Ray Kurzweil: Get ready for hybrid thinking

531,025 views ・ 2014-06-02

TED


请双击下面的英文字幕来播放视频。

翻译人员: Minging Zhang 校对人员: Yuanqing Edberg
00:12
Let me tell you a story.
0
12988
2316
让我来给你们讲个故事。
00:15
It goes back 200 million years.
1
15304
1799
要追溯到两亿年前。
00:17
It's a story of the neocortex,
2
17103
1984
是个关于新大脑皮层的故事,
00:19
which means "new rind."
3
19087
1974
讲的就是大脑的表层。
00:21
So in these early mammals,
4
21061
2431
对于早期的哺乳类动物,
00:23
because only mammals have a neocortex,
5
23492
2055
由于只有他们有新大脑皮层,
00:25
rodent-like creatures.
6
25547
1664
就像啮齿类的生物。
00:27
It was the size of a postage stamp and just as thin,
7
27211
3579
皮质尺寸像邮票一样而且很薄,
00:30
and was a thin covering around
8
30790
1439
这个薄的皮质包裹着他们
00:32
their walnut-sized brain,
9
32229
2264
像核桃大小的头脑。
00:34
but it was capable of a new type of thinking.
10
34493
3701
但它可以产生新的思维方式。
00:38
Rather than the fixed behaviors
11
38194
1567
不像那些非哺乳类动物,
00:39
that non-mammalian animals have,
12
39761
1992
只有固定的行为,
00:41
it could invent new behaviors.
13
41753
2692
它可以创造新的行为。
00:44
So a mouse is escaping a predator,
14
44445
2553
例如一只老鼠在逃避捕食者,
00:46
its path is blocked,
15
46998
1540
它的路被堵住了,
00:48
it'll try to invent a new solution.
16
48538
2129
就想想出一个新的解决方案。
00:50
That may work, it may not,
17
50667
1266
那方案可能成功也可能失败,
00:51
but if it does, it will remember that
18
51933
1910
但如果成功了,它就会记住,
00:53
and have a new behavior,
19
53843
1292
于是就有了一种新的行为,
00:55
and that can actually spread virally
20
55135
1457
同时那个方案会迅速传遍
00:56
through the rest of the community.
21
56592
2195
到其余的团体。
00:58
Another mouse watching this could say,
22
58787
1609
比如另一只老鼠看到这会说,
01:00
"Hey, that was pretty clever, going around that rock,"
23
60396
2704
“噢,绕过那块岩石,真是高明,”
01:03
and it could adopt a new behavior as well.
24
63100
3725
于是它也会采取那种行为。
01:06
Non-mammalian animals
25
66825
1717
非哺乳类动物
01:08
couldn't do any of those things.
26
68542
1713
不能做这些事情。
01:10
They had fixed behaviors.
27
70255
1215
因为他们有固定的行为方式。
01:11
Now they could learn a new behavior
28
71470
1331
现在他们能学习新的行为
01:12
but not in the course of one lifetime.
29
72801
2576
但不是在一个生命的过程中。
01:15
In the course of maybe a thousand lifetimes,
30
75377
1767
也许在几千个生命周期内,
01:17
it could evolve a new fixed behavior.
31
77144
3330
它可以衍生出一个新的固定的行为。
01:20
That was perfectly okay 200 million years ago.
32
80474
3377
那对两亿年前来讲是好极了。
01:23
The environment changed very slowly.
33
83851
1981
那时的环境变化很慢。
01:25
It could take 10,000 years for there to be
34
85832
1554
那时可能要过一万年才会
01:27
a significant environmental change,
35
87386
2092
发生一次巨大的环境变化,
01:29
and during that period of time
36
89478
1382
在那期间,
01:30
it would evolve a new behavior.
37
90860
2929
可能进化一种新的行为。
01:33
Now that went along fine,
38
93789
1521
那样发展似乎还不错,
01:35
but then something happened.
39
95310
1704
但有些事情发生了。
01:37
Sixty-five million years ago,
40
97014
2246
六千五百万年前,
01:39
there was a sudden, violent change to the environment.
