Ray Kurzweil: Get ready for hybrid thinking

531,025 views ・ 2014-06-02

TED


Please double-click on the English subtitles below to play the video.

Prevodilac: Miloš Milosavljević Lektor: Mile Živković
00:12
Let me tell you a story.
0
12988
2316
Da vam ispričam jednu priču.
00:15
It goes back 200 million years.
1
15304
1799
Ona nas vraća 200 miliona godina unazad.
00:17
It's a story of the neocortex,
2
17103
1984
To je priča o neokorteksu,
00:19
which means "new rind."
3
19087
1974
što znači "nova kora".
00:21
So in these early mammals,
4
21061
2431
Kod ranih sisara,
00:23
because only mammals have a neocortex,
5
23492
2055
jer jedino sisari imaju neokorteks,
00:25
rodent-like creatures.
6
25547
1664
stvorenja nalik glodarima,
00:27
It was the size of a postage stamp and just as thin,
7
27211
3579
bio je veličine poštanske markice i isto tako tanak.
00:30
and was a thin covering around
8
30790
1439
Bio je tanki omotač
00:32
their walnut-sized brain,
9
32229
2264
oko njihovog mozga veličine oraha,
00:34
but it was capable of a new type of thinking.
10
34493
3701
ali je bio sposoban za novu vrstu razmišljanja.
Za razliku od utvrđenih ponašanja
00:38
Rather than the fixed behaviors
11
38194
1567
00:39
that non-mammalian animals have,
12
39761
1992
koje imaju ne-sisari,
00:41
it could invent new behaviors.
13
41753
2692
on je mogao da smisli nova ponašanja.
00:44
So a mouse is escaping a predator,
14
44445
2553
Na primer, miš beži od mesoždera,
00:46
its path is blocked,
15
46998
1540
put mu je blokiran,
00:48
it'll try to invent a new solution.
16
48538
2129
pokušaće da smisli novo rešenje.
00:50
That may work, it may not,
17
50667
1266
To može da uspe ili ne,
00:51
but if it does, it will remember that
18
51933
1910
ali ako uspe, on će to zapamtiti
00:53
and have a new behavior,
19
53843
1292
i imaće novo ponašanje
i to može da se proširi kao virus
00:55
and that can actually spread virally
20
55135
1457
00:56
through the rest of the community.
21
56592
2195
na ostatak zajednice.
00:58
Another mouse watching this could say,
22
58787
1609
Drugi miš koji to gleda može da kaže:
01:00
"Hey, that was pretty clever, going around that rock,"
23
60396
2704
"Bilo je pametno to što je zaobišao taj kamen",
01:03
and it could adopt a new behavior as well.
24
63100
3725
i takođe usvoji novo ponašanje.
01:06
Non-mammalian animals
25
66825
1717
Životinje koje nisu sisari
01:08
couldn't do any of those things.
26
68542
1713
ne mogu ništa od toga.
One imaju utvrđena ponašanja.
01:10
They had fixed behaviors.
27
70255
1215
01:11
Now they could learn a new behavior
28
71470
1331
Mogu da nauče novo ponašanje,
01:12
but not in the course of one lifetime.
29
72801
2576
ali ne u toku jednog života.
01:15
In the course of maybe a thousand lifetimes,
30
75377
1767
U toku možda hiljadu života
01:17
it could evolve a new fixed behavior.
31
77144
3330
mogu da razviju novo utvrđeno ponašanje.
01:20
That was perfectly okay 200 million years ago.
32
80474
3377
To je bilo potpuno u redu pre 200 miliona godina.
01:23
The environment changed very slowly.
33
83851
1981
Okruženje se menjalo veoma sporo.
01:25
It could take 10,000 years for there to be
34
85832
1554
Moglo je da prođe 10.000 godina
01:27
a significant environmental change,
35
87386
2092
dok se ne desi značajna promena okruženja,
01:29
and during that period of time
36
89478
1382
i u toku tog perioda
01:30
it would evolve a new behavior.
