Ray Kurzweil: Get ready for hybrid thinking

534,016 views ・ 2014-06-02

TED


請雙擊下方英文字幕播放視頻。

譯者: FBC GLOBAL 審譯者: Cheng Zhang-Stoddard
00:12
Let me tell you a story.
0
12988
2316
首先,我想與大家分享一個故事。
00:15
It goes back 200 million years.
1
15304
1799
時鐘撥回到兩億年前,
00:17
It's a story of the neocortex,
2
17103
1984
我們的故事,
00:19
which means "new rind."
3
19087
1974
與新皮層(neocortex)有關。
00:21
So in these early mammals,
4
21061
2431
早期哺乳動物
00:23
because only mammals have a neocortex,
5
23492
2055
(實際上只有哺乳動物才有新皮層)
00:25
rodent-like creatures.
6
25547
1664
比如齧齒類動物,
00:27
It was the size of a postage stamp and just as thin,
7
27211
3579
擁有一種尺寸和厚度與郵票相當的新皮層,
00:30
and was a thin covering around
8
30790
1439
它像一層薄膜,
00:32
their walnut-sized brain,
9
32229
2264
包覆著這些動物核桃大小的大腦。
00:34
but it was capable of a new type of thinking.
10
34493
3701
新皮層的功能不可小覷, 它賦予動物新的思考能力。
00:38
Rather than the fixed behaviors
11
38194
1567
不像非哺乳類動物,
00:39
that non-mammalian animals have,
12
39761
1992
牠們的行為基本上固定不變,
00:41
it could invent new behaviors.
13
41753
2692
擁有新皮層的哺乳動物能發明新的行為。
00:44
So a mouse is escaping a predator,
14
44445
2553
比如,老鼠逃避天敵的追捕時,
00:46
its path is blocked,
15
46998
1540
一旦發現此路不通,
00:48
it'll try to invent a new solution.
16
48538
2129
牠會嘗試去找新的出路。
00:50
That may work, it may not,
17
50667
1266
最終可能逃之夭夭,也可能落入貓口,
00:51
but if it does, it will remember that
18
51933
1910
但僥倖成功時,牠會記取成功的經驗,
00:53
and have a new behavior,
19
53843
1292
最終形成一種新的行為。
00:55
and that can actually spread virally
20
55135
1457
值得一提的是,這種新近習得的行為,
00:56
through the rest of the community.
21
56592
2195
會迅速傳遍整個鼠群。
00:58
Another mouse watching this could say,
22
58787
1609
我們可以想像,一旁觀望的老鼠會說:
01:00
"Hey, that was pretty clever, going around that rock,"
23
60396
2704
“哇,真是急中生智,居然想到繞開石頭來逃生!”
01:03
and it could adopt a new behavior as well.
24
63100
3725
然後,輕而易舉也掌握了這種技能。
01:06
Non-mammalian animals
25
66825
1717
但是,非哺乳動物
01:08
couldn't do any of those things.
26
68542
1713
對此完全無能為力,
01:10
They had fixed behaviors.
27
70255
1215
牠們的行為一成不變。
01:11
Now they could learn a new behavior
28
71470
1331
準確地說,牠們也能習得新的行為,
01:12
but not in the course of one lifetime.
29
72801
2576
但不是在一朝一夕之間,
01:15
In the course of maybe a thousand lifetimes,
30
75377
1767
可能需要歷經一千個世代,
01:17
it could evolve a new fixed behavior.
31
77144
3330
整個種群才能形成一種新的固定行為。
01:20
That was perfectly okay 200 million years ago.
32
80474
3377
在兩億年前的蠻荒世界, 這種進化節奏並無大礙。
01:23
The environment changed very slowly.
33
83851
1981
那時,環境變遷步履蹣跚,
01:25
It could take 10,000 years for there to be
34
85832
1554
大約每一萬年,
01:27
a significant environmental change,
35
87386
2092
才發生一回滄海桑田的巨變,
01:29
and during that period of time
36
89478
1382
在這樣一個漫長的時間跨度裏,
01:30
it would evolve a new behavior.
37
90860
2929
動物才形成了一種新的行為。
01:33
Now that went along fine,
38
93789
1521
往後,一切安好。
01:35
but then something happened.
39
95310
1704
直到,禍從天降。
01:37
Sixty-five million years ago,
40
97014
2246
時間快進到6500萬年前,
01:39
there was a sudden, violent change to the environment.