41
99260
2615
发生了一个突然的,剧烈的环境变化。
01:41
We call it the Cretaceous extinction event.
42
101875
3505
我们称之为白垩纪灭绝事件。
01:45
That's when the dinosaurs went extinct,
43
105380
2293
那是恐龙走向灭绝的时候,
01:47
that's when 75 percent of the
44
107673
3449
是百分之七十五的动植物
01:51
animal and plant species went extinct,
45
111122
2746
走向灭绝的时候,
01:53
and that's when mammals
46
113868
1745
也是哺乳类动物
01:55
overtook their ecological niche,
47
115613
2152
取代生态位,
01:57
and to anthropomorphize, biological evolution said,
48
117765
3654
而达到人格化,生物进化学说道,
02:01
"Hmm, this neocortex is pretty good stuff,"
49
121419
2025
“嗯,这个新大脑皮层是个好东西,”
02:03
and it began to grow it.
50
123444
1793
于是开始发展。
02:05
And mammals got bigger,
51
125237
1342
哺乳类动物逐渐变大,
02:06
their brains got bigger at an even faster pace,
52
126579
2915
他们的大脑变大的速度更快,
02:09
and the neocortex got bigger even faster than that
53
129494
3807
新大脑皮层同时变大的速度也更快,
02:13
and developed these distinctive ridges and folds
54
133301
2929
发展出明显的隆起和褶皱
02:16
basically to increase its surface area.
55
136230
2881
来增加它的表面积。
02:19
If you took the human neocortex
56
139111
1819
如果你有一个人的新大脑皮层
02:20
and stretched it out,
57
140930
1301
然后把它伸展开,
02:22
it's about the size of a table napkin,
58
142231
1713
大概有一方餐巾那么大,
02:23
and it's still a thin structure.
59
143944
1306
它也是一个很薄的构造。
02:25
It's about the thickness of a table napkin.
60
145250
1980
就像餐巾那么薄。
02:27
But it has so many convolutions and ridges
61
147230
2497
但它有很多的隆起和褶皱。
02:29
it's now 80 percent of our brain,
62
149727
3075
现在它占据我们的大脑有百分之八十
02:32
and that's where we do our thinking,
63
152802
2461
那也是我们用来思考的地方,
02:35
and it's the great sublimator.
64
155263
1761
所以那是个很棒的升华。
02:37
We still have that old brain
65
157024
1114
我们仍旧还是有那个
02:38
that provides our basic drives and motivations,
66
158138
2764
提供基本动力和动机的大脑,
02:40
but I may have a drive for conquest,
67
160902
2716
但也许我会有一个要去征服的想法,
02:43
and that'll be sublimated by the neocortex
68
163618
2715
那就要新大脑皮层
02:46
into writing a poem or inventing an app
69
166333
2909
借由写首诗或发明一个程序
02:49
or giving a TED Talk,
70
169242
1509
或来一个TED演讲而达到升华,
02:50
and it's really the neocortex that's where
71
170751
3622
它的确是在新的大脑皮层
有了行动。
02:54
the action is.
72
174373
1968
五十年前,我写了一篇论文,
02:56
Fifty years ago, I wrote a paper
73
176341
1717
02:58
describing how I thought the brain worked,
74
178058
1918
描述我对大脑如何运作的想法,
02:59
and I described it as a series of modules.
75
179976
3199
我描述说大脑就像一系列模块。
03:03
Each module could do things with a pattern.
76
183175
2128
每个模块可以用一种方式做事情。
03:05
It could learn a pattern. It could remember a pattern.
77
185303
2746
每个模块可以学习和记住一种方式。
03:08
It could implement a pattern.
78
188049
1407
也可以执行一种方式。
03:09
And these modules were organized in hierarchies,
79
189456
2679
然后这些模块被分派到统治集团中,
03:12
and we created that hierarchy with our own thinking.
80
192135
2954
我们用我们自己的想法创造了统治集团。
03:15
And there was actually very little to go on
81
195089
3333
后来我的这个想法就没怎么继续了。
那还是50年前。
03:18
50 years ago.