37
90860
2929
razvili bi novo ponašanje.
01:33
Now that went along fine,
38
93789
1521
To je prošlo dobro,
01:35
but then something happened.
39
95310
1704
ali onda se nešto desilo.
01:37
Sixty-five million years ago,
40
97014
2246
Pre 65 miliona godina,
01:39
there was a sudden, violent change to the environment.
41
99260
2615
desila se iznenadna, žestoka promena okruženja.
01:41
We call it the Cretaceous extinction event.
42
101875
3505
Nazivamo je K-T izumiranje.
01:45
That's when the dinosaurs went extinct,
43
105380
2293
Tada su izumrli dinosaurusi,
01:47
that's when 75 percent of the
44
107673
3449
izumrlo je 75 posto
01:51
animal and plant species went extinct,
45
111122
2746
životinjskih i biljnih vrsta
01:53
and that's when mammals
46
113868
1745
i sisari su zauzeli
01:55
overtook their ecological niche,
47
115613
2152
svoje ekološko stanište.
01:57
and to anthropomorphize, biological evolution said,
48
117765
3654
I da antropomorfizujemo, biološka evolucija kaže:
02:01
"Hmm, this neocortex is pretty good stuff,"
49
121419
2025
"Hm. Taj neokorteks je dobra stvar",
02:03
and it began to grow it.
50
123444
1793
i počinje da ga razvija.
02:05
And mammals got bigger,
51
125237
1342
Sisari su postali veći,
02:06
their brains got bigger at an even faster pace,
52
126579
2915
njihov mozak je postao veći još bržim tempom,
02:09
and the neocortex got bigger even faster than that
53
129494
3807
i neokorteks se povećao još brže
02:13
and developed these distinctive ridges and folds
54
133301
2929
i razvio ove prepoznatljive brazde i prevoje,
02:16
basically to increase its surface area.
55
136230
2881
uglavnom da bi povećao svoju površinu.
02:19
If you took the human neocortex
56
139111
1819
Kad biste uzeli ljudski neokorteks
02:20
and stretched it out,
57
140930
1301
i rastegli ga,
02:22
it's about the size of a table napkin,
58
142231
1713
bio bi veličine stone salvete,
02:23
and it's still a thin structure.
59
143944
1306
i dalje tanke strukture.
02:25
It's about the thickness of a table napkin.
60
145250
1980
Otprilike je debljine salvete.
02:27
But it has so many convolutions and ridges
61
147230
2497
Ali ima toliko mnogo vijuga i brazdi
02:29
it's now 80 percent of our brain,
62
149727
3075
da sada predstavlja 80% našeg mozga,
02:32
and that's where we do our thinking,
63
152802
2461
i tu obavljamo razmišljanje,
02:35
and it's the great sublimator.
64
155263
1761
i veliki je sublimator.
Još uvek imamo onaj stari mozak
02:37
We still have that old brain
65
157024
1114
02:38
that provides our basic drives and motivations,
66
158138
2764
koji obezbeđuje osnovne nagone i motivacije,
02:40
but I may have a drive for conquest,
67
160902
2716
ali ja mogu imati nagon za osvajanjem
02:43
and that'll be sublimated by the neocortex
68
163618
2715
i to će neokorteks sublimirati
02:46
into writing a poem or inventing an app
69
166333
2909
u pisanje pesme ili programiranje aplikacije
02:49
or giving a TED Talk,
70
169242
1509
ili držanje TED govora,
02:50
and it's really the neocortex that's where
71
170751
3622
i u stvari, neokorteks je mesto
gde se obavlja radnja.
02:54
the action is.
72
174373
1968
02:56
Fifty years ago, I wrote a paper
73
176341
1717
Pre 50 godina, napisao sam rad
02:58
describing how I thought the brain worked,
74
178058
1918
o tome kako sam mislio da mozak radi
02:59
and I described it as a series of modules.
