Soon We'll Cure Diseases With a Cell, Not a Pill | Siddhartha Mukherjee | TED Talks

305,659 views ใƒป 2015-10-28

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Michael Coslovsky ืžื‘ืงืจ: Ido Dekkers
00:12
I want to talk to you about the future of medicine.
0
12760
4176
ืื ื™ ืจื•ืฆื” ืœื“ื‘ืจ ืื™ืชื›ื ืขืœ ืขืชื™ื“ื” ืฉืœ ื”ืจืคื•ืื”.
00:16
But before I do that, I want to talk a little bit about the past.
1
16960
4096
ืื‘ืœ ืœืคื ื™ ืฉืืขืฉื” ื–ืืช, ืื ื™ ืจื•ืฆื” ืœื“ื‘ืจ ืžืขื˜ ืขืœ ื”ืขื‘ืจ.
ืขื›ืฉื™ื•, ืœืื•ืจืš ืจื•ื‘ ื”ื”ื™ืกื˜ื•ืจื™ื” ื”ืื—ืจื•ื ื” ืฉืœ ื”ืจืคื•ืื”,
00:21
Now, throughout much of the recent history of medicine,
2
21080
3616
00:24
we've thought about illness and treatment
3
24720
3816
ื—ืฉื‘ื ื• ืขืœ ืžื—ืœื•ืช ื•ื˜ื™ืคื•ืœื™ื
00:28
in terms of a profoundly simple model.
4
28560
3376
ื‘ืžื•ื ื—ื™ื ืฉืœ ืžื•ื“ืœ ืคืฉื•ื˜ ื‘ื™ื•ืชืจ.
00:31
In fact, the model is so simple
5
31960
2696
ืœืžืขืฉื”, ื”ืžื•ื“ืœ ื”ื•ื ื›ื” ืคืฉื•ื˜
00:34
that you could summarize it in six words:
6
34680
3056
ืฉื ื™ืชืŸ ืœืกื›ื ืื•ืชื• ื‘ืฉืฉ ืžื™ืœื™ื:
00:37
have disease, take pill, kill something.
7
37760
4080
ืชื—ืœื• ื‘ืžื—ืœื”, ืงื—ื• ื›ื“ื•ืจ, ื”ื™ืจื’ื• ืžืฉื”ื•.
00:43
Now, the reason for the dominance of this model
8
43080
4736
ืขื›ืฉื™ื•, ื”ืกื™ื‘ื” ืœื“ื•ืžื™ื ื ื˜ื™ื•ืช ืฉืœ ื”ืžื•ื“ืœ ื”ื–ื”
00:47
is of course the antibiotic revolution.
9
47840
2616
ื”ื™ื, ื›ืžื•ื‘ืŸ, ืžื”ืคื™ื›ืช ื”ืื ื˜ื™ื‘ื™ื•ื˜ื™ืงื”.
00:50
Many of you might not know this, but we happen to be celebrating
10
50480
3176
ืจื‘ื™ื ืžื›ื ืื•ืœื™ ืœื ื™ื•ื“ืขื™ื ื–ืืช, ืื‘ืœ ื‘ืžืงืจื”, ืื ื—ื ื• ื—ื•ื’ื’ื™ื ื›ืจื’ืข
00:53
the hundredth year of the introduction of antibiotics into the United States.
11
53680
4056
ืืช ื”ืฉื ื” ื”ืžืื” ืœื”ื›ื ืกืชื” ืฉืœ ื”ืื ื˜ื™ื‘ื™ื•ื˜ื™ืงื” ืœืืจื”"ื‘.
00:57
But what you do know
12
57760
1616
ืื‘ืœ ืžื” ืฉืืชื ื›ืŸ ื™ื•ื“ืขื™ื
00:59
is that that introduction was nothing short of transformative.
13
59400
4240
ื–ื” ืฉื›ื ื™ืกื” ื–ื• ื”ื™ืชื” ืœื ืคื—ื•ืช ืžืฉื™ื ื•ื™ ืžื”ื™ืกื•ื“.
01:04
Here you had a chemical, either from the natural world
14
64880
3856
ื›ืืŸ ื”ื™ื” ืœื›ื ื›ื™ืžื™ืงืœ, ืื• ืžื”ืขื•ืœื ื”ื˜ื‘ืขื™
01:08
or artificially synthesized in the laboratory,
15
68760
2736
ืื• ืžื™ื•ืฆืจ ื‘ืžืขื‘ื“ื” ื‘ืื•ืคืŸ ืžืœืื›ื•ืชื™,
01:11
and it would course through your body,
16
71520
3256
ื•ื”ื•ื ื™ื–ืจื•ื ื“ืจืš ื’ื•ืคื›ื,
01:14
it would find its target,
17
74800
2776
ื”ื•ื ื™ืžืฆื ืืช ื”ืžื˜ืจื” ืฉืœื•,
01:17
lock into its target --
18
77600
1656
ื™ื™ื ืขืœ ืขืœ ื”ืžื˜ืจื” ืฉืœื• --
01:19
a microbe or some part of a microbe --
19
79280
2216
ืžื™ืงืจื•ื‘ ืื• ื—ืœืงื™ืง ืฉืœ ืžื™ืงืจื•ื‘ --
01:21
and then turn off a lock and a key
20
81520
3440
ื•ืื– ื”ื•ื ื™ื›ื‘ื” ืžื ืขื•ืœ ื•ืžืคืชื—
01:25
with exquisite deftness, exquisite specificity.
21
85960
3536
ื‘ื™ืขื™ืœื•ืช ื ื”ื“ืจืช, ื‘ื™ื™ื—ื•ื“ื™ื•ืช ื ื”ื“ืจืช.
01:29
And you would end up taking a previously fatal, lethal disease --
22
89520
4296
ื•ืืชื ืชื™ืงื—ื• ืžื—ืœื” ืฉื‘ืขื‘ืจ ื”ื™ืชื” ืงื˜ืœื ื™ืช, ื”ื•ืจื’ืช -
01:33
a pneumonia, syphilis, tuberculosis --
23
93840
3136
ื“ืœืงืช ืจื™ืื•ืช, ืขื’ื‘ืช, ืฉื—ืคืช --
ื•ืชื”ืคื›ื• ืื•ืชื” ืœืžื—ืœื” ืžืžื ื” ื ื™ืชืŸ ืœื”ื—ืœื™ื, ื‘ื” ืืคืฉืจ ืœื˜ืคืœ.
01:37
and transforming that into a curable, or treatable illness.
24
97000
4040
01:42
You have a pneumonia,
25
102080
1480
ื—ื˜ืคืชื ื“ืœืงืช ืจื™ืื•ืช,
01:44
you take penicillin,
26
104480
1376
ืืชื ืœื•ืงื—ื™ื ืคื ื™ืฆื™ืœื™ืŸ,
01:45
you kill the microbe
27
105880
1536
ืืชื ื”ื•ืจื’ื™ื ืืช ื”ื—ื™ื™ื“ืง
01:47
and you cure the disease.
28
107440
2136
ื•ืืชื ืžืจืคืื™ื ืืช ื”ืžื—ืœื”.
01:49
So seductive was this idea,
29
109600
2936
ื›ืœ-ื›ืš ืžืคืชื” ื”ื™ื” ื”ืจืขื™ื•ืŸ ื”ื–ื”,
01:52
so potent the metaphor of lock and key
30
112560
4176
ื›ืœ ื›ืš ื—ื–ืงื”, ื”ืžื˜ืืคื•ืจื” ืฉืœ ืžืคืชื— ื•ืžื ืขื•ืœ
01:56
and killing something,
31
116760
1536
ื•ืœื”ืจื•ื’ ืžืฉื”ื•,
01:58
that it really swept through biology.
32
118320
2016
ืฉื–ื” ืžืžืฉ ืฉื˜ืฃ ืืช ืขื•ืœื ื”ื‘ื™ื•ืœื•ื’ื™ื”.
02:00
It was a transformation like no other.
33
120360
2120
ื–ื” ื”ื™ื” ืฉื™ื ื•ื™ ืฉื›ืžื•ื”ื• ืœื ื ืจืื” ืžืขื•ืœื.
02:04
And we've really spent the last 100 years
34
124160
3176
ื•ืื ื—ื ื• ื‘ืืžืช ื‘ื™ืœื™ื ื• ืืช ืžืื” ื”ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช
02:07
trying to replicate that model over and over again
35
127360
3456
ื‘ื ืกื™ื•ืŸ ืœืฉื›ืคืœ ืืช ื”ืžื•ื“ืœ ื”ื–ื” ืฉื•ื‘ ื•ืฉื•ื‘
02:10
in noninfectious diseases,
36
130840
1239
ื‘ืžื—ืœื•ืช ืœื ืžื“ื‘ืงื•ืช,
02:12
in chronic diseases like diabetes and hypertension and heart disease.
37
132103
4120
ื‘ืžื—ืœื•ืช ื›ืจื•ื ื™ื•ืช ื›ืžื• ืกื›ืจืช, ื™ืชืจ ืœื—ืฅ ื“ื ื•ืžื—ืœื•ืช ืœื‘.
02:17
And it's worked, but it's only worked partly.
38
137120
3639
ื•ื–ื” ืขื‘ื“, ืื‘ืœ ื–ื” ืขื‘ื“ ืจืง ื—ืœืงื™ืช.
02:21
Let me show you.
39
141120
1656
ื”ืจืฉื• ืœื™ ืœื”ืจืื•ืช ืœื›ื.
02:22
You know, if you take the entire universe
40
142800
2896
ืืชื ื™ื•ื“ืขื™ื, ืื ืชื™ืงื—ื• ืืช ื›ืœ ื”ื™ืงื•ื
02:25
of all chemical reactions in the human body,
41
145720
3496
ืฉืœ ื›ืœ ื”ืชื’ื•ื‘ื•ืช ื”ื›ื™ืžื™ื•ืช ื‘ืชื•ืš ื”ื’ื•ืฃ ื”ืื ื•ืฉื™,
02:29
every chemical reaction that your body is capable of,
42
149240
3296
ื›ืœ ืชื’ื•ื‘ื” ื›ื™ืžื™ืช ืœื” ื’ื•ืคื›ื ืžืกื•ื’ืœ,
02:32
most people think that that number is on the order of a million.
43
152560
3016
ืจื•ื‘ ื”ืื ืฉื™ื ื™ื—ืฉื‘ื• ืฉื”ืžืกืคืจ ื”ื•ื ื‘ืกื“ืจ ื’ื•ื“ืœ ืฉืœ ืžื™ืœื™ื•ืŸ.
ื‘ื•ื ื ืงืจื ืœื• ืžื™ืœื™ื•ืŸ.
02:35
Let's call it a million.