82
198422
1562
03:19
It led me to meet President Johnson.
83
199984
2115
它让我去见了约翰逊总统。
03:22
I've been thinking about this for 50 years,
84
202099
2173
我已经思考了五十年,
03:24
and a year and a half ago I came out with the book
85
204272
2828
一年半前我出了本书,
03:27
"How To Create A Mind,"
86
207100
1265
”如何创造思想,“
03:28
which has the same thesis,
87
208365
1613
这本书和那篇论文有着相同的主题,
03:29
but now there's a plethora of evidence.
88
209978
2812
但现在有了更多的证据支撑。
03:32
The amount of data we're getting about the brain
89
212790
1814
我们从神经科学得到
03:34
from neuroscience is doubling every year.
90
214604
2203
关于大脑的数据每年都成倍增加。
03:36
Spatial resolution of brainscanning of all types
91
216807
2654
各类脑扫描的空间分辨率也是。
03:39
is doubling every year.
92
219461
2285
每年双倍增加。
03:41
We can now see inside a living brain
93
221746
1717
我们现在可以看到一个活大脑的内部
03:43
and see individual interneural connections
94
223463
2870
看到个别神经元间的连接,
03:46
connecting in real time, firing in real time.
95
226333
2703
实时连接,实时放电
我们可以看到你大脑创造思维。
03:49
We can see your brain create your thoughts.
96
229036
2419
03:51
We can see your thoughts create your brain,
97
231455
1575
我们可以看到你的思维也在创造你的大脑,
03:53
which is really key to how it works.
98
233030
1999
这对了解大脑如何运作很重要。
03:55
So let me describe briefly how it works.
99
235029
2219
让我简单描述一下大脑如何工作的。
03:57
I've actually counted these modules.
100
237248
2275
我算过这些单位的数量。
03:59
We have about 300 million of them,
101
239523
2046
我们大约有三亿,
04:01
and we create them in these hierarchies.
102
241569
2229
我们在大脑层里创造他们。
04:03
I'll give you a simple example.
103
243798
2082
给你们简单举例。
04:05
I've got a bunch of modules
104
245880
2805
我有一堆模块,
04:08
that can recognize the crossbar to a capital A,
105
248685
3403
它们可以认知A的一横,
04:12
and that's all they care about.
106
252088
1914
那是它们关心的全部。
04:14
A beautiful song can play,
107
254002
1578
一首动人的歌在播放,
04:15
a pretty girl could walk by,
108
255580
1434
一个美丽的姑娘经过,
04:17
they don't care, but they see a crossbar to a capital A,
109
257014
2846
它们都不在意,但当它们看见A的一横,
04:19
they get very excited and they say "crossbar,"
110
259860
3021
它们就会很兴奋的说“横,”
04:22
and they put out a high probability
111
262881
2112
然后他们
04:24
on their output axon.
112
264993
1634
从输出轴突输出一个高度的可能性,
04:26
That goes to the next level,
113
266627
1333
那就到了下一个等级,
04:27
and these layers are organized in conceptual levels.
114
267960
2750
这些层次被分布在概念性等级中。
04:30
Each is more abstract than the next one,
115
270710
1856
每一个都比下一个更抽象,
04:32
so the next one might say "capital A."
116
272566
2418
所以下一个可能说“字母A。”
04:34
That goes up to a higher level that might say "Apple."
117
274984
2891
去到更高一个等级可能说“apple”
04:37
Information flows down also.
118
277875
2167
信息也这样流动。
04:40
If the apple recognizer has seen A-P-P-L,
119
280042
2936
如果那个认出apple的看到 a-p-p-l,
04:42
it'll think to itself, "Hmm, I think an E is probably likely,"
120
282978
3219
它就会想,“嗯,我觉得接下来是e,”
04:46
and it'll send a signal down to all the E recognizers
121
286197
2564
然后它就会把信号传送个所有认知e的
04:48
saying, "Be on the lookout for an E,
122
288761
1619
说,“看住e,
04:50
I think one might be coming."