75
179976
3199
i opisao sam ga kao niz modula.
03:03
Each module could do things with a pattern.
76
183175
2128
Svaki modul može da radi stvari pomoću obrasca.
03:05
It could learn a pattern. It could remember a pattern.
77
185303
2746
Može da nauči obrazac, da ga zapamti
03:08
It could implement a pattern.
78
188049
1407
i primeni.
03:09
And these modules were organized in hierarchies,
79
189456
2679
Ti moduli su organizovani u hijerarhije
03:12
and we created that hierarchy with our own thinking.
80
192135
2954
i mi kreiramo tu hijerarhiju svojim razmišljanjem.
03:15
And there was actually very little to go on
81
195089
3333
Nije moglo mnogo toga da se uradi
03:18
50 years ago.
82
198422
1562
pre 50 godina.
03:19
It led me to meet President Johnson.
83
199984
2115
To me je odvelo do predsednika Džonsona.
03:22
I've been thinking about this for 50 years,
84
202099
2173
Razmišljao sam o tome 50 godina
03:24
and a year and a half ago I came out with the book
85
204272
2828
i pre godinu i po dana, izdao sam knjigu
03:27
"How To Create A Mind,"
86
207100
1265
"Kako kreirati um",
03:28
which has the same thesis,
87
208365
1613
koja je imala istu tezu,
03:29
but now there's a plethora of evidence.
88
209978
2812
ali je sada bilo pregršt dokaza.
03:32
The amount of data we're getting about the brain
89
212790
1814
Količina podataka koje dobijamo o mozgu
03:34
from neuroscience is doubling every year.
90
214604
2203
od neuronauke udvostručuje se svake godine.
03:36
Spatial resolution of brainscanning of all types
91
216807
2654
Sve vrste prostorne rezolucije skeniranog mozga
03:39
is doubling every year.
92
219461
2285
udvostručuju se svake godine.
03:41
We can now see inside a living brain
93
221746
1717
Sada možemo videti
03:43
and see individual interneural connections
94
223463
2870
unutrašnjost živog mozga
i pojedinačne međuneuronske veze
03:46
connecting in real time, firing in real time.
95
226333
2703
kako se povezuju u realnom vremenu.
03:49
We can see your brain create your thoughts.
96
229036
2419
Možemo videti vaš mozak
kako stvara vaše misli.
03:51
We can see your thoughts create your brain,
97
231455
1575
Možemo videti kako vaše misli
stvaraju vaš mozak,
03:53
which is really key to how it works.
98
233030
1999
što je ključ toga kako on funkcioniše.
03:55
So let me describe briefly how it works.
99
235029
2219
Da objasnim kratko kako funkcioniše.
03:57
I've actually counted these modules.
100
237248
2275
U stvari sam izbrojao ove module.
03:59
We have about 300 million of them,
101
239523
2046
Imamo ih oko 300 miliona
04:01
and we create them in these hierarchies.
102
241569
2229
i stvaramo ih u ovim hijerarhijama.
04:03
I'll give you a simple example.
103
243798
2082
Daću vam prost primer.
04:05
I've got a bunch of modules
104
245880
2805
Imam gomilu modula
04:08
that can recognize the crossbar to a capital A,
105
248685
3403
koji mogu da prepoznaju
poprečnu crtu na velikom A,
04:12
and that's all they care about.
106
252088
1914
i to je sve što ih zanima.
04:14
A beautiful song can play,
107
254002
1578
Može da svira lepa pesma,
04:15
a pretty girl could walk by,
108
255580
1434
da prođe lepa devojka,
04:17
they don't care, but they see a crossbar to a capital A,
109
257014
2846
njih je baš briga,
ali kad vide poprečnu crtu na A,
04:19
they get very excited and they say "crossbar,"
110
259860
3021
uzbude se i kažu: "Crta",
04:22
and they put out a high probability
111
262881
2112
i objavljuju visoku verovatnoću
04:24
on their output axon.
