Soon We'll Cure Diseases With a Cell, Not a Pill | Siddhartha Mukherjee | TED Talks

305,659 views ใƒป 2015-10-28

TED


ไธ‹ใฎ่‹ฑ่ชžๅญ—ๅน•ใ‚’ใƒ€ใƒ–ใƒซใ‚ฏใƒชใƒƒใ‚ฏใ™ใ‚‹ใจๅ‹•็”ปใ‚’ๅ†็”Ÿใงใใพใ™ใ€‚

็ฟป่จณ: Eriko T ๆ กๆญฃ: Masaki Yanagishita
00:12
I want to talk to you about the future of medicine.
0
12760
4176
็š†ใ•ใ‚“ใซๅŒปๅญฆใฎๆœชๆฅใฎใ“ใจใ‚’ ใŠ่ฉฑใ—ใ—ใพใ—ใ‚‡ใ†
00:16
But before I do that, I want to talk a little bit about the past.
1
16960
4096
ใŸใ ใใฎๅ‰ใซ ใใฎ้ŽๅŽปใซใคใ„ใฆใ‚‚ ใ”็ดนไป‹ใ•ใ›ใฆใใ ใ•ใ„
00:21
Now, throughout much of the recent history of medicine,
2
21080
3616
ๅŒปๅญฆใฎ่ฟ‘ไปฃๅฒใฎๅคงๅŠ
00:24
we've thought about illness and treatment
3
24720
3816
็งใŸใกใฏ็—…ๆฐ—ใจใใฎๆฒป็™‚ใ‚’
00:28
in terms of a profoundly simple model.
4
28560
3376
ๆฅตใ‚ใฆๅ˜็ด”ใชใƒขใƒ‡ใƒซใซๅŸบใฅใ„ใฆ ่€ƒใˆใฆใใพใ—ใŸ
00:31
In fact, the model is so simple
5
31960
2696
ๅฎŸ้š›ใซ ใใฎใƒขใƒ‡ใƒซใฏ ๅ˜็ด”ใ™ใŽใฆ
00:34
that you could summarize it in six words:
6
34680
3056
๏ผ–ใคใฎ่จ€่‘‰ใง่กจใ›ใ‚‹ใปใฉใงใ™
00:37
have disease, take pill, kill something.
7
37760
4080
ใ€Œ็—…ๆฐ—ใซใƒปใชใ‚‹ใƒป่–ฌใ‚’ใƒป้ฃฒใ‚€ใƒป็—…ๅŽŸไฝ“ใ‚’ใƒปๆฎบใ™ใ€
00:43
Now, the reason for the dominance of this model
8
43080
4736
ใ•ใฆ ใ“ใฎใƒขใƒ‡ใƒซใŒๅ„ชๅ‹ขใงใ‚ใ‚‹็†็”ฑใฏ
00:47
is of course the antibiotic revolution.
9
47840
2616
ใ‚‚ใกใ‚ใ‚“ ๆŠ—็”Ÿ็‰ฉ่ณชใฎใŠใ‹ใ’ใงใ™
00:50
Many of you might not know this, but we happen to be celebrating
10
50480
3176
ใฟใชใ•ใ‚“ใฏใ”ๅญ˜ใ˜ใชใ„ใ‹ใ‚‚็Ÿฅใ‚Œใพใ›ใ‚“ใŒ
00:53
the hundredth year of the introduction of antibiotics into the United States.
11
53680
4056
ไปŠๅนดใฏ็ฑณๅ›ฝใซๆŠ—็”Ÿ็‰ฉ่ณชใŒๅฐŽๅ…ฅใ•ใ‚Œใฆใ‹ใ‚‰ 100ๅ‘จๅนดใฎ็ฏ€็›ฎใงใ™
00:57
But what you do know
12
57760
1616
ใฟใชใ•ใ‚“ใ‚‚
00:59
is that that introduction was nothing short of transformative.
13
59400
4240
ๆŠ—็”Ÿ็‰ฉ่ณชใŒๆฒป็™‚ใฎใ‚ใ‚Šๆ–นใ‚’ใ™ใฃใ‹ใ‚Š ๅค‰ใˆใฆใ—ใพใฃใŸใ“ใจใ‚’ใ”ๅญ˜ใ˜ใงใ—ใ‚‡ใ†
01:04
Here you had a chemical, either from the natural world
14
64880
3856
่‡ช็„ถ็•Œใซ็”ฑๆฅใ™ใ‚‹ ใ‚ใ‚‹ใ„ใฏ็ ”็ฉถๅฎคใงไบบๅทฅ็š„ใซๅˆๆˆใ•ใ‚ŒใŸ
01:08
or artificially synthesized in the laboratory,
15
68760
2736
ๅŒ–ๅญฆ็‰ฉ่ณชใŒใ‚ใ‚Š
01:11
and it would course through your body,
16
71520
3256