123
290380
1556
我觉得它就要来了。”
04:51
The E recognizers will lower their threshold
124
291936
2843
e的认知这就会降低警觉
04:54
and they see some sloppy thing, could be an E.
125
294779
1945
它们可能粗心的看到一些东西觉得就是E。
04:56
Ordinarily you wouldn't think so,
126
296724
1490
通常你不会这样想,
04:58
but we're expecting an E, it's good enough,
127
298214
2009
但我们在期待一个E, 那就够了,
05:00
and yeah, I've seen an E, and then apple says,
128
300223
1817
于是我看到了E,然后认知的apple说,
05:02
"Yeah, I've seen an Apple."
129
302040
1728
“太好了,我看到了apple。”
05:03
Go up another five levels,
130
303768
1746
再往上五个等级,
05:05
and you're now at a pretty high level
131
305514
1353
现在你就在一个很高的水平,
05:06
of this hierarchy,
132
306867
1569
的这种大脑层,
05:08
and stretch down into the different senses,
133
308436
2353
于是延伸到不同的感官,
05:10
and you may have a module that sees a certain fabric,
134
310789
2655
你可能有一个模块看到了一个特殊东西,
05:13
hears a certain voice quality, smells a certain perfume,
135
313444
2844
听到一个声音,闻到到某个特殊的香水,
05:16
and will say, "My wife has entered the room."
136
316288
2513
它就会说,“我老婆进来房间了。”
05:18
Go up another 10 levels, and now you're at
137
318801
1895
往上十个等级,现在你在
05:20
a very high level.
138
320696
1160
一个非常高的等级。
05:21
You're probably in the frontal cortex,
139
321856
1937
你可能在大脑额叶,
05:23
and you'll have modules that say, "That was ironic.
140
323793
3767
然后你有模块说,“那很讽刺。
05:27
That's funny. She's pretty."
141
327560
2370
那很有趣。她很美。”
05:29
You might think that those are more sophisticated,
142
329930
2105
你可能觉得那些模块很复杂,
05:32
but actually what's more complicated
143
332035
1506
实际上更复杂的是
05:33
is the hierarchy beneath them.
144
333541
2669
在他们之下的大脑层集团。
05:36
There was a 16-year-old girl, she had brain surgery,
145
336210
2620
有一个十六岁的女孩,她做了一个大脑手术,
05:38
and she was conscious because the surgeons
146
338830
2051
她依然是清醒的,因为外科医生
05:40
wanted to talk to her.
147
340881
1537
要和她谈话。
05:42
You can do that because there's no pain receptors
148
342418
1822
手术可以做是因为大脑里没有疼痛的感觉器官。
在大脑里,
05:44
in the brain.
149
344240
1038
05:45
And whenever they stimulated particular,
150
345278
1800
当他们刺激到某个部分,
05:47
very small points on her neocortex,
151
347078
2463
在她大脑皮层的很小的点,
05:49
shown here in red, she would laugh.
152
349541
2665
这里显示红色的,她就会笑。
05:52
So at first they thought they were triggering
153
352206
1440
所以一开始他们以为他们触碰到
05:53
some kind of laugh reflex,
154
353646
1720
某个笑神经,
05:55
but no, they quickly realized they had found
155
355366
2519
但不是,他们很快意识到他们发现
05:57
the points in her neocortex that detect humor,
156
357885
3044
那些在新大脑皮层的小点能探测到幽默,
06:00
and she just found everything hilarious
157
360929
1969
然后她发现一切都很可笑,
06:02
whenever they stimulated these points.
158
362898
2437
每当刺激到那些点的时候。
06:05
"You guys are so funny just standing around,"
159
365335
1925
“你们站在这里真是太好笑了,”
06:07
was the typical comment,
160
367260
1738
这是她典型的言论,
06:08
and they weren't funny,
161
368998
2302
06:11
not while doing surgery.
162
371300
3247
实际上他们在做手术时并不有趣。
06:14
So how are we doing today?
163
374547
4830
所以我们现在怎么样?
06:19
Well, computers are actually beginning to master
164
379377
3054
事实上电脑逐渐开始
06:22
human language with techniques
165
382431
2001
通过科技掌握人类语言,
06:24
that are similar to the neocortex.