112
264993
1634
na svom izlaznom aksonu.
04:26
That goes to the next level,
113
266627
1333
To se uzdiže na sledeći nivo,
04:27
and these layers are organized in conceptual levels.
114
267960
2750
i ovi slojevi se organizuju u pojmovne nivoe.
04:30
Each is more abstract than the next one,
115
270710
1856
Svaki je apstraktniji od sledećeg,
04:32
so the next one might say "capital A."
116
272566
2418
tako da sledeći može da kaže: "Veliko A".
04:34
That goes up to a higher level that might say "Apple."
117
274984
2891
To ide na sledeći nivo,
koji može da kaže: "Jabuka"
04:37
Information flows down also.
118
277875
2167
Informacija takođe teče nadole.
04:40
If the apple recognizer has seen A-P-P-L,
119
280042
2936
Ako je prepoznavač jabuke
video J-A-B-U-K,
04:42
it'll think to itself, "Hmm, I think an E is probably likely,"
120
282978
3219
pomisliće:
"Hm, mislim da je A verovatno",
04:46
and it'll send a signal down to all the E recognizers
121
286197
2564
i poslaće signal dole
04:48
saying, "Be on the lookout for an E,
122
288761
1619
do prepoznavača slova A,
i reći će: "Pazite na A,
04:50
I think one might be coming."
123
290380
1556
mislim da će možda biti jedno".
04:51
The E recognizers will lower their threshold
124
291936
2843
Prepoznavači slova A
će sniziti kriterijum i videti
04:54
and they see some sloppy thing, could be an E.
125
294779
1945
neku brljotinu koja bi mogla da bude A.
04:56
Ordinarily you wouldn't think so,
126
296724
1490
Obično ne biste to pomislili,
04:58
but we're expecting an E, it's good enough,
127
298214
2009
ali očekujemo A, dovoljno je slično
05:00
and yeah, I've seen an E, and then apple says,
128
300223
1817
i da, video sam A
i onda jabuka kaže:
05:02
"Yeah, I've seen an Apple."
129
302040
1728
"Da, video sam Jabuku".
05:03
Go up another five levels,
130
303768
1746
Idite nagore još pet nivoa
05:05
and you're now at a pretty high level
131
305514
1353
i sada ste na prilično visokom nivou
05:06
of this hierarchy,
132
306867
1569
ove hijerarhije,
05:08
and stretch down into the different senses,
133
308436
2353
i raširite nadole u različitim smerovima
05:10
and you may have a module that sees a certain fabric,
134
310789
2655
i možda ćete imati modul koji vidi određenu tkaninu,
05:13
hears a certain voice quality, smells a certain perfume,
135
313444
2844
čuje određenu zvučnu osobinu
oseća određeni parfem i reći će:
05:16
and will say, "My wife has entered the room."
136
316288
2513
"Moja žena je upravo ušla u sobu".
05:18
Go up another 10 levels, and now you're at
137
318801
1895
Idite nagore još 10 nivoa i sada ste na vrlo visokom nivou.
05:20
a very high level.
138
320696
1160
05:21
You're probably in the frontal cortex,
139
321856
1937
Verovatno ste u frontalnom korteksu,
05:23
and you'll have modules that say, "That was ironic.
140
323793
3767
i imaćete module koji kažu:
"To je bilo ironično.
05:27
That's funny. She's pretty."
141
327560
2370
To je smešno. Ona je lepa."
05:29
You might think that those are more sophisticated,
142
329930
2105
Možda ćete pomisliti da su ovi sofisticiraniji,
05:32
but actually what's more complicated
143
332035
1506
ali u stvari su komplikovaniji
05:33
is the hierarchy beneath them.
144
333541
2669
od hijerarhije ispod njih.