44
155600
1296
02:36
And now you ask the question,
45
156920
1696
ื•ืขื›ืฉื™ื• ืชืฉืืœื• ืืช ื”ืฉืืœื”,
02:38
what number or fraction of reactions
46
158640
2656
ืœืื™ื–ื” ื›ืžื•ืช ืื• ืœืื™ื–ื” ื—ืœืง ืžื”ืชื’ื•ื‘ื•ืช
02:41
can actually be targeted
47
161320
1816
ื‘ืขืฆื ื ื™ืชืŸ ืœื›ื•ื•ืŸ
02:43
by the entire pharmacopoeia, all of medicinal chemistry?
48
163160
4816
ืขื ื›ืœ ืกืคืจื™ื™ืช ื”ืชืจื•ืคื•ืช ืฉืœ ื”ื›ื™ืžื™ื” ื”ืจืคื•ืื™ืช?
ื”ืžืกืคืจ ื”ื•ื 250.
02:48
That number is 250.
49
168000
2040
02:51
The rest is chemical darkness.
50
171680
2536
ื›ืœ ื”ืฉืืจ ื–ื” ืืคื™ืœื” ื›ื™ืžื™ืช.
02:54
In other words, 0.025 percent of all chemical reactions in your body
51
174240
6176
ื‘ืžื™ืœื™ื ืื—ืจื•ืช, ืœ-0.025 ืื—ื•ื–ื™ื ืžื›ืœ ื”ืชื’ื•ื‘ื•ืช ื”ื›ื™ืžื™ื•ืช ืฉื‘ื’ื•ืคื›ื
03:00
are actually targetable by this lock and key mechanism.
52
180440
4120
ื ื™ืชืŸ ืœื›ื•ื•ืŸ ืขืœ ื™ื“ื™ ืžื ื’ื ื•ืŸ ื”ืžื ืขื•ืœ ื•ื”ืžืคืชื— ื”ื–ื”.
03:05
You know, if you think about human physiology
53
185680
3056
ืืชื ื™ื•ื“ืขื™ื, ืื ืชื—ืฉื‘ื• ืขืœ ื”ืคื™ืกื™ื•ืœื•ื’ื™ื” ื”ืื ื•ืฉื™ืช
03:08
as a vast global telephone network
54
188760
3456
ื›ืขืœ ืจืฉืช ื˜ืœืคื•ื ื™ื ืจื—ื‘ื” ื•ื’ืœื•ื‘ืœื™ืช
03:12
with interacting nodes and interacting pieces,
55
192240
3880
ืขื ื ืงื•ื“ื•ืช ืงื™ืฉื•ืจ ืฉืžื’ื™ื‘ื•ืช ืื—ืช ืœืฉื ื™ื™ื”, ื•ื—ืœืงื™ื ืฉืžื’ื™ื‘ื™ื ืื—ื“ ืœืฉื ื™,
03:16
then all of our medicinal chemistry
56
196600
3176
ืื– ื›ืœ ื”ืจืคื•ืื” ื”ื›ื™ืžื™ืช ืฉืœื ื•
03:19
is operating on one tiny corner
57
199800
2256
ืขื•ื‘ื“ืช ืขืœ ืคื™ื ื” ืงื˜ื ื˜ื ื”
03:22
at the edge, the outer edge, of that network.
58
202080
2696
ื‘ืงืฆื”, ื”ืงืฆื” ื”ืจื—ื•ืง, ืฉืœ ื”ืจืฉืช ื”ื–ื•.
03:24
It's like all of our pharmaceutical chemistry
59
204800
3816
ื–ื” ื›ืื™ืœื• ื›ืœ ื›ื™ืžื™ื™ืช ื”ืชืจื•ืคื•ืช
03:28
is a pole operator in Wichita, Kansas
60
208640
3776
ื”ื™ื ืืœื—ื•ื˜ืŸ ื‘ื•ื•ื™ืฆ'ื™ื˜ื”, ืงื ื–ืก,
03:32
who is tinkering with about 10 or 15 telephone lines.
61
212440
2960
ืฉืžืชืขืกืง ื‘ืขืจืš ื‘-10 ืื• 15 ืงื•ื•ื™ ื˜ืœืคื•ืŸ.
03:36
So what do we do about this idea?
62
216880
2160
ืื– ืžื” ืื ื—ื ื• ืขื•ืฉื™ื ืœื’ื‘ื™ ื”ืจืขื™ื•ืŸ ื”ื–ื”?
03:40
What if we reorganized this approach?
63
220160
2360
ืžื” ืื ื ืกื“ืจ ืžื—ื“ืฉ ืืช ื”ื’ื™ืฉื” ื”ื–ื•?
03:44
In fact, it turns out that the natural world
64
224080
3376
ืœืžืขืฉื”, ืžืชื‘ืจืจ ืฉื”ืขื•ืœื ื”ื˜ื‘ืขื™
03:47
gives us a sense of how one might think about illness
65
227480
5056
ื ื•ืชืŸ ืœื ื• ืžื•ืฉื’ ืœื’ื‘ื™ ืื™ืš ื ื™ืชืŸ ืœื—ืฉื•ื‘ ืขืœ ืžื—ืœื•ืช
03:52
in a radically different way,
66
232560
1656
ื‘ื“ืจืš ืฉื•ื ื” ื‘ืื•ืคืŸ ื“ื™ ืงื™ืฆื•ื ื™,
03:54
rather than disease, medicine, target.
67
234240
3720
ืžืืฉืจ ืžื—ืœื”, ืชืจื•ืคื”, ืžื˜ืจื”.
03:59
In fact, the natural world is organized hierarchically upwards,
68
239080
3376
ืœืžืขืฉื”, ื”ืขื•ืœื ื”ื˜ื‘ืขื™ ืžืื•ืจื’ืŸ ื‘ืื•ืคืŸ ื”ื™ืจืจื›ื™ ื›ืœืคื™ ืžืขืœื”,
04:02
not downwards, but upwards,
69
242480
1856
ืœื ืœืžื˜ื”, ืืœื ืœืžืขืœื”,
04:04
and we begin with a self-regulating, semi-autonomous unit called a cell.
70
244360
6240
ื•ืื ื—ื ื• ืžืชื—ื™ืœื™ื ืขื ื™ื—ื™ื“ื” ื‘ืขืœืช ื•ื•ื™ืกื•ืช ืขืฆืžื™, ื—ืฆื™-ืื•ื˜ื•ื ื•ืžื™ืช, ืฉื ืงืจืื™ืช ืชื.
04:11
These self-regulating, semi-autonomous units
71
251640
3216
ื”ื™ื—ื™ื“ื•ืช ื‘ืขืœื•ืช ื”ื•ื•ื™ืกื•ืช ื”ืขืฆืžื™, ื”ื—ืฆื™-ืื•ื˜ื•ื ื•ืžื™ื•ืช ื”ืœืœื•
04:14
give rise to self-regulating, semi-autonomous units called organs,
72
254880
4816
ืžื•ื‘ื™ืœื•ืช ืœื™ื—ื™ื“ื•ืช ื‘ืขืœื•ืช ื•ื•ื™ืกื•ืช ืขืฆืžื™, ื—ืฆื™-ืื•ื˜ื•ื ื•ืžื™ื•ืช, ืฉื ืงืจืื•ืช ืื™ื‘ืจื™ื,
04:19
and these organs coalesce to form things called humans,
73
259720
3000
ื•ืื™ื‘ืจื™ื ืืœื• ืžืชืื’ื“ื™ื ื‘ื›ื“ื™ ืœื™ืฆื•ืจ ื“ื‘ืจื™ื ื”ื ืงืจืื™ื ืื ืฉื™ื,
04:23
and these organisms ultimately live in environments,
74
263920
3896
ื•ื”ื™ื™ืฆื•ืจื™ื ื”ืœืœื• ื—ื™ื™ื, ื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ, ื‘ืกื‘ื™ื‘ื•ืช ื—ื™ื™ื,
04:27
which are partly self-regulating and partly semi-autonomous.
75
267840
3600
ืฉื”ืŸ ื‘ื—ืœืงืŸ ื‘ืขืœื•ืช ื•ื•ื™ืกื•ืช ืขืฆืžื™ ื•ื‘ื—ืœืงืŸ ื—ืฆื™-ืื•ื˜ื•ื ื•ืžื™ื•ืช.
04:32
What's nice about this scheme, this hierarchical scheme
76
272920
2816
ืžื” ืฉื ื—ืžื“ ื‘ืชืจืฉื™ื ื”ื–ื”, ื”ืชืจืฉื™ื ื”ื”ื™ืจืจื›ื™ ื”ื–ื”
04:35
building upwards rather than downwards,
77
275760
2696
ืฉื‘ื•ื ื” ื›ืœืคื™ ืžืขืœื” ื‘ืžืงื•ื ื›ืœืคื™ ืžื˜ื”,
04:38
is that it allows us to think about illness as well
78
278480
3376
ื–ื” ืฉื”ื•ื ืžืืคืฉืจ ืœื ื• ืœื—ืฉื•ื‘ ื’ื ืขืœ ืžื—ืœื•ืช
04:41
in a somewhat different way.
79
281880
1334
ื‘ื“ืจืš ืžืขื˜ ืื—ืจืช.
04:44
Take a disease like cancer.
80
284400
2120
ืงื—ื• ืžื—ืœื” ื›ืžื• ืกืจื˜ืŸ.
04:48
Since the 1950s,
81
288120
1296
ืžืื– ืฉื ื•ืช ื”-50,
04:49
we've tried rather desperately to apply this lock and key model to cancer.
82
289440
5527
ื ื™ืกื™ื ื• ื‘ืื•ืคืŸ ื“ื™ ื ื•ืืฉ ืœื™ื™ืฉื ืืช ืžื•ื“ืœ ื”ืžื ืขื•ืœ ื•ื”ืžืคืชื— ื”ื–ื”, ืœืกืจื˜ืŸ.
04:54
We've tried to kill cells
83
294991
2889
ื ื™ืกื™ื ื• ืœื”ืจื•ื’ ืชืื™ื
04:57
using a variety of chemotherapies or targeted therapies,
84
297905
4347
ื‘ืขื–ืจืช ื˜ื™ืคื•ืœื™ ื›ื™ืžื•ืชืจืคื™ื” ืฉื•ื ื™ื ืื• ื‘ืขื–ืจืช ื˜ื™ืคื•ืœื™ื ืžื•ื›ื•ื•ื ื™ื,
05:02
and as most of us know, that's worked.
85
302276
2420
ื•ื›ืžื• ืฉืžืจื‘ื™ืชื ื• ื™ื•ื“ืขื™ื, ื–ื” ืขื‘ื“.
05:04
It's worked for diseases like leukemia.