41
99260
2615
地球遭遇一場突如其來的環境遽變,
01:41
We call it the Cretaceous extinction event.
42
101875
3505
後人稱之為“白堊紀物種大滅絕”。
01:45
That's when the dinosaurs went extinct,
43
105380
2293
恐龍遭受滅頂之災;
01:47
that's when 75 percent of the
44
107673
3449
75%的地球物種
01:51
animal and plant species went extinct,
45
111122
2746
走向滅絕;
01:53
and that's when mammals
46
113868
1745
而哺乳動物
01:55
overtook their ecological niche,
47
115613
2152
趁機佔領了其他物種的生存地盤。
01:57
and to anthropomorphize, biological evolution said,
48
117765
3654
我們可以假託這些哺乳動物的口吻, 來評論這一進化過程:
02:01
"Hmm, this neocortex is pretty good stuff,"
49
121419
2025
“唔,關鍵時候我們的新皮層真派上用場了。”
02:03
and it began to grow it.
50
123444
1793
此後,新皮層繼續發育。
02:05
And mammals got bigger,
51
125237
1342
哺乳動物個頭也日漸見長,
02:06
their brains got bigger at an even faster pace,
52
126579
2915
大腦容量迅速擴大,
02:09
and the neocortex got bigger even faster than that
53
129494
3807
其中新皮層的發育堪稱突飛猛進,
02:13
and developed these distinctive ridges and folds
54
133301
2929
已經逐步形成獨特的溝回和褶皺,
02:16
basically to increase its surface area.
55
136230
2881
這可以進一步增加其表面積。
02:19
If you took the human neocortex
56
139111
1819
人類的新皮層,
02:20
and stretched it out,
57
140930
1301
如果充分展開平鋪,
02:22
it's about the size of a table napkin,
58
142231
1713
尺寸可達一張餐巾大小。
02:23
and it's still a thin structure.
59
143944
1306
但它仍然保持了纖薄的結構,
02:25
It's about the thickness of a table napkin.
60
145250
1980
厚度也與餐巾不相上下。
02:27
But it has so many convolutions and ridges
61
147230
2497
外形曲折複雜,呈現千溝萬壑,
02:29
it's now 80 percent of our brain,
62
149727
3075
新皮層已佔據大腦體積的80%左右,
02:32
and that's where we do our thinking,
63
152802
2461
不僅肩負思考的重任,
02:35
and it's the great sublimator.
64
155263
1761
還約束和昇華個人的行為。
02:37
We still have that old brain
65
157024
1114
今天,我們的大腦
02:38
that provides our basic drives and motivations,
66
158138
2764
仍然製造原始的需求和動機。
02:40
but I may have a drive for conquest,
67
160902
2716
但是,對於我們內心狂野的征服欲望,
02:43
and that'll be sublimated by the neocortex
68
163618
2715
這個新皮層起著春風化雨、潤物無聲的作用,
02:46
into writing a poem or inventing an app
69
166333
2909
最終將這種欲望化作創造詩歌、開發APP、
02:49
or giving a TED Talk,
70
169242
1509
甚至是發表TED演講這樣的文明行為。
02:50
and it's really the neocortex that's where
71
170751
3622
對於這一切,
02:54
the action is.
72
174373
1968
新皮層功不可沒。
02:56
Fifty years ago, I wrote a paper
73
176341
1717
50年前,我完成了一篇論文,
02:58
describing how I thought the brain worked,
74
178058
1918
探究大腦的工作原理,
02:59
and I described it as a series of modules.
75
179976
3199
我認為大腦是一系列模塊的有機結合。
03:03
Each module could do things with a pattern.
76
183175
2128
每個模塊按照某種模式各司其職,
03:05
It could learn a pattern. It could remember a pattern.
77
185303
2746
但也可以學習、記憶新的模式,
03:08
It could implement a pattern.
78
188049
1407
並將模式付諸應用。
03:09
And these modules were organized in hierarchies,
79
189456
2679
這些模式以層級結構進行組織,
03:12
and we created that hierarchy with our own thinking.
80
192135
2954
當然,我們借助自己的思考 假設了這種層級結構。
03:15
And there was actually very little to go on
81
195089
3333
50年前,由於各種條件限制,
03:18
50 years ago.
82
198422
1562
研究進展緩慢,
03:19
It led me to meet President Johnson.
