œ€ํ•œ ๋ฐ์ดํ„ฐ ๋ฉ์–ด๋ฆฌ ์•ˆ์—์„œ ํŒจํ„ด์„ ์ถ”์ถœํ•ด๋‚ด๋Š” ์ž‘์—…์„
03:07
on language acquisition.
62
187260
2000
์‹œ์ž‘ํ•  ์ˆ˜ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
03:09
So we're looking here
63
189260
2000
์—ฌ๊ธฐ์„œ ์šฐ๋ฆฌ๊ฐ€ ๊ฐ€์žฅ ์ฒ˜์Œ
03:11
at one of the first things we started to do.
64
191260
2000
์‹œ์ž‘ํ•˜๋ ค๋Š” ๊ฑธ ๋ณด๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
03:13
This is my wife and I cooking breakfast in the kitchen,
65
193260
4000
์—ฌ๊ธด ์ œ ์•„๋‚ด๊ณ , ์ฃผ๋ฐฉ์—์„œ ์•„์นจ์„ ๋งŒ๋“ค๊ณ  ์žˆ์ฃ .
03:17
and as we move through space and through time,
66
197260
3000
์šฐ๋ฆฌ๊ฐ€ ์ฃผ๋ฐฉ์—์„œ์˜ ๋งค์šฐ ์ผ์ƒ์ ์ธ ํŒจํ„ด,
03:20
a very everyday pattern of life in the kitchen.
67
200260
3000
๊ณต๊ฐ„๊ณผ ์‹œ๊ฐ„์„ ํ†ตํ•ด ์›€์ง์ž…๋‹ˆ๋‹ค.
03:23
In order to convert
68
203260
2000
์ด ๋ถˆํˆฌ๋ช…ํ•œ, 9๋งŒ ์‹œ๊ฐ„์˜ ์˜์ƒ์„,
03:25
this opaque, 90,000 hours of video
69
205260
3000
์šฐ๋ฆฌ๊ฐ€ ๋ถ„์„์„ ์‹œ์ž‘ํ•  ์ˆ˜ ์žˆ๋Š”
03:28
into something that we could start to see,
70
208260
2000
์–ด๋–ค ๊ฒƒ์œผ๋กœ ๋ณ€ํ™˜ ์‹œํ‚ค๊ธฐ ์œ„ํ•ด
03:30
we use motion analysis to pull out,
71
210260
2000
์šฐ๋ฆฌ๋Š” ๊ณต๊ฐ„-์‹œ๊ฐ„ ๋ฒŒ๋ ˆ ๋ผ๊ณ  ๋ถˆ๋ฆฌ๋Š”
03:32
as we move through space and through time,
72
212260
2000
์˜์ƒ ๋ถ„์„ ์žฅ์น˜๋ฅผ ์ด์šฉํ–ˆ๋Š”๋ฐ,
03:34
what we call space-time worms.
73
214260
3000
์‹œ๊ฐ„๊ณผ ๊ณต๊ฐ„์„ ํ†ตํ•œ ์šฐ๋ฆฌ์˜ ์›€์ง์ž„์„ ๋Œ์–ด๋‚ด์ค๋‹ˆ๋‹ค.
03:37
And this has become part of our toolkit
74
217260
3000
๊ทธ๋ฆฌ๊ณ  ์ด๊ฑด ๋ฐ์ดํ„ฐ ์†์˜ ์–ด๋–ค ํ™œ๋™์„
03:40
for being able to look and see
75
220260
3000
์šฐ๋ฆฌ๊ฐ€ ์‚ดํŽด๋ณผ ์ˆ˜ ์žˆ๋„๋ก ํ•ด์ฃผ๋Š”
03:43
where the activities are in the data,
76
223260
2000
๋„๊ตฌ๊ฐ€ ๋˜์—ˆ๋Š”๋ฐ์š”,
03:45
and with it, trace the pattern of, in particular,
77
225260
3000
๊ทธ๊ฑธ ์ด์šฉํ•ด์„œ, ํŒจํ„ด์„ ์ถ”์ ํ•˜๋Š”๋ฐ, ํŠนํžˆ,
03:48
where my son moved throughout the home,
78
228260
2000
์ œ ์•„๋“ค์ด ์ง‘์•ˆ์—์„œ ์›€์ง์ด๋Š” ์žฅ์†Œ์ธ๋ฐ,
03:50
so that we could focus our transcription efforts,
79
230260
3000
๊ทธ๋กœ ํ•˜์—ฌ๊ธˆ ์šฐ๋ฆฌ๋Š” ์ œ ์•„๋“ค ์ฃผ๋ณ€ ํ™˜๊ฒฝ์—์„œ ์ผ์–ด๋‚˜๋Š”
03:53
all of the speech environment around my son --
80
233260
3000
๋ชจ๋“  ๋ง๋“ค์„ ๋ฐ›์•„์“ฐ๋Š”๋ฐ์— ์ง‘์ค‘ํ•  ์ˆ˜ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
03:56
all of the words that he heard from myself, my wife, our nanny,
81
236260
3000
์ €๋‚˜ ์ œ ์•„๋‚ด, ์œ ๋ชจ๋กœ๋ถ€ํ„ฐ ์•„๊ธฐ๊ฐ€ ๋“ฃ๊ฒŒ ๋˜๋Š” ๋ชจ๋“  ๋ง๋“ค,
03:59
and over time, the words he began to produce.
82
239260
3000
๊ทธ๋ฆฌ๊ณ  ์ „ ์‹œ๊ฐ„์„ ํ†ตํ‹€์–ด ๊ทธ๊ฐ€ ๋งŒ๋“ค์–ด๋‚ด๊ธฐ ์‹œ์ž‘ํ•œ ๋ชจ๋“  ๋ง๋“ค์„ ๋ง์ด์ฃ .
04:02
So with that technology and that data
83
242260
3000
๊ทธ๋ž˜์„œ ๊ทธ ๊ธฐ์ˆ ๊ณผ ๊ทธ ๋ฐ์ดํ„ฐ ๊ทธ๋ฆฌ๊ณ 
04:05
and the ability to, with machine assistance,
84
245260
2000
๊ทธ ๊ธฐ๊ณ„์  ๋„์›€์˜ ๋Šฅ๋ ฅ์„ ํ†ตํ•ด,
04:07
transcribe speech,
85
247260
2000
๋งํ•˜๋Š” ๊ฒƒ์„ ๋ฐ›์•„ ์ ๊ณ ,
04:09
we've now transcribed
86
249260
2000
์ด์ œ๋Š” ๋ฌด๋ ค
04:11
well over seven million words of our home transcripts.
87
251260
3000
์ €ํฌ ์ง‘ ๋Œ€์‚ฌ์ง‘์˜ ๋‹จ์–ด ์ˆ˜๊ฐ€ 7๋ฐฑ๋งŒ ๋‹จ์–ด๊ฐ€ ๋„˜๊ฒŒ ๋ฐ›์•„์ ํ˜”์Šต๋‹ˆ๋‹ค.
04:14
And with that, let me take you now
88
254260
2000
๊ทธ๋ฆฌ๊ณ  ๊ทธ๊ฑธ ๊ฐ€์ง€๊ณ , ์—ฌ๋Ÿฌ๋ถ„๋“ค์„ ๋ฐ์ดํ„ฐ ์†์œผ๋กœ ๊ฐ€๋Š”
04:16
for a first tour into the data.
89
256260
3000
์ตœ์ดˆ์˜ ์—ฌํ–‰์œผ๋กœ ๋ชจ์‹œ๊ฒ ์Šต๋‹ˆ๋‹ค.
04:19
So you've all, I'm sure,
90
259260
2000
์—ฌ๋Ÿฌ๋ถ„๋“ค์€ ์•„๋งˆ, ๋ถ„๋ช…ํžˆ,
04:21
seen time-lapse videos
91
261260
2000
๊ฝƒ์ด ํ”ผ์–ด์˜ค๋ฅด๋Š” ์žฅ๋ฉด์„ ๋ณด์—ฌ์ฃผ๋Š”
04:23
where a flower will blossom as you accelerate time.
92
263260
3000
๊ณ ์† ์˜์ƒ์„ ๋ณด์‹  ์ ์ด ์žˆ์œผ์‹ค๊ฒ๋‹ˆ๋‹ค.
04:26
I'd like you to now experience
93
266260
2000
์ €๋Š” ์—ฌ๋Ÿฌ๋ถ„๋“ค๊ป˜ ๋ง์˜ ํ˜•์‹์ด
04:28
the blossoming of a speech form.
94
268260
2000
ํ”ผ์–ด์˜ค๋ฅด๋Š” ๊ฒƒ์„ ๊ฒฝํ—˜ํ•˜๊ฒŒ ํ•ด ๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค.
04:30
My son, soon after his first birthday,
95
270260
2000
์ œ์•„๋“ค์ด, ์ฒซ ๋Œ์ด ๊ฐ“ ์ง€๋‚˜์„œ,
04:32
would say "gaga" to mean water.
96
272260
3000
๋ฌผ ์ด๋ผ๋Š” ๋œป์œผ๋กœ "๊ฐ€๊ฐ€" ๋ผ๊ณ  ๋ง ํ•ฉ๋‹ˆ๋‹ค.
04:35
And over the course of the next half-year,
97
275260
3000
๊ทธ๋ฆฌ๊ณ  ๊ทธ๋กœ๋ถ€ํ„ฐ ๋ฐ˜๋…„์˜ ์‹œ๊ฐ„์ด ํ๋ฅธ ๋’ค์—,
04:38
he slowly learned to approximate
98
278260
2000
์„œ์„œํžˆ ์ •ํ™•ํ•˜๊ฒŒ ์–ด๋ฅธ๋“ค ๊ฐ™์ด "์›Œํ„ฐ" ๋ผ๊ณ 
04:40
the proper adult form, "water."
99
280260
3000
๋งํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ๋ฐฐ์›๋‹ˆ๋‹ค.
04:43
So we're going to cruise through half a year
100
283260
2000
์ž ์ด์ œ ์šฐ๋ฆฌ ๋ฐ˜๋…„ ๋™์•ˆ์˜ ์‹œ๊ฐ„์„ 40์ดˆ ์•ˆ์—
04:45
in about 40 seconds.
101
285260
2000
์—ฌํ–‰ ํ•ด ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.
04:47
No video here,
102
287260
2000
์˜์ƒ์€ ์—†์œผ๋‹ˆ,
04:49
so you can focus on the sound, the acoustics,
103
289260
3000
์ƒˆ๋กœ์šด ์ข…๋ฅ˜์˜ ๊ถค์ ์˜ ์Œ์„ฑ, ์Œํ–ฅ์—
04:52
of a new kind of trajectory:
104
292260
2000
์ง‘์ค‘ ํ•ด ์ฃผ์„ธ์š”.
04:54
gaga to water.
105
294260
2000
๊ฐ€๊ฐ€ ์—์„œ ์›Œํ„ฐ๋กœ.
04:56
(Audio) Baby: Gagagagagaga
106
296260
12000
(์Œ์„ฑ) ์•„๊ธฐ: ๊ฐ€๊ฐ€๊ฐ€๊ฐ€๊ฐ€๊ฐ€
05:08
Gaga gaga gaga
107
308260
4000
๊ฐ€๊ฐ€ ๊ฐ€๊ฐ€ ๊ฐ€๊ฐ€
05:12
guga guga guga
108
312260
5000
๊ตฌ๊ฐ€ ๊ตฌ๊ฐ€ ๊ตฌ๊ฐ€
05:17
wada gaga gaga guga gaga
109
317260
5000
์™€๋‹ค ๊ฐ€๊ฐ€ ๊ฐ€๊ฐ€ ๊ตฌ๊ฐ€ ๊ฐ€๊ฐ€
05:22
wader guga guga
110
322260
4000
์™€๋œ ๊ตฌ๊ฐ€ ๊ตฌ๊ฐ€
05:26
water water water
111
326260
3000
์›Œํ„ฐ ์›Œํ„ฐ ์›Œํ„ฐ
05:29
water water water
112
329260
6000
์›Œํ„ฐ ์›Œํ„ฐ ์›Œํ„ฐ
05:35
water water
113
335260
4000
์›Œํ„ฐ ์›Œํ„ฐ
05:39
water.
114
339260
2000
์›Œํ„ฐ.
05:41
DR: He sure nailed it, didn't he.