86
304720
1858
ื–ื” ืขื‘ื“ ืขื‘ื•ืจ ืžื—ืœื•ืช ื›ืžื• ืœื•ืงืžื™ื”.
05:06
It's worked for some forms of breast cancer,
87
306602
2374
ื–ื” ืขื‘ื“ ืขื‘ื•ืจ ื–ื ื™ื ืฉื•ื ื™ื ืฉืœ ืกืจื˜ืŸ ื”ืฉื“,
05:09
but eventually you run to the ceiling of that approach.
88
309000
3736
ืื‘ืœ ื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ, ืืชื ืžื’ื™ืขื™ื ืœืชืงืจืช ื”ื™ื›ื•ืœืช ืฉืœ ื”ื’ื™ืฉื” ื”ื–ื•.
05:12
And it's only in the last 10 years or so
89
312760
2496
ื•ื–ื” ืจืง ื‘-10 ื”ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช ื‘ืขืจืš
05:15
that we've begun to think about using the immune system,
90
315280
3136
ืฉื”ืชื—ืœื ื• ืœื—ืฉื•ื‘ ืขืœ ืœื”ืฉืชืžืฉ ื‘ืžืขืจื›ืช ื”ื—ื™ืกื•ืŸ,
05:18
remembering that in fact the cancer cell doesn't grow in a vacuum.
91
318440
3096
ื›ืฉืื ื—ื ื• ื–ื•ื›ืจื™ื ืฉืœืžืขืฉื” ืชื ื”ืกืจื˜ืŸ ืœื ื’ื“ืœ ื‘ืชื•ืš ืจื™ืง.
05:21
It actually grows in a human organism.
92
321560
2056
ื”ื•ื ื‘ืขืฆื ื’ื“ืœ ื‘ืชื•ืš ื™ื™ืฆื•ืจ ืื ื•ืฉื™.
05:23
And could you use the organismal capacity,
93
323640
2296
ื•ื”ืื ืชื•ื›ืœื• ืœื”ืฉืชืžืฉ ื‘ื™ื›ื•ืœื•ืช ืฉืœ ื”ื™ืฆื•ืจ ืขืฆืžื•,
05:25
the fact that human beings have an immune system, to attack cancer?
94
325960
3143
ื”ืขื•ื‘ื“ื” ืฉืœื‘ื ื™ ืื“ื ื™ืฉ ืžืขืจื›ืช ื—ื™ืกื•ืŸ, ื‘ื›ื“ื™ ืœืชืงื•ืฃ ืกืจื˜ืŸ?
05:29
In fact, it's led to the some of the most spectacular new medicines in cancer.
95
329127
4200
ืœืžืขืฉื”, ื–ื” ื”ื•ื‘ื™ืœ ืœื›ืžื” ืžื”ืชืจื•ืคื•ืช ื”ื—ื“ืฉื•ืช ื”ืžื“ื”ื™ืžื•ืช ื‘ื™ื•ืชืจ ื‘ืกืจื˜ืŸ.
05:34
And finally there's the level of the environment, isn't there?
96
334480
3334
ื•ืœื‘ืกื•ืฃ, ื™ืฉื ื” ื”ืจืžื” ืฉืœ ื”ืกื‘ื™ื‘ื”, ืœื ื›ืš?
05:38
You know, we don't think of cancer as altering the environment.
97
338160
2976
ืืชื ื™ื•ื“ืขื™ื, ืื ื—ื ื• ืœื ื—ื•ืฉื‘ื™ื ืขืœ ืกืจื˜ืŸ ื›ืขืœ ืžืฉื ื” ืกื‘ื™ื‘ืช ื—ื™ื™ื.
05:41
But let me give you an example of a profoundly carcinogenic environment.
98
341160
4896
ืื‘ืœ ื”ืจืฉื• ืœื™ ืœืชืช ืœื›ื ื“ื•ื’ืžื” ืฉืœ ืกื‘ื™ื‘ื” ืงืจืฆื™ื ื•ื’ื ื™ืช ื‘ื™ื•ืชืจ.
05:46
It's called a prison.
99
346080
1200
ื”ื™ื ื ืงืจืืช ื›ืœื.
05:48
You take loneliness, you take depression, you take confinement,
100
348160
5136
ืงื—ื• ื‘ื“ื™ื“ื•ืช, ืงื—ื• ื“ื™ื›ืื•ืŸ, ืงื—ื• ืžืืกืจ,
05:53
and you add to that,
101
353320
1200
ื•ื”ื•ืกื™ืคื• ืœื›ืš,
05:55
rolled up in a little white sheet of paper,
102
355400
2560
ืžื’ื•ืœื’ืœ ื‘ืคื™ืกืช ื ื™ื™ืจ ืœื‘ื ื” ืงื˜ื ื”,
05:59
one of the most potent neurostimulants that we know, called nicotine,
103
359000
3776
ืืช ืื—ื“ ื”ื ื•ื™ืจื•ืกื˜ื™ืžื•ืœื ื˜ื™ื ื”ื™ืขื™ืœื™ื ื‘ื™ื•ืชืจ ืฉืื ื—ื ื• ืžื›ื™ืจื™ื, ืฉื ืงืจื ื ื™ืงื•ื˜ื™ืŸ,
06:02
and you add to that one of the most potent addictive substances that you know,
104
362800
4936
ื•ืืชื ืžื•ืกื™ืคื™ื ืœื–ื” ืืช ืื—ื“ ื”ื—ื•ืžืจื™ื ื”ืžืžื›ืจื™ื ื‘ื™ื•ืชืจ ืฉืืชื ืžื›ื™ืจื™ื,
06:07
and you have a pro-carcinogenic environment.
105
367760
2796
ื•ื™ืฉ ืœื›ื ืกื‘ื™ื‘ื” ืคืจื•-ืงืจืฆื™ื ื•ื’ื ื™ืช.
06:11
But you can have anti-carcinogenic environments too.
106
371520
2456
ืื‘ืœ ื™ืฉ ื’ื ืกื‘ื™ื‘ื•ืช ืžื—ื™ื™ื” ืื ื˜ื™-ืงืจืฆื™ื ื•ื’ื ื™ื•ืช.
ื™ืฉื ื ื ืกื™ื•ื ื•ืช ืœื™ืฆื•ืจ ืกื‘ื™ื‘ื•ืช ืคื™ื–ื™ื•ืช,
06:14
There are attempts to create milieus,
107
374000
2696
06:16
change the hormonal milieu for breast cancer, for instance.
108
376720
2762
ืœืฉื ื•ืช ืืช ื”ืกื‘ื™ื‘ื” ื”ื”ื•ืจืžื•ื ืœื™ืช ืœืกืจื˜ืŸ ื”ืฉื“, ืœื“ื•ื’ืžื”.
06:20
We're trying to change the metabolic milieu for other forms of cancer.
109
380440
3416
ืื ื—ื ื• ืžื ืกื™ื ืœืฉื ื•ืช ืืช ื”ืกื‘ื™ื‘ื” ื”ืžื˜ืื‘ื•ืœื™ืช ืœืกื•ื’ื™ื ืื—ืจื™ื ืฉืœ ืกืจื˜ืŸ.
06:23
Or take another disease, like depression.
110
383880
2416
ืื• ืงื—ื• ืžื—ืœื” ืื—ืจืช, ื›ื’ื•ืŸ ื“ื™ื›ืื•ืŸ.
06:26
Again, working upwards,
111
386320
2656
ืฉื•ื‘, ืื ืขื•ื‘ื“ื™ื ื›ืœืคื™ ืžืขืœื”,
ืžืื– ืฉื ื•ืช ื”-60 ื•ื”-70 ื ื™ืกื™ื ื•, ืฉื•ื‘ ื‘ืื•ืคืŸ ื ื•ืืฉ
06:29
since the 1960s and 1970s, we've tried, again, desperately
112
389000
4016
06:33
to turn off molecules that operate between nerve cells --
113
393040
4176
ืœื›ื‘ื•ืช ืžื•ืœืงื•ืœื•ืช ืฉืคื•ืขืœื•ืช ื‘ื™ืŸ ืชืื™ ืขืฆื‘ --
06:37
serotonin, dopamine --
114
397240
2176
ืกืจื•ื˜ื•ื ื™ืŸ, ื“ื•ืคืžื™ืŸ --
06:39
and tried to cure depression that way,
115
399440
1816
ื•ื›ื›ื” ื ื™ืกื™ื ื• ืœืจืคื ื“ื™ื›ืื•ืŸ,
06:41
and that's worked, but then that reached the limit.
116
401280
2440
ื•ื–ื” ืขื‘ื“, ืื‘ืœ ืื– ื–ื” ื”ื’ื™ืข ืœืงืฆื” ื”ื™ื›ื•ืœืช.
06:45
And we now know that what you really probably need to do
117
405000
2620
ื•ืขื›ืฉื™ื• ืื ื—ื ื• ื™ื•ื“ืขื™ื ืฉืžื” ืฉื‘ืขืฆื ืฆืจื™ืš ืœืขืฉื•ืช, ื›ื›ืœ ื”ื ืจืื”,
06:47
is to change the physiology of the organ, the brain,
118
407644
2972
ื–ื” ืœืฉื ื•ืช ืืช ื”ืคื™ืกื™ื•ืœื•ื’ื™ื” ืฉืœ ื”ืื™ื‘ืจ, ื”ืžื•ื—,
06:50
rewire it, remodel it,
119
410640
2136
ืœื—ื•ื•ื˜ ืื•ืชื• ืžื—ื“ืฉ, ืœืขืฆื‘ ืื•ืชื• ืžื—ื“ืฉ,
06:52
and that, of course, we know study upon study has shown
120
412800
2576
ื•ื›ืžื•ื‘ืŸ, ืื ื—ื ื• ืžื›ื™ืจื™ื ืžื—ืงืจ ืื—ืจื™ ืžื—ืงืจ ืฉื”ืจืื•
06:55
that talk therapy does exactly that,
121
415400
1715
ืฉื˜ื™ืคื•ืœ ืขืœ ื™ื“ื™ ื“ื™ื‘ื•ืจ ืขื•ืฉื” ื‘ื“ื™ื•ืง ืืช ื–ื”,
06:57
and study upon study has shown that talk therapy
122
417139
2256
ื•ืžื—ืงืจ ืื—ืจื™ ืžื—ืงืจ ืฉื”ืจืื• ืฉื˜ื™ืคื•ืœ ืขืœ ื™ื“ื™ ื“ื™ื‘ื•ืจ
06:59
combined with medicines, pills,
123
419419
3117
ื‘ืฉื™ืœื•ื‘ ืขื ืชืจื•ืคื•ืช, ื›ื“ื•ืจื™ื,
07:02
really is much more effective than either one alone.