83
199984
2115
但這項成果使我獲得了 約翰遜總統的接見。
03:22
I've been thinking about this for 50 years,
84
202099
2173
50年來,我一直潛心研究這個領域,
03:24
and a year and a half ago I came out with the book
85
204272
2828
就在一年半前,我又發表了一部新的著作
03:27
"How To Create A Mind,"
86
207100
1265
——《心智的構建》。
03:28
which has the same thesis,
87
208365
1613
該專著探討了同一個課題,
03:29
but now there's a plethora of evidence.
88
209978
2812
幸運的是,我現在擁有充足的證據支撐。
03:32
The amount of data we're getting about the brain
89
212790
1814
神經科學為我們貢獻 大量有關大腦的數據,
03:34
from neuroscience is doubling every year.
90
214604
2203
還在以逐年翻倍的速度劇增;
03:36
Spatial resolution of brainscanning of all types
91
216807
2654
各種腦部掃描技術的空間解析度,
03:39
is doubling every year.
92
219461
2285
也在逐年翻倍。
03:41
We can now see inside a living brain
93
221746
1717
現在,我們能親眼窺見活體大腦的內部,
03:43
and see individual interneural connections
94
223463
2870
觀察單個神經間的連接,
03:46
connecting in real time, firing in real time.
95
226333
2703
目睹神經連接、觸發的實時發生。
03:49
We can see your brain create your thoughts.
96
229036
2419
我們親眼看到大腦如何創造思維,
03:51
We can see your thoughts create your brain,
97
231455
1575
或者反過來說,思維如何增強和促進大腦,
03:53
which is really key to how it works.
98
233030
1999
思維本身對大腦進化至關重要。
03:55
So let me describe briefly how it works.
99
235029
2219
接下來,我想簡單介紹大腦的工作方式。
03:57
I've actually counted these modules.
100
237248
2275
實際上,我統計過這些模塊的數量。
03:59
We have about 300 million of them,
101
239523
2046
我們總共有大約三億模塊,
04:01
and we create them in these hierarchies.
102
241569
2229
分佈在不同的層級中。
04:03
I'll give you a simple example.
103
243798
2082
讓我們來看一個簡單的例子。
04:05
I've got a bunch of modules
104
245880
2805
假設我有一組模塊,
04:08
that can recognize the crossbar to a capital A,
105
248685
3403
可以識別大寫字母“A”中間的短橫線,
04:12
and that's all they care about.
106
252088
1914
它們的主要職責就在於此。
04:14
A beautiful song can play,
107
254002
1578
無論周遭播放著美妙的音樂,
04:15
a pretty girl could walk by,
108
255580
1434
還是一位妙齡女郎翩然而至,
04:17
they don't care, but they see a crossbar to a capital A,
109
257014
2846
它們都渾然不覺。但是,一旦發現“A”的短橫線,
04:19
they get very excited and they say "crossbar,"
110
259860
3021
它們就興奮異常,異口同聲喊出:“短橫線!”
04:22
and they put out a high probability
111
262881
2112
同時,它們立即報告神經軸突,
04:24
on their output axon.
112
264993
1634
識別任務已經順利完成。
04:26
That goes to the next level,
113
266627
1333
接下來,更高級別的模塊——
04:27
and these layers are organized in conceptual levels.
114
267960
2750
概念級別的模塊,將依次登場。
04:30
Each is more abstract than the next one,
115
270710
1856
級別越高,思考的抽象程度越高。
04:32
so the next one might say "capital A."
116
272566
2418
例如,較低的級別可識別字母“A”,
04:34
That goes up to a higher level that might say "Apple."
117
274984
2891
逐級上升後,某個級別能識別“APPLE”這個單詞。
04:37
Information flows down also.
118
277875
2167
同時,信息也在持續傳遞。
04:40
If the apple recognizer has seen A-P-P-L,
119
280042
2936
負責識別“APPLE”的級別,發現A-P-P-L時,
04:42
it'll think to itself, "Hmm, I think an E is probably likely,"
120
282978
3219
它會想:“唔,我猜下一個字母應該是E吧。”
04:46
and it'll send a signal down to all the E recognizers
121
286197
2564
然後,它會將信號傳達到 負責識別“E”的那些模塊,
04:48
saying, "Be on the lookout for an E,
122
288761
1619
並發出預警:“嘿,各位注意,
04:50
I think one might be coming."
123
290380
1556
字母E就要出現了!”
04:51
The E recognizers will lower their threshold
124
291936
2843
字母“E”的識別模塊於是降低了閥值,
04:54
and they see some sloppy thing, could be an E.