115
341260
2000
๋ฐ๋ธŒ ๋กœ์ด: ๋…€์„์ด ์ œ๋Œ€๋กœ ํ•ด๋ƒˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋ ‡์ฃ ?
05:43
(Applause)
116
343260
7000
(๋ฐ•์ˆ˜)
05:50
So he didn't just learn water.
117
350260
2000
๊ทธ๋Š” ์›Œํ„ฐ ๋งŒ ๋ฐฐ์šด ๊ฒŒ ์•„๋‹™๋‹ˆ๋‹ค.
05:52
Over the course of the 24 months,
118
352260
2000
24๊ฐœ์›”์˜ ๊ณผ์ •์„ ๋„˜์–ด,
05:54
the first two years that we really focused on,
119
354260
3000
์ฒ˜์Œ์˜ 2๋…„์—, ์ €ํฌ๊ฐ€ ์ •๋ง๋กœ ์ง‘์ค‘ํ–ˆ๋˜๊ฑด
05:57
this is a map of every word he learned in chronological order.
120
357260
4000
๊ทธ ์• ๊ฐ€ ๋ฐฐ์šด ๋ชจ๋“  ๋‹จ์–ด๋“ค์„ ์‹œ๊ฐ„ ์ˆœ์„œ๋Œ€๋กœ ๋งŒ๋“  ์ง€๋„์ž…๋‹ˆ๋‹ค.
06:01
And because we have full transcripts,
121
361260
3000
๊ทธ๋ฆฌ๊ณ  ์šฐ๋ฆฌ๋Š” ์ „์ฒด์˜ ๋Œ€ํ™”์ง‘์„ ๊ฐ€์ง€๊ณ  ์žˆ์—ˆ๊ธฐ์—,
06:04
we've identified each of the 503 words
122
364260
2000
๊ทธ ์•„์ด์˜ ๋‘๋ฒˆ์งธ ์ƒ์ผ ๋•์— ๋งŒ๋“œ๋Š” ๊ฒƒ์„ ๋ฐฐ์šด
06:06
that he learned to produce by his second birthday.
123
366260
2000
503๊ฐœ์˜ ๊ฐ ๋‹จ์–ด๋“ค์„ ๊ตฌ๋ถ„ํ•ด๋ƒˆ์Šต๋‹ˆ๋‹ค.
06:08
He was an early talker.
124
368260
2000
๊ทธ๋Š” ๋ง์ด ๋นจ๋ฆฌ ํŠธ์˜€์ฃ .
06:10
And so we started to analyze why.
125
370260
3000
์šฐ๋ฆฌ๋Š” ์™œ ๊ทธ๋Ÿฐ ๊ฑด์ง€ ๋ถ„์„์„ ์‹œ์ž‘ํ–ˆ์Šต๋‹ˆ๋‹ค.
06:13
Why were certain words born before others?
126
373260
3000
์™œ ์–ด๋–ค ๋‹จ์–ด๋“ค์€ ๋‹ค๋ฅธ ๊ฒƒ๋“ค ๋ณด๋‹ค ๋จผ์ € ํƒœ์–ด๋‚˜๋Š” ๊ฑธ๊นŒ์š”?
06:16
This is one of the first results
127
376260
2000
์ด๊ฒƒ์€ ์šฐ๋ฆฌ๋“ค์„ ์ •๋ง ๋†€๋ผ๊ฒŒ ํ–ˆ๋˜,
06:18
that came out of our study a little over a year ago
128
378260
2000
์ผ๋…„ ์ „ ์ฏค์˜ ์—ฐ๊ตฌ์—์„œ ๋‚˜์˜จ ๊ฒฐ๊ณผ๋“ค ์ค‘
06:20
that really surprised us.
129
380260
2000
ํ•˜๋‚˜์ž…๋‹ˆ๋‹ค.
06:22
The way to interpret this apparently simple graph
130
382260
3000
๊ฐ„๋‹จํ•ด๋ณด์ด๋Š” ์ด ๊ทธ๋ž˜ํ”„๋ฅผ ํ•ด์„ํ•˜๋Š” ๋ฐฉ๋ฒ•์€
06:25
is, on the vertical is an indication
131
385260
2000
์ด ์ˆ˜์ง ๋ถ€๋ถ„์— ์žˆ๋Š”๋ฐ์š”
06:27
of how complex caregiver utterances are
132
387260
3000
๋ณดํ˜ธ์ž๊ฐ€ ๋งํ•˜๋Š” ๋ฌธ์žฅ์˜ ๊ธธ์ด๋ฅผ ๊ธฐ์ค€์œผ๋กœ
06:30
based on the length of utterances.
133
390260
2000
๊ทธ ๋ง์ด ์–ผ๋งˆ๋‚˜ ๋ณต์žกํ•œ์ง€๋ฅผ ์•Œ๋ ค์ค๋‹ˆ๋‹ค.
06:32
And the [horizontal] axis is time.
134
392260
3000
์„ธ๋กœ์ถ•์€ ์‹œ๊ฐ„์ด๊ตฌ์š”.
06:35
And all of the data,
135
395260
2000
๊ทธ๋ฆฌ๊ณ  ์ด ๋ชจ๋“  ๋ฐ์ดํ„ฐ๊ฐ€
06:37
we aligned based on the following idea:
136
397260
3000
๋‹ค์Œ ์•„์ด๋””์–ด๋ฅผ ๊ธฐ์ค€์œผ๋กœ ์ •๋ ฌ๋˜์—ˆ๋Š”๋ฐ์š”:
06:40
Every time my son would learn a word,
137
400260
3000
์•„๋“ค์ด ๋‹จ์–ด ํ•˜๋‚˜๋ฅผ ๋ฐฐ์šธ ๋•Œ ๋งˆ๋‹ค,
06:43
we would trace back and look at all of the language he heard
138
403260
3000
์•„์ด๊ฐ€ ๋“ค์€ ๋ชจ๋“  ์–ธ์–ด๋“ค ์ค‘์— ๊ทธ ๋‹จ์–ด๊ฐ€ ํฌํ•จ๋œ ๊ฑธ
06:46
that contained that word.
139
406260
2000
์—ญ์ถ”์ ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.
06:48
And we would plot the relative length of the utterances.
140
408260
4000
๋ฌธ์žฅ์˜ ๊ธธ์ด์™€์˜ ์—ฐ๊ด€๊ด€๊ณ„์— ๋Œ€ํ•ด์„œ๋„ ์—์ธก ๊ฐ€๋Šฅํ•˜๊ตฌ์š”.
06:52
And what we found was this curious phenomena,
141
412260
3000
์šฐ๋ฆฌ๊ฐ€ ๋ฐœ๊ฒฌํ•œ ์ด ์‹ ๊ธฐํ•œ ํ˜„์ƒ์€,
06:55
that caregiver speech would systematically dip to a minimum,
142
415260
3000
๋ณดํ˜ธ์ž์˜ ๋ง์ด ์ฒด๊ณ„์ ์œผ๋กœ ์ตœ์†Œํ™”๋˜๋ฉด์„œ,
06:58
making language as simple as possible,
143
418260
3000
์–ธ์–ด๋ฅผ ๊ฐ€๋Šฅํ•œ ํ•œ ๋‹จ์ˆœํ•˜๊ฒŒ ๋งŒ๋“ค๊ณ ,
07:01
and then slowly ascend back up in complexity.
144
421260
3000
๊ทธ๋ ‡๊ฒŒ ๋˜๋ฉด์„œ ๋‹ค๋ฅธ ํ•œํŽธ์œผ๋ก  ๋ณต์žก์„ฑ์€ ์„œ์„œํžˆ ์ฆ๊ฐ€ํ•ฉ๋‹ˆ๋‹ค.
07:04
And the amazing thing was
145
424260
2000
๋†€๋ผ์šด ์ ์€
07:06
that bounce, that dip,
146
426260
2000
๊ทธ ๋ฐ˜๋™, ๊ทธ ์ตœ์†Œํ™”๊ฐ€,
07:08
lined up almost precisely
147
428260
2000
๋ชจ๋“  ๋‹จ์–ด๊ฐ€ ๋งŒ๋“ค์–ด์งˆ ๋•Œ
07:10
with when each word was born --
148
430260
2000
์–ธ์ œ๋‚˜ ๊ผญ ๋”ฐ๋ผ๋‹ค๋‹™๋‹ˆ๋‹ค --
07:12
word after word, systematically.
149
432260
2000
๋‹จ์–ด ๋‹จ์–ด๋งˆ๋‹ค, ์ฒด๊ณ„์ ์œผ๋กœ์š”.
07:14
So it appears that all three primary caregivers --
150
434260
2000
๊ทธ๋ž˜์„œ ์ฃผ๋กœ ์•„์ด๋ฅผ ๋ณด๋Š” ์ €ํฌ ์…‹ --
07:16
myself, my wife and our nanny --
151
436260
3000
์ €, ์ œ ์•„๋‚ด ๊ทธ๋ฆฌ๊ณ  ์œ ๋ชจ๋Š” --
07:19
were systematically and, I would think, subconsciously
152
439260
3000
์ฒด๊ณ„์ ์œผ๋กœ ๊ทธ๋ฆฌ๊ณ , ์ œ์ƒ๊ฐ์—” ์•„๋งˆ, ๋ฌด์˜์‹์ ์œผ๋กœ
07:22
restructuring our language
153
442260
2000
์šฐ๋ฆฌ๊ฐ€ ํ•˜๋Š” ๋ง์„ ์žฌ๊ตฌ์„ฑ์„ ํ–ˆ๋Š”๋ฐ
07:24
to meet him at the birth of a word
154
444260
3000
์•„์ด๊ฐ€ ๋ง์„ ๋งŒ๋“œ๋Š” ์ˆœ๊ฐ„์— ๋‹ค๋‹ค๋ฅด๊ฒŒ ํ•˜๊ณ 
07:27
and bring him gently into more complex language.
155
447260
4000
์ข€ ๋” ๋ณต์žกํ•œ ์–ธ์–ด์— ๋“ค์–ด๊ฐˆ ์ˆ˜ ์žˆ๋„๋ก ํ•˜๊ธฐ ์œ„ํ•จ์ด์—ˆ์Šต๋‹ˆ๋‹ค.
07:31
And the implications of this -- there are many,
156
451260
2000
๋˜ ์ด๊ฒƒ์ด ํ•จ์ถ•ํ•˜๋Š” ๊ฒƒ์€ ๋งŽ์ด ์žˆ์ฃ ,
07:33
but one I just want to point out,
157
453260
2000
ํ•˜์ง€๋งŒ ์ œ๊ฐ€ ํ•œ๊ฐ€์ง€ ์ง€์ ํ•˜๊ณ  ์‹ถ์€๊ฒƒ์€,
07:35
is that there must be amazing feedback loops.
158
455260
3000
์ •๋ง ํ›Œ๋ฅญํ•œ ํ”ผ๋“œ๋ฐฑ ๊ณ ๋ฆฌ๊ฐ€ ์žˆ์–ด์•ผํ•œ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
07:38
Of course, my son is learning
159
458260
2000
๋ฌผ๋ก , ์ œ ์•„๋“ค์€
07:40
from his linguistic environment,
160
460260
2000
๊ทธ์˜ ์–ธ์–ด์  ํ™˜๊ฒฝ์—์„œ ๋ฐฐ์šฐ๊ณ  ์žˆ์—ˆ์ง€๋งŒ,
07:42
but the environment is learning from him.
161
462260
3000
๊ทธ ํ™˜๊ฒฝ๋„ ๊ทธ์—๊ฒŒ์„œ ๋ฐฐ์šฐ๊ณ  ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
07:45
That environment, people, are in these tight feedback loops
162
465260
3000
๊ทธ ํ™˜๊ฒฝ, ์‚ฌ๋žŒ๋“ค์€ ์ด ๋นฝ๋นฝํ•œ ํ”ผ๋“œ๋ฐฑ ๊ณ ๋ฆฌ์•ˆ์— ์žˆ๊ณ 
07:48
and creating a kind of scaffolding
163
468260
2000
์ง€๊ธˆ๊นŒ์ง€๋Š” ์•Œ์•„์ฐจ๋ ค์ง€ ์•Š์•˜๋˜
07:50
that has not been noticed until now.
164
470260
3000
์ง•๊ฒ€๋‹ค๋ฆฌ์™€ ๊ฐ™์€ ๊ฒƒ์„ ๋งŒ๋“ค๊ณ  ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
07:54
But that's looking at the speech context.