124
422560
2429
ื”ื•ื ื‘ืขืฆื ื™ื•ืชืจ ื™ืขื™ืœ ืžื›ืœ ืื—ื“ ืžื”ื ื‘ื ืคืจื“.
07:05
Can we imagine a more immersive environment that will change depression?
125
425840
3576
ื”ื™ื›ื•ืœื™ื ืื ื• ืœื“ืžื™ื™ืŸ ืกื‘ื™ื‘ื” ืžื›ื™ืœื” ื™ื•ืชืจ ืฉืชืฉื ื” ื“ื™ื›ืื•ืŸ?
07:09
Can you lock out the signals that elicit depression?
126
429440
4056
ืืชื ื™ื›ื•ืœื™ื ืœื ืขื•ืœ ื‘ื—ื•ืฅ ืืช ื”ืื•ืชื•ืช ืฉืžืขื•ืจืจื™ื ื“ื™ื›ืื•ืŸ?
07:13
Again, moving upwards along this hierarchical chain of organization.
127
433520
5480
ืฉื•ื‘, ื ืชืงื“ื ื›ืœืคื™ ืžืขืœื” ื‘ืžืขืœื” ื”ืกื•ืœื ื”ืื™ืจื’ื•ื ื™ ื”ื”ื™ืจืจื›ื™.
07:19
What's really at stake perhaps here
128
439760
2696
ืื•ืœื™ ืžื” ืฉื‘ืขืฆื ืžื•ื ื— ื›ืืŸ ืขืœ ื›ืฃ ื”ืžืื–ื ื™ื™ื
07:22
is not the medicine itself but a metaphor.
129
442480
3256
ื”ื™ื ืœื ื”ืชืจื•ืคื” ืขืฆืžื” ืืœื ืžื˜ืืคื•ืจื”.
07:25
Rather than killing something,
130
445760
2056
ื‘ืžืงื•ื ืœื”ืจื•ื’ ืžืฉื”ื•,
07:27
in the case of the great chronic degenerative diseases --
131
447840
3696
ื‘ืžืงืจื™ื ืฉืœ ื”ืžื—ืœื•ืช ื”ื ื™ื•ื•ื ื™ื•ืช ื”ื›ืจื•ื ื™ื•ืช ื”ื’ื“ื•ืœื•ืช --
07:31
kidney failure, diabetes, hypertension, osteoarthritis --
132
451560
3496
ืื™ ืกืคื™ืงืช ื›ืœื™ื•ืช, ืกื›ืจืช, ื™ืชืจ ืœื—ืฅ ื“ื, ื“ืœืงืช ืžืคืจืงื™ื ื ื™ื•ื•ื ื™ืช --
07:35
maybe what we really need to do is change the metaphor to growing something.
133
455080
3572
ืื•ืœื™ ืžื” ืฉืื ื—ื ื• ื‘ืืžืช ืฆืจื™ื›ื™ื ืœืขืฉื•ืช ื–ื” ืœืฉื ื•ืช ืืช ื”ืžื˜ืืคื•ืจื” ืœืœื’ื“ืœ ืžืฉื”ื•.
07:38
And that's the key, perhaps,
134
458676
1940
ื•ืื•ืœื™ ื–ื” ื”ืžืคืชื—,
07:40
to reframing our thinking about medicine.
135
460640
2496
ืœืขื™ืฆื•ื‘ ืžื—ื“ืฉ ืฉืœ ื”ื—ืฉื™ื‘ื” ืฉืœื ื• ืขืœ ืจืคื•ืื”.
07:43
Now, this idea of changing,
136
463160
3456
ืขื›ืฉื™ื•, ื”ืจืขื™ื•ืŸ ืฉืœ ืฉื™ื ื•ื™,
07:46
of creating a perceptual shift, as it were,
137
466640
2336
ืฉืœ ื™ืฆื™ืจืช ืฉื™ื ื•ื™ ืชืคื™ืกืชื™, ืื ืชืจืฆื•,
ื‘ื ืœื“ื’ื•ืจ ืืฆืœื™ ื‘ืื•ืคืŸ ืื™ืฉื™ ืžืื“ ืœืคื ื™ ื›ืขืฉืจ ืฉื ื™ื.
07:49
came home to me to roost in a very personal manner about 10 years ago.
138
469000
3296
07:52
About 10 years ago -- I've been a runner most of my life --
139
472320
2776
ืœืคื ื™ ื›-10 ืฉื ื™ื -- ื ื”ื’ืชื™ ืœืจื•ืฅ ื‘ืžืฉืš ืžืจื‘ื™ืช ื—ื™ื™ --
ื™ืฆืืชื™ ืœืจื™ืฆื”, ืจื™ืฆืช ื™ื•ื ืฉื‘ืช ื‘ื‘ื•ืงืจ,
07:55
I went for a run, a Saturday morning run,
140
475120
1976
ื—ื–ืจืชื™ ื•ื”ืชืขื•ืจืจืชื™, ื•ืคืฉื•ื˜ ืœื ื™ื›ื•ืœืชื™ ืœื–ื•ื–.
07:57
I came back and woke up and I basically couldn't move.
141
477120
2656
07:59
My right knee was swollen up,
142
479800
2016
ื”ื‘ืจืš ื”ื™ืžื ื™ืช ืฉืœื™ ื”ื™ื™ืชื” ื ืคื•ื—ื”,
08:01
and you could hear that ominous crunch of bone against bone.
143
481840
3520
ื•ื™ื›ื•ืœืชื ืœืฉืžื•ืข ืืช ืจืขืฉ ื”ืคืฆืคื•ืฅ ืžื ื‘ื ื”ืจืขื•ืช ืฉืœ ืขืฆื ืขืœ ืขืฆื.
08:06
And one of the perks of being a physician is that you get to order your own MRIs.
144
486240
4896
ื•ืื—ื“ ื”ื™ืชืจื•ื ื•ืช ืฉืœ ืœื”ื™ื•ืช ืจื•ืคื ื–ื” ืฉืืชื” ื™ื›ื•ืœ ืœื”ื–ืžื™ืŸ ืœืขืฆืžืš ืกืจื™ืงื•ืช MRI.
08:11
And I had an MRI the next week, and it looked like that.
145
491160
3976
ื•ื”ื™ืชื” ืœื™ ืกืจื™ืงืช MRI ื‘ืฉื‘ื•ืข ืœืื—ืจ ืžื›ืŸ ื•ื”ื™ื ื ืจืืชื” ื›ื›ื”.
08:15
Essentially, the meniscus of cartilage that is between bone
146
495160
4296
ื‘ืขื™ืงืจื•ืŸ, ืžื™ื ื™ืกืงื•ืก ื”ืกื—ื•ืก ืฉื‘ื™ืŸ ื”ืขืฆืžื•ืช
08:19
had been completely torn and the bone itself had been shattered.
147
499480
3416
ื ืงืจืข ืœื’ืžืจื™, ื•ื”ืขืฆื ืขืฆืžื” ื”ืชืจืกืงื”.
08:22
Now, if you're looking at me and feeling sorry,
148
502920
2456
ืขื›ืฉื™ื•, ืื ืืชื ืžืกืชื›ืœื™ื ืขืœื™ื™ ื•ืžืฉืชืชืคื™ื ื‘ืฆืขืจื™,
08:25
let me tell you a few facts.
149
505400
1816
ื”ืจืฉื• ืœื™ ืœืกืคืจ ืœื›ื ื›ืžื” ืขื•ื‘ื“ื•ืช.
08:27
If I was to take an MRI of every person in this audience,
150
507240
4176
ืื™ืœื• ื‘ื™ืฆืขืชื™ ืกืจื™ืงืช MRI ืฉืœ ื›ืœ ืื“ื ื‘ืงื”ืœ ืคื”,
08:31
60 percent of you would show signs
151
511440
2056
60 ืื—ื•ื–ื™ื ืžื›ื ื”ื™ื• ืžืจืื™ื ืกื™ืžื ื™ื
08:33
of bone degeneration and cartilage degeneration like this.
152
513520
2776
ืฉืœ ื ื™ื•ื•ืŸ ืขืฆืžื•ืช ื•ื ื™ื•ื•ืŸ ืกื—ื•ืก ื›ื’ื•ืŸ ื–ื”.
08:36
85 percent of all women by the age of 70
153
516320
3776
85 ืื—ื•ื–ื™ื ืžื›ืœ ื”ื ืฉื™ื ื™ืจืื• ืขื“ ื’ื™ืœ 70
08:40
would show moderate to severe cartilage degeneration.
154
520120
3256
ื ื™ื•ื•ืŸ ืกื—ื•ืก ื‘ื™ื ื•ื ื™ ืขื“ ื—ืžื•ืจ.
08:43
50 to 60 percent of the men in this audience
155
523400
2296
ืœ-50 ืขื“ 60 ืื—ื•ื–ื™ื ืžื”ื’ื‘ืจื™ื ื‘ืงื”ืœ ื”ื–ื”
08:45
would also have such signs.
156
525720
1336
ื’ื ื™ื”ื™ื• ืืช ื”ืกื™ืžื ื™ื ื”ืืœื”.
08:47
So this is a very common disease.
157
527080
1776
ื›ืš ืฉื–ื• ืžื—ืœื” ืžืื“ ื ืคื•ืฆื”.
08:48
Well, the second perk of being a physician
158
528880
2096
ื•ื‘ื›ืŸ, ื”ื™ืชืจื•ืŸ ื”ืฉื ื™ ืฉืœ ืœื”ื™ื•ืช ืจื•ืคื
ื–ื” ืฉืืชื” ื™ื›ื•ืœ ืœื‘ืฆืข ื ื™ืกื•ื™ื™ื ืขืœ ื”ืžื—ืœื•ืช ืฉืœืš ืขืฆืžืš.
08:51
is that you can get to experiment on your own ailments.
159
531000
3135
08:54
So about 10 years ago we began,
160
534159
2217
ืื– ืœืคื ื™ ื›-10 ืฉื ื™ื ื”ืชื—ืœื ื•,
08:56
we brought this process into the laboratory,
161
536400
2416
ื”ื‘ืื ื• ืืช ื”ื”ืœื™ืš ื”ื–ื” ืœืชื•ืš ื”ืžืขื‘ื“ื”,
08:58
and we began to do simple experiments,
162
538840
2016
ื•ื”ืชื—ืœื ื• ืœืขืฉื•ืช ื ื™ืกื•ื™ื™ื ืคืฉื•ื˜ื™ื,
09:00
mechanically trying to fix this degeneration.
163
540880
2456
ืžื ืกื™ื ืœืชืงืŸ ืืช ื”ื ื™ื•ื•ืŸ ื”ื–ื” ื‘ืื•ืคืŸ ืžื›ืื ื™.