05:36
There was a 16-year-old girl, she had brain surgery,
145
336210
2620
Jedna 16-godišnja devojčica
je imala operaciju na mozgu,
05:38
and she was conscious because the surgeons
146
338830
2051
i bila je svesna jer su hirurzi
05:40
wanted to talk to her.
147
340881
1537
želeli da razgovaraju s njom.
05:42
You can do that because there's no pain receptors
148
342418
1822
To može da se uradi jer nema
05:44
in the brain.
149
344240
1038
receptora za bol u mozgu.
05:45
And whenever they stimulated particular,
150
345278
1800
Kad god bi stimulisali određene
05:47
very small points on her neocortex,
151
347078
2463
vrlo male tačke u njenom neokorteksu
05:49
shown here in red, she would laugh.
152
349541
2665
koje su prikazane crvenom bojom,
ona bi se smejala.
05:52
So at first they thought they were triggering
153
352206
1440
Prvo su pomislili da pokreću
05:53
some kind of laugh reflex,
154
353646
1720
neku vrstu refleksa za smeh,
05:55
but no, they quickly realized they had found
155
355366
2519
ali ne, ubrzo su shvatili da su pronašli
05:57
the points in her neocortex that detect humor,
156
357885
3044
tačke u njenom neokorteksu
koje detektuju humor,
06:00
and she just found everything hilarious
157
360929
1969
i njoj je prosto sve bilo smešno
06:02
whenever they stimulated these points.
158
362898
2437
kad god su stimulisali ove tačke.
06:05
"You guys are so funny just standing around,"
159
365335
1925
"Tako ste smešni kako stojite okolo",
06:07
was the typical comment,
160
367260
1738
bio je uobičajen komentar,
06:08
and they weren't funny,
161
368998
2302
a oni nisu bili smešni,
06:11
not while doing surgery.
162
371300
3247
ne dok su operisali.
06:14
So how are we doing today?
163
374547
4830
Kako nam ide danas?
06:19
Well, computers are actually beginning to master
164
379377
3054
Kompjuteri počinju da ovladavaju
06:22
human language with techniques
165
382431
2001
ljudskim jezikom pomoću tehnika
06:24
that are similar to the neocortex.
166
384432
2867
koje su slične neokorteksu.
06:27
I actually described the algorithm,
167
387299
1514
Opisao sam algoritam
06:28
which is similar to something called
168
388813
2054
sličan nečemu što se zove
06:30
a hierarchical hidden Markov model,
169
390867
2233
hijerarhijski skriveni Markovljev model,
06:33
something I've worked on since the '90s.
170
393100
3241
nečemu na čemu sam radio od '90-ih.
06:36
"Jeopardy" is a very broad natural language game,
171
396341
3238
"Jeopardy" je veoma raširena prirodna jezička igra,
06:39
and Watson got a higher score
172
399579
1892
i Votson je postigao veći skor
06:41
than the best two players combined.
173
401471
2000
nego najbolja dva igrača zajedno.
06:43
It got this query correct:
174
403471
2499
Pogodio je pitanje za ovaj odgovor:
06:45
"A long, tiresome speech
175
405970
2085
"Dugačak, dosadan govor
06:48
delivered by a frothy pie topping,"
176
408055
2152
penastog kolača od belanaca",
06:50
and it quickly responded, "What is a meringue harangue?"
177
410207
2796
i brzo je odgovorio:
"Šta je brbljanje puslice?"
06:53
And Jennings and the other guy didn't get that.
178
413003
2635
Dženings i drugi igrač nisu to pogodili.
06:55
It's a pretty sophisticated example of
179
415638
1926
To je prilično sofisticiran primer
06:57
computers actually understanding human language,
180
417564
1914
kako kompjuteri u stvari
razumeju ljudski jezik,
06:59
and it actually got its knowledge by reading
181
419478
1652
i on je u stvari
07:01
Wikipedia and several other encyclopedias.