165
474260
2000
ํ•˜์ง€๋งŒ ๊ทธ๊ฒƒ์€ ๊ทธ ๋ง์ด ๋˜์–ด์ง€๋Š” ์ƒํ™ฉ์„ ๋ณด๊ณ  ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
07:56
What about the visual context?
166
476260
2000
์‹œ๊ฐ์ ์ธ ์ƒํ™ฉ์€ ์–ด๋–จ๊นŒ์š”?
07:58
We're not looking at --
167
478260
2000
์šฐ๋ฆฌ๋Š” ์šฐ๋ฆฌ ์ง‘์„
08:00
think of this as a dollhouse cutaway of our house.
168
480260
2000
์ธํ˜•์˜ ์ง‘์„ ์ž˜๋ผ๋งŒ๋“ ๊ฒƒ์œผ๋กœ์„œ ์ƒ๊ฐํ•œ๊ฒƒ์ด ์•„๋‹ˆ์—ˆ์Šต๋‹ˆ๋‹ค.
08:02
We've taken those circular fish-eye lens cameras,
169
482260
3000
์šฐ๋ฆฌ๋Š” ๊ทธ ์›ํ˜•์ ์ธ ๋ฌผ๊ณ ๊ธฐ-๋ˆˆ์˜ ๋ Œ์ฆˆ ์นด๋ฉ”๋ผ๋ฅผ ํƒํ–ˆ๊ณ 
08:05
and we've done some optical correction,
170
485260
2000
์•ฝ๊ฐ„์˜ ์‹œ๊ฐ์ ์ธ ๊ต์ •์„ ํ–ˆ๊ณ 
08:07
and then we can bring it into three-dimensional life.
171
487260
4000
๊ทธ ๋‹ค์Œ์—๋Š” ์šฐ๋ฆฌ๋Š” ์‚ผ์ฐจ์›์ ์ธ ์‹œ๊ฐ์˜ ์ธ์ƒ์œผ๋กœ ๋ฐ๋ ค์˜ฌ ์ˆ˜ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
08:11
So welcome to my home.
172
491260
2000
์ž ์šฐ๋ฆฌ๊ฐ€์ •์— ์˜ค์‹ ๊ฒƒ์„ ํ™˜์˜ํ•ฉ๋‹ˆ๋‹ค.
08:13
This is a moment,
173
493260
2000
์ด๊ฒƒ์€ ํ•œ ์ˆœ๊ฐ„์ž…๋‹ˆ๋‹ค.
08:15
one moment captured across multiple cameras.
174
495260
3000
์—ฌ๋Ÿฌ๋Œ€์˜ ์นด๋ฉ”๋ผ๋ฅผ ๊ฐ€์ง€๊ณ  ํ•œ ์ˆœ๊ฐ„์„ ํฌ์ฐฉํ•œ ๊ฒƒ์ด์ง€์š”.
08:18
The reason we did this is to create the ultimate memory machine,
175
498260
3000
์šฐ๋ฆฌ๊ฐ€ ์ด๊ฒƒ์„ ํ•œ ์ด์œ ๋Š” ๊ถ๊ทน์ ์ธ ๊ธฐ์–ต์žฅ๋น„๋ฅผ ์ฐฝ์กฐํ•˜๋ ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค,
08:21
where you can go back and interactively fly around
176
501260
3000
์—ฌ๋Ÿฌ๋ถ„์€ ๊ณผ๊ฑฐ๋กœ ๋Œ์•„๊ฐ€์„œ ์ƒํ˜ธ์ž‘์šฉํ•˜๋„๋ก ์ฃผ๋ณ€์„ ๋‚ ์•„๋‹ค๋‹ˆ๊ณ 
08:24
and then breathe video-life into this system.
177
504260
3000
๊ทธ ๋‹ค์Œ์—๋Š” ์ด ์กฐ์ง ์•ˆ์œผ๋กœ ๋น„๋””์˜ค์˜ ์ƒ๋ช…์„ ์ˆจ์‰ฝ๋‹ˆ๋‹ค.
08:27
What I'm going to do
178
507260
2000
์ด์ œ ์ œ๊ฐ€ ํ•˜๋ คํ•˜๋Š” ๊ฒƒ์€
08:29
is give you an accelerated view of 30 minutes,
179
509260
3000
30๋ถ„์˜ ๋น„๋””์˜ค๋ฅผ ๊ฐ€์†์‹œํ‚จ ์žฅ๋ฉด์ž…๋‹ˆ๋‹ค.
08:32
again, of just life in the living room.
180
512260
2000
๋‹ค์‹œ ๋งํ•˜์ง€๋งŒ, ๊ทธ๊ฒƒ์€ ๊ฑฐ์‹ค์˜ ์ƒํ™œ์ž…๋‹ˆ๋‹ค.
08:34
That's me and my son on the floor.
181
514260
3000
์ €๊ฒƒ์€ ์ €์ด๊ณ  ์ œ ์•„๋“ค์€ ๋งˆ๋ฃจ์— ์žˆ์Šต๋‹ˆ๋‹ค.
08:37
And there's video analytics
182
517260
2000
์ €๊ฒƒ์€ ๋น„๋””์˜ค
08:39
that are tracking our movements.
183
519260
2000
์šฐ๋ฆฌ์˜ ์›€์ง์ž„์€ ์ถ”์ ํ•˜๊ณ  ์žˆ๋Š” ๊ฒƒ์ด์ง€์š”.
08:41
My son is leaving red ink. I am leaving green ink.
184
521260
3000
์ €์˜ ์•„๋“ค์ด ๋นจ๊ฐ„ ์ž‰ํฌ๋ฅผ ๋‚จ๊ธฐ๊ณ  ์žˆ๊ณ , ์ €๋Š” ๋…น์ƒ‰์˜ ์ž‰ํฌ๋ฅผ ๋‚จ๊ธฐ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
08:44
We're now on the couch,
185
524260
2000
์šฐ๋ฆฌ๊ฐ€ ์ด์ œ๋Š” ์†ŒํŒŒ์— ์žˆ์Šต๋‹ˆ๋‹ค,
08:46
looking out through the window at cars passing by.
186
526260
3000
์ฐฝ๋ฐ–์œผ๋กœ ์ฐจ๊ฐ€ ์ง€๋‚˜๊ฐ€๋Š” ๊ฒƒ์„ ๋ฐ”๋ผ๋ณด๊ณ  ์žˆ์ง€์š”.
08:49
And finally, my son playing in a walking toy by himself.
187
529260
3000
๋˜ ๋งˆ์ง€๋ง‰์œผ๋กœ, ์ œ ์•„๋“ค์ด ์Šค์Šค๋กœ ๊ฑท๋Š” ์žฅ๋‚œ๊ฐ์•ˆ์—์„œ ๋†€๊ณ  ์žˆ์ง€์š”.
08:52
Now we freeze the action, 30 minutes,
188
532260
3000
์ž ์šฐ๋ฆฌ๋Š” 30๋ถ„์˜ ๊ทธ ์›€์ง์ž„์„ ๋™๊ฒฐ์‹œํ‚ต๋‹ˆ๋‹ค,
08:55
we turn time into the vertical axis,
189
535260
2000
๊ทธ ์‹œ๊ฐ„์„ ์ˆ˜์ง์˜ ์ถ• ์•ˆ์œผ๋กœ ๋ฐ”๊พธ๊ณ 
08:57
and we open up for a view
190
537260
2000
์šฐ๋ฆฌ๊ฐ€ ๋ฐฉ๊ธˆ ๋‚จ๊ฒจ๋†“์•˜๋˜ ์ƒํ˜ธ์ž‘์šฉ์˜ ํ”์ ๋“ค์„
08:59
of these interaction traces we've just left behind.
191
539260
3000
์ƒˆ๋กœ์šด ํ™”๋ฉด์œผ๋กœ ์—ฝ๋‹ˆ๋‹ค.
09:02
And we see these amazing structures --
192
542260
3000
๋˜ ์šฐ๋ฆฌ๋Š” ์ด ํ›Œ๋ฅญํ•œ ๊ตฌ์กฐ๋“ค์„--
09:05
these little knots of two colors of thread
193
545260
3000
์ด ์ž‘์€ ๋‘๊ฐ€์ง€ ์ƒ‰๊น”์˜ ์‹ค๋กœ๋œ ์ž‘์€ ๋งค๋“ญ์œผ๋กœ ๋ณด๋Š”๋ฐ
09:08
we call "social hot spots."
194
548260
2000
์šฐ๋ฆฌ๋Š” ๊ทธ๊ฒƒ์„ ์‚ฌํšŒ์ ์ธ ํ•ซ์ŠคํŒŸ์ด๋ผ๊ณ  ํ•˜์ง€์š”.
09:10
The spiral thread
195
550260
2000
๋‚˜์„ ํ˜•์˜ ์‹ค์€
09:12
we call a "solo hot spot."
196
552260
2000
์šฐ๋ฆฌ๊ฐ€ ์†”๋กœ ํ•ซ ์ŠคํŒŸ์ด๋ผ๊ณ  ๋ถ€๋ฅด์ง€์š”.
09:14
And we think that these affect the way language is learned.
197
554260
3000
๋˜ ์šฐ๋ฆฌ๊ฐ€ ์ƒ๊ฐํ•˜๊ธฐ๋กœ๋Š” ์ด๊ฒƒ๋“ค์ด ์–ธ์–ด๊ฐ€ ์Šต๋“๋˜๋Š” ๋ฐฉ๋ฒ•์— ์˜ํ–ฅ์„ ๋ผ์นฉ๋‹ˆ๋‹ค.
09:17
What we'd like to do
198
557260
2000
์šฐ๋ฆฌ๊ฐ€ ํ•˜๊ธฐ๋ฅผ ์ข‹์•„ํ•˜๋Š” ๊ฒƒ์€
09:19
is start understanding
199
559260
2000
์ด ํŒจํ„ด๋“ค์‚ฌ์ด์˜
09:21
the interaction between these patterns
200
561260
2000
์ƒํ˜ธ์ž‘์šฉ๊ณผ
09:23
and the language that my son is exposed to
201
563260
2000
์ œ ์•„๋“ค์ด ๋…ธ์ถœ๋‹นํ–ˆ๋˜ ๊ทธ ์–ธ์–ด์‚ฌ์ด์—
09:25
to see if we can predict
202
565260
2000
๋งŒ์•ฝ ์šฐ๋ฆฌ๊ฐ€ ๋‹จ์–ด๋“ค์ด ๋“ค๋ ธ์„๋•Œ์˜ ๊ตฌ์กฐ๊ฐ€
09:27
how the structure of when words are heard
203
567260
2000
๋‹จ์–ด๋“ค์ด ์Šต๋“๋˜๋Š”๊ฒƒ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”์ง€
09:29
affects when they're learned --
204
569260
2000
์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ์„์ง€๋ฅผ ๊ด€์ฐฐํ•˜๋Š”๊ฒƒ์„ ์ดํ•ดํ•˜๊ธฐ ์‹œ์ž‘ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
09:31
so in other words, the relationship
205
571260
2000
๊ทธ๋ž˜์„œ ๋‹ฌ๋ฆฌ ๋งํ•˜์ž๋ฉด, ๋‹จ์–ด๋“ค๊ณผ
09:33
between words and what they're about in the world.
206
573260
4000
๊ทธ๊ฒƒ๋“ค์ด ์„ธ๊ณ„์—์„œ ์–ด๋–ค ์—ญํ• ์„ ํ•˜๋Š”์ง€ ์‚ฌ์ด์˜ ๊ด€๊ณ„์ด์ง€์š”.
09:37
So here's how we're approaching this.
207
577260
2000
์ž ์—ฌ๊ธฐ์— ์šฐ๋ฆฌ๊ฐ€ ์ด๊ฒƒ์— ์ ‘๊ทผํ•˜๋Š” ๋ฐฉ๋ฒ•์ด ์žˆ์Šต๋‹ˆ๋‹ค.
09:39
In this video,
208
579260
2000
์—ฌ๊ธฐ ๋น„๋””์˜ค์—์„œ๋Š”,
09:41
again, my son is being traced out.
209
581260
2000
๋‹ค์‹œ๊ธˆ, ์ œ ์•„๋“ค์˜ ์œค๊ณฝ์ด ์žกํžˆ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
09:43
He's leaving red ink behind.
210
583260
2000
๊ทธ๋Š” ๋นจ๊ฐ„ ์ž‰ํฌ๋ฅผ ๋‚จ๊ธฐ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
09:45
And there's our nanny by the door.