09:03
We tried to inject chemicals into the knee spaces of animals
164
543360
4816
ื ื™ืกื™ื ื• ืœื”ื–ืจื™ืง ื›ื™ืžื™ืงืœื™ื ืœืชื•ืš ื—ืœืœื™ ื”ื‘ืจืš ืฉืœ ื—ื™ื•ืช
09:08
to try to reverse cartilage degeneration,
165
548200
2656
ื‘ื›ื“ื™ ืœื ืกื•ืช ื•ืœื”ืคื•ืš ืืช ื ื™ื•ื•ืŸ ื”ืกื—ื•ืก,
09:10
and to put a short summary on a very long and painful process,
166
550880
4536
ื•ื›ืกื™ื›ื•ื ืงืฆืจ ืœืชื”ืœื™ืš ืžืื“ ืืจื•ืš ื•ื›ื•ืื‘,
09:15
essentially it came to naught.
167
555440
1776
ื‘ืขื™ืงืจื•ืŸ ื–ื” ืœื ื”ื‘ื™ื ื“ื‘ืจ.
09:17
Nothing happened.
168
557240
1200
ืฉื•ื ื“ื‘ืจ ืœื ืงืจื”.
09:18
And then about seven years ago, we had a research student from Australia.
169
558880
4776
ื•ืื–, ืœืคื ื™ ื›ืฉื‘ืข ืฉื ื™ื, ื”ื™ื” ืœื ื• ืชืœืžื™ื“ ืžื—ืงืจ ืžืื•ืกื˜ืจืœื™ื”.
09:23
The nice thing about Australians
170
563680
1525
ืžื” ืฉื˜ื•ื‘ ื‘ืื•ืกื˜ืจืœื™ื
09:25
is that they're habitually used to looking at the world upside down.
171
565205
3316
ื–ื” ืฉื”ื ืจื’ื™ืœื™ื ื‘ืื•ืคืŸ ื˜ื‘ืขื™ ืœื”ืกืชื›ืœ ืขืœ ื”ืขื•ืœื ื”ืคื•ืš.
09:28
(Laughter)
172
568546
1157
(ืฆื—ื•ืง)
09:29
And so Dan suggested to me, "You know, maybe it isn't a mechanical problem.
173
569727
4089
ืื– ื“ืŸ ื”ืฆื™ืข ืœื™, "ืืชื” ื™ื•ื“ืข, ืื•ืœื™ ื–ื• ืœื ื‘ืขื™ื” ืžื›ืื ื™ืช.
09:33
Maybe it isn't a chemical problem. Maybe it's a stem cell problem."
174
573840
4000
ืื•ืœื™ ื–ื• ืœื ื‘ืขื™ื” ื›ื™ืžื™ืช. ืื•ืœื™ ื–ื• ื‘ืขื™ื” ื‘ืชืื™ ื”ื’ื–ืข."
09:39
In other words, he had two hypotheses.
175
579760
1896
ื‘ืžื™ืœื™ื ืื—ืจื•ืช, ื”ื™ื• ืœื• ืฉืชื™ ื”ืฉืขืจื•ืช.
09:41
Number one, there is such a thing as a skeletal stem cell --
176
581680
3816
ืžืกืคืจ ืื—ืช, ื™ืฉ ื“ื‘ืจ ื›ื–ื” ืฉื ืงืจื ืชื ื’ื–ืข ืฉืœื“ื™ --
09:45
a skeletal stem cell that builds up the entire vertebrate skeleton,
177
585520
3520
ืชื ื’ื–ืข ืฉื‘ื•ื ื” ืืช ื›ืœ ื”ืฉืœื“ ื”ื—ื•ืœื™ื™ืชื ื™,
09:49
bone, cartilage and the fibrous elements of skeleton,
178
589064
2532
ืขืฆื, ืกื—ื•ืก ื•ื”ืืœืžื ื˜ื™ื ื”ืกื™ื‘ื™ื™ื ืฉืœ ื”ืฉืœื“,
09:51
just like there's a stem cell in blood,
179
591620
1865
ื‘ื“ื™ื•ืง ื›ืžื• ืฉื™ืฉ ืชื ื’ื–ืข ื‘ื“ื,
09:53
just like there's a stem cell in the nervous system.
180
593510
2435
ื‘ื“ื™ื•ืง ื›ืžื• ืฉื™ืฉ ืชื ื’ื–ืข ื‘ืžืขืจื›ืช ื”ืขืฆื‘ื™ื.
09:55
And two, that maybe that, the degeneration or dysfunction of this stem cell
181
595969
3560
ื•ืฉืชื™ื™ื, ืฉืื•ืœื™ ื”ื ื™ื•ื•ืŸ ื•ื”ืชืคืงื•ื“ ื”ืœืงื•ื™ ืฉืœ ืชื ื”ื’ื–ืข ื”ื–ื”
09:59
is what's causing osteochondral arthritis, a very common ailment.
182
599554
3502
ื–ื” ืžื” ืฉื’ื•ืจื ืœื“ืœืงืช ืคืจืงื™ื ื ื™ื•ื•ื ื™ืช, ืžื—ืœื” ื ืคื•ืฆื” ื‘ื™ื•ืชืจ.
ื›ืš ืฉื‘ืขืฆื ื”ืฉืืœื” ื”ื™ืชื”, ื”ืื ืื ื—ื ื• ื—ื™ืคืฉื ื• ื’ืœื•ืœื”
10:03
So really the question was, were we looking for a pill
183
603080
3216
10:06
when we should have really been looking for a cell.
184
606320
2616
ื›ืฉื‘ืขืฆื ื”ื™ื™ื ื• ืฆืจื™ื›ื™ื ืœื—ืคืฉ ืชื.
10:08
So we switched our models,
185
608960
2856
ืื– ื”ื—ืœืคื ื• ืืช ื”ืžื•ื“ืœื™ื ืฉืœื ื•,
10:11
and now we began to look for skeletal stem cells.
186
611840
3120
ื•ืขื›ืฉื™ื• ื”ืชื—ืœื ื• ืœื—ืคืฉ ืชืื™ ื’ื–ืข ืฉืœื“ื™ื™ื.
10:15
And to cut again a long story short,
187
615560
2496
ื•ืฉื•ื‘, ื›ื“ื™ ืœื”ื’ื™ืข ืœื ืงื•ื“ื”,
10:18
about five years ago, we found these cells.
188
618080
2920
ืœืคื ื™ ื—ืžืฉ ืฉื ื™ื ื‘ืขืจืš, ืžืฆืื ื• ืืช ื”ืชืื™ื ื”ืœืœื•.
10:21
They live inside the skeleton.
189
621800
2496
ื”ื ื—ื™ื™ื ื‘ืชื•ืš ื”ืฉืœื“.
10:24
Here's a schematic and then a real photograph of one of them.
190
624320
2896
ื”ื ื” ืชืจืฉื™ื ื•ืื—"ื› ืชืฆืœื•ื ืืžื™ืชื™ ืฉืœ ืื—ื“ ืžื”ื.
10:27
The white stuff is bone,
191
627240
1936
ื”ื—ื•ืžืจ ื”ืœื‘ืŸ ื”ื•ื ืขืฆื,
10:29
and these red columns that you see and the yellow cells
192
629200
3016
ื•ืฉื ื™ ื”ืขืžื•ื“ื™ื ื”ืื“ื•ืžื™ื ื”ืœืœื• ืฉืืชื ืจื•ืื™ื ื•ื”ืชืื™ื ื”ืฆื”ื•ื‘ื™ื
10:32
are cells that have arisen from one single skeletal stem cell --
193
632240
3256
ื”ื ืชืื™ื ืฉื ื•ืฆืจื• ืžืชื•ืš ืชื ื’ื–ืข ืฉืœื“ื™ ืื—ื“ --
10:35
columns of cartilage, columns of bone coming out of a single cell.
194
635520
3296
ืขืžื•ื“ื™ื ืฉืœ ืกื—ื•ืก, ืขืžื•ื“ื™ื ืฉืœ ืขืฆื ื™ื•ืฆืื™ื ืžืชื ืื—ื“.
10:38
These cells are fascinating. They have four properties.
195
638840
3296
ื”ืชืื™ื ื”ืืœื” ืžืจืชืงื™ื. ื™ืฉ ืœื”ื ืืจื‘ืข ืชื›ื•ื ื•ืช.
10:42
Number one is that they live where they're expected to live.
196
642160
3776
ืžืกืคืจ ืื—ื“ ื–ื” ืฉื”ื ื—ื™ื™ื ื‘ืžืงื•ื ื‘ื• ื”ื ืืžื•ืจื™ื ืœื—ื™ื•ืช.
10:45
They live just underneath the surface of the bone,
197
645960
2376
ื”ื ื—ื™ื™ื ื‘ื“ื™ื•ืง ืžืชื—ืช ืœืคื ื™ ื”ืขืฆื,
10:48
underneath cartilage.
198
648360
1536
ืžืชื—ืช ืœืกื—ื•ืก.
10:49
You know, in biology, it's location, location, location.
199
649920
2620
ืืชื ื™ื•ื“ืขื™ื, ื‘ื‘ื™ื•ืœื•ื’ื™ื” ื–ื” ื”ื›ืœ ืžื™ืงื•ื, ืžื™ืงื•ื, ืžื™ืงื•ื.
10:52
And they move into the appropriate areas and form bone and cartilage.
200
652564
4252
ื•ื”ื ื ืขื™ื ืœืื–ื•ืจื™ื ื”ื ื›ื•ื ื™ื ื•ื™ื•ืฆืจื™ื ืขืฆื ื•ืกื—ื•ืก.
10:56
That's one.
201
656840
1256
ื–ื” ืื—ื“.
10:58
Here's an interesting property.
202
658120
1536
ื”ื ื” ืชื›ื•ื ื” ืžืขื ื™ื™ื ืช.
10:59
You can take them out of the vertebrate skeleton,
203
659680
2656
ืืคืฉืจ ืœื”ื•ืฆื™ื ืื•ืชื ืžื”ืฉืœื“ ื”ื—ื•ืœื™ื™ืชื ื™,
11:02
you can culture them in petri dishes in the laboratory,
204
662360
2576
ืืคืฉืจ ืœื’ื“ืœ ืื•ืชื ืขืœ ืฆืœื—ื•ืช ืคื˜ืจื™ ื‘ืžืขื‘ื“ื”,
11:04
and they are dying to form cartilage.
205
664960
1976
ื•ืื– ื”ื ืžืชื™ื ืœื™ืฆื•ืจ ืกื—ื•ืก.
11:06
Remember how we couldn't form cartilage for love or money?
206
666960
2722
ื–ื•ื›ืจื™ื ืฉืื ื—ื ื• ืœื ื™ื›ื•ืœื™ื ืœื™ืฆื•ืจ ืกื—ื•ืก ื›ืžื” ืฉืœื ื ืจืฆื”?