125
294779
1945
一旦發現疑似字母,便認為是“E”。
04:56
Ordinarily you wouldn't think so,
126
296724
1490
當然,這並非通常情況下的處理機制,
04:58
but we're expecting an E, it's good enough,
127
298214
2009
但現在我們正在等待“E”的出現, 而疑似字母與它足夠相似,
05:00
and yeah, I've seen an E, and then apple says,
128
300223
1817
所以,我們斷定它就是“E”。
05:02
"Yeah, I've seen an Apple."
129
302040
1728
“E”識別後,“APPLE”識別成功。
05:03
Go up another five levels,
130
303768
1746
如果我們再躍升五個級別,
05:05
and you're now at a pretty high level
131
305514
1353
那麼,在整個層級結構上,
05:06
of this hierarchy,
132
306867
1569
就到達了較高水平。
05:08
and stretch down into the different senses,
133
308436
2353
這個水平上,我們具有各種感知功能,
05:10
and you may have a module that sees a certain fabric,
134
310789
2655
某些模塊能夠感知特定的布料質地,
05:13
hears a certain voice quality, smells a certain perfume,
135
313444
2844
辨識特定的音色,甚至嗅到特定的香水味,
05:16
and will say, "My wife has entered the room."
136
316288
2513
然後告诉我:妻子剛進到房间!
05:18
Go up another 10 levels, and now you're at
137
318801
1895
再上升10級,
05:20
a very high level.
138
320696
1160
我們就到達了一個很高的水平,
05:21
You're probably in the frontal cortex,
139
321856
1937
可能來到了額葉皮層。
05:23
and you'll have modules that say, "That was ironic.
140
323793
3767
在這兒,我們的模塊已經能夠臧否人物了,
05:27
That's funny. She's pretty."
141
327560
2370
比如:這事有點滑稽可笑!她真是秀色可餐!
05:29
You might think that those are more sophisticated,
142
329930
2105
大家可能覺得,這整個過程有點複雜。
05:32
but actually what's more complicated
143
332035
1506
實際上,更讓人費解的是
05:33
is the hierarchy beneath them.
144
333541
2669
是這些過程的層級結構。
05:36
There was a 16-year-old girl, she had brain surgery,
145
336210
2620
曾經有位16歲的姑娘,當時正接受腦部手術。
05:38
and she was conscious because the surgeons
146
338830
2051
由於手術過程中醫生需要跟她講話,
05:40
wanted to talk to her.
147
340881
1537
所以就讓她保持清醒。
05:42
You can do that because there's no pain receptors
148
342418
1822
保持清醒的意識,這對於手術並無妨礙,
05:44
in the brain.
149
344240
1038
因為大腦內沒有痛覺感受器。
05:45
And whenever they stimulated particular,
150
345278
1800
我們驚奇地發現,當醫生刺激新皮層上
05:47
very small points on her neocortex,
151
347078
2463
某些細小區域時,就是圖中的紅色部位,
05:49
shown here in red, she would laugh.
152
349541
2665
這個姑娘就會放聲大笑。
05:52
So at first they thought they were triggering
153
352206
1440
起初,大家以為,
05:53
some kind of laugh reflex,
154
353646
1720
可能是因為觸發了笑反應神經。
05:55
but no, they quickly realized they had found
155
355366
2519
他們很快意識到事實並非如此,
05:57
the points in her neocortex that detect humor,
156
357885
3044
這些新皮層上的特定區域能夠理會幽默,
06:00
and she just found everything hilarious
157
360929
1969
只要醫生刺激這些區域,
06:02
whenever they stimulated these points.
158
362898
2437
她就會覺得所有的一切都滑稽有趣。
06:05
"You guys are so funny just standing around,"
159
365335
1925
“你們這幫人光站在那裏,就讓人想笑。”
06:07
was the typical comment,
160
367260
1738
那位姑娘典型的解釋道。
06:08
and they weren't funny,
161
368998
2302
我們知道,這個場景並不滑稽可笑,
06:11
not while doing surgery.
162
371300
3247
因為大家都在進行緊張的手術。
06:14
So how are we doing today?
163
374547
4830
現在,我們又有哪些新的進展呢?
06:19
Well, computers are actually beginning to master
164
379377
3054
計算機日益智能化,
06:22
human language with techniques
165
382431
2001
利用功能類似新皮層的先進技術,
06:24
that are similar to the neocortex.