211
585260
2000
๋˜ ์ €๊ธฐ์— ์šฐ๋ฆฌ์˜ ์œ ๋ชจ๊ฐ€ ๋ฌธ์˜†์— ์žˆ๊ตฐ์š”.
09:47
(Video) Nanny: You want water? (Baby: Aaaa.)
212
587260
3000
(๋น„๋””์˜ค) ์œ ๋ชจ: ๋ฌผ์ข€ ์ค„๊นŒ? (์•„๊ธฐ: ์•„์•„์•„)
09:50
Nanny: All right. (Baby: Aaaa.)
213
590260
3000
์œ ๋ชจ: ์ข‹์•„ (์•„๊ธฐ: ์•„์•„์•„)
09:53
DR: She offers water,
214
593260
2000
๋กœ์ด: ๊ทธ๋…€๊ฐ€ ๋ฌผ์„ ๊ถŒํ•ฉ๋‹ˆ๋‹ค
09:55
and off go the two worms
215
595260
2000
๋˜ ๋ฌผ์„ ๊ฐ€์ง€๋Ÿฌ ๋ถ€์—Œ์œผ๋กœ ๊ฐ€์„œ
09:57
over to the kitchen to get water.
216
597260
2000
๋‘๋งˆ๋ฆฌ์˜ ๋ฒŒ๋ ˆ๋ฅผ ๊ฐ€์ง€๋Ÿฌ ๊ฐ‘๋‹ˆ๋‹ค.
09:59
And what we've done is use the word "water"
217
599260
2000
์šฐ๋ฆฌ๊ฐ€ ํ•œ๊ฒƒ์€ ๊ทธ ํ™œ๋™์˜ ์•ฝ๊ฐ„์˜ ์ˆœ๊ฐ„์„ ์žก๊ธฐ ์œ„ํ•ด์„œ,
10:01
to tag that moment, that bit of activity.
218
601260
2000
๊ทธ ๋‹จ์–ด "๋ฌผ"์„ ์ด์šฉํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
10:03
And now we take the power of data
219
603260
2000
์ž ์ด์ œ ์šฐ๋ฆฌ๋Š” ๊ทธ ๋ฐ์ดํƒ€์˜ ํž˜์„ ์ทจํ•ด์„œ
10:05
and take every time my son
220
605260
3000
์ €์˜ ์•„๋“ค์ด ๋งค๋ฒˆ
10:08
ever heard the word water
221
608260
2000
๋ฌผ์ด๋ผ๋Š” ๋‹จ์–ด๋ฅผ ๋“ค์„๋•Œ๋งˆ๋‹ค
10:10
and the context he saw it in,
222
610260
2000
๋˜ ๊ทธ์•„์ด๊ฐ€ ๊ทธ๊ฒƒ์ด ๋งํ•ด์ง€๋Š” ์ƒํ™ฉ์„ ๋ณด์•˜์„๋•Œ,
10:12
and we use it to penetrate through the video
223
612260
3000
๋˜ ์šฐ๋ฆฌ๊ฐ€ ๊ทธ ๋น„๋””์˜ค๋ฅผ ํ†ตํ•ด ๊ด€ํ†ตํ•˜๋„๋ก ์ด์šฉํ•ด์„œ
10:15
and find every activity trace
224
615260
3000
๋ฌผ์˜ ์ƒํ™ฉ๊ณผ ํ•จ๊ป˜ ๋ฐœ์ƒํ•˜๋Š”
10:18
that co-occurred with an instance of water.
225
618260
3000
๋ชจ๋“  ํ™œ๋™์„ ์ถ”์ ํ•ด ์ฐพ์Šต๋‹ˆ๋‹ค.
10:21
And what this data leaves in its wake
226
621260
2000
๋˜ ๊ทธ ๊นจ์–ด๋‚จ์— ๋ฐ์ดํƒ€๊ฐ€ ๋‚จ๊ธฐ๋Š” ๊ฒƒ์€
10:23
is a landscape.
227
623260
2000
ํ’๊ฒฝ์ž…๋‹ˆ๋‹ค.
10:25
We call these wordscapes.
228
625260
2000
์šฐ๋ฆฌ๋Š” ์ด๊ฒƒ์„ ์–ธ์–ดํ’๊ฒฝ ์ด๋ผ๊ณ  ๋ถ€๋ฅด์ฃ .
10:27
This is the wordscape for the word water,
229
627260
2000
์ด๊ฒƒ์€ ๋ฌผ์ด๋ผ๋Š” ๋‹จ์–ดํ’๊ฒฝ์ž…๋‹ˆ๋‹ค,
10:29
and you can see most of the action is in the kitchen.
230
629260
2000
๋ถ„์€ ๋Œ€๋ถ€๋ถ„์˜ ํ™œ๋™์ด ๋ถ€์—Œ์—์„œ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
10:31
That's where those big peaks are over to the left.
231
631260
3000
์ €๊ฒƒ์€ ๊ทธ ๋†’์€ ๋ด‰์šฐ๋ฆฌ๋“ค์ด ์™ผ์ชฝ์œผ๋กœ ๋„˜์–ด๊ฐ„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
10:34
And just for contrast, we can do this with any word.
232
634260
3000
๋Œ€์กฐ์ ์œผ๋กœ ๋ณด์ž๋ฉด, ์šฐ๋ฆฌ๋Š” ๊ฒƒ์„ ์–ด๋–ค ๋‹จ์–ด๋กœ๋„ ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
10:37
We can take the word "bye"
233
637260
2000
"๋ฐ”์ด"๋ผ๋Š” ๋ง์„ ํƒํ•  ์ˆ˜ ์žˆ์ง€์š”
10:39
as in "good bye."
234
639260
2000
"์ž˜๊ฐ€" ๋ผ๋Š” ๋ง์—์„œ์ฒ˜๋Ÿผ์š”.
10:41
And we're now zoomed in over the entrance to the house.
235
641260
2000
์šฐ๋ฆฌ๋Š” ์ด์ œ ์ง‘์˜ ์ž…๊ตฌ์œ„์—์„œ ํ™•๋Œ€๋ฅผ ์‹œ์ผฐ์Šต๋‹ˆ๋‹ค.
10:43
And we look, and we find, as you would expect,
236
643260
3000
๊ทธ๋ž˜์„œ ์—ฌ๋Ÿฌ๋ถ„๋“ค์ด ๊ธฐ๋Œ€ํ•˜์‹œ๋Š” ๊ฒƒ์ฒ˜๋Ÿผ
10:46
a contrast in the landscape
237
646260
2000
๊ทธ ํ’๊ฒฝ์—์„œ ๋Œ€์กฐ๋ฅผ
10:48
where the word "bye" occurs much more in a structured way.
238
648260
3000
๋‹จ์–ด "๋ฐ”์ด" ๊ฐ€ ๋”์šฑ๋” ๊ตฌ์กฐ์ ์œผ๋กœ ๋ฐœ์ƒํ•˜๋Š” ๊ณณ์—์„œ ๋Œ€์กฐ๋ฅผ ๊ด€์ฐฐํ•ด์„œ ์ฐพ์•˜์ง€์š”.
10:51
So we're using these structures
239
651260
2000
๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ๋Š” ์ด ๊ตฌ์กฐ๋“ค์„ ์ด์šฉํ•˜์—ฌ
10:53
to start predicting
240
653260
2000
์–ธ์–ด ์Šต๋“์˜ ์ˆœ์„œ๋ฅผ
10:55
the order of language acquisition,
241
655260
3000
์˜ˆ์ธกํ•˜๋Š” ๊ฒƒ์„ ์‹œ์ž‘ํ–ˆ๊ณ 
10:58
and that's ongoing work now.
242
658260
2000
๊ทธ๊ฒŒ ์ง€๊ธˆ ๋ฒŒ์–ด์ง€๊ณ  ์žˆ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
11:00
In my lab, which we're peering into now, at MIT --
243
660260
3000
์ด์ œ๋Š” ์— ์•„์ดํ‹ฐ์™€ ๊ฒฐ์—ฐํ•˜๊ณ  ์žˆ๋Š” ์ €์˜ ์—ฐ๊ตฌ์†Œ์—๋Š”
11:03
this is at the media lab.
244
663260
2000
์ด๊ฒƒ์ด ๊ทธ ๋ฏธ๋””์•„ ์—ฐ๊ตฌ์†Œ์—์„œ ์ฐ์€๊ฒƒ์ž…๋‹ˆ๋‹ค.
11:05
This has become my favorite way
245
665260
2000
์ด๊ฒƒ์€ ์ œ๊ฐ€ ๊ฐ€์žฅ ์„ ํ˜ธํ•˜๋Š” ๋ฐฉ๋ฒ•์ด ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
11:07
of videographing just about any space.
246
667260
2000
์–ด๋–ค ์žฅ์†Œ์ด๋“ ์ง€๋ฅผ ๋น„๋””์˜ค์ดฌ์˜ํ•˜๋Š”๊ฒƒ์— ๋Œ€ํ•ด ๋ง์ด์ฃ .
11:09
Three of the key people in this project,
247
669260
2000
์ด ํ”„๋กœ์ ํŠธ์—๋Š” ์„ธ๋ช…์˜ ์ค‘์š”ํ•œ ์‚ฌ๋žŒ์ด ์žˆ์Šต๋‹ˆ๋‹ค.
11:11
Philip DeCamp, Rony Kubat and Brandon Roy are pictured here.
248
671260
3000
ํ•„๋ฆฝ ํ‹ฐ์ผํ”„, ๋กœ๋‹ˆ ์ฟ ๋ฐ”ํŠธ ์™€ ๋ธŒ๋žœ๋“  ๋กœ์ด์˜ ์‚ฌ์ง„์ด ์—ฌ๊ธฐ ์žˆ์Šต๋‹ˆ๋‹ค.
11:14
Philip has been a close collaborator
249
674260
2000
ํ•„๋ฆฝ์€ ์—ฌ๋Ÿฌ๋ถ„์ด ๋ณด์‹œ๋Š” ๋ชจ๋“  ์‹œ๊ฐํ™”์˜
11:16
on all the visualizations you're seeing.
250
676260
2000
์นœ๋ฐ€ํ•œ ํ•ฉ์ž‘์ž์ž…๋‹ˆ๋‹ค.
11:18
And Michael Fleischman
251
678260
3000
๋งˆ์ดํด ํ”Œ๋ ˆ์ด์‰ฌ๋ฉ˜์€
11:21
was another Ph.D. student in my lab
252
681260
2000
์ €์˜ ์—ฐ๊ตฌ์‹ค์˜ ๋‹ค๋ฅธ ๋ฐ•์‚ฌ๊ณผ์ • ํ•™์ƒ์ด์˜€๋Š”๋ฐ
11:23
who worked with me on this home video analysis,
253
683260
3000
๊ทธ๋Š” ์ €์™€ ํ•จ๊ป˜ ์ด ๊ฐ€์ • ๋น„๋””์˜ค ๋ถ„์„์ž‘์—…์„ ํ–ˆ๊ณ 
11:26
and he made the following observation:
254
686260
3000
๊ทธ๋Š” ๋‹ค์Œ์˜ ๊ด€์ฐฐ์„ ํ–ˆ์Šต๋‹ˆ๋‹ค:
11:29
that "just the way that we're analyzing
255
689260
2000
์šฐ๋ฆฌ๊ฐ€
11:31
how language connects to events
256
691260
3000
์–ธ์–ด๊ฐ€ ์–ด๋–ค์‹์œผ๋กœ ์–ธ์–ด์˜ ํ‰๋ฒ”ํ•œ ๊ธฐ๋ฐ˜์„ ์ œ๊ณตํ•˜๋Š”
11:34
which provide common ground for language,
257
694260
2000
์‚ฌ๊ฑด๋“ค์— ์—ฐ๊ฒฐ์„ ์‹œํ‚ค๋Š”์ง€ ๋ถ„์„ํ•˜๋Š” ๋ฐฉ๋ฒ•์€
11:36
that same idea we can take out of your home, Deb,
258
696260
4000
์šฐ๋ฆฌ๊ฐ€ ์—ฌ๋Ÿฌ๋ถ„์˜ ์ง‘, ๋Ž์„ ํƒํ•˜ํ” ๊ฒƒ๊ณผ ๊ฐ™์€ ์•„์ด๋””์–ด์ด๊ณ ,
11:40
and we can apply it to the world of public media."
259
700260
3000
๋˜ ์šฐ๋ฆฌ๋Š” ๊ฒƒ์„ ์„ธ๊ณ„์˜ ๊ณต์ค‘ ๋ฏธ๋””์–ด์— ์ ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค."
11:43
And so our effort took an unexpected turn.
260
703260
3000
๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ์˜ ๋…ธ๋ ฅ์€ ๊ธฐ๋Œ€ํ•˜์ง€ ์•Š์€ ์ „ํ™˜์„ ํ–ˆ์Šต๋‹ˆ๋‹ค.
11:46
Think of mass media
261
706260
2000
๋งค์Šค ๋ฏธ๋””์–ด๋ฅผ ์ƒ๊ฐํ•ด ๋ณด์„ธ์š”
11:48
as providing common ground
262
708260
2000
ํ‰๋ฒ”ํ•œ ๊ธฐ๋ฐ˜์„ ์ œ๊ณตํ•˜๋Š”๊ฒƒ ๊ฐ™๊ณ 
11:50
and you have the recipe
263
710260
2000
์ด ์•„์ด๋””์–ด๋ฅผ ์ „ํ˜€ ์ƒˆ๋กœ์šด ์žฅ์†Œ๋กœ
11:52
for taking this idea to a whole new place.
264
712260
3000
์˜ฎ๊ธธ ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ์žฌ๋ฃŒ๋ฅผ ์—ฌ๋Ÿฌ๋ถ„์€ ๊ฐ€์ง€๊ณ  ๊ณ„์‹ญ๋‹ˆ๋‹ค.
11:55
We've started analyzing television content
265
715260
3000
์šฐ๋ฆฌ๋Š” ๋˜‘ ๊ฐ™์€ ์›๋ฆฌ๋ฅผ ์ด์šฉํ•˜์—ฌ
11:58
using the same principles --
266
718260
2000
ํ…”๋ ˆ๋น„์ ผ์˜ ๋‚ด์šฉ์„ ๋ถ„์„ํ•˜๊ธฐ ์‹œ์ž‘ํ–ˆ์Šต๋‹ˆ๋‹ค
12:00
analyzing event structure of a TV signal --
267
720260
3000
์‡ผ์˜ ์—ํ”ผ์†Œ๋“œ๋“ค๊ณผ
12:03
episodes of shows,
268
723260
2000
๊ด‘๊ณ ์™€
12:05
commercials,
269
725260
2000
์‚ฌ๊ฑด์˜ ๊ตฌ์กฐ๋ฅผ ๋งŒ๋“œ๋Š” ๋ชจ๋“  ์š”์†Œ๋“ค์„
12:07
all of the components that make up the event structure.
270
727260
3000
ํ‹ฐ๋น„ ์‹œ๊ทธ๋„์˜ ์‚ฌ๊ฑด๊ตฌ์กฐ๋ฅผ ๋ถ„์„ํ•˜๋Š” ๊ฒƒ์ด์ง€์š”.
12:10
And we're now, with satellite dishes, pulling and analyzing
271
730260
3000
์šฐ๋ฆฌ๋Š” ์ด์ œ ์ธ๊ณต์œ„์„ฑ ์ ‘์‹œ๋ฅผ ๊ฐ€์ง€๊ณ , ๋Œ์–ด๋‹น๊ธฐ๊ณ  ๋ถ„์„ํ•˜์—ฌ
12:13
a good part of all the TV being watched in the United States.
272
733260
3000
์‹œ์ฒญ์ด ๋˜๊ณ  ์žˆ๋Š” ๋งŽ์€ ๋ถ€๋ถ„์˜ ํ…”๋ ˆ๋น„์ ผ์„ ๋Œ์–ด ๋‹น๊ฒจ์„œ ๋ถ„์„ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
12:16
And you don't have to now go and instrument living rooms with microphones
273
736260
3000
๊ทธ๋ž˜์„œ ์—ฌ๋Ÿฌ๋ถ„์€ ์ด์ œ ์‚ฌ๋žŒ๋“ค์˜ ๋Œ€ํ™”๋ฅผ ๋“ฃ๊ธฐ ์œ„ํ•ด
12:19
to get people's conversations,
274
739260
2000
๋งˆ์ดํฌ์™€ ์žฅ๋น„๋ฅผ ๊ฐ€์ง€๊ณ  ๊ฑฐ์‹ค๋กœ ๊ฐ€์‹ค ํ•„์š”๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค.
12:21
you just tune into publicly available social media feeds.
275
741260
3000
์—ฌ๋Ÿฌ๋ถ„์€ ๋‹จ์ง€ ๊ณต์ ์œผ๋กœ ์ด์šฉ๊ฐ€๋Šฅํ•œ ์†Œ์…œ ๋ฏธ๋””์–ด ํ”ผ๋“œ์— ์ฑ„๋„์„ ๋งž์ถ”๋ฉด ๋ฉ๋‹ˆ๋‹ค.
12:24
So we're pulling in
276
744260
2000
๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ๋Š” ํ•œ๋‹ฌ์—
12:26
about three billion comments a month,
277
746260
2000
3 ์กฐ์˜ ๋…ผํ‰์„ ๋Œ์–ด๋“ค์ด๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
12:28
and then the magic happens.
278
748260
2000
๊ทธ ๋‹ค์Œ์—๋Š” ๋งˆ์ˆ ์ด ๋ฒŒ์–ด์ง‘๋‹ˆ๋‹ค.
12:30
You have the event structure,
279
750260
2000
์—ฌ๋Ÿฌ๋ถ„์€ ์ด๋ฒคํŠธ์˜ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง€๊ฒŒ ๋˜๋Š”๋ฐ
12:32
the common ground that the words are about,
280
752260
2000
๊ทธ๊ฒƒ์€ ๊ทธ ๋‹จ์–ด์— ๊ด€ํ•œ
12:34
coming out of the television feeds;
281
754260
3000
ํ…”๋ ˆ๋น„์ ผ ํ”ผ๋“œ์—์„œ ๋‚˜์˜ค๋Š” ํ‰๋ฒ”ํ•œ ๊ธฐ๋ฐ˜์—์„œ ๋‚˜์˜ค๋Š” ๊ฒƒ์ด์ฃ ;
12:37
you've got the conversations
282
757260
2000
์—ฌ๋Ÿฌ๋ถ„์€ ๊ทธ ์ฃผ์ œ๋“ค์— ๊ด€ํ•œ
12:39
that are about those topics;
283
759260
2000
๋Œ€ํ™”๋ฅผ ๋Œ€ํ•˜๊ฒŒ ๋˜์ฃ ;
12:41
and through semantic analysis --
284
761260
3000
๋˜ ์ƒํ™ฉ ๋ถ„์„์„ ํ†ตํ•ด์„œ
12:44
and this is actually real data you're looking at
285
764260
2000
์ด๊ฒƒ์€ ์‹ค์ œ๋กœ ์šฐ๋ฆฌ์˜ ๋ฐ์ดํƒ€ ํ”„๋กœ์„ธ์‹ฑ์—์„œ
12:46
from our data processing --
286
766260
2000
์—ฌ๋Ÿฌ๋ถ„์ด ๋ณด๊ณ  ๊ณ„์‹œ๋Š” ๊ฑด๋ฐ์š”,
12:48
each yellow line is showing a link being made
287
768260
3000
๊ฐ ๋…ธ๋ž€ ์„ ์€ ์•ผ์ƒ์—์„œ์˜ ๋…ผํ‰๊ณผ
12:51
between a comment in the wild
288
771260
3000
ํ…”๋ ˆ๋น„์ ผ์˜ ์‹œ๊ทธ๋„์—์„œ ๋‚˜์˜ค๋Š”
12:54
and a piece of event structure coming out of the television signal.
289
774260
3000
์ด๋ฒคํŠธ ๊ตฌ์กฐ์˜ ์กฐ๊ฐ์‚ฌ์ด์—์„œ ๋งŒ๋“ค์–ด์ง€๋Š” ์„ ์„ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
12:57
And the same idea now
290
777260
2000
๊ทธ๋ž˜์„œ ์ด์ œ ๋ฐ”๋กœ ๊ทธ ๋˜‘๊ฐ™์€ ์•„์ด๋””์–ด๊ฐ€
12:59
can be built up.
291
779260
2000
์„ธ์›Œ์งˆ ์ˆ˜ ์žˆ์ง€์š”.
13:01
And we get this wordscape,
292
781260
2000
๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ๋Š” ์ด ๋‹จ์–ดํ’๊ฒฝ์„ ์–ป๊ฒŒ ๋˜๋Š”๋ฐ,
13:03
except now words are not assembled in my living room.
293
783260
3000
์ด์ œ ๋‹จ์–ด๋“ค์ด ์ €์˜ ๊ฑฐ์‹ค์—์„œ ์กฐํ•ฉ๋˜์ง€ ์•Š๋Š”๋‹ค๋Š” ์‚ฌ์‹ค๋งŒ ๋‹ค๋ฅด์ฃ .
13:06
Instead, the context, the common ground activities,
294
786260
4000
๋Œ€์‹ , ๊ทธ ์ƒํ™ฉ๊ณผ, ๊ทธ ํ‰๋ฒ”ํ•œ ๊ธฐ๋ฐ˜์˜ ํ™œ๋™๋“ค์€
13:10
are the content on television that's driving the conversations.
295
790260
3000
๊ทธ ๋Œ€ํ™”๋ฅผ ์ด๋Œ์–ด๊ฐ€๋Š” ํ…”๋ ˆ๋น„์ ผ์˜ ๋‚ด์šฉ์ž…๋‹ˆ๋‹ค.
13:13
And what we're seeing here, these skyscrapers now,
296
793260
3000
๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ๊ฐ€ ์—ฌ๊ธฐ์„œ ๋ณด๋Š”๊ฒƒ์ธ, ์ด ์ดˆ๊ณ ์ธต ๋นŒ๋”ฉ์€
13:16
are commentary
297
796260
2000
ํ…”๋ ˆ๋น„์ ผ์˜ ๋‚ด์šฉ์— ์—ฐ๊ฒฐ๋œ
13:18
that are linked to content on television.
298
798260
2000
๋…ผํ‰์ž…๋‹ˆ๋‹ค.
13:20
Same concept,
299
800260
2000
๊ฐ™์€ ๋‚ด์šฉ์ด์ง€๋งŒ,
13:22
but looking at communication dynamics
300
802260
2000
๋งค์šฐ๋‹ค๋ฅธ ์˜์—ญ์—์„œ
13:24
in a very different sphere.
301
804260
2000
์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜์˜ ์—ญ๋™์„ฑ์„ ๋ณด๊ณ  ์žˆ๋Š”๊ฒƒ์ด์ง€์š”.
13:26
And so fundamentally, rather than, for example,
302
806260
2000
๋˜ํ•œ ๊ธฐ๋ณธ์ ์œผ๋กœ,
13:28
measuring content based on how many people are watching,
303
808260
3000
์–ผ๋งˆ๋‚˜ ๋งŽ์€ ์‚ฌ๋žŒ๋“ค์ด ๋ณด๊ณ ์žˆ๋Š”์ง€๋ฅผ ๋‚ด์šฉ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์ธก์ •ํ•˜๋Š” ๊ฒƒ๋ณด๋‹ค๋Š”
13:31
this gives us the basic data
304
811260
2000
์ด๊ฒƒ์€ ๋‚ด์šฉ์˜ ์ ‘์ด‰์˜ ์ž์‚ฐ์„ ์กฐ์‚ฌํ•˜๊ธฐ ์œ„ํ•œ
13:33
for looking at engagement properties of content.
305
813260
3000
๊ธฐ๋ณธ์ ์ธ ๋ฐ์ดํƒ€๋ฅผ ์šฐ๋ฆฌ์—๊ฒŒ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.
13:36
And just like we can look at feedback cycles
306
816260
3000
๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ๊ฐ€ ๊ฐ€์กฑ๋‚ด์˜ ํ”ผ๋“œ๋ฐฑ์˜ ์ˆœํ™˜๊ณผ
13:39
and dynamics in a family,
307
819260
3000
๋™๋ ฅ์„ ์กฐ์‚ฌํ•  ์ˆ˜ ์žˆ๋Š”๊ฒƒ์ฒ˜๋Ÿผ
13:42
we can now open up the same concepts
308
822260
3000
์šฐ๋ฆฌ๋Š” ์ด์ œ ๊ทธ ๋˜‘๊ฐ™์€ ๊ฐœ๋…์„ ๊ฐœ๋ด‰ํ•˜์—ฌ
13:45
and look at much larger groups of people.