182
421130
3785
stekao znanje čitajući Vikipediju i nekoliko drugih enciklopedija.
07:04
Five to 10 years from now,
183
424915
2133
Pet do deset godina od sada
07:07
search engines will actually be based on
184
427048
2184
pretraživači će biti zasnovani
07:09
not just looking for combinations of words and links
185
429232
2794
ne samo na traženju kombinacija reči i linkova
07:12
but actually understanding,
186
432026
1914
već na razumevanju,
07:13
reading for understanding the billions of pages
187
433940
2411
čitanju da bi razumeli
milijarde stranica
07:16
on the web and in books.
188
436351
2733
na internetu i u knjigama.
07:19
So you'll be walking along, and Google will pop up
189
439084
2616
Tako da, dok hodate, iskočiće vam Gugl
07:21
and say, "You know, Mary, you expressed concern
190
441700
3081
i reći: "Znaš Meri, pre mesec dana rekla si mi da si zabrinuta
07:24
to me a month ago that your glutathione supplement
191
444781
3019
zbog toga što tvoj glutationski dodatak
07:27
wasn't getting past the blood-brain barrier.
192
447800
2231
nije prošao kroz krvno-moždanu barijeru.
07:30
Well, new research just came out 13 seconds ago
193
450031
2593
Pre 13 sekundi se pojavilo
novo istraživanje
07:32
that shows a whole new approach to that
194
452624
1711
koje ima potpuno novi pristup tome
07:34
and a new way to take glutathione.
195
454335
1993
i novi način za uzimanje glutationa.
07:36
Let me summarize it for you."
196
456328
2562
Da ti sumiram to."
07:38
Twenty years from now, we'll have nanobots,
197
458890
3684
Za dvadeset godina,
imaćemo nano-robote
07:42
because another exponential trend
198
462574
1627
jer još jedan rastući trend je
07:44
is the shrinking of technology.
199
464201
1615
minijaturizacija tehnologije.
07:45
They'll go into our brain
200
465816
2370
Oni će ulaziti u naš mozak
07:48
through the capillaries
201
468186
1703
kroz kapilare
07:49
and basically connect our neocortex
202
469889
2477
i u osnovi povezivati naš neokorteks
07:52
to a synthetic neocortex in the cloud
203
472366
3185
sa sintetičkim neokorteksom u "oblaku",
07:55
providing an extension of our neocortex.
204
475551
3591
obezbeđujući time produžetak
našeg neokorteksa.
Danas,
07:59
Now today, I mean,
205
479142
1578
08:00
you have a computer in your phone,
206
480720
1530
imate kompjuter u vašem telefonu,
08:02
but if you need 10,000 computers for a few seconds
207
482250
2754
ali ako vam zatreba 10.000 kompjutera
za nekoliko sekundi
08:05
to do a complex search,
208
485004
1495
da biste uradili složenu pretragu,
08:06
you can access that for a second or two in the cloud.
209
486499
3396
možete pristupiti tome za 1-2 sekunde u "oblaku".
08:09
In the 2030s, if you need some extra neocortex,
210
489895
3095
U 2030-im, ako vam zatreba dodatni neokorteks,
08:12
you'll be able to connect to that in the cloud
211
492990
2273
moći ćete da se povežete sa njim u "oblaku"
08:15
directly from your brain.
212
495263
1648
direktno iz vašeg mozga.
08:16
So I'm walking along and I say,
213
496911
1543
Na primer, šetam se i kažem:
08:18
"Oh, there's Chris Anderson.
214
498454
1363
"Eno ga Kris Anderson.
08:19
He's coming my way.
215
499817
1525
Ide prema meni.
08:21
I'd better think of something clever to say.
216
501342
2335
Bolje da smislim nešto pametno što ću da kažem.
08:23
I've got three seconds.
217
503677
1524
Imam tri sekunde.