166
384432
2867
这和新大脑皮层类似。
06:27
I actually described the algorithm,
167
387299
1514
我实际上描述了运算法则,
06:28
which is similar to something called
168
388813
2054
这和
06:30
a hierarchical hidden Markov model,
169
390867
2233
脑层隐藏的马尔可夫模型类似,
06:33
something I've worked on since the '90s.
170
393100
3241
这是一些我从90年代就开始研究的事。
06:36
"Jeopardy" is a very broad natural language game,
171
396341
3238
"Jeopardy"是一个很广泛的语言游戏,
06:39
and Watson got a higher score
172
399579
1892
Watson得了一个
06:41
than the best two players combined.
173
401471
2000
比两人加在一起还高的分数。
06:43
It got this query correct:
174
403471
2499
它纠正了这个问题:
06:45
"A long, tiresome speech
175
405970
2085
"一段很长很无聊的演讲
06:48
delivered by a frothy pie topping,"
176
408055
2152
就像馅饼上的装饰。“
06:50
and it quickly responded, "What is a meringue harangue?"
177
410207
2796
于是有了很快的回复,”什么是长篇大论?“
06:53
And Jennings and the other guy didn't get that.
178
413003
2635
没人理解这个问题。
06:55
It's a pretty sophisticated example of
179
415638
1926
那是个很复杂的例子
06:57
computers actually understanding human language,
180
417564
1914
关于电脑理解人类语言,
06:59
and it actually got its knowledge by reading
181
419478
1652
它实际得到了自己的知识通过
07:01
Wikipedia and several other encyclopedias.
182
421130
3785
维基百科和一些其他百科。
07:04
Five to 10 years from now,
183
424915
2133
从现在起五到十年,
07:07
search engines will actually be based on
184
427048
2184
搜索引擎会不仅仅基于
07:09
not just looking for combinations of words and links
185
429232
2794
对文字、链接组合的寻找,
07:12
but actually understanding,
186
432026
1914
而是真正的理解,
07:13
reading for understanding the billions of pages
187
433940
2411
通过阅读来理解
07:16
on the web and in books.
188
436351
2733
网络和书中成千上万页。
07:19
So you'll be walking along, and Google will pop up
189
439084
2616
那么当你郁郁独行,古狗会跳出来
07:21
and say, "You know, Mary, you expressed concern
190
441700
3081
说,”你知道吗,Mary, 你一个月前
07:24
to me a month ago that your glutathione supplement
191
444781
3019
你向我述说的你补充的谷胱甘肽
07:27
wasn't getting past the blood-brain barrier.
192
447800
2231
没有通过血脑屏障。
07:30
Well, new research just came out 13 seconds ago
193
450031
2593
十三秒前刚出了个新研究,
07:32
that shows a whole new approach to that
194
452624
1711
显示有一个全新方法的来解决这个问题。
07:34
and a new way to take glutathione.
195
454335
1993
07:36
Let me summarize it for you."
196
456328
2562
一个服用谷胱甘肽的新方法,
07:38
Twenty years from now, we'll have nanobots,
197
458890
3684
让我来为你总结一下。“
从现在起二十年, 我们会有纳米机器人,
07:42
because another exponential trend
198
462574
1627
因为另一个指数趋势
07:44
is the shrinking of technology.
199
464201
1615
显示科技的收缩。
07:45
They'll go into our brain
200
465816
2370
他们会通过
毛细血管进入我们的大脑
07:48
through the capillaries
201
468186
1703
然后把我们的大脑皮层连接
07:49
and basically connect our neocortex
202
469889
2477
07:52
to a synthetic neocortex in the cloud
203
472366
3185
到枢纽里的合成大脑皮层。
07:55
providing an extension of our neocortex.
204
475551
3591
07:59
Now today, I mean,
205
479142
1578
而提供一个大脑皮层的延伸
08:00
you have a computer in your phone,
206
480720
1530
现在,我的意思是,
08:02
but if you need 10,000 computers for a few seconds
207
482250
2754
你手机里有一个电脑,
但如果你需要一万台电脑用几秒钟
08:05
to do a complex search,
208
485004
1495
来做一个复杂的研究,
08:06
you can access that for a second or two in the cloud.