11:09
These cells are dying to form cartilage.
207
669706
1919
ื”ืชืื™ื ื”ืœืœื• ืžืชื™ื ืœื™ืฆื•ืจ ืกื—ื•ืก.
11:11
They form their own furls of cartilage around themselves.
208
671650
3005
ื”ื ื™ื•ืฆืจื™ื ืขื˜ื™ืคื•ืช ืฉืœ ืกื—ื•ืก ืกื‘ื™ื‘ ืขืฆืžื.
11:14
They're also, number three,
209
674680
1616
ื”ื ื’ื, ืžืกืคืจ ืฉืœื•ืฉ,
11:16
the most efficient repairers of fractures that we've ever encountered.
210
676320
4176
ื”ืžืชืงื ื™ื ื”ื˜ื•ื‘ื™ื ื‘ื™ื•ืชืจ ืฉืœ ืฉื‘ืจื™ื ื‘ื”ื ื ืชืงืœื ื• ืžืขื•ืœื.
11:20
This is a little bone, a mouse bone that we fractured
211
680520
3296
ื–ื•ื”ื™ ืขืฆื ืงื˜ื ื”, ืขืฆื ืฉืœ ืขื›ื‘ืจ ืื•ืชื” ืฉื‘ืจื ื•
11:23
and then let it heal by itself.
212
683840
1536
ื•ืื– ื ืชื ื• ืœื” ืœื”ื—ืœื™ื ืœื‘ื“.
11:25
These stem cells have come in and repaired, in yellow, the bone,
213
685400
3016
ืชืื™ ื”ื’ื–ืข ื”ืœืœื• ื ื›ื ืกื• ื•ืชื™ืงื ื•, ื‘ืฆื”ื•ื‘, ื”ืขืฆื,
11:28
in white, the cartilage, almost completely.
214
688440
2616
ื‘ืœื‘ืŸ ื”ืกื—ื•ืก, ื›ืžืขื˜ ืœื’ืžืจื™.
11:31
So much so that if you label them with a fluorescent dye
215
691080
3536
ื›ืœ ื›ืš ื›ื›ื” ืฉืื ืืชื ืžืกืžื ื™ื ืื•ืชื ื‘ืกื™ืžื•ืŸ ืคืœื•ืื•ืจื•ืกื ื˜ื™
11:34
you can see them like some kind of peculiar cellular glue
216
694640
3736
ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืื•ืชื ื›ืžืขื™ืŸ ื“ื‘ืง ืชืื™ ืžืฉื•ื ื”
11:38
coming into the area of a fracture,
217
698400
1856
ืžื’ื™ืขื™ื ืœืื™ื–ื•ืจ ื”ืฉื‘ืจ,
11:40
fixing it locally and then stopping their work.
218
700280
2976
ืžืชืงื ื™ื ืื•ืชื• ื‘ืื•ืคืŸ ืžืงื•ืžื™ ื•ืื– ืžืคืกื™ืงื™ื ืœืขื‘ื•ื“.
11:43
Now, the fourth one is the most ominous,
219
703280
2336
ืขื›ืฉื™ื•, ื”ืชื›ื•ื ื” ื”ืจื‘ื™ืขื™ืช ื”ื™ื ื”ืžืื™ื™ืžืช ื‘ื™ื•ืชืจ,
11:45
and that is that their numbers decline precipitously,
220
705640
4136
ื•ื–ื” ืฉืžืกืคืจื ืฉืœ ื”ืชืื™ื ื”ืœืœื• ื“ื•ืขืš ื‘ืื•ืคืŸ ื—ื“,
11:49
precipitously, tenfold, fiftyfold, as you age.
221
709800
4696
ื‘ืื•ืคืŸ ื—ื“ ืžืื“, ืคื™ ืขืฉืจ, ืคื™ ื—ืžื™ืฉื™ื, ื›ื›ืœ ืฉืืชื ืžืชื‘ื’ืจื™ื.
11:54
And so what had happened, really,
222
714520
1576
ืื– ืžื” ืฉื‘ืขืฆื ืงืจื”,
11:56
is that we found ourselves in a perceptual shift.
223
716120
2856
ื–ื” ืฉืžืฆืื ื• ืืช ืขืฆืžื ื• ื‘ืชื•ืš ืฉื™ื ื•ื™ ืชืคื™ืกืชื™.
ื™ืฆืื ื• ืœืฆื•ื“ ื’ืœื•ืœื•ืช
11:59
We had gone hunting for pills
224
719000
2736
12:01
but we ended up finding theories.
225
721760
2496
ืื‘ืœ ืžืฆืื ื• ืขืฆืžื ื• ืขื ืชื™ืื•ืจื™ื•ืช.
12:04
And in some ways
226
724280
1216
ื•ื‘ื“ืจื›ื™ื ืžืกื•ื™ืžื•ืช
12:05
we had hooked ourselves back onto this idea:
227
725520
2616
ืงื™ื‘ืขื ื• ืขืฆืžื ื• ื—ื–ืจื” ืœืจืขื™ื•ืŸ ื”ื–ื”:
12:08
cells, organisms, environments,
228
728160
2896
ืชืื™ื, ืื•ืจื’ื ื™ื–ืžื™ื, ืกื‘ื™ื‘ื•ืช ื—ื™ื™ื,
12:11
because we were now thinking about bone stem cells,
229
731080
2576
ื›ื™ื•ืŸ ืฉืขื›ืฉื™ื• ื”ืชื—ืœื ื• ืœื—ืฉื•ื‘ ืขืœ ืชืื™ ื’ื–ืข ืฉืœ ื”ืขืฆื,
12:13
we were thinking about arthritis in terms of a cellular disease.
230
733680
3440
ื”ืชื—ืœื ื• ืœื—ืฉื•ื‘ ืขืœ ื“ืœืงืช ืคืจืงื™ื ื‘ืžื•ื ื—ื™ื ืฉืœ ืžื—ืœื” ืชืื™ืช.
12:17
And then the next question was, are there organs?
231
737840
2286
ื•ื”ืฉืืœื” ื”ื‘ืื” ื”ื™ืชื”, ื”ืื ื™ืฉ ืื™ื‘ืจื™ื?
12:20
Can you build this as an organ outside the body?
232
740150
2239
ื”ืื ื ื™ืชืŸ ืœื‘ื ื•ืช ื–ืืช ื›ืื™ื‘ืจ ืžื—ื•ืฅ ืœื’ื•ืฃ?
12:22
Can you implant cartilage into areas of trauma?
233
742413
3843
ื”ืื ื ื™ืชืŸ ืœื”ืฉืชื™ืœ ืกื—ื•ืก ืœืื™ื–ื•ืจื™ื ื—ื‘ื•ืœื™ื?
12:26
And perhaps most interestingly,
234
746280
1976
ื•ืื•ืœื™ ื”ื›ื™ ืžืขื ื™ื™ืŸ,
12:28
can you ascend right up and create environments?
235
748280
2376
ื”ืื ื ื™ืชืŸ ืœืขืœื•ืช ื™ืฉืจ ืœืžืขืœื” ื‘ื›ื“ื™ ืœื™ืฆื•ืจ ืกื‘ื™ื‘ื•ืช?
12:30
You know, we know that exercise remodels bone,
236
750680
3056
ืืชื ื™ื•ื“ืขื™ื, ืื ื—ื ื• ื™ื•ืขื“ื™ื ืฉืื™ืžื•ืŸ ื’ื•ืคื ื™ ืžืขืฆื‘ ืขืฆืžื•ืช ืžื—ื“ืฉ,
12:33
but come on, none of us is going to exercise.
237
753760
2416
ืื‘ืœ ื‘ื—ื™ื™ื›ื, ืืฃ ืื—ื“ ืžืื™ืชื ื• ืœื ื”ื•ืœืš ืœื”ืชืืžืŸ.
12:36
So could you imagine ways of passively loading and unloading bone
238
756200
5176
ืื– ื”ืชื•ื›ืœื• ืœื“ืžื™ื™ืŸ ื“ืจื›ื™ื ืคืกื™ื‘ื™ื•ืช ืœื”ืขืžื™ืก ื•ืœืคืจื•ืง ืขืฆื
12:41
so that you can recreate or regenerate degenerating cartilage?
239
761400
4816
ื›ื“ื™ ืฉืชื•ื›ืœื• ืœืฉื—ื–ืจ ืื• ืœื—ื“ืฉ ืกื—ื•ืก ืžืชื ื•ื•ืŸ?
12:46
And perhaps more interesting, and more importantly,
240
766240
2381
ื•ืื•ืœื™ ื™ื•ืชืจ ืžืขื ื™ื™ืŸ, ื•ื™ื•ืชืจ ื—ืฉื•ื‘,
12:48
the question is, can you apply this model more globally outside medicine?
241
768645
3451
ื”ืฉืืœื” ื”ื™ื ื”ืื ื ื™ืชืŸ ืœื™ื™ืฉื ืืช ื”ืžื•ื“ืœ ื”ื–ื” ื‘ืื•ืคืŸ ื›ืœืœื™ ื™ื•ืชืจ ืžื—ื•ืฅ ืœืชื—ื•ื ื”ืจืคื•ืื”?
12:52
What's at stake, as I said before, is not killing something,
242
772120
4056
ืžื” ืฉืžื•ื ื— ืขืœ ื”ื›ืฃ, ื›ืคื™ ืฉืืžืจืชื™ ืงื•ื“ื, ื–ื” ืœื ืœื”ืจื•ื’ ืžืฉื”ื•,
12:56
but growing something.
243
776200
1440
ืืœื ืœื’ื“ืœ ืžืฉื”ื•.
12:58
And it raises a series of, I think, some of the most interesting questions
244
778280
4816
ื•ื–ื” ืžืขืœื” ืกื“ืจื” ืฉืœ, ืื ื™ ื—ื•ืฉื‘, ื›ืžื” ืžื”ืฉืืœื•ืช ื”ืžืขื ื™ื™ื ื•ืช ื‘ื™ื•ืชืจ
13:03
about how we think about medicine in the future.
245
783120
2520
ืขืœ ืื™ืš ืื ื—ื ื• ื—ื•ืฉื‘ื™ื ืขืœ ืจืคื•ืื” ื‘ืขืชื™ื“.
13:07
Could your medicine be a cell and not a pill?
246
787040
2880
ื”ืื ื”ืชืจื•ืคื•ืช ืฉืœื›ื ื™ื•ื›ืœื• ืœื”ื™ื•ืช ืชื ื•ืœื ื’ืœื•ืœื”?
13:10
How would we grow these cells?
247
790840
2376
ืื™ืš ื ื’ื“ืœ ืืช ื”ืชืื™ื ื”ืืœื”?