309
825260
3000
๋ณด๋‹ค ๋” ํฐ ๊ทœ๋ชจ์˜ ์ง‘๋‹จ์„ ์กฐ์‚ฌํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
13:48
This is a subset of data from our database --
310
828260
3000
์ด๊ฒƒ์€ ์šฐ๋ฆฌ์˜ ๋‹จ์ง€ ์ˆ˜๋ฐฑ๋งŒ์ค‘์—์„œ ์˜ค์‹ญ๋งŒ์˜ ๋ฐ์ดํƒ€๋ฒ ์ด์Šค์—์„œ
13:51
just 50,000 out of several million --
311
831260
3000
๋‚˜์˜จ ๋ถ€๋ถ„์ง‘ํ•ฉ์˜ ํ•˜๋‚˜์ธ๋ฐ--
13:54
and the social graph that connects them
312
834260
2000
๊ทธ ์†Œ์…œ ๊ทธ๋ž˜ํ”„๋Š” ๊ณต์ ์œผ๋กœ ์ด์šฉ๊ฐ€๋Šฅํ•œ ์ •๋ณด๋“ค์„ ํ†ตํ•ด์„œ
13:56
through publicly available sources.
313
836260
3000
๊ทธ๊ฒƒ๋“ค์„ ์—ฐ๊ฒฐ์‹œํ‚ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
13:59
And if you put them on one plain,
314
839260
2000
๋งŒ์•ฝ ์—ฌ๋Ÿฌ๋ถ„์ด ๊ทธ ๋ฐ์ดํƒ€๋ฅผ ํ•˜๋‚˜์˜ ์ถ•์— ์˜ฌ๋ฆฌ๋ฉด,
14:01
a second plain is where the content lives.
315
841260
3000
๋‘๋ฒˆ์งธ ์ถ•์ด ๊ทธ ๋‚ด์šฉ์ด ์‚ด์•„๋‚˜๋Š” ๊ณณ์ด์ฃ .
14:04
So we have the programs
316
844260
3000
๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ๋Š” ๊ทธ ํ”„๋กœ๊ทธ๋žจ๊ณผ
14:07
and the sporting events
317
847260
2000
์Šคํฌ์ธ  ์ด๋ฒคํŠธ์™€
14:09
and the commercials,
318
849260
2000
๊ด‘๊ณ ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์–ด์„œ,
14:11
and all of the link structures that tie them together
319
851260
2000
๊ทธ๊ฒƒ๋“ค์„ ํ•จ๊ป˜ ์—ฐ๊ฒฐ์‹œํ‚ค๋Š” ๊ทธ ๋งํฌ ์กฐ์ง์ด
14:13
make a content graph.
320
853260
2000
๋‚ด์šฉ์˜ ๊ทธ๋ž˜ํ”„๋ฅผ ๋งŒ๋“ญ๋‹ˆ๋‹ค.
14:15
And then the important third dimension.
321
855260
4000
๊ทธ ๋‹ค์Œ์—๋Š” ์ค‘์š”ํ•œ ์„ธ๋ฒˆ์งธ์˜ ์˜์—ญ์ž…๋‹ˆ๋‹ค.
14:19
Each of the links that you're seeing rendered here
322
859260
2000
์—ฌ๋Ÿฌ๋ถ„์ด ์—ฌ๊ธฐ์„œ ๋ณด๊ณ  ๊ณ„์‹œ๋Š” ๋งํฌ๋“ค์˜ ๊ฐ๊ฐ์€
14:21
is an actual connection made
323
861260
2000
๋ˆ„๊ตฐ๊ฐ€ ๋งํ•œ ๋ฌด์—‡์ธ๊ฐ€์™€
14:23
between something someone said
324
863260
3000
๋ถ€๋ถ„์ ์ธ ๋‚ด์šฉ์„
14:26
and a piece of content.
325
866260
2000
์‹ค์ œ๋กœ ์—ฐ๊ฒฐํ•ด์„œ ๋งŒ๋“  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
14:28
And there are, again, now tens of millions of these links
326
868260
3000
๋˜ ๊ฑฐ๊ธฐ์—๋Š” ์šฐ๋ฆฌ์—๊ฒŒ ๊ทธ ์†Œ์…œ ๊ทธ๋ž˜ํ”„์˜ ์—ฐ๊ฒฐ์ ์ธ ํ‹ฐ์Šˆ์™€
14:31
that give us the connective tissue of social graphs
327
871260
3000
๊ทธ๊ฒƒ๋“ค์ด ์–ด๋–ป๊ฒŒ ๊ทธ ๋‚ด์šฉ๊ณผ ์—ฐ๊ฒฐํ•˜๋Š”์ง€๋ฅผ ์ œ๊ณตํ•˜๋Š”
14:34
and how they relate to content.
328
874260
3000
์ด๋Ÿฌํ•œ ์ˆ˜์ฒœ๋งŒ ์ˆ˜๋ฐฑ๋งŒ์˜ ๋งํฌ๋“ค์ด ์žˆ์Šต๋‹ˆ๋‹ค.
14:37
And we can now start to probe the structure
329
877260
2000
๋˜ ์šฐ๋ฆฌ๋Š” ์ด์ œ ์ƒํ˜ธ๊ตํ™˜ํ•˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ
14:39
in interesting ways.
330
879260
2000
๊ทธ ์กฐ์ง์„ ํƒ์‚ฌํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
14:41
So if we, for example, trace the path
331
881260
3000
๊ทธ๋ž˜์„œ ๋งŒ์•ฝ ์šฐ๋ฆฌ๊ฐ€, ์˜ˆ๋ฅผ ๋“ค์–ด,
14:44
of one piece of content
332
884260
2000
๋ˆ„๊ตฐ๊ฐ€๊ฐ€ ๊ทธ๊ฒƒ์— ๊ด€ํ•œ ๋…ผํ‰์„ ํ•˜๊ธฐ ์œ„ํ•ด ์›€์ง์ด๋Š”
14:46
that drives someone to comment on it,
333
886260
2000
๋ถ€๋ถ„์ ์ธ ๋‚ด์šฉ์˜ ๊ธธ์˜ ํ”์ ์„ ์ซ’์•„๊ฐ€๋ฉด,
14:48
and then we follow where that comment goes,
334
888260
3000
๊ทธ ๋‹ค์Œ์€ ์šฐ๋ฆฌ๊ฐ€ ๊ทธ ๋…ผํ‰์ด ์˜ฎ๊ฒจ๊ฐ€๋Š” ๊ณณ์œผ๋กœ ๋”ฐ๋ผ๊ฐ€๊ณ ,
14:51
and then look at the entire social graph that becomes activated
335
891260
3000
๊ทธ๋‹ค์Œ์—๋Š” ์ „์ฒด์˜ ์†Œ์…œ ๊ทธ๋ž˜ํ”„๊ฐ€ ์ƒํ–‰๋˜๋Š”๊ฒƒ์„ ์กฐ์‚ฌํ•˜๊ณ 
14:54
and then trace back to see the relationship
336
894260
3000
๊ทธ๋‹ค์Œ์—๋Š” ๊ทธ ์†Œ์…œ ๊ทธ๋ž˜ํ”„์™€ ๋‚ด์šฉ์‚ฌ์ด์˜
14:57
between that social graph and content,
337
897260
2000
๋งค์šฐ ํฅ๋ฏธ๋กœ์šด ๊ตฌ์กฐ๊ฐ€ ๋˜๋Š”๊ฒƒ์ด ๊ฐ€์‹œํ™”๋˜๋Š”๊ฒƒ์˜
14:59
a very interesting structure becomes visible.
338
899260
2000
ํ”์ ์„ ๋‹ค์‹œ ๋˜์งš์–ด ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
15:01
We call this a co-viewing clique,
339
901260
2000
์šฐ๋ฆฌ๋Š” ์ด๊ฒƒ์„ ๋™์‹œ๊ฐ์ƒ์˜ ์ž„์ƒ์ด๋ผ๊ณ ,
15:03
a virtual living room if you will.
340
903260
3000
์›ํ•˜์‹ ๋‹ค๋ฉด ๊ฐ€์ƒ์˜ ๊ฑฐ์‹ค์ด๋ผ๊ณ  ๋ถ€๋ฆ…๋‹ˆ๋‹ค.
15:06
And there are fascinating dynamics at play.
341
906260
2000
์—ฌ๊ธฐ์—” ๋†€์ด์— ๋งคํ˜น์ ์ธ ์—ญํ•™์ด ์žˆ์Šต๋‹ˆ๋‹ค.
15:08
It's not one way.
342
908260
2000
๊ทธ๊ฒƒ์€ ํ•œ๊ฐ€์ง€ ๋ฐฉ๋ฒ•์ด ์•„๋‹™๋‹ˆ๋‹ค.
15:10
A piece of content, an event, causes someone to talk.
343
910260
3000
๋ถ€๋ถ„์ ์ธ ๋‚ด์šฉ์ธ ์ด๋ฒคํŠธ๊ฐ€ ๋ˆ„๊ตฐ๊ฐ€๊ฐ€ ๋ง์„ ํ•˜๋„๋ก ํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค.
15:13
They talk to other people.
344
913260
2000
๊ทธ๋“ค์€ ๋‹ค๋ฅธ์‚ฌ๋žŒ๋“ค์—๊ฒŒ ์ด์•ผ๊ธฐ ํ•ฉ๋‹ˆ๋‹ค.
15:15
That drives tune-in behavior back into mass media,
345
915260
3000
๊ทธ๊ฒƒ์ด ๋งค์Šค ๋ฏธ๋””์–ด๋กœ ๋Œ์•„๊ฐ€๊ฒŒ ํ•˜๋Š” ํ–‰๋™์— ์ดˆ์ ์„ ๋งž์ถ”๋„๋ก ์›€์ง์ด๊ณ 
15:18
and you have these cycles
346
918260
2000
์—ฌ๋Ÿฌ๋ถ„์€ ๊ทธ ์ „์ฒด์ ์ธ ํ–‰๋™์„ ์›€์ง์ด๋Š”
15:20
that drive the overall behavior.
347
920260
2000
์ด๋Ÿฌํ•œ ์ˆœํ™˜์„ ํ•˜๋„๋ก ์›€์ง์ž…๋‹ˆ๋‹ค.
15:22
Another example -- very different --
348
922260
2000
์•„์ฃผ ๋‹ค๋ฅธ ํ•œ๊ฐ€์ง€ ๋‹ค๋ฅธ ์˜ˆ๋Š”
15:24
another actual person in our database --
349
924260
3000
์šฐ๋ฆฌ์˜ ๋ฐ์ดํƒ€๋ฒ ์ด์Šค์— ์žˆ๋Š” ์‹ค์ œ์ธ๋ฌผ์ธ๋ฐ
15:27
and we're finding at least hundreds, if not thousands, of these.
350
927260
3000
์šฐ๋ฆฌ๋Š” ์ด๋Ÿฐ๊ฒƒ์„ ์ˆ˜์ฒœ๋งŒ์ด ์•„๋‹ˆ๋ผ๋ฉด ์ ์–ด๋„ ์ˆ˜๋ฐฑ๋งŒ์„ ๋ฐœ๊ฒฌํ•ฉ๋‹ˆ๋‹ค.
15:30
We've given this person a name.
351
930260
2000
์šฐ๋ฆฌ๋Š” ์ด ์‚ฌ๋žŒ์—๊ฒŒ ์ด๋ฆ„์„ ์ฃผ์—ˆ์Šต๋‹ˆ๋‹ค.
15:32
This is a pro-amateur, or pro-am media critic
352
932260
3000
์ด ์‚ฌ๋žŒ์€ ํ”„๋กœ ์•„๋งˆ์ถ”์–ด์ด๊ฑฐ๋‚˜ ๋ฏธ๋””์•„ ๋น„ํ‰๊ฐ€์ธ๋ฐ
15:35
who has this high fan-out rate.
353
935260
3000
๊ทธ๋Š” ๋†’์€ ์ „๊ฐœ์˜ ๋น„์œจ์„ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
15:38
So a lot of people are following this person -- very influential --
354
938260
3000
๊ทธ๋ž˜์„œ ๋งŽ์€ ์‚ฌ๋žŒ๋“ค์ด ์ด์‚ฌ๋žŒ์„ ๋”ฐ๋ฅด๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค--์•„์ฃผ ์˜ํ–ฅ๋ ฅ์žˆ๊ณ --
15:41
and they have a propensity to talk about what's on TV.