166
384432
2867
它們可以學習和掌握人類的語言。
06:27
I actually described the algorithm,
167
387299
1514
我曾描述過一種算法,
06:28
which is similar to something called
168
388813
2054
與層級隱含式馬爾可夫模型類似,
06:30
a hierarchical hidden Markov model,
169
390867
2233
(馬爾可夫模型是用於自然語言處理的統計模型)
06:33
something I've worked on since the '90s.
170
393100
3241
上世紀90年以來我一直研究這種算法。
06:36
"Jeopardy" is a very broad natural language game,
171
396341
3238
“Jeopardy”(危境)是一個 自然語言類的智力競賽節目,
06:39
and Watson got a higher score
172
399579
1892
IBM研發的沃森計算機在比賽中
06:41
than the best two players combined.
173
401471
2000
勇奪高分,總分超過兩名最佳選手的總和。
06:43
It got this query correct:
174
403471
2499
連這個難題都被它輕鬆化解了:
06:45
"A long, tiresome speech
175
405970
2085
“定義:由起泡的派餡料發表的冗長而乏味的演講。
06:48
delivered by a frothy pie topping,"
176
408055
2152
請問:這定義的是什麼?”
06:50
and it quickly responded, "What is a meringue harangue?"
177
410207
2796
它迅速回答道:愛開腔的蛋白霜。
06:53
And Jennings and the other guy didn't get that.
178
413003
2635
而詹尼斯和另外一名選手卻一頭霧水。
06:55
It's a pretty sophisticated example of
179
415638
1926
這個問題難度很大,極富挑戰性,
06:57
computers actually understanding human language,
180
417564
1914
向我們展示了計算機 正在掌握人類的語言。
06:59
and it actually got its knowledge by reading
181
419478
1652
實際上,沃森是通過廣泛閱讀維基百科
07:01
Wikipedia and several other encyclopedias.
182
421130
3785
及其他百科全書來發展語言能力的。
07:04
Five to 10 years from now,
183
424915
2133
5至10年以後,
07:07
search engines will actually be based on
184
427048
2184
我們的搜索引擎
07:09
not just looking for combinations of words and links
185
429232
2794
不再只是搜索詞語和鏈接這樣的簡單組合,
07:12
but actually understanding,
186
432026
1914
它會嘗試去理解信息,
07:13
reading for understanding the billions of pages
187
433940
2411
通過涉獵浩如煙海的互聯網和書籍,
07:16
on the web and in books.
188
436351
2733
攫取和提煉知識。
07:19
So you'll be walking along, and Google will pop up
189
439084
2616
想像有一天,你正在悠閒地散步,
07:21
and say, "You know, Mary, you expressed concern
190
441700
3081
智能設備端的 Google 助理突然和你說:
07:24
to me a month ago that your glutathione supplement
191
444781
3019
“瑪麗,你上月提到,正在服用的谷胱甘肽補充劑
07:27
wasn't getting past the blood-brain barrier.
192
447800
2231
因為無法透過血腦屏障,所以暫時不起作用。
07:30
Well, new research just came out 13 seconds ago
193
450031
2593
告訴你一個好消息!就在13秒鐘前,
07:32
that shows a whole new approach to that
194
452624
1711
一項新的研究成果表明,
07:34
and a new way to take glutathione.
195
454335
1993
可以透過一个新的途徑來補充谷胱甘肽。
07:36
Let me summarize it for you."
196
456328
2562
讓我給你概括一下這個報告。”
07:38
Twenty years from now, we'll have nanobots,
197
458890
3684
20年以後,我們將迎來奈米機器人,
07:42
because another exponential trend
198
462574
1627
目前,科技產品正在日益微型化,
07:44
is the shrinking of technology.
199
464201
1615
這一趨勢愈演愈烈。
07:45
They'll go into our brain
200
465816
2370
科技設備將通過毛細血管
07:48
through the capillaries
201
468186
1703
進入我們的大腦,
07:49
and basically connect our neocortex
202
469889
2477
最終,將我們自身的新皮層
07:52
to a synthetic neocortex in the cloud
203
472366
3185
與雲端的人工合成新皮層相連,
07:55
providing an extension of our neocortex.
204
475551
3591
使它成為新皮層的延伸和擴展。
07:59
Now today, I mean,
205
479142
1578
今天,
08:00
you have a computer in your phone,
206
480720
1530
智慧型手機都內置了一台計算機。
08:02
but if you need 10,000 computers for a few seconds
207
482250
2754
假如我們需要一萬台計算機,
08:05
to do a complex search,
208
485004
1495
在幾秒鐘內完成一次複雜的搜索,
08:06
you can access that for a second or two in the cloud.