13:13
What we would we do to stop the malignant growth of these cells?
248
793240
3016
ืžื” ื ืขืฉื” ื‘ื›ื“ื™ ืœืขืฆื•ืจ ืืช ื”ื’ื™ื“ื•ืœ ื”ืžืžืื™ืจ ืฉืœ ื”ืชืื™ื ื”ืืœื”?
13:16
We heard about the problems of unleashing growth.
249
796280
3896
ืฉืžืขื ื• ืขืœ ื”ื‘ืขื™ื•ืช ืฉืœ ืžืชืŸ ื™ื“ ื—ื•ืคืฉื™ืช ืœื’ื“ื™ืœื”.
13:20
Could we implant suicide genes into these cells
250
800200
2776
ื”ืื ื ื•ื›ืœ ืœื”ืฉืชื™ืœ ื’ื ื™ื ืื•ื‘ื“ื ื™ื™ื ืœืชื•ืš ื”ืชืื™ื ื”ืœืœื•
ื‘ื›ื“ื™ ืœืขืฆื•ืจ ืื•ืชื ืžืœื’ื“ื•ืœ?
13:23
to stop them from growing?
251
803000
1440
13:25
Could your medicine be an organ that's created outside the body
252
805040
3936
ื”ืื ื”ืชืจื•ืคื” ืฉืœื›ื ื™ื›ื•ืœื” ืœื”ื™ื•ืช ืื™ื‘ืจ ืฉืžื™ื•ืฆืจ ืžื—ื•ืฅ ืœื’ื•ืฃ
ื•ืื– ืžื•ืฉืชืœ ืœืชื•ืš ื”ื’ื•ืฃ?
13:29
and then implanted into the body?
253
809000
1936
13:30
Could that stop some of the degeneration?
254
810960
2736
ื”ืื ื–ื” ื™ื•ื›ืœ ืœืขืฆื•ืจ ื—ืœืง ืžื”ื”ืชื ื•ื•ื ื•ืช?
13:33
What if the organ needed to have memory?
255
813720
1905
ืžื” ืื ื”ืื™ื‘ืจ ื–ืงื•ืง ืœื–ื™ื›ืจื•ืŸ?
13:35
In cases of diseases of the nervous system some of those organs had memory.
256
815649
4767
ื‘ืžืงืจื” ืฉืœ ืžื—ืœื•ืช ืฉืœ ืžืขืจื›ืช ื”ืขืฆื‘ื™ื ืœื—ืœืง ืžื”ืื™ื‘ืจื™ื ื”ืืœื” ื”ื™ื” ื–ื™ื›ืจื•ืŸ.
13:40
How could we implant those memories back in?
257
820440
2456
ืื™ืš ื ื•ื›ืœ ืœื”ืฉืชื™ืœ ืืช ื”ื–ื›ืจื•ื ื•ืช ื”ืืœื” ื—ื–ืจื”?
13:42
Could we store these organs?
258
822920
1816
ื”ืื ื ื•ื›ืœ ืœืื—ืกืŸ ืืช ื”ืื™ื‘ืจื™ื ื”ืœืœื•?
13:44
Would each organ have to be developed for an individual human being
259
824760
3143
ื”ืื ื›ืœ ืื™ื‘ืจ ื™ื™ืฆื˜ืจืš ืœื”ื™ื•ืช ืžืคื•ืชื— ืขื‘ื•ืจ ื‘ืŸ-ืื“ื ืื—ื“
13:47
and put back?
260
827927
1200
ื•ืื– ืœื”ื™ื•ืช ืžื•ื—ื–ืจ?
13:50
And perhaps most puzzlingly,
261
830520
2616
ื•ืื•ืœื™ ื”ื›ื™ ืชืžื•ื”,
13:53
could your medicine be an environment?
262
833160
1810
ื”ืื ื”ืชืจื•ืคื” ืฉืœื›ื ื™ื›ื•ืœื” ืœื”ื™ื•ืช ืกื‘ื™ื‘ื”?
13:56
Could you patent an environment?
263
836160
1656
ื”ืื ืืคืฉืจ ืœืจืฉื•ื ืคื˜ื ื˜ ืขืœ ืกื‘ื™ื‘ื”?
13:57
You know, in every culture,
264
837840
3456
ืืชื ื™ื•ื“ืขื™ื, ื‘ื›ืœ ืชืจื‘ื•ืช,
14:01
shamans have been using environments as medicines.
265
841320
2936
ืฉืืžืื ื™ื ื ื”ื’ื• ืœื”ืฉืชืžืฉ ื‘ืกื‘ื™ื‘ื•ืช ื›ืชืจื•ืคื•ืช.
14:04
Could we imagine that for our future?
266
844280
2320
ื”ืื ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื“ืžื™ื™ืŸ ื–ืืช ื‘ืฉื‘ื™ืœ ื”ืขืชื™ื“ ืฉืœื ื•?
14:08
I've talked a lot about models. I began this talk with models.
267
848080
3376
ื“ื™ื‘ืจืชื™ ื”ืจื‘ื” ืขืœ ืžื•ื“ืœื™ื. ื”ืชื—ืœืชื™ ืืช ื”ืžืฆื’ืช ื”ื–ื• ืขื ืžื•ื“ืœื™ื.
14:11
So let me end with some thoughts about model building.
268
851480
2696
ืื– ืชืจืฉื• ืœื™ ืœืกื™ื™ื ืขื ื›ืžื” ืžื—ืฉื‘ื•ืช ืขืœ ื‘ื ื™ื™ืช ืžื•ื“ืœื™ื.
14:14
That's what we do as scientists.
269
854200
2096
ื–ื” ืžื” ืฉืื ื—ื ื• ืขื•ืฉื™ื ื›ืžื“ืขื ื™ื.
14:16
You know, when an architect builds a model,
270
856320
3296
ืืชื ื™ื•ื“ืขื™ื, ื›ืฉืืจื›ื™ื˜ืงื˜ ื‘ื•ื ื” ืžื•ื“ืœ,
14:19
he or she is trying to show you a world in miniature.
271
859640
3296
ื”ื•ื ืื• ื”ื™ื ืžื ืกื™ื ืœื”ืจืื•ืช ืœื›ื ืืช ื”ืขื•ืœื ื‘ืงื˜ืŸ.
14:22
But when a scientist is building a model,
272
862960
2896
ืื‘ืœ ื›ืฉืžื“ืขืŸ ื‘ื•ื ื” ืžื•ื“ืœ,
14:25
he or she is trying to show you the world in metaphor.
273
865880
2524
ื”ื•ื ืื• ื”ื™ื ืžื ืกื™ื ืœื”ืจืื•ืช ืœื›ื ืืช ื”ืขื•ืœื ื‘ืžื˜ืืคื•ืจื”.
14:29
He or she is trying to create a new way of seeing.
274
869600
3856
ื”ื•ื ืื• ื”ื™ื ืžื ืกื™ื ืœื™ืฆื•ืจ ื“ืจืš ื—ื“ืฉื” ืฉืœ ืจืื™ื™ื”.
14:33
The former is a scale shift. The latter is a perceptual shift.
275
873480
4120
ื”ืจืืฉื•ืŸ ื”ื•ื ืฉื™ื ื•ื™ ื‘ืงื ื” ื”ืžื™ื“ื”. ื”ืื—ืจื•ืŸ ื”ื•ื ืฉื™ื ื•ื™ ืชืคื™ืกืชื™.
14:38
Now, antibiotics created such a perceptual shift
276
878920
4936
ืขื›ืฉื™ื•, ืชืจื•ืคื•ืช ืื ื˜ื™ื‘ื™ื•ื˜ื™ื•ืช ื™ืฆืจื• ื›ื–ื” ืฉื™ื ื•ื™ ืชืคื™ืกืชื™
14:43
in our way of thinking about medicine that it really colored, distorted,
277
883880
3816
ื‘ื“ืจืš ื‘ื” ืื ื—ื ื• ื—ื•ืฉื‘ื™ื ืขืœ ืชืจื•ืคื•ืช ืฉื”ื•ื ืžืžืฉ ืฆื‘ืข, ืขื™ื•ื•ืช,
14:47
very successfully, the way we've thought about medicine for the last hundred years.
278
887720
3920
ื‘ืื•ืคืŸ ืžื•ืฆืœื—, ืืช ื”ื“ืจืš ื‘ื” ื—ืฉื‘ื ื• ืขืœ ืชืจื•ืคื•ืช ื‘ืžืฉืš ืžืื” ื”ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช.
14:52
But we need new models to think about medicine in the future.
279
892400
4416
ืื‘ืœ ืื ื—ื ื• ืฆืจื™ื›ื™ื ืžื•ื“ืœื™ื ื—ื“ืฉื™ื ื›ื“ื™ ืœื—ืฉื•ื‘ ืขืœ ืชืจื•ืคื•ืช ื‘ืขืชื™ื“.
14:56
That's what's at stake.
280
896840
1480
ื–ื” ืžื” ืฉืžื•ื ื— ืขืœ ื”ื›ืฃ.
14:59
You know, there's a popular trope out there
281
899480
3336
ืืชื ื™ื•ื“ืขื™ื, ื™ืฉ ืžื—ืฉื‘ื” ืคื•ืคื•ืœืจื™ืช ื‘ื—ื•ืฅ
15:02
that the reason we haven't had the transformative impact
282
902840
3976
ืฉื”ืกื™ื‘ื” ื‘ื’ืœืœื” ืœื ื—ื•ื•ื™ื ื• ืืช ื”ื”ืฉืคืขื” ื”ืžืฉื ื”
15:06
on the treatment of illness
283
906840
1976
ืขืœ ื”ื˜ื™ืคื•ืœ ื‘ืžื—ืœื•ืช
15:08
is because we don't have powerful-enough drugs,
284
908840
2856
ื–ื” ื‘ื’ืœืœ ืฉืื™ืŸ ืœื ื• ืชืจื•ืคื•ืช ื—ื–ืงื•ืช ืžืกืคื™ืง,
15:11
and that's partly true.
285
911720
1360
ื•ื–ื” ื ื›ื•ืŸ ื—ืœืงื™ืช.
15:14
But perhaps the real reason is
286
914120
1496
ืื‘ืœ ืื•ืœื™ ื”ืกื™ื‘ื” ื”ืืžื™ืชื™ืช ื”ื™ื
15:15
that we don't have powerful-enough ways of thinking about medicines.
287
915640
3200
ืฉืื™ืŸ ืœื ื• ื“ืจื›ื™ ืžื—ืฉื‘ื” ื—ื–ืงื•ืช ืžืกืคื™ืง ืขืœ ืชืจื•ืคื•ืช.