355
941260
2000
๊ทธ๋“ค์€ ํ‹ฐ๋น„์— ๋ฌด์—‡์ด ๋ฐฉ์˜๋˜๊ณ  ์žˆ๋Š”์ง€์— ๊ด€ํ•ด ์ด์•ผ๊ธฐ๋ฅผ ํ•˜๋Š” ๊ฒฝํ–ฅ์ด ์žˆ์Šต๋‹ˆ๋‹ค.
15:43
So this person is a key link
356
943260
3000
๊ทธ๋ž˜์„œ ์ด์‚ฌ๋žŒ์€ ๋งค์Šค ๋ฏธ๋””์•„์™€ ์†Œ์…œ๋ฏธ๋””์•„๋ฅผ ์—ฐ๊ฒฐํ•˜๋Š”
15:46
in connecting mass media and social media together.
357
946260
3000
์ค‘์š”ํ•œ ์—ฐ๊ฒฐ๊ณ ๋ฆฌ์ž…๋‹ˆ๋‹ค.
15:49
One last example from this data:
358
949260
3000
๋งˆ์ง€๋ง‰ ํ•œ๊ฐ€์ง€ ์˜ˆ๋Š” ์ด ๋ฐ์ดํƒ€์—์„œ ๋‚˜์˜จ๊ฒƒ์ž…๋‹ˆ๋‹ค:
15:52
Sometimes it's actually a piece of content that is special.
359
952260
3000
๋•Œ๋•Œ๋กœ๋Š” ๊ทธ๊ฒƒ์€ ์‹ค์ œ๋กœ ๋ถ€๋ถ„์ ์ธ ๋‚ด์šฉ์ด ํŠน๋ณ„ํ•ฉ๋‹ˆ๋‹ค.
15:55
So if we go and look at this piece of content,
360
955260
4000
๊ทธ๋ž˜์„œ ๋งŒ์•ฝ ์šฐ๋ฆฌ๊ฐ€ ๊ฐ€์„œ ์ด ๋ถ€๋ถ„์ ์ธ ๋‚ด์šฉ์„,
15:59
President Obama's State of the Union address
361
959260
3000
๋‹จ์ง€ ๋ช‡์ฃผ์ „์— ์žˆ์—ˆ๋˜
16:02
from just a few weeks ago,
362
962260
2000
์˜ค๋ฐ”๋งˆ ๋Œ€ํ†ต๋ น์˜ ํ†ต์ผ ๊ตญ๊ฐ€์˜ ์—ฐ์„ค์„ ๋ณด๊ณ 
16:04
and look at what we find in this same data set,
363
964260
3000
์ด ๊ฐ™์€ ๋ฐ์ดํƒ€ ์„ธํŠธ์—์„œ
16:07
at the same scale,
364
967260
3000
๊ฐ™์€ ๊ทœ๋ชจ๋กœ ์šฐ๋ฆฌ๊ฐ€ ์ฐพ๋Š”๊ฒƒ์„ ์กฐ์‚ฌํ•œ๋‹ค๋ฉด,
16:10
the engagement properties of this piece of content
365
970260
2000
์ด ๋ถ€๋ถ„์ ์ธ ๋‚ด์šฉ์˜ ์ฐธ์—ฌ ์ž์‚ฐ์€
16:12
are truly remarkable.
366
972260
2000
์ •๋ง ๊ด„๋ชฉํ• ๋งŒํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
16:14
A nation exploding in conversation
367
974260
2000
์ „์ฒด ๊ตญ๊ฐ€๊ฐ€ ๋Œ€ํ™”ํ•˜๋Š”๊ฒƒ์— ํญ๋ฐœํ•ฉ๋‹ˆ๋‹ค
16:16
in real time
368
976260
2000
์‹ค์ œ์‹œ๊ฐ„์—์„œ
16:18
in response to what's on the broadcast.
369
978260
3000
๋ฌด์—‡์ด ๋ฐฉ์˜๋˜๊ณ ์žˆ๋Š”์ง€์— ๋Œ€ํ•œ ๋ฐ˜์‘์— ๋Œ€ํ•ด์„œ์š”.
16:21
And of course, through all of these lines
370
981260
2000
๊ทธ๋ฆฌ๊ณ  ๋ฌผ๋ก , ์ด ๋ชจ๋“  ๋Œ€์‚ฌ๋“ค์„ ํ†ตํ•ด์„œ
16:23
are flowing unstructured language.
371
983260
2000
์กฐ์ง๋˜์ง€ ์•Š์€ ์–ธ์–ด๊ฐ€ ํ˜๋Ÿฌ๋“ค๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
16:25
We can X-ray
372
985260
2000
์šฐ๋ฆฌ๋Š” ์—‘์Šค๋ ˆ์ด๋ฅผ ์ฐ์–ด์„œ
16:27
and get a real-time pulse of a nation,
373
987260
2000
์ „์ œ ๊ตญ๊ฐ€์˜ ์‹ค์ œ์‹œ๊ฐ„์˜ ์ง„๋งฅ์„
16:29
real-time sense
374
989260
2000
์‹ค์ œ์‹œ๊ฐ„์˜ ๊ฐ๊ฐ์œผ๋กœ
16:31
of the social reactions in the different circuits in the social graph
375
991260
3000
๋‚ด์šฉ์— ์˜ํ•ด ์ž‘๋™๋˜๊ณ  ์žˆ๋Š”์ค‘์ธ
16:34
being activated by content.
376
994260
3000
์†Œ์…œ ๊ทธ๋ž˜ํ”„์—์žˆ๋Š” ๋‹ค๋ฅธ ์ˆœํ™˜๋‚ด์˜ ์†Œ์…œ ๋ฐ˜์ž‘์šฉ์„ ๋ง์ด์ฃ .
16:37
So, to summarize, the idea is this:
377
997260
3000
๊ทธ๋ž˜์„œ, ์š”์•ฝํ•˜์ž๋ฉด, ์•„์ด๋””์–ด๋Š” ์ด๋ ‡์Šต๋‹ˆ๋‹ค:
16:40
As our world becomes increasingly instrumented
378
1000260
3000
์šฐ๋ฆฌ์˜ ์„ธ๊ณ„๊ฐ€ ์ ์ฐจ์ ์œผ๋กœ ๋„๊ตฌํ™”๋˜๊ณ 
16:43
and we have the capabilities
379
1003260
2000
์šฐ๋ฆฌ์—๊ฒŒ๋Š”
16:45
to collect and connect the dots
380
1005260
2000
์‚ฌ๋žŒ๋“ค์ด ๋งํ•˜๋Š” ๊ฒƒ๊ณผ
16:47
between what people are saying
381
1007260
2000
๊ทธ๋“ค์ด ๊ทธ๋ ‡๊ฒŒ ๋งํ•˜๋Š” ์ƒํ™ฉ๋“ค ์‚ฌ์ด์˜
16:49
and the context they're saying it in,
382
1009260
2000
์ง€์ ๋“ค์„ ์ˆ˜์ง‘ํ•˜๊ณ  ์—ฐ๊ฒฐํ•˜๋Š” ๋Šฅ๋ ฅ์ด ์žˆ๊ณ ,
16:51
what's emerging is an ability
383
1011260
2000
๋“œ๋Ÿฌ๋‚˜๊ณ  ์žˆ๋Š”๊ฒƒ์€
16:53
to see new social structures and dynamics
384
1013260
3000
๊ทธ ์ด์ „์—๋Š” ๋ณด์—ฌ์ง€์ง€ ์•Š์•˜๋˜
16:56
that have previously not been seen.
385
1016260
2000
์ƒˆ๋กœ์šด ์‚ฌํšŒ ๊ตฌ์กฐ์™€ ๋™๋ ฅ์„ ๋ณด๋Š” ๋Šฅ๋ ฅ์ž…๋‹ˆ๋‹ค.
16:58
It's like building a microscope or telescope
386
1018260
2000
๊ทธ๊ฒƒ์€ ๋งˆ์น˜ ํ˜„๋ฏธ๊ฒฝ์ด๋‚˜ ๋ง์›๊ฒฝ๊ณผ
17:00
and revealing new structures
387
1020260
2000
์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ ์ฃผ๋ณ€์˜ ์šฐ๋ฆฌ์ž์‹ ์˜ ํ–‰๋™์— ๊ด€ํ•ด์„œ
17:02
about our own behavior around communication.
388
1022260
3000
์ƒˆ๋กœ์šด ๊ตฌ์กฐ๋ฅผ ๋“œ๋ž˜๋‚ด์–ด ๊ตฌ์ถ•ํ•˜๊ณ  ์žˆ๋Š”๊ฒƒ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค.
17:05
And I think the implications here are profound,
389
1025260
3000
๊ทธ๋ž˜์„œ ์ œ ์ƒ๊ฐ์— ์ด๊ฒƒ์ด ํ•จ์ถ•ํ•˜๋Š” ๋ฐ”๋Š” ์‹ฌ์˜คํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค,
17:08
whether it's for science,
390
1028260
2000
๊ทธ๊ฒŒ ๊ณผํ•™์— ๊ด€ํ•œ๊ฒƒ์ด๋“ ์ง€,
17:10
for commerce, for government,
391
1030260
2000
์ƒ์—…์„ ์œ„ํ•œ๊ฒƒ์ด๋“ ์ง€, ์ •๋ถ€๋ฅผ ์œ„ํ•œ ๊ฒƒ์ด๋“ ์ง€,
17:12
or perhaps most of all,
392
1032260
2000
๋˜๋Š” ์•„๋งˆ ๊ฐ€์žฅ ์ค‘์š”ํ•˜๊ฒŒ,
17:14
for us as individuals.
393
1034260
3000
์šฐ๋ฆฌ ๊ฐœ์ธ๋“ค์„ ์œ„ํ•œ๊ฒƒ์ด๋“ ์ง€์š”.
17:17
And so just to return to my son,
394
1037260
3000
๊ทธ๋ž˜์„œ ์ œ ์•„๋“ค์—๊ฒŒ๋กœ ๋‹ค์‹œ ๋Œ์•„๊ฐ€์ž๋ฉด,
17:20
when I was preparing this talk, he was looking over my shoulder,
395
1040260
3000
์ œ๊ฐ€ ์ด ์ด์•ผ๊ธฐ๋ฅผ ์ค€๋น„ํ•˜๊ณ  ์žˆ์—ˆ์„ ๋•Œ, ๊ทธ๋Š” ์ œ ์–ด๊นจ๋„ˆ๋จธ๋ฅผ ๋ณด๊ณ  ์žˆ์—ˆ๊ณ ,
17:23
and I showed him the clips I was going to show to you today,
396
1043260
2000
์ €๋Š” ์˜ค๋Š˜ ์—ฌ๋Ÿฌ๋ถ„๋“ค์—๊ฒŒ ๋ณด์—ฌ์ฃผ๋ ค๋Š” ์˜์ƒ์„ ๋ณด์—ฌ์ฃผ์—ˆ๊ณ ,
17:25
and I asked him for permission -- granted.
397
1045260
3000
์ œ๊ฐ€ ๊ทธ์—๊ฒŒ ํ—ˆ๋ฝ์„ ๊ตฌํ–ˆ์Šต๋‹ˆ๋‹ค--์Šน๋‚™์„ ํ•˜๋”๊ตฐ์š”.
17:28
And then I went on to reflect,
398
1048260
2000
๊ทธ๋ฆฌ๊ณ  ๋‚œ ๋‹ค์Œ์— ํšŒ์ƒ์„ ํ–ˆ์Šต๋‹ˆ๋‹ค,
17:30
"Isn't it amazing,
399
1050260
3000
"๊ทธ๊ฑด ์ •๋ง ๊ต‰์žฅํ•˜์ง€ ์•Š์•„,
17:33
this entire database, all these recordings,
400
1053260
3000
์ด ๋ฐ์ดํƒ€๋ฒ ์ด์Šค ์ „์ฒด, ์ด ๋ชจ๋“  ๋ ˆ์ฝ”๋”ฉ๋“ค,
17:36
I'm going to hand off to you and to your sister" --
401
1056260
2000
๋‚˜๋Š” ๋„ˆ์™€ ๋„ˆ์˜ ์—ฌ๋™์ƒ์—๊ฒŒ ๊ฑด๋„ค์ค„ ์ž‘์ •์ด์•ผ,"
17:38
who arrived two years later --
402
1058260
3000
๊ทธ์• ๋Š” 2 ๋…„ํ›„์— ํƒœ์–ด๋‚ฌ์ง€์š”.