08:25
My 300 million modules in my neocortex
218
505201
3097
Mojih 300 miliona modula u neokorteksu
08:28
isn't going to cut it.
219
508298
1240
neće to uspeti.
08:29
I need a billion more."
220
509538
1246
Treba mi još milijardu."
08:30
I'll be able to access that in the cloud.
221
510784
3323
Moći ću da pristupim tome u "oblaku".
08:34
And our thinking, then, will be a hybrid
222
514107
2812
I onda će naše razmišljanje biti hibrid
08:36
of biological and non-biological thinking,
223
516919
3522
biološkog i nebiološkog razmišljanja,
08:40
but the non-biological portion
224
520441
1898
a nebiološki deo
08:42
is subject to my law of accelerating returns.
225
522339
2682
je podložan mom Zakonu o ponovnim ubrzanjima.
08:45
It will grow exponentially.
226
525021
2239
Povećavaće se eksponencijalno.
08:47
And remember what happens
227
527260
2016
Sećate se šta se desilo
08:49
the last time we expanded our neocortex?
228
529276
2645
poslednji put kad smo proširili naš neokorteks?
08:51
That was two million years ago
229
531921
1426
To je bilo pre dva miliona godina,
08:53
when we became humanoids
230
533347
1236
kad smo postali humanoidi
08:54
and developed these large foreheads.
231
534583
1594
i razvili ova visoka čela.
08:56
Other primates have a slanted brow.
232
536177
2583
Ostali primati imaju koso čelo.
08:58
They don't have the frontal cortex.
233
538760
1745
Oni nemaju frontalni korteks.
09:00
But the frontal cortex is not really qualitatively different.
234
540505
3685
Ali frontalni korteks nije kvalitativno drugačiji.
09:04
It's a quantitative expansion of neocortex,
235
544190
2743
On je kvantitativni produžetak neokorteksa,
09:06
but that additional quantity of thinking
236
546933
2703
ali ta dodatna količina razmišljanja
09:09
was the enabling factor for us to take
237
549636
1779
omogućila nam je da načinimo
09:11
a qualitative leap and invent language
238
551415
3346
kvalitativni skok i izmislimo jezik,
09:14
and art and science and technology
239
554761
1967
i umetnost, i nauku, i tehnologiju,
09:16
and TED conferences.
240
556728
1454
i TED konferencije.
09:18
No other species has done that.
241
558182
2131
Nijedna druga vrsta nije to uradila.
09:20
And so, over the next few decades,
242
560313
2075
I tokom sledećih nekoliko decenija,
09:22
we're going to do it again.
243
562388
1760
uradićemo to ponovo.
09:24
We're going to again expand our neocortex,
244
564148
2274
Proširićemo ponovo svoj neokorteks,
09:26
only this time we won't be limited
245
566422
1756
samo ovog puta nećemo biti ograničeni
09:28
by a fixed architecture of enclosure.
246
568178
4280
utvrđenom arhitekturom zatvaranja.
09:32
It'll be expanded without limit.
247
572458
3304
Proširivaće se bez ograničenja.
09:35
That additional quantity will again
248
575762
2243
Taj dodatni kvantitet će ponovo biti
09:38
be the enabling factor for another qualitative leap
249
578005
3005
faktor koji će omogućiti još jedan kvalitativni skok
09:41
in culture and technology.
250
581010
1635
u kulturi i tehnologiji.
09:42
Thank you very much.
251
582645
2054
Hvala vam mnogo.
09:44
(Applause)
252
584699
3086
(Aplauz)
About this website

This site will introduce you to YouTube videos that are useful for learning English. You will see English lessons taught by top-notch teachers from around the world. Double-click on the English subtitles displayed on each video page to play the video from there. The subtitles scroll in sync with the video playback. If you have any comments or requests, please contact us using this contact form.

https://forms.gle/WvT1wiN1qDtmnspy7