209
486499
3396
我們可以通過訪問雲端來獲得這種能力。
08:09
In the 2030s, if you need some extra neocortex,
210
489895
3095
到了2030年,當你需要更加強大的新皮層時,
08:12
you'll be able to connect to that in the cloud
211
492990
2273
你可以直接從你的大腦連接到雲端,
08:15
directly from your brain.
212
495263
1648
來獲得超凡的能力。
08:16
So I'm walking along and I say,
213
496911
1543
舉個例子,我正在漫步,遠遠看到一個人。
08:18
"Oh, there's Chris Anderson.
214
498454
1363
“老天,那不是克里斯.安德森(TED主持人)嗎?
08:19
He's coming my way.
215
499817
1525
他正朝我這邊走來。
08:21
I'd better think of something clever to say.
216
501342
2335
我要抓住這個機遇,一鳴驚人!
08:23
I've got three seconds.
217
503677
1524
但是,我只有三秒鐘,
08:25
My 300 million modules in my neocortex
218
505201
3097
我新皮層的三億個模塊
08:28
isn't going to cut it.
219
508298
1240
顯然不夠用。
08:29
I need a billion more."
220
509538
1246
我需要借來10億模塊增援!”
08:30
I'll be able to access that in the cloud.
221
510784
3323
於是,我會立即連通雲端。
08:34
And our thinking, then, will be a hybrid
222
514107
2812
我的思考,綜合了生物體和非生物體
08:36
of biological and non-biological thinking,
223
516919
3522
這兩者的優勢。
08:40
but the non-biological portion
224
520441
1898
非生物部分的思考能力,
08:42
is subject to my law of accelerating returns.
225
522339
2682
將受益於“加速回報定律”,
08:45
It will grow exponentially.
226
525021
2239
這是說,科技帶來的回報 呈指數級增長,而非線性。
08:47
And remember what happens
227
527260
2016
大家是否還記得,上次新皮層大幅擴張時
08:49
the last time we expanded our neocortex?
228
529276
2645
發生了哪些重大變化?
08:51
That was two million years ago
229
531921
1426
那是200萬年前,
08:53
when we became humanoids
230
533347
1236
我們那時還只是猿人,
08:54
and developed these large foreheads.
231
534583
1594
開始發育出碩大的前額。
08:56
Other primates have a slanted brow.
232
536177
2583
而其他靈長類動物的前額向後傾斜,
08:58
They don't have the frontal cortex.
233
538760
1745
因為牠們沒有額葉皮層。
09:00
But the frontal cortex is not really qualitatively different.
234
540505
3685
但是,額葉皮層並不意味著質的變化;
09:04
It's a quantitative expansion of neocortex,
235
544190
2743
而是新皮層量的提升,
09:06
but that additional quantity of thinking
236
546933
2703
帶來了額外的思考能力,
09:09
was the enabling factor for us to take
237
549636
1779
最終促成了質的飛躍。
09:11
a qualitative leap and invent language
238
551415
3346
我們因而能夠發明語言,
09:14
and art and science and technology
239
554761
1967
創造藝術,發展科技,
09:16
and TED conferences.
240
556728
1454
並舉辦TED演講,
09:18
No other species has done that.
241
558182
2131
這都是其他物種難以完成的創舉。
09:20
And so, over the next few decades,
242
560313
2075
我相信未來數十年,
09:22
we're going to do it again.
243
562388
1760
我們將再次創造偉大的奇蹟。
09:24
We're going to again expand our neocortex,
244
564148
2274
我們將借助科技,再次擴張新皮層,
09:26
only this time we won't be limited
245
566422
1756
不同之處在於,
09:28
by a fixed architecture of enclosure.
246
568178
4280
我們將不再受到頭顱空間的局限,
09:32
It'll be expanded without limit.
247
572458
3304
意味著擴張並無止境。
09:35
That additional quantity will again
248
575762
2243
隨之而來的量的增加
09:38
be the enabling factor for another qualitative leap
249
578005
3005
在人文和科技領域,
09:41
in culture and technology.
250
581010
1635
將再次引發一輪質的飛躍。
09:42
Thank you very much.
251
582645
2054
謝謝大家!
09:44
(Applause)
252
584699
3086
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog