Mary Lou Jepsen: Could future devices read images from our brains?

79,175 views ใƒป 2014-03-03

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Zeeva Livshitz ืžื‘ืงืจ: Ido Dekkers
00:12
I had brain surgery 18 years ago,
0
12607
2508
ืขื‘ืจืชื™ ื ื™ืชื•ื— ืžื•ื— ืœืคื ื™ 18 ืฉื ื”,
00:15
and since that time, brain science has become
1
15115
2567
ื•ืžืื– ืื•ืชื• ื–ืžืŸ, ืžื“ืข ื”ืžื•ื— ื”ืคืš ืœื”ื™ื•ืช
00:17
a personal passion of mine.
2
17682
1999
ืชืฉื•ืงื” ื”ืื™ืฉื™ืช ืฉืœื™.
00:19
I'm actually an engineer.
3
19681
2235
ืื ื™ ืœืžืขืฉื” ืžื”ื ื“ืกืช.
00:21
And first let me say, I recently joined
4
21916
2516
ื•ืงื•ื“ื ื”ืจืฉื• ืœื™ ืœื•ืžืจ, ื”ืฆื˜ืจืคืชื™ ืœืื—ืจื•ื ื”
00:24
Google's Moonshot group,
5
24432
1549
ืœืงื‘ื•ืฆืช "ื’ื•ื’ืœ ืœื™ืจื—",
00:25
where I had a division,
6
25981
1212
ืฉื‘ื” ื”ื™ืชื” ืœื™ ืžื—ืœืงื” ืฉืœืžื”,
00:27
the display division in Google X,
7
27193
2181
ืžื—ืœืงืช ื”ืชืฆื•ื’ื” ื‘ื’ื•ื’ืœ X,
00:29
and the brain science work I'm speaking about today
8
29374
2622
ื•ืขื‘ื•ื“ืช ืžื“ืข ื”ืžื•ื— ืฉืื ื™ ืžื“ื‘ืจืช ืขืœื™ื” ื”ื™ื•ื
00:31
is work I did before I joined Google
9
31996
2921
ื”ื™ื ื”ืขื‘ื•ื“ื” ืฉืขืฉื™ืชื™ ืœืคื ื™ ืฉื”ืฆื˜ืจืคืชื™ ืœื’ื•ื’ืœ
00:34
and on the side outside of Google.
10
34917
2332
ื•ื‘ืฆื“ ืžื—ื•ืฅ ืœื’ื•ื’ืœ.
00:37
So that said, there's a stigma
11
37249
3183
ื›ืฉื–ื” ื ืืžืจ, ื™ืฉื ื” ืกื˜ื™ื’ืžื”
00:40
when you have brain surgery.
12
40432
2285
ื›ืฉื™ืฉ ืœืš ื ื™ืชื•ื— ืžื•ื—.
00:42
Are you still smart or not?
13
42717
2823
ื”ืื ืืชื” ืขื“ื™ื™ืŸ ื—ื›ื ืื• ืœื?
00:45
And if not, can you make yourself smart again?
14
45540
3848
ื•ืื ืœื, ื”ืื ื‘ื™ื›ื•ืœืชืš ืœืฉื•ื‘ ื•ืœื”ื™ื•ืช ื—ื›ื?
00:49
After my neurosurgery,
15
49388
1766
ืœืื—ืจ ื ื™ืชื•ื— ื”ืžื•ื— ืฉืขื‘ืจืชื™,
00:51
part of my brain was missing,
16
51154
1997
ื—ืœืง ืžื”ืžื•ื— ืฉืœื™ ื”ื™ื” ื—ืกืจ,
00:53
and I had to deal with that.
17
53151
2773
ื•ื”ื™ื™ืชื™ ืฆืจื™ื›ื” ืœื”ืชืžื•ื“ื“ ืขื ื–ื”.
00:55
It wasn't the grey matter, but it was the gooey part dead center
18
55924
2944
ื–ื” ืœื ื”ื™ื” ื”ื—ื•ืžืจ ื”ืืคื•ืจ, ืื‘ืœ ื–ื” ื”ื™ื” ื”ื—ืœืง ื”ื“ื‘ื™ืง ื‘ื“ื™ื•ืง ื‘ืžืจื›ื–
00:58
that makes key hormones and neurotransmitters.
19
58868
3402
ืฉืžื™ื™ืฆืจ ื”ื•ืจืžื•ื ื™ ืžืคืชื— ื•ื ื•ื™ืจื•ื˜ืจื ืกืžื™ื˜ืจื™ื.
01:02
Immediately after my surgery,
20
62270
2231
ืžื™ื“ ืœืื—ืจ ื”ื ื™ืชื•ื— ืฉืœื™,
01:04
I had to decide what amounts of each of over
21
64501
2143
ื”ื™ื” ืขืœื™ื™ ืœื”ื—ืœื™ื˜ ืžื” ืชื”ื™ื™ื ื” ื”ื›ืžื•ื™ื•ืช ืฉืœ ื›ืœ ืื—ื“
01:06
a dozen powerful chemicals to take each day,
22
66644
3702
ืžืขืœ ืชืจื™ืกืจ ื›ื™ืžื™ืงืœื™ื ื—ื–ืงื™ื ืžืื•ื“ ืœื™ื˜ื•ืœ ื›ืœ ื™ื•ื,
01:10
because if I just took nothing,
23
70346
1809
ื›ื™ ืื ืคืฉื•ื˜ ืœื ื”ื™ื™ืชื™ ื ื•ื˜ืœืช ื›ืœื•ื,
01:12
I would die within hours.
24
72155
2732
ื”ื™ื™ืชื™ ืžืชื” ื‘ืชื•ืš ื›ืžื” ืฉืขื•ืช.
01:14
Every day now for 18 years -- every single day --
25
74887
3920
ื›ืœ ื™ื•ื ื›ืขืช, ื‘ืžืฉืš 18 ืฉื ื™ื -- ื‘ื›ืœ ื™ื•ื ื•ื™ื•ื --
01:18
I've had to try to decide the combinations
26
78807
2710
ื”ื™ื™ืชื™ ืฆืจื™ื›ื” ืœื ืกื•ืช ืœื”ื—ืœื™ื˜ ืขืœ ืฉื™ืœื•ื‘ื™ื
01:21
and mixtures of chemicals,
27
81517
1328
ื•ืชืขืจื•ื‘ื•ืช ืฉืœ ื›ื™ืžื™ืงืœื™ื,
01:22
and try to get them, to stay alive.
28
82845
3847
ื•ืœื ืกื•ืช ืœื”ืฉื™ื’ ืื•ืชื, ื›ื“ื™ ืœื”ื™ืฉืืจ ื‘ื—ื™ื™ื.
01:26
There have been several close calls.
29
86692
2721
ื”ื™ื• ื›ืžื” ืคืกืคื•ืกื™ื.
01:29
But luckily, I'm an experimentalist at heart,
30
89413
3699
ืื‘ืœ ืœืžืจื‘ื” ื”ืžื–ืœ, ืื ื™ ื ืกื™ื™ื ื™ืช ื‘ื ืฉืžื”,
01:33
so I decided I would experiment
31
93112
3227
ืื– ื”ื—ืœื˜ืชื™ ืฉืื ื™ ืืชื ืกื”
01:36
to try to find more optimal dosages
32
96339
2440
ื›ื“ื™ ืœื ืกื•ืช ืœืžืฆื•ื ืžื™ื ื•ื ื™ื ื™ื•ืชืจ ืื•ืคื˜ื™ืžืœื™ื™ื
01:38
because there really isn't a clear road map
33
98779
1637
ื›ื™ ื‘ืืžืช ืื™ืŸ ืžืคืช ื“ืจื›ื™ื ื‘ืจื•ืจื”
01:40
on this that's detailed.
34
100416
1903
ื‘ื ื•ืฉื ื–ื” ืฉื”ื™ื ืžืคื•ืจื˜ืช.
01:42
I began to try different mixtures,
35
102319
2151
ื”ืชื—ืœืชื™ ืœื ืกื•ืช ืชืขืจื•ื‘ื•ืช ืฉื•ื ื•ืช,
01:44
and I was blown away by how
36
104470
2872
ื•ื ื“ื”ืžืชื™ ืžืื™ืš
01:47
tiny changes in dosages
37
107342
2411
ืฉื™ื ื•ื™ื™ื ื–ืขื™ืจื™ื ื‘ืžื™ื ื•ื ื™ื
01:49
dramatically changed my sense of self,
38
109753
3149
ืฉื™ื ื• ื‘ืื•ืคืŸ ื“ืจืžื˜ื™ ืืช ืชื—ื•ืฉืช ื”ืขืฆืžื™ ืฉืœื™,
01:52
my sense of who I was, my thinking,
39
112902
1811
ืืช ื”ืชื—ื•ืฉื” ืฉืœ ืžื™ ื”ื™ื™ืชื™, ื”ื—ืฉื™ื‘ื” ืฉืœื™,
01:54
my behavior towards people.
40
114713
2259
ื”ื”ืชื ื”ื’ื•ืช ืฉืœื™ ื›ืœืคื™ ืื ืฉื™ื.
01:56
One particularly dramatic case:
41
116972
2049
ืื—ื“ ื”ืžืงืจื™ื ื”ื“ืจืžื˜ื™ื™ื ื‘ืžื™ื•ื—ื“:
01:59
for a couple months I actually tried dosages
42
119021
1868
ื›ื‘ืจ ืžื–ื” ื›ืžื” ื—ื•ื“ืฉื™ื ื ื™ืกื™ืชื™ ืœืžืขืฉื” ืžื™ื ื•ื ื™ื
02:00
and chemicals typical of a man in his early 20s,
43
120889
3908
ื•ื›ื™ืžื™ืงืœื™ื ืื•ืคื™ื™ื ื™ื™ื ืœื’ื‘ืจ ื‘ืฉื ื•ืช ื”ืขืฉืจื™ื ืœื—ื™ื™ื•.
02:04
and I was blown away by how my thoughts changed.
44
124797
3011
ื•ื ื˜ืจืคืชื™ ืžืื™ืš ืฉื”ืžื—ืฉื‘ื•ืช ืฉืœื™ ื”ืฉืชื ื•.
02:07
(Laughter)
45
127808
3120
(ืฆื—ื•ืง)
02:10
I was angry all the time,
46
130928
3058
ื›ืขืกืชื™ ื›ืœ ื”ื–ืžืŸ.
02:13
I thought about sex constantly,
47
133986
1846
ื—ืฉื‘ืชื™ ืขืœ ืกืงืก ื›ืœ ื”ื–ืžืŸ,
02:15
and I thought I was the smartest person
48
135832
2949
ื•ื—ืฉื‘ืชื™ ืฉืื ื™ ื”ืื“ื ื”ื›ื™ ื—ื›ื
02:18
in the entire world, and
49
138781
2051
ื‘ืขื•ืœื ื›ื•ืœื•, ื•...
02:20
โ€”(Laughter)โ€”
50
140832
2263
-(ืฆื—ื•ืง) โ€”
02:23
of course over the years I'd met guys kind of like that,
51
143095
2925
ื›ืžื•ื‘ืŸ ื‘ืžื”ืœืš ื”ืฉื ื™ื ืคื’ืฉืชื™ ื‘ื—ื•ืจื™ื ืฉื›ืืœื”,
02:26
or maybe kind of toned-down versions of that.
52
146020
2267
ืื• ืื•ืœื™ ืกื•ื’ ืฉืœ ื’ืจืกืื•ืช ืžืขื•ื“ื ื•ืช ื™ื•ืชืจ ืฉืœ ื–ื”.
02:28
I was kind of extreme.
53
148287
2184
ื”ื™ื™ืชื™ ื“ื™ ืงื™ืฆื•ื ื™ืช.
02:30
But to me, the surprise was,
54
150471
2569
ืื‘ืœ ื‘ืฉื‘ื™ืœื™, ื”ื”ืคืชืขื” ื”ื™ืชื”,
02:33
I wasn't trying to be arrogant.
55
153040
2166
ืœื ื ื™ืกื™ืชื™ ืœื”ื™ื•ืช ื™ื”ื™ืจื”.
02:35
I was actually trying,
56
155206
3209
ื‘ืืžืช ื ื™ืกื™ืชื™,
02:38
with a little bit of insecurity,
57
158415
2360
ืขื ืงืฆืช ื—ื•ืกืจ ื‘ื™ื˜ื—ื•ืŸ
02:40
to actually fix a problem in front of me,
58
160775
3000
ืžืžืฉ ืœืคืชื•ืจ ื‘ืขื™ื” ืฉืขืžื“ื” ื‘ืคื ื™,
02:43
and it just didn't come out that way.
59
163775
1856
ื•ื–ื” ืœื ืคืฉื•ื˜ ื™ืฆื ื›ื›ื”.
02:45
So I couldn't handle it.
60
165631
1483
ืื– ืœื ื™ื›ื•ืœืชื™ ืœื”ืชืžื•ื“ื“ ืขื ื–ื”.
02:47
I changed my dosages.
61
167114
1525
ืฉื™ื ื™ืชื™ ืืช ื”ืžื™ื ื•ื ื™ื ืฉืœื™.
02:48
But that experience, I think, gave me
62
168639
2455
ืื‘ืœ ื ื™ืกื™ื•ืŸ ื–ื”, ืื ื™ ื—ื•ืฉื‘ืช, ื ืชืŸ ืœื™
02:51
a new appreciation for men
63
171094
1751
ื”ืขืจื›ื” ืžื—ื•ื“ืฉืช ืœื’ื‘ืจื™ื
02:52
and what they might walk through,
64
172845
1816
ื•ืžื” ืฉื”ื ืื•ืœื™ ืขื•ื‘ืจื™ื,
02:54
and I've gotten along with men
65
174661
1690
ื•ื”ืกืชื“ืจืชื™ ืขื ื’ื‘ืจื™ื
02:56
a lot better since then.
66
176351
1839
ื”ืจื‘ื” ื™ื•ืชืจ ื˜ื•ื‘ ืžืื–.
02:58
What I was trying to do
67
178190
1545
ืžื” ืฉื ื™ืกื™ืชื™ ืœืขืฉื•ืช
02:59
with tuning these hormones
68
179735
2028
ืขื ื›ื•ื•ื ื•ืŸ ื”ื•ืจืžื•ื ื™ื ืืœื”
03:01
and neurotransmitters and so forth
69
181763
2323
ื•ื”ืžื•ืœื™ื›ื™ื ื”ืขืฆื‘ื™ื™ื ื•ื›ื“ื•ืžื”
03:04
was to try to get my intelligence back
70
184086
3605
ื”ื™ื” ืœื ืกื•ืช ืœื”ื—ื–ื™ืจ ืœืขืฆืžื™ ืืช ื”ืื™ื ื˜ืœื™ื’ื ืฆื™ื” ืฉืœื™
03:07
after my illness and surgery,
71
187691
2634
ืœืื—ืจ ื”ืžื—ืœื” ื•ื”ื ื™ืชื•ื—.
03:10
my creative thought, my idea flow.
72
190325
2635
ื”ื—ืฉื™ื‘ื” ื”ื™ืฆื™ืจืชื™ืช ืฉืœื™, ื–ืจื ื”ืจืขื™ื•ื ื•ืช.
03:12
And I think mostly in images,
73
192960
2641
ื•ืื ื™ ื—ื•ืฉื‘ืช ื‘ืขื™ืงืจ ื‘ื“ื™ืžื•ื™ื™ื,
03:15
and so for me that became a key metric --
74
195601
2852
ืื– ื‘ืฉื‘ื™ืœื™ ื–ื” ื”ืคืš ืžื“ื“ ื”ืžืคืชื— ืฉืœ --
03:18
how to get these mental images
75
198453
2330
ืื™ืš ืœื”ื’ื™ืข ืœื“ื™ืžื•ื™ื™ื ืžื ื˜ืœื™ื™ื ืืœื”
03:20
that I use as a way of rapid prototyping,
76
200783
2504
ืฉืื ื™ ืžืฉืชืžืฉืช ื‘ื”ื ื›ื“ืจืš ืžื”ื™ืจื” ืœื‘ื ื™ื™ืช ืื‘-ื˜ื™ืคื•ืก,
03:23
if you will, my ideas,
77
203287
1743
ืื ืชืจืฆื•, ื”ืจืขื™ื•ื ื•ืช ืฉืœื™,
03:25
trying on different new ideas for size,
78
205030
2372
ืžืชื ืกื” ื‘ืจืขื™ื•ื ื•ืช ืฉื•ื ื™ื ื—ื“ืฉื™ื ืขื‘ื•ืจ ื’ื•ื“ืœ,
03:27
playing out scenarios.
79
207402
1695
ืžืฉื—ืงืช ืชืจื—ื™ืฉื™ื.
03:29
This kind of thinking isn't new.
80
209097
1913
ืกื•ื’ ื–ื” ืฉืœ ื—ืฉื™ื‘ื” ืื™ื ื• ื—ื“ืฉ.
03:31
Philiosophers like Hume and Descartes and Hobbes
81
211010
3255
ืคื™ืœื•ืกื•ืคื™ื ื›ืžื• ื™ื•ื ื•ื“ืงืืจื˜ ื•ื”ื•ื‘ืก
03:34
saw things similarly.
82
214265
1528
ืจืื• ืืช ื”ื“ื‘ืจื™ื ื‘ืื•ืคืŸ ื“ื•ืžื”.
03:35
They thought that mental images and ideas
83
215793
2737
ื”ื ื—ืฉื‘ื• ืฉื”ื“ื™ืžื•ื™ื™ื ื”ืžื ื˜ืืœื™ื™ื ื•ื”ืจืขื™ื•ื ื•ืช
03:38
were actually the same thing.
84
218530
2331
ื”ื™ื• ืœืžืขืฉื” ืื•ืชื• ื”ื“ื‘ืจ.
03:40
There are those today that dispute that,
85
220861
2417
ื™ืฉื ื ื”ื™ื•ื ื›ืืœื” ืฉื—ื•ืœืงื™ื ืขืœ ื›ืš,
03:43
and lots of debates about how the mind works,
86
223278
3195
ื•ื”ืจื‘ื” ื“ื™ื•ื ื™ื ืขืœ ืื™ืš ื”ืžื•ื— ืขื•ื‘ื“ .
03:46
but for me it's simple:
87
226473
1736
ืื‘ืœ ื‘ืฉื‘ื™ืœื™ ื–ื” ืคืฉื•ื˜:
03:48
Mental images, for most of us,
88
228209
2532
ื“ื™ืžื•ื™ื™ื ืžื ื˜ืœื™ื™ื, ืขื‘ื•ืจ ืจื•ื‘ื ื•,
03:50
are central in inventive and creative thinking.
89
230741
3934
ื”ื ื’ื•ืจื ืžืจื›ื–ื™ ื‘ื—ืฉื™ื‘ื” ื”ื”ืžืฆืืชื™ืช ื•ื”ื™ืฆื™ืจืชื™ืช.
03:54
So after several years,
90
234675
1775
ืื– ืœืื—ืจ ืžืกืคืจ ืฉื ื™ื,
03:56
I tuned myself up and I have lots of great,
91
236450
3233
ื›ื™ื•ื•ื ื ืชื™ ืขืฆืžื™ ื•ื™ืฉ ืœื™ ืžืžืฉ ื”ืจื‘ื”
03:59
really vivid mental images with a lot of sophistication
92
239683
3048
ื“ื™ืžื•ื™ื™ื ืžื ื˜ืืœื™ื™ื ื—ื™ื™ื ืขื ื”ืจื‘ื” ืชื—ื›ื•ื
04:02
and the analytical backbone behind them.
93
242731
2269
ื•ืขืžื•ื“ ื”ืฉื“ืจื” ื”ืื ืœื™ื˜ื™ ืžืื—ื•ืจื™ื”ื.
04:05
And so now I'm working on,
94
245000
1921
ืื– ืขื›ืฉื™ื• ืื ื™ ืขื•ื‘ื“ืช ืขืœ
04:06
how can I get these mental images in my mind
95
246921
4162
ืื™ืš ืื ื™ ื™ื›ื•ืœื” ืœื”ืขืœื•ืช ื‘ืžื•ื—ื™ ืืช ื”ื“ื™ืžื•ื™ื™ื ื”ืžื ื˜ืœื™ื™ื ื”ืืœื”
04:11
out to my computer screen faster?
96
251083
2850
ืœืžืกืš ื”ืžื—ืฉื‘ ืฉืœื™, ืžื”ืจ ื™ื•ืชืจ?
04:13
Can you imagine, if you will,
97
253933
2089
ื”ืื ื‘ื™ื›ื•ืœืชื›ื ืœื“ืžื™ื™ืŸ, ืื ืชืจืฆื•,
04:16
a movie director being able to use
98
256022
2120
ื‘ืžืื™ืช ืกืจื˜ื™ื ืฉืชื•ื›ืœ ืœื”ืฉืชืžืฉ
04:18
her imagination alone to direct the world in front of her?
99
258142
3762
ื‘ื“ืžื™ื•ืŸ ืฉืœื” ืœื‘ื“ื• ื›ื“ื™ ืœื‘ื™ื™ื ืืช ื”ืขื•ืœื ืฉืœืคื ื™ื”?
04:21
Or a musician to get the music out of his head?
100
261904
3588
ืื• ืžื•ื–ื™ืงืื™ ืœื”ื•ืฆื™ื ืืช ื”ืžื•ื–ื™ืงื”. ืฉืœื• ืžื”ืจืืฉ?
04:25
There are incredible possibilities with this
101
265492
2292
ื™ืฉื ืŸ ืžืกืคืจ ืืคืฉืจื•ื™ื•ืช ืžื“ื”ื™ืžื•ืช ืขื ื–ื”
04:27
as a way for creative people
102
267784
1993
ื›ื“ืจืš ืขื‘ื•ืจ ืื ืฉื™ื ื™ืฆื™ืจืชื™ื™ื
04:29
to share at light speed.
103
269777
2233
ืœืฉืชืฃ ื‘ืžื”ื™ืจื•ืช ื”ืื•ืจ.
04:32
And the truth is, the remaining bottleneck
104
272010
1998
ื•ื”ืืžืช ื”ื™ื, ืฉืฆื•ื•ืืจ ื”ื‘ืงื‘ื•ืง ืฉื ื•ืชืจ
04:34
in being able to do this
105
274008
1173
ื‘ืคื ื™ ื”ืืคืฉืจื•ืช ืœืขืฉื•ืช ืืช ื–ื”
04:35
is just upping the resolution of brain scan systems.
106
275181
3980
ื”ื•ื ืคืฉื•ื˜ ืœื”ืขืœื•ืช ืืช ื”ืจื–ื•ืœื•ืฆื™ื” ืฉืœ ืžืขืจื›ื•ืช ืกืจื™ืงืช ื”ืžื•ื—.
04:39
So let me show you why I think we're pretty close to getting there
107
279161
2858
ืื– ื”ืจืฉื• ืœื™ ืœื”ืจืื•ืช ืœื›ื ืœืžื” ืื ื™ ื—ื•ืฉื‘ืช ืฉืื ื—ื ื• ื“ื™ ืงืจื•ื‘ื™ื ืœื”ื’ื™ืข ืœืฉื
04:42
by sharing with you two recent experiments
108
282029
2387
ื‘ื›ืš ืฉืืฉืชืฃ ืื™ืชื›ื ืฉื ื™ ื ื™ืกื•ื™ื™ื ืฉื ืขืฉื• ืœืื—ืจื•ื ื”
04:44
from two top neuroscience groups.
109
284416
2587
ืขืœ ื™ื“ื™ ืฉืชื™ ืงื‘ื•ืฆื•ืช ืžื•ื‘ื™ืœื•ืช ื‘ืžื“ืขื™ ื”ืžื•ื—.
04:47
Both used fMRI technology --
110
287003
2488
ืฉื ื™ื”ื ื”ืฉืชืžืฉื• ื‘ื˜ื›ื ื•ืœื•ื’ื™ื™ืช ื”-fMRI.
04:49
functional magnetic resonance imaging technology --
111
289491
2279
ื˜ื›ื ื•ืœื•ื’ื™ืช ื“ื™ืžื•ืช ืชื”ื•ื“ื” ืžื’ื ื˜ื™ืช ืชืคืงื•ื“ื™
04:51
to image the brain,
112
291770
1411
ืœื“ื™ืžื•ื™ ื”ืžื•ื—,
04:53
and here is a brain scan set from Giorgio Ganis
113
293181
3257
ื•ื”ื ื” ืกืจื™ืงืช ืžื•ื— ืžื’'ื•ืจื’'ื• ื’ื ื™ืก
04:56
and his colleagues at Harvard.
114
296438
1950
ื•ืขืžื™ืชื™ื• ื‘ืื•ื ื™ื‘ืจืกื™ื˜ืช ื”ืจื•ื•ืืจื“.
04:58
And the left-hand column shows a brain scan
115
298388
3154
ื•ื”ื˜ื•ืจ ื”ืฉืžืืœื™ ืžืจืื” ืกืจื™ืงืช ืžื•ื—
05:01
of a person looking at an image.
116
301542
3267
ืฉืœ ืื“ื ืฉืžืกืชื›ืœ ืขืœ ื“ื™ืžื•ื™.
05:04
The middle column shows the brainscan
117
304809
1929
ื”ืขืžื•ื“ื” ื”ืืžืฆืขื™ืช ืžืจืื” ืกืจื™ืงืช ืžื•ื—
05:06
of that same individual
118
306738
1621
ืฉืœ ืื•ืชื• ืื“ื
05:08
imagining, seeing that same image.
119
308359
3066
ืžื“ืžื™ื™ืŸ ืฉืจืื” ืืช ืื•ืชื• ื“ื™ืžื•ื™.
05:11
And the right column was created
120
311425
2048
ื•ื”ืขืžื•ื“ื” ื”ื™ืžื ื™ืช ื ื•ืฆืจื”
05:13
by subtracting the middle column from the left column,
121
313473
3594
ืขืœ-ื™ื“ื™ ื—ื™ืกื•ืจ ื”ืขืžื•ื“ื” ื”ืืžืฆืขื™ืช ืžื”ืขืžื•ื“ื” ื”ืฉืžืืœื™ืช,
05:17
showing the difference to be nearly zero.
122
317083
2943
ืžืจืื” ืฉื”ื”ื‘ื“ืœ ืงืจื•ื‘ ืœืืคืก.
05:20
This was repeated on lots of different individuals
123
320026
2894
ื–ื” ื—ื–ืจ ืืฆืœ ื”ืจื‘ื” ืื ืฉื™ื ืฉื•ื ื™ื
05:22
with lots of different images,
124
322920
2830
ืขื ื”ืจื‘ื” ื“ื™ืžื•ื™ื™ื ืฉื•ื ื™ื.
05:25
always with a similar result.
125
325750
1604
ืชืžื™ื“ ืขื ืชื•ืฆืื” ื“ื•ืžื”.
05:27
The difference between seeing an image
126
327354
2089
ื”ื”ื‘ื“ืœ ื‘ื™ืŸ ืœืจืื•ืช ื“ื™ืžื•ื™
05:29
and imagining seeing that same image
127
329443
2455
ื•ืœื“ืžื™ื™ืŸ ืจืื™ื™ืช ืื•ืชื• ื“ื™ืžื•ื™
05:31
is next to nothing.
128
331898
2155
ื”ื•ื ื›ืžืขื˜ ื›ืœื•ื.
05:34
Next let me share with you one other experiment,
129
334053
2761
ืขื›ืฉื™ื•, ื”ืจืฉื• ืœื™ ืœืฉืชืฃ ืืชื›ื ื‘ืื—ื“ ืžื”ื ื™ืกื•ื™ื™ื ื”ืื—ืจื™ื,
05:36
this from Jack Gallant's lab at Cal Berkeley.
130
336814
4541
ื–ื” ืžื”ืžืขื‘ื“ื” ืฉืœ ื’'ืง ื’ืืœืื ื˜ ื‘ื‘ืจืงืœื™, ืงืœื™ืคื•ืจื ื™ื”.
05:41
They've been able to decode brainwaves
131
341355
2063
ื”ื ื”ืฆืœื™ื—ื• ืœืคืขื ื— ืืช ื’ืœื™ ื”ืžื•ื—
05:43
into recognizable visual fields.
132
343418
2441
ืœื›ื“ื™ ื–ื™ื”ื•ื™ ืฉื“ื•ืช ื—ื–ื•ืชื™ื™ื.
05:45
So let me set this up for you.
133
345859
1305
ืื– ื”ืจืฉื• ืœื™ ืœืืจื’ืŸ ื–ืืช ื‘ืฉื‘ื™ืœื›ื.
05:47
In this experiment, individuals were shown
134
347164
2333
ื‘ื ื™ืกื•ื™ ื–ื”, ื”ื•ืฆื’ื• ื‘ืคื ื™ ื™ื—ื™ื“ื™ื
05:49
hundreds of hours of YouTube videos
135
349497
1995
ืžืื•ืช ืฉืขื•ืช ืฉืœ ืงื˜ืขื™ ื•ื™ื“ืื• ืžื™ื•-ื˜ื™ื•ื‘
05:51
while scans were made of their brains
136
351492
2039
ืชื•ืš ื›ื“ื™ ืฉืกืจืงื• ืืช ืžื•ื—ื•ืชื™ื”ื
05:53
to create a large library of their brain reacting
137
353531
3216
ื›ื“ื™ ืœื™ืฆื•ืจ ืกืคืจื™ื” ื’ื“ื•ืœื” ืฉืœ ืžื•ื—ื•ืชื™ื”ื ืฉืžื’ื™ื‘ื™ื
05:56
to video sequences.
138
356747
2649
ืœืจืฆืคื™ ื•ื™ื“ืื•.
05:59
Then a new movie was shown with new images,
139
359396
2850
ืœืื—ืจ ืžื›ืŸ ื”ื•ืฆื’ ืกืจื˜ ื—ื“ืฉ ืขื ืชืžื•ื ื•ืช ื—ื“ืฉื•ืช,
06:02
new people, new animals in it,
140
362246
1952
ืื ืฉื™ื ื—ื“ืฉื™ื, ื—ื™ื•ืช ื—ื“ืฉื•ืช ื‘ืชื•ื›ื•
06:04
and a new scan set was recorded.
141
364198
2711
ื•ืกืจื™ืงื” ื—ื“ืฉื” ื”ื•ืงืœื˜ื”.
06:06
The computer, using brain scan data alone,
142
366909
2788
ื”ืžื—ืฉื‘, ื‘ืืžืฆืขื•ืช ื ืชื•ื ื™ ืกืจื™ืงืช ืžื•ื— ื‘ืœื‘ื“.
06:09
decoded that new brain scan
143
369697
2024
ืคื™ืขื ื— ืืช ืกืจื™ืงืช ื”ืžื•ื— ื”ื—ื“ืฉื”
06:11
to show what it thought the individual was actually seeing.
144
371721
4376
ื›ื“ื™ ืœื”ืจืื•ืช ืžื” ื”ื•ื ื—ืฉื‘ ืฉื”ืื“ื ืœืžืขืฉื” ืจืื”.
06:16
On the right-hand side, you see the computer's guess,
145
376097
3381
ื‘ืฆื“ ื™ืžื™ืŸ, ืืชื ืจื•ืื™ื ืืช ื”ื ื™ื—ื•ืฉ ืฉืœ ื”ืžื—ืฉื‘,
06:19
and on the left-hand side, the presented clip.
146
379478
4007
ื‘ืฆื“ ืฉืžืืœ, ืืช ื”ืงืœื™ืค ืฉื”ื•ืฆื’.
06:23
This is the jaw-dropper.
147
383485
2319
ื–ื” ืžื“ื”ื™ื.
06:25
We are so close to being able to do this.
148
385804
2687
. ืื ื—ื ื• ื›ืœ ื›ืš ืงืจื•ื‘ื™ื ืœืืคืฉืจื•ืช ืœืขืฉื•ืช ืืช ื–ื”.
06:28
We just need to up the resolution.
149
388491
2785
ืื ื—ื ื• ืจืง ืฆืจื™ื›ื™ื ืœื”ื’ื‘ื™ืจ ืืช ื”ืจื–ื•ืœื•ืฆื™ื”.
06:31
And now remember that when you see an image
150
391276
3252
ื•ื›ืขืช ื–ื™ื›ืจื• ืฉื›ืฉืืชื ืจื•ืื™ื ื“ื™ืžื•ื™
06:34
versus when you imagine that same image,
151
394528
2158
ืœืขื•ืžืช ื–ื” ืฉืืชื ืžื“ืžื™ื™ื ื™ื ืื•ืชื•,
06:36
it creates the same brain scan.
152
396686
3475
ื–ื” ื™ื•ืฆืจ ืกืจื™ืงืช ืžื•ื— ื–ื”ื”.
06:40
So this was done with the highest-resolution
153
400161
2722
ืื– ื–ื” ื ืขืฉื” ืขื ืžืขืจื›ื•ืช ืกืจื™ืงืช ื”ืžื•ื—
06:42
brain scan systems available today,
154
402883
2185
ื‘ืขืœื•ืช ื”ืจื–ื•ืœื•ืฆื™ื” ื”ื’ื‘ื•ื”ื” ื‘ื™ื•ืชืจ ืฉื–ืžื™ื ื™ื ื›ื™ื•ื.
06:45
and their resolution has increased really
155
405068
1784
ื”ืจื–ื•ืœื•ืฆื™ื” ืฉืœื”ืŸ ืžืžืฉ ื’ื“ืœื”
06:46
about a thousandfold in the last several years.
156
406852
3497
ื‘ืืœืคื™ ืžื•ื ื™ื ื‘ืžืกืคืจ ื”ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช.
06:50
Next we need to increase the resolution
157
410349
2322
ืœื”ื‘ื ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื”ื’ื“ื™ืœ ืืช ื”ืจื–ื•ืœื•ืฆื™ื”
06:52
another thousandfold
158
412671
1977
ื‘ืขื•ื“ ืืœืคื™ ืžื•ื ื™ื
06:54
to get a deeper glimpse.
159
414648
1789
ื›ื“ื™ ืœื–ื›ื•ืช ื‘ื”ืฆืฆื” ืขืžื•ืงื” ื™ื•ืชืจ.
06:56
How do we do that?
160
416437
1511
ืื™ืš ื ืขืฉื” ืืช ื–ื”?
06:57
There's a lot of techniques in this approach.
161
417948
2614
ื™ืฉ ื”ืžื•ืŸ ื˜ื›ื ื™ืงื•ืช ื‘ื’ื™ืฉื” ื–ื•.
07:00
One way is to crack open your skull and put in electrodes.
162
420562
3118
ื“ืจืš ืื—ืช ื”ื™ื ืœืคืฆื— ืืช ื”ื’ื•ืœื’ื•ืœืช ืฉืœื›ื, ื•ืœื”ื›ื ื™ืก ืœืชื•ื›ื” ืืœืงื˜ืจื•ื“ื•ืช.
07:03
I'm not for that.
163
423680
1403
ืื ื™ ืœื ื‘ืขื“ ื–ื”.
07:05
There's a lot of new imaging techniques
164
425083
2955
ื™ืฉ ื”ืจื‘ื” ื˜ื›ื ื™ืงื•ืช ื”ื“ืžื™ื” ื—ื“ืฉื•ืช
07:08
being proposed, some even by me,
165
428038
2003
ืฉื”ื•ืฆืขื•, ื‘ื—ืœืงื ืืคื™ืœื• ืขืœ ื™ื“ื™,
07:10
but given the recent success of MRI,
166
430041
2959
ืื‘ืœ ืœืื•ืจ ื”ื”ืฆืœื—ื” ื”ืื—ืจื•ื ื” ืฉืœ ื”- MRI,
07:13
first we need to ask the question,
167
433000
2068
ืขืœื™ื ื• ืœืฉืื•ืœ ืงื•ื“ื ื›ืœ ืืช ื”ืฉืืœื”,
07:15
is it the end of the road with this technology?
168
435068
2841
ื”ืื ื–ื” ืกื•ืฃ ื”ื“ืจืš ืขื ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ื”ื–ื•?
07:17
Conventional wisdom says the only way
169
437909
2455
ื”ื”ื™ื’ื™ื•ืŸ ื”ื‘ืจื™ื ืื•ืžืจ ืฉื”ื“ืจืš ื”ื™ื—ื™ื“ื”
07:20
to get higher resolution is with bigger magnets,
170
440364
2589
ืœื”ืฉื™ื’ ืจื–ื•ืœื•ืฆื™ื” ื’ื‘ื•ื”ื” ื™ื•ืชืจ ื”ื™ื ื‘ืขื–ืจืช ืžื’ื ื˜ื™ื ื’ื“ื•ืœื™ื ื™ื•ืชืจ,
07:22
but at this point bigger magnets
171
442953
1842
ืื‘ืœ ื‘ื ืงื•ื“ื” ื–ื• ืžื’ื ื˜ื™ื ื’ื“ื•ืœื™ื
07:24
only offer incremental resolution improvements,
172
444795
3750
ืจืง ืžืฆื™ืขื™ื ืฉื™ืคื•ืจื™ื ืžืฆื˜ื‘ืจื™ื ื‘ืจื–ื•ืœื•ืฆื™ื”,
07:28
not the thousandfold we need.
173
448545
2160
ืœื ืืœืคื™ ื”ืžื•ื ื™ื ืฉืื ื• ืฆืจื™ื›ื™ื.
07:30
I'm putting forward an idea:
174
450705
1823
ืื ื™ ื–ื•ืจืงืช ืจืขื™ื•ืŸ:
07:32
instead of bigger magnets,
175
452528
1963
ื‘ืžืงื•ื ืžื’ื ื˜ื™ื ื™ื•ืชืจ ื’ื“ื•ืœื™ื,
07:34
let's make better magnets.
176
454491
2450
ื‘ื•ืื• ื•ื ื™ืฆื•ืจ ืžื’ื ื˜ื™ื ื˜ื•ื‘ื™ื ื™ื•ืชืจ .
07:36
There's some new technology breakthroughs
177
456941
2003
ื™ืฉ ื›ืžื” ืคืจื™ืฆื•ืช ื“ืจืš ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ื—ื“ืฉื•ืช
07:38
in nanoscience
178
458944
1457
ื‘ื ื ื•ื˜ื›ื ื•ืœื•ื’ื™ื”
07:40
when applied to magnetic structures
179
460401
1727
ืฉื›ืืฉืจ ืžื™ื•ืฉืžื™ื ืœืžื‘ื ื™ื ืžื’ื ื˜ื™ื™ื
07:42
that have created a whole new class of magnets,
180
462128
3013
ื”ื ื™ืฆืจื• ืกื•ื’ ื—ื“ืฉ ืœื’ืžืจื™ ืฉืœ ืžื’ื ื˜ื™ื,
07:45
and with these magnets, we can lay down
181
465141
2531
ื•ืขื ืžื’ื ื˜ื™ื ืืœื” ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื™ืฆืจ
07:47
very fine detailed magnetic field patterns
182
467672
2167
ืชื‘ื ื™ื•ืช ืฉื“ื” ืžื’ื ื˜ื™ ืžืคื•ืจื˜ื•ืช ื™ืคื•ืช ืžืื“
07:49
throughout the brain,
183
469839
1355
ื‘ื›ืœ ื—ืœืงื™ ื”ืžื•ื—.
07:51
and using those, we can actually create
184
471194
3182
ื•ืชื•ืš ืฉื™ืžื•ืฉ ื‘ื”ืŸ ืื ื• ื™ื›ื•ืœื™ื ืœืžืขืฉื” ืœื™ืฆื•ืจ
07:54
holographic-like interference structures
185
474376
2838
ืžื‘ื ื™ ื”ืชืขืจื‘ื•ืช ื“ืžื•ื™ื™- ื”ื•ืœื•ื’ืจืคื™ื,
07:57
to get precision control over many patterns,
186
477214
3469
ื›ื“ื™ ืœืงื‘ืœ ื“ื™ื•ืง ื‘ืฉืœื™ื˜ื” ืขืœ ื“ืคื•ืกื™ื ืจื‘ื™ื.
08:00
as is shown here by shifting things.
187
480683
2445
ื›ืคื™ ืฉืžื•ืฆื’ ื›ืืŸ ืขืœ ื™ื“ื™ ื”ืขื‘ืจืช ื“ื‘ืจื™ื.
08:03
We can create much more complicated structures
188
483128
3150
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื™ืฆื•ืจ ืžื‘ื ื™ื ื”ืจื‘ื” ื™ื•ืชืจ ืžื•ืจื›ื‘ื™ื
08:06
with slightly different arrangements,
189
486278
2071
ืขื ืกื™ื“ื•ืจื™ื ืฉื•ื ื™ื ื‘ืžืงืฆืช.
08:08
kind of like making Spirograph.
190
488349
3033
ื‘ืขืจืš ื›ืžื• ืฉืขื•ืฉื™ื ืกืคื™ืจื•ื’ืจืฃ.
08:11
So why does that matter?
191
491382
2228
ืื– ืœืžื” ื–ื” ืžืฉื ื”?
08:13
A lot of effort in MRI over the years
192
493610
2577
ื”ืจื‘ื” ืžืืžืฅ ื”ื•ืฉืงืข ื‘- MRI
08:16
has gone into making really big,
193
496187
2837
ืœืื•ืจืš ื”ืฉื ื™ื ื‘ื™ืฆื™ืจืช ืžื’ื ื˜ื™ื
08:19
really huge magnets, right?
194
499024
2610
ื’ื“ื•ืœื™ื, ืขื ืงื™ื™ื ืžืžืฉ, ื ื›ื•ืŸ?
08:21
But yet most of the recent advances
195
501634
2509
ืื‘ืœ ืขื“ื™ื™ืŸ ืจื•ื‘ ื”ืฉื™ืคื•ืจื™ื ื”ืื—ืจื•ื ื™ื
08:24
in resolution have actually come from
196
504143
2197
ื‘ืจื–ื•ืœื•ืฆื™ื” ื”ื’ื™ืขื• ืœืžืขืฉื”
08:26
ingeniously clever encoding and decoding solutions
197
506340
4008
ืžืคืชืจื•ื ื•ืช ื—ื›ืžื™ื ืฉืœ ืงื™ื“ื•ื“ ื•ืคื™ืขื ื•ื—
08:30
in the F.M. radio frequency transmitters and receivers
198
510348
3287
ื‘ืžืฉื“ืจื™ ื•ืžืงืœื˜ื™ ืจื“ื™ื• ื‘ืชื“ืจ F.M
08:33
in the MRI systems.
199
513635
2691
ื‘ืžืขืจื›ื•ืช ื”-MRI.
08:36
Let's also, instead of a uniform magnetic field,
200
516326
3322
ื•ื‘ื•ืื• ื’ื, ื‘ืžืงื•ื ืฉื“ื” ืžื’ื ื˜ื™ ืื—ื™ื“,
08:39
put down structured magnetic patterns
201
519648
2672
ื ืฉื™ื ื“ืคื•ืกื™ื ืžื’ื ื˜ื™ื™ื ืžื•ื‘ื ื™ื
08:42
in addition to the F.M. radio frequencies.
202
522320
3099
ื‘ื ื•ืกืฃ ืœืชื“ืจื™ ื”- F.M
08:45
So by combining the magnetics patterns
203
525419
2307
ื›ืš ืฉืขืœ ื™ื“ื™ ืฉื™ืœื•ื‘ ืฉืœ ื“ืคื•ืกื™ื ืžื’ื ื˜ื™ื™ื
08:47
with the patterns in the F.M. radio frequencies
204
527726
2710
ืขื ื”ื“ืคื•ืกื™ื ื‘ ืชื“ืจื™ ื”- .F.M ืฉืœ ื”ืจื“ื™ื•
08:50
processing which can massively increase
205
530436
2171
ืœืขื‘ื“ ืืช ืžื” ืฉื™ื›ื•ืœ ืœื”ื’ื‘ื™ืจ ืžืกื™ื‘ื™ืช
08:52
the information that we can extract
206
532607
1969
ืืช ื”ืžื™ื“ืข ืฉืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื—ืœืฅ
08:54
in a single scan.
207
534576
2446
ื‘ืกืจื™ืงื” ื‘ื•ื“ื“ืช.