209
486499
3396
你可以进入那个枢纽一两秒。
08:09
In the 2030s, if you need some extra neocortex,
210
489895
3095
在2030年,如果你需要一些额外的大脑皮层,
08:12
you'll be able to connect to that in the cloud
211
492990
2273
你可以在枢纽里
直接与你大脑连接。
08:15
directly from your brain.
212
495263
1648
08:16
So I'm walking along and I say,
213
496911
1543
所以当我走过我会说,
08:18
"Oh, there's Chris Anderson.
214
498454
1363
“哦,这是Chris Anderson。”
08:19
He's coming my way.
215
499817
1525
他在向我走来。
08:21
I'd better think of something clever to say.
216
501342
2335
我最好想一个聪明的方式来说。
08:23
I've got three seconds.
217
503677
1524
我有三秒钟来想。
08:25
My 300 million modules in my neocortex
218
505201
3097
我大脑皮层里的三亿个模块
还不够
08:28
isn't going to cut it.
219
508298
1240
我需要另外一亿个。“
08:29
I need a billion more."
220
509538
1246
08:30
I'll be able to access that in the cloud.
221
510784
3323
于是我可以在枢纽里实现。
08:34
And our thinking, then, will be a hybrid
222
514107
2812
那时我们的思考,会像一个
08:36
of biological and non-biological thinking,
223
516919
3522
生物和非生物思考的混合,
08:40
but the non-biological portion
224
520441
1898
但非生物的部分
08:42
is subject to my law of accelerating returns.
225
522339
2682
取决于我加速回收的原则。
它会成指数增长。
08:45
It will grow exponentially.
226
525021
2239
08:47
And remember what happens
227
527260
2016
还记得
08:49
the last time we expanded our neocortex?
228
529276
2645
上次我们伸展我们大脑皮层发生了什么吗?
08:51
That was two million years ago
229
531921
1426
那是两亿年前
08:53
when we became humanoids
230
533347
1236
当我们成为变类人
08:54
and developed these large foreheads.
231
534583
1594
进化这些大前额时。
08:56
Other primates have a slanted brow.
232
536177
2583
其他灵长目动物有倾斜的额。
08:58
They don't have the frontal cortex.
233
538760
1745
他们没有前大脑皮层。
09:00
But the frontal cortex is not really qualitatively different.
234
540505
3685
但那不是真正的不同。
09:04
It's a quantitative expansion of neocortex,
235
544190
2743
不同在于大脑皮层的伸展,
09:06
but that additional quantity of thinking
236
546933
2703
但那额外的思考
09:09
was the enabling factor for us to take
237
549636
1779
是我们能够飞跃的启动因子,
并因此发明了语言、艺术、科学
09:11
a qualitative leap and invent language
238
551415
3346
艺术,科学和科技
09:14
and art and science and technology
239
554761
1967
还有TED会议。
09:16
and TED conferences.
240
556728
1454
09:18
No other species has done that.
241
558182
2131
没有其他物种可以做到这样。
09:20
And so, over the next few decades,
242
560313
2075
在接下来的几十年,
09:22
we're going to do it again.
243
562388
1760
我们要再一次。
09:24
We're going to again expand our neocortex,
244
564148
2274
我们会再次伸展我们的新大脑皮层,
09:26
only this time we won't be limited
245
566422
1756
只有这样我们不会
09:28
by a fixed architecture of enclosure.
246
568178
4280
被固定的框架结构所限制。
09:32
It'll be expanded without limit.
247
572458
3304
它会无限伸展。
那个额外的量
09:35
That additional quantity will again
248
575762
2243
会再次成为一个启动因子
使我们在文化科技中有一个质的飞跃。
09:38
be the enabling factor for another qualitative leap
249
578005
3005
09:41
in culture and technology.
250
581010
1635
09:42
Thank you very much.
251
582645
2054
非常感谢!
09:44
(Applause)
252
584699
3086
(鼓掌)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7