15:20
It's certainly true that
288
920560
2416
ืžื” ืฉื‘ื˜ื•ื— ื–ื”
ืฉื™ื”ื™ื” ื ื—ืžื“ ืื ื™ื”ื™ื• ืœื ื• ืชืจื•ืคื•ืช ื—ื“ืฉื•ืช.
15:23
it would be lovely to have new medicines.
289
923000
3776
15:26
But perhaps what's really at stake are three more intangible M's:
290
926800
4656
ืื‘ืœ ืื•ืœื™ ืžื” ืฉื‘ืืžืช ืžื•ื ื— ืขืœ ื”ื›ืฃ ื”ืŸ ืฉืœื•ืฉ ืžืž'ื™ื ืžื•ืคืฉื˜ื•ืช:
15:31
mechanisms, models, metaphors.
291
931480
3816
ืžื›ืื ื™ื–ืžื™ื, ืžื•ื“ืœื™ื, ืžื˜ืืคื•ืจื•ืช.
15:35
Thank you.
292
935320
1336
ืชื•ื“ื” ืจื‘ื”.
15:36
(Applause)
293
936680
6840
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
15:45
Chris Anderson: I really like this metaphor.
294
945600
3416
ื›ืจื™ืก ืื ื“ืจืกื•ืŸ: ืื ื™ ืžืื“ ืื•ื”ื‘ ืืช ื”ืžื˜ืืคื•ืจื” ื”ื–ืืช.
15:49
How does it link in?
295
949040
1536
ืื™ืš ื–ื” ืžืชื—ื‘ืจ?
15:50
There's a lot of talk in technologyland
296
950600
3136
ื™ืฉ ื”ืจื‘ื” ื“ื™ื‘ื•ืจื™ื ื‘ืืจืฅ-ื˜ื›ื ื•ืœื•ื’ื™ื”
15:53
about the personalization of medicine,
297
953760
2136
ืขืœ ื”ืคื™ื›ืช ื”ืจืคื•ืื” ืœืžื•ืชืืžืช ืื™ืฉื™ืช,
15:55
that we have all this data and that medical treatments of the future
298
955920
3416
ืฉื™ืฉ ืœื ื• ืืช ื›ืœ ื”ืžื™ื“ืข ื”ื–ื” ื•ืฉื”ื˜ื™ืคื•ืœื™ื ื”ืจืคื•ืื™ื™ื ืฉืœ ื”ืขืชื™ื“
15:59
will be for you specifically, your genome, your current context.
299
959360
4496
ื™ื”ื™ื• ื‘ืฉื‘ื™ืœืš ื‘ืžื™ื•ื—ื“, ืœื’ื ื•ื ืฉืœืš, ืœืžืฆื‘ ื”ื ืชื•ืŸ ืฉืœืš.
16:03
Does that apply to this model you've got here?
300
963880
3936
ื–ื” ืžืชื—ื‘ืจ ืœืžื•ื“ืœ ืฉื™ืฉ ืœืš ื›ืืŸ?
16:07
Siddhartha Mukherjee: It's a very interesting question.
301
967840
2616
ืกื™ื“ื”ึทืจืชื ืžื•ึผื—ึถืจื’'ื™: ื–ื• ืฉืืœื” ืžืขื ื™ื™ื ืช ืžืื“.
16:10
We've thought about personalization of medicine
302
970480
2216
ื ื”ื’ื ื• ืœื—ืฉื•ื‘ ืขืœ ืจืคื•ืื” ืžื•ืชืืžืช ืื™ืฉื™ืช
16:12
very much in terms of genomics.
303
972720
1536
ืžืื“ ื‘ืžื•ื ื—ื™ื ืฉืœ ื’ื ื•ื.
16:14
That's because the gene is such a dominant metaphor,
304
974280
2576
ื–ื” ื‘ื’ืœืœ ืฉื”ื’ืŸ ื”ื•ื ืžื˜ืืคื•ืจื” ื›ืœ ื›ืš ื“ื•ืžื™ื ื ื˜ื™ืช,
16:16
again, to use that same word, in medicine today,
305
976880
2976
ืฉื•ื‘, ืื ืœื”ืฉืชืžืฉ ื‘ืื•ืชื” ื”ืžื™ืœื”, ื‘ืจืคื•ืื” ื›ื™ื•ื,
16:19
that we think the genome will drive the personalization of medicine.
306
979880
3736
ืฉืื ื—ื ื• ื—ื•ืฉื‘ื™ื ืฉื”ื’ื ื•ื ื”ื•ื ื–ื” ืฉื™ื™ื“ื—ื•ืฃ ืืช ื”ื”ืชืืžื” ื”ืื™ืฉื™ืช ืฉืœ ื”ืจืคื•ืื”.
16:23
But of course the genome is just the bottom
307
983640
3096
ืื‘ืœ ื›ืžื•ื‘ืŸ ื”ื’ื ื•ื ื”ื•ื ืจืง ื”ื—ื•ืœื™ื™ื” ื”ืชื—ืชื•ื ื”
16:26
of a long chain of being, as it were.
308
986760
3816
ืฉืœ ืฉืจืฉืจืช ืืจื•ื›ื” ืฉืœ ืœื”ื™ื•ืช, ื›ื‘ื™ื›ื•ืœ.
16:30
That chain of being, really the first organized unit of that, is the cell.
309
990600
3816
ื”ืฉืจืฉืจืช ื”ื–ื• ืฉืœ ืœื”ื™ื•ืช, ื‘ืืžืช ื”ื—ื•ืœื™ื” ื”ืžืื•ืจื’ื ืช ื”ืจืืฉื•ื ื” ืฉืœื”, ื”ื™ื ื”ืชื.
16:34
So, if we are really going to deliver in medicine in this way,
310
994440
2976
ื›ืš ืฉืื ืื ื—ื ื• ื‘ืืžืช ื”ื•ืœื›ื™ื ืœืกืคืง ืจืคื•ืื” ื‘ื“ืจืš ื”ื–ื•,
16:37
we have to think of personalizing cellular therapies,
311
997440
2816
ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื—ืฉื•ื‘ ืขืœ ื”ืชืืžื” ืฉืœ ื˜ื™ืคื•ืœื™ื ืชืื™ื™ื ื‘ืื•ืคืŸ ืื™ืฉื™,
16:40
and then personalizing organ or organismal therapies,
312
1000280
3176
ื•ืื– ื”ืชืืžื” ืื™ืฉื™ืช ืฉืœ ื˜ื™ืคื•ืœื™ ืื™ื‘ืจื™ื ืื• ืื•ืจื’ื ื™ื–ืžื™ื,
16:43
and ultimately personalizing immersion therapies for the environment.
313
1003480
3816
ื•ื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ ื”ืชืืžื” ืื™ืฉื™ืช ืฉืœ ื˜ื™ืคื•ืœื™ ืฉื™ืงื•ืข ืขื‘ื•ืจ ื”ืกื‘ื™ื‘ื”.
16:47
So I think at every stage, you know --
314
1007320
3096
ื›ืš ืฉืื ื™ ื—ื•ืฉื‘ ืฉื‘ื›ืœ ืฉืœื‘, ืืชื” ื™ื•ื“ืข --
16:50
there's that metaphor, there's turtles all the way.
315
1010440
2416
ืื•ืžืจื™ื, ื™ืฉื ื” ื”ืžื˜ืืคื•ืจื”, ื™ืฉ ืฆื‘ื™ื ืœืื•ืจืš ื›ืœ ื”ื“ืจืš.
16:52
Well, in this, there's personalization all the way.
316
1012880
2381
ืื– ื‘ื–ื” ื™ืฉ ื”ืชืืžื” ืื™ืฉื™ืช ืœืื•ืจืš ื›ืœ ื”ื“ืจืš.
16:55
CA: So when you say medicine could be a cell
317
1015285
2891
ื›"ื: ืื– ื›ืฉืืชื” ืื•ืžืจ ืฉืจืคื•ืื” ืขืฉื•ื™ื” ืœื”ื™ื•ืช ืชื
16:58
and not a pill,
318
1018200
1816
ื•ืœื ื’ืœื•ืœื”,
ืืชื” ืžื“ื‘ืจ ืขืœ ื”ืชืื™ื ืฉืœืš ืขืฆืžืš ื‘ืคื•ื˜ื ืฆื™ื”.
17:00
you're talking about potentially your own cells.
319
1020040
2256
17:02
SM: Absolutely. CA: So converted to stem cells,
320
1022320
2376
ืก"ืž: ื‘ื”ื—ืœื˜. ื›"ื: ืื– ื›ืืœื” ืฉื”ืคื›ื• ืœืชืื™ ื’ื–ืข,
17:04
perhaps tested against all kinds of drugs or something, and prepared.
321
1024720
4536
ืื•ืœื™ ื ื‘ื—ื ื• ื›ื ื’ื“ ื›ืœ ืžื™ื ื™ ืชืจื•ืคื•ืช ืื• ืžืฉื”ื•, ื•ืžื•ื›ื ื™ื.
17:09
SM: And there's no perhaps. This is what we're doing.
322
1029280
2536
ืก"ืž: ื•ืื™ืŸ ื›ืืŸ ืื•ืœื™. ื–ื” ืžื” ืฉืื ื—ื ื• ืขื•ืฉื™ื.
17:11
This is what's happening, and in fact, we're slowly moving,
323
1031840
3736
ื–ื” ืžื” ืฉืงื•ืจื”, ื•ืœืžืขืฉื”, ืœืื˜ ืœืื˜ ืื ื—ื ื•
17:15
not away from genomics, but incorporating genomics
324
1035600
3815
ืœื ืžืชืจื—ืงื™ื ืžื’ื ื•ืžื™ืงื”, ืืœื ืžืฉืœื‘ื™ื ื’ื ื•ืžื™ืงื”
17:19
into what we call multi-order, semi-autonomous, self-regulating systems,
325
1039440
4735
ื‘ืชื•ืš ืžื” ืฉืื ื—ื ื• ืงื•ืจืื™ื ืœื”ืŸ ืžืขืจื›ื•ืช ืจื‘-ืืจื’ื•ื ื™ื•ืช, ื—ืฆื™-ืื•ื˜ื•ื ื•ืžื™ื•ืช, ืขื ื‘ืงืจื” ืขืฆืžื™ืช,
17:24
like cells, like organs, like environments.
326
1044200
2616
ื›ืžื• ืชืื™ื, ื›ืžื• ืื™ื‘ืจื™ื, ื›ืžื• ืกื‘ื™ื‘ื•ืช.
17:26
CA: Thank you so much.
327
1046829
1378
ื›"ื: ืชื•ื“ื” ืจื‘ื” ืœืš.
17:28
SM: Pleasure. Thanks.
328
1048227
1290
ืก"ืž: ืฉืžื—ืชื™. ืชื•ื“ื”.
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7