08:57
And on top of that, we can then layer
208
537022
2332
ื‘ื ื•ืกืฃ ืœื›ืš, ืื ื• ื™ื›ื•ืœื™ื ืื– ืœืขืจื•ืš
08:59
our ever-growing knowledge of brain structure and memory
209
539354
4472
ืืช ื”ื™ื“ืข ื”ื”ื•ืœืš ื•ื’ื•ื‘ืจ ืฉืœื ื• ืขืœ ืžื‘ื ื” ื”ืžื•ื— ื•ื”ื–ื™ื›ืจื•ืŸ
09:03
to create a thousandfold increase that we need.
210
543826
3695
ื›ื“ื™ ืœื™ืฆื•ืจ ืืช ื”ื”ืขืœืื” ื‘ืืœืคื™ ืžื•ื ื™ื ืฉืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื”.
09:07
And using fMRI, we should be able to measure
211
547521
2943
ื•ื‘ืืžืฆืขื•ืช fMRI, ื ื•ื›ืœ ืœืžื“ื•ื“
09:10
not just oxygenated blood flow,
212
550464
2082
ืœื ืจืง ืืช ื–ืจื™ืžืช ื”ื“ื ื”ืžื—ื•ืžืฆืŸ,
09:12
but the hormones and neurotransmitters I've talked about
213
552546
2901
ืืœื ืืช ื”ื”ื•ืจืžื•ื ื™ื ื•ืืช ื”ื ื•ื™ืจื•ื˜ืจื ืกืžื™ื˜ื•ืจื™ื ืฉื“ื™ื‘ืจืชื™ ืขืœื™ื”ื
09:15
and maybe even the direct neural activity,
214
555447
2345
ื•ืื•ืœื™ ืืคื™ืœื• ืืช ื”ืคืขื™ืœื•ืช ื”ืขืฆื‘ื™ืช ื”ื™ืฉื™ืจื”,
09:17
which is the dream.
215
557792
1503
ืฉื–ื” ื”ื—ืœื•ื.
09:19
We're going to be able to dump our ideas
216
559295
2234
ืื ื—ื ื• ื”ื•ืœื›ื™ื ืœื”ื™ื•ืช ืžืกื•ื’ืœื™ื ืœื–ืจื•ืง ืืช ื”ืจืขื™ื•ื ื•ืช ืฉืœื ื•
09:21
directly to digital media.
217
561529
2694
ื™ืฉื™ืจื•ืช ืœืžื“ื™ื” ื“ื™ื’ื™ื˜ืœื™ืช.
09:24
Could you imagine if we could leapfrog language
218
564223
2711
ื”ืชื•ื›ืœื• ืœื“ืžื™ื™ืŸ ืœื• ื”ื™ื™ื ื• ื™ื›ื•ืœื™ื ืœื“ืœื’ ืขืœ ืฉืคื”
09:26
and communicate directly with human thought?
219
566934
4209
ืœืชืงืฉืจ ื™ืฉื™ืจื•ืช ืขื ื”ืžื—ืฉื‘ื” ื”ืื ื•ืฉื™ืช?
09:31
What would we be capable of then?
220
571143
3193
ืœืžื” ื ื”ื™ื” ืžืกื•ื’ืœื™ื ืื–?
09:34
And how will we learn to deal
221
574336
2637
ื•ืื™ืš ื ืœืžื“ ืœื”ืชืžื•ื“ื“
09:36
with the truths of unfiltered human thought?
222
576973
4219
ืขื ื”ืืžื™ืชื•ืช ื”ื‘ืœืชื™ ืžืกื•ื ื ื•ืช ืฉืœ ื”ืžื—ืฉื‘ื” ื”ืื ื•ืฉื™ืช?
09:41
You think the Internet was big.
223
581192
2567
ืืชื ื—ื•ืฉื‘ื™ื ืฉื”ืื™ื ื˜ืจื ื˜ ื”ื™ื” ืžืฉื”ื• ื’ื“ื•ืœ.
09:43
These are huge questions.
224
583759
2602
ืืœื• ื”ืŸ ืฉืืœื•ืช ืขื ืงื™ื•ืช.
09:46
It might be irresistible as a tool
225
586361
2148
ื–ื” ืขืฉื•ื™ ืœื”ื™ื•ืช ืžืคืชื” ื›ื›ืœื™
09:48
to amplify our thinking and communication skills.
226
588509
3876
ืœื”ื’ื‘ืจืช ื›ื™ืฉื•ืจื™ ื”ื—ืฉื™ื‘ื” ื•ื”ืชืงืฉื•ืจืช ืฉืœื ื•.
09:52
And indeed, this very same tool
227
592385
2023
ื•ืื›ืŸ, ื›ืœื™ ืกืคืฆื™ืคื™ ื–ื”.
09:54
may prove to lead to the cure
228
594408
2126
ืขืฉื•ื™ ืœื”ื•ื‘ื™ืœ ืœืžืฆื™ืืช ื“ืจื›ื™ ืจื™ืคื•ื™
09:56
for Alzheimer's and similar diseases.
229
596534
3074
ืขื‘ื•ืจ ืืœืฆื”ื™ื™ืžืจ ื•ืžื—ืœื•ืช ื“ื•ืžื•ืช.
09:59
We have little option but to open this door.
230
599608
3512
ืื™ืŸ ืœื ื• ื‘ืจื™ืจื” ืืœื ืœืคืชื•ื— ืืช ื”ื“ืœืช.
10:03
Regardless, pick a year --
231
603120
1585
ืœืœื ืงืฉืจ, ื‘ื—ืจื• ืฉื ื”...
10:04
will it happen in five years or 15 years?
232
604705
2266
ื–ื” ื™ืงืจื” ื‘ืขื•ื“ 5 ืื• 15 ืฉื ื™ื?
10:06
It's hard to imagine it taking much longer.
233
606971
4616
ืงืฉื” ืœื“ืžื™ื™ืŸ ืฉื–ื” ื™ืงื— ื”ืจื‘ื” ื™ื•ืชืจ ื–ืžืŸ.
10:11
We need to learn how to take this step together.
234
611587
3695
ืื ื• ืฆืจื™ื›ื™ื ืœืœืžื•ื“ ื›ื™ืฆื“ ืœืขืฉื•ืช ืืช ื”ืฆืขื“ ื”ื–ื” ื‘ื™ื—ื“.
10:15
Thank you.
235
615282
2174
ืชื•ื“ื”.
10:17
(Applause)
236
617456
3974
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7