17:41
"and you guys are going to be able to go back and re-experience moments
403
1061260
3000
"๊ทธ๋ž˜์„œ ๋„ˆํฌ๋“ค์€ ๊ณผ๊ฑฐ๋กœ ๋Œ์•„๊ฐ€์„œ ๋„ˆํฌ๋“ค์ด ์ƒ๋ฌผํ•™์ ์ธ ๊ธฐ์–ต์œผ๋กœ๋Š”
17:44
that you could never, with your biological memory,
404
1064260
3000
์ ˆ๋Œ€๋กœ ๊ธฐ์–ตํ•˜์ง€ ๋ชปํ•  ์ˆœ๊ฐ„๋“ค์„ ์žฌ ๊ฒฝํ—˜ํ•  ์ˆ˜ ์žˆ์„๊ฑฐ์•ผ,
17:47
possibly remember the way you can now?"
405
1067260
2000
๋„ค๊ฐ€ ์•„๋งˆ๋„ ์ง€๊ธˆ ๊ธฐ์–ตํ•  ์ˆ˜ ์žˆ๋Š” ๊ทธ๋Ÿฐ ์‹์œผ๋กœ ๋ง์ด์•ผ."
17:49
And he was quiet for a moment.
406
1069260
2000
๊ทธ์• ๋Š” ์ž ๊น ์กฐ์šฉํžˆ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
17:51
And I thought, "What am I thinking?
407
1071260
2000
๊ทธ๋ž˜์„œ ์ œ๊ฐ€ ์ƒ๊ฐํ•˜๊ธฐ๋ฅผ, "๋‚ด๊ฐ€ ๋ฌด์Šจ ์ƒ๊ฐ์„ ํ•˜๊ณ  ์žˆ๋Š”๊ฑฐ์•ผ?
17:53
He's five years old. He's not going to understand this."
408
1073260
2000
๊ทธ์• ๋Š” ๋‹ค์„ฏ์‚ด์ด์•ผ. ์ด๊ฒƒ์„ ์ดํ•ดํ•  ์ˆ˜ ์—†์„๊ฑฐ์•ผ."
17:55
And just as I was having that thought, he looked up at me and said,
409
1075260
3000
์ œ๊ฐ€ ๋ฐ”๋กœ ๊ทธ ์ƒ๊ฐ์„ ํ•˜๊ณ  ์žˆ์„๋•Œ, ๊ทธ์• ๊ฐ€ ์ €๋ฅผ ๋ฐ”๋ผ๋ณด๋ฉฐ ๋งํ•˜๊ธฐ๋ฅผ,
17:58
"So that when I grow up,
410
1078260
2000
"๊ทธ๋ž˜์„œ ๊ทธ๊ฒŒ ๋‚ด๊ฐ€ ์ž๋ผ๋‚ฌ์„๋•Œ,
18:00
I can show this to my kids?"
411
1080260
2000
์ด๊ฒƒ์„ ๋‚ด ์•„์ด๋“ค์—๊ฒŒ ๋ณด์—ฌ์ค„ ์ˆ˜ ์žˆ์–ด์š”?
18:02
And I thought, "Wow, this is powerful stuff."
412
1082260
3000
๊ทธ๋ž˜์„œ ์ œ๊ฐ€ ์ƒ๊ฐํ•˜๊ธฐ๋ฅผ, "์™€, ์ด๊ฒƒ์€ ์ •๋ง ํŒŒ์›Œ๊ฐ€ ์„ผ๊ฑฐ๋„ค."
18:05
So I want to leave you
413
1085260
2000
๊ทธ๋ž˜์„œ ์ €๋Š” ์—ฌ๋Ÿฌ๋ถ„๋“ค์—๊ฒŒ
18:07
with one last memorable moment
414
1087260
2000
์ €ํฌ ๊ฐ€์กฑ์˜ ๊ฐ€์žฅ ๊ธฐ์–ตํ•  ๋งŒํ•œ
18:09
from our family.
415
1089260
3000
๋งˆ์ง€๋ง‰ ์ˆœ๊ฐ„์„ ๋‚จ๊ฒจ๋“œ๋ฆฌ๋ ค ํ•ฉ๋‹ˆ๋‹ค.
18:12
This is the first time our son
416
1092260
2000
์ด๊ฒƒ์€ ์šฐ๋ฆฌ์˜ ์•„๋“ค์ด
18:14
took more than two steps at once --
417
1094260
2000
ํ•œ๋ฒˆ์— ๋‘๋ฐœ์ž๊ตญ์„ ๋–ผ๋Š”๊ฒƒ์„
18:16
captured on film.
418
1096260
2000
๊ฒƒ์„ ๋‹ด์€ ์˜์ƒ์ž…๋‹ˆ๋‹ค.
18:18
And I really want you to focus on something
419
1098260
3000
๋˜ ์ €๋Š” ์ •๋ง ์ œ๊ฐ€ ์—ฌ๋Ÿฌ๋ถ„์„ ๋ณด์‹ฌ์— ๋”ฐ๋ผ
18:21
as I take you through.
420
1101260
2000
์—ฌ๋Ÿฌ๋ถ„๊ป˜์„œ ๋ญ”๊ฐ€์— ์ง‘์ค‘ํ•˜๊ธฐ๋ฅผ ๋ฐ”๋ž๋‹ˆ๋‹ค.
18:23
It's a cluttered environment; it's natural life.
421
1103260
2000
๊ทธ๊ฒƒ์€ ๋’ค์ฃฝ๋ฐ•์ฃฝ์ด ๋œ ํ™˜๊ฒฝ์ž…๋‹ˆ๋‹ค; ๊ทธ๊ฒƒ์€ ์ž์—ฐ์ ์ธ ์ธ์ƒ์ž…๋‹ˆ๋‹ค.
18:25
My mother's in the kitchen, cooking,
422
1105260
2000
์ €์˜ ์–ด๋จธ๋‹ˆ๊ฐ€ ์š”๋ฆฌ๋ฅผ ํ•˜๋ฉฐ ๋ถ€์—Œ์—,
18:27
and, of all places, in the hallway,
423
1107260
2000
๋ณต๋„์—, ๋‹ค๋ฅธ ๋ชจ๋“  ์žฅ์†Œ๋“ค์— ์žˆ๋Š”๋ฐ
18:29
I realize he's about to do it, about to take more than two steps.
424
1109260
3000
์ œ๊ฐ€ ์ œ ์•„๋“ค์ด ๊ทธ๊ฒƒ์„ ํ•  ๊ฑฐ๋ผ๋Š” ๊ฒƒ์„, ๋‘๋ฐœ์ž๊ตญ ์ด์ƒ์„ ๋–ผ์–ด๋†“์„๊ฑฐ๋ผ๋Š” ๊ฒƒ์„ ๋ฐœ๊ฒฌํ•ฉ๋‹ˆ๋‹ค.
18:32
And so you hear me encouraging him,
425
1112260
2000
์—ฌ๋Ÿฌ๋ถ„์€ ์ œ๊ฐ€ ์ œ ์•„๋“ค์„ ๊ฒฉ๋ คํ•˜๋Š” ๊ฒƒ์„ ๋“ค์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค
18:34
realizing what's happening,
426
1114260
2000
๋ฌด์—‡์ด ์ผ์–ด๋‚˜๋Š”์ง€๋ฅผ ๊นจ๋‹ฌ์œผ๋ฉด์„œ์š”
18:36
and then the magic happens.
427
1116260
2000
๊ทธ ๋‹ค์Œ์— ๊ทธ ๋งˆ์ˆ ์ด ๋ฒŒ์–ด์ง‘๋‹ˆ๋‹ค.
18:38
Listen very carefully.
428
1118260
2000
์ฃผ์˜๊นŠ๊ฒŒ ๋“ค์œผ์„ธ์š”.
18:40
About three steps in,
429
1120260
2000
์•ฝ ์„ธ๋ฐœ์ž๊ตญ์„ ๋–ผ์—ˆ์„๋•Œ,
18:42
he realizes something magic is happening,
430
1122260
2000
์ œ ์•„๋“ค์€ ๋ญ”๊ฐ€ ๋งˆ์ˆ ์ ์ธ ๊ฒƒ์ด ์ผ์–ด๋‚œ๋‹ค๋Š” ๊ฒƒ์„ ๊นจ๋‹ซ์Šต๋‹ˆ๋‹ค.
18:44
and the most amazing feedback loop of all kicks in,
431
1124260
3000
๋˜ ๋ชจ๋“ ๊ฒƒ์— ๋ฐ•์ฐจ๋ฅผ ๊ฐ€ํ•˜๋Š” ๊ฐ€์žฅ ํ›Œ๋ฅญํ•œ ํ”ผ๋“œ๋ฐฑ์—
18:47
and he takes a breath in,
432
1127260
2000
์ œ ์•„๋“ค์€ ์ˆจ์„ ๋“ค์ด์‰ฌ๊ณ ๋Š”
18:49
and he whispers "wow"
433
1129260
2000
๊ทธ๋Š” "์™€" ๋ผ๊ณ  ์†์‚ญ์ด๊ณ 
18:51
and instinctively I echo back the same.
434
1131260
4000
๋ณธ๋Šฅ์ ์œผ๋กœ ์ €๋Š” ๋˜‘๊ฐ™์€๊ฒƒ์„ ๋ฐ˜ํ–ฅ์‹œํ‚ต๋‹ˆ๋‹ค.
18:56
And so let's fly back in time
435
1136260
3000
๊ทธ๋Ÿฌ๋‹ˆ ๊ทธ ๊ธฐ์–ตํ•  ๋งŒํ•œ ์ˆœ๊ฐ„์—
18:59
to that memorable moment.
436
1139260
2000
์ œ์‹œ๊ฐ„์œผ๋กœ ๋‚ ์•„๊ฐ‘์‹œ๋‹ค.
19:05
(Video) DR: Hey.
437
1145260
2000
(๋น„๋””์˜ค) ๋””์•Œ: ์—ฌ๊ธฐ๋ด
19:07
Come here.
438
1147260
2000
์ด๋ฆฌ์™€
19:09
Can you do it?
439
1149260
3000
๊ทธ๋ ‡๊ฒŒ ํ•  ์ˆ˜ ์žˆ๊ฒ ์–ด?
19:13
Oh, boy.
440
1153260
2000
์˜ค, ๋ณด์ด.
19:15
Can you do it?
441
1155260
3000
๊ทธ๋ ‡๊ฒŒ ํ•  ์ˆ˜ ์žˆ๊ฒ ์–ด?
19:18
Baby: Yeah.
442
1158260
2000
์•„๊ธฐ: ์˜ˆ
19:20
DR: Ma, he's walking.
443
1160260
3000
๋กœ์ด: ์—„๋งˆ, ์ œ ์•„๋“ค์ด ๊ฑธ์–ด์š”.
19:24
(Laughter)
444
1164260
2000
(์›ƒ์Œ)
19:26
(Applause)
445
1166260
2000
(๋ฐ•์ˆ˜)
19:28
DR: Thank you.
446
1168260
2000
๋กœ์ด: ๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
19:30
(Applause)
447
1170260
15000
(๋ฐ•์ˆ˜)

Original video on YouTube.com
์ด ์›น์‚ฌ์ดํŠธ ์ •๋ณด

์ด ์‚ฌ์ดํŠธ๋Š” ์˜์–ด ํ•™์Šต์— ์œ ์šฉํ•œ YouTube ๋™์˜์ƒ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ์„ ์ƒ๋‹˜๋“ค์ด ๊ฐ€๋ฅด์น˜๋Š” ์˜์–ด ์ˆ˜์—…์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋™์˜์ƒ ํŽ˜์ด์ง€์— ํ‘œ์‹œ๋˜๋Š” ์˜์–ด ์ž๋ง‰์„ ๋”๋ธ” ํด๋ฆญํ•˜๋ฉด ๊ทธ๊ณณ์—์„œ ๋™์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค. ๋น„๋””์˜ค ์žฌ์ƒ์— ๋งž์ถฐ ์ž๋ง‰์ด ์Šคํฌ๋กค๋ฉ๋‹ˆ๋‹ค. ์˜๊ฒฌ์ด๋‚˜ ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด ๋ฌธ์˜ ์–‘์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์˜ํ•˜์‹ญ์‹œ์˜ค.

https://forms.gle/WvT1wiN1qDtmnspy7