ใใ‚Œใฏ่บซไฝ“ใ‚’้ง†ใ‘ๅทกใ‚Š
01:14
it would find its target,
17
74800
2776
ๆจ™็š„ใ‚’่ฆ‹ใคใ‘
01:17
lock into its target --
18
77600
1656
็‹™ใ„ใ‚’ๅฎšใ‚ใ‚‹ใƒผ
01:19
a microbe or some part of a microbe --
19
79280
2216
ๅพฎ็”Ÿ็‰ฉใ‹ ใใฎไธ€้ƒจใ‹ใƒผ
01:21
and then turn off a lock and a key
20
81520
3440
ใใ‚Œใ‹ใ‚‰ ้ตใจ้ต็ฉดใ‚’่งฃ้™คใ—ใฆใ—ใพใ†
01:25
with exquisite deftness, exquisite specificity.
21
85960
3536
้ฉšใในใๅทงใฟใ•ใจ็‰น็•ฐๆ€งใง
01:29
And you would end up taking a previously fatal, lethal disease --
22
89520
4296
ใใฎใ‚ˆใ†ใซใ—ใฆ ไปฅๅ‰ใชใ‚‰ ๆญปใซ่‡ณใ‚‹็—…ใ ใฃใŸ
01:33
a pneumonia, syphilis, tuberculosis --
23
93840
3136
่‚บ็‚Žใ‚„ ๆข…ๆฏ’ ใใ—ใฆ็ตๆ ธใจใ„ใฃใŸ็—…ๆฐ—ใฏ
01:37
and transforming that into a curable, or treatable illness.
24
97000
4040
ๆฒป็™‚ๅฏ่ƒฝใช็–พๆ‚ฃใจใชใ‚Šใพใ—ใŸ
01:42
You have a pneumonia,
25
102080
1480
่‚บ็‚Žใชใ‚‰
01:44
you take penicillin,
26
104480
1376
ใƒšใƒ‹ใ‚ทใƒชใƒณใ‚’ๆŠ•ไธŽใ—
01:45
you kill the microbe
27
105880
1536
ใ™ใ‚‹ใจ็—…ๅŽŸ่Œใฏๆญปใ‚“ใง
01:47
and you cure the disease.
28
107440
2136
็—…ๆฐ—ใฏๆฒปใ‚‹ใฎใงใ™
01:49
So seductive was this idea,
29
109600
2936
ใ“ใ‚Œใฏ้žๅธธใซ้ญ…ๅŠ›็š„ใชใ‚ขใ‚คใƒ‡ใ‚ขใง
01:52
so potent the metaphor of lock and key
30
112560
4176
้ตใจ้ต็ฉดใฎใŸใจใˆใ‚‚ ย ไฝ•ใ‹ใ‚’ๆฎบใ™ใจใ„ใ†ใ“ใจใ‚‚ ใ‚ใ‹ใ‚Šใ‚„ใ™ใ‹ใฃใŸใฎใง
01:56
and killing something,
31
116760
1536
01:58
that it really swept through biology.
32
118320
2016
ใ‚ใฃใจใ„ใ†้–“ใซ ็”Ÿ็‰ฉๅญฆ็•Œใ‚’ๅธญๅทปใ—ใพใ—ใŸ
02:00
It was a transformation like no other.
33
120360
2120
ไป–ใซ้กžใ‚’่ฆ‹ใชใ„ใ‚ˆใ†ใช ๅค‰้ฉใงใ—ใŸ
02:04
And we've really spent the last 100 years
34
124160
3176
ใใ‚Œใ‹ใ‚‰100ๅนด
02:07
trying to replicate that model over and over again
35
127360
3456
็งใŸใกใฏใ“ใฎๅ˜็ด”ใชใƒขใƒ‡ใƒซใ‚’ ไฝ•ๅบฆใ‚‚็นฐใ‚Š่ฟ”ใ—
02:10
in noninfectious diseases,
36
130840
1239
้žๆ„ŸๆŸ“ๆ€ง็–พๆ‚ฃใ‚„ ็ณ–ๅฐฟ็—…ใ€้ซ˜่ก€ๅœงใ€ๅฟƒ็–พๆ‚ฃใจใ„ใฃใŸ
02:12
in chronic diseases like diabetes and hypertension and heart disease.
37
132103
4120
ๆ…ขๆ€ง็–พๆ‚ฃใฎๆฒป็™‚ใซใŠใ„ใฆใ‚‚ ๅ†็พใ—ใ‚ˆใ†ใจใ—ใฆใใพใ—ใŸ
02:17
And it's worked, but it's only worked partly.
38
137120
3639
็ขบใ‹ใซๅŠนๆžœใฏใ‚ใ‚Šใพใ—ใŸใŒ ้ƒจๅˆ†็š„ใชใ‚‚ใฎใงใ—ใŸ
02:21
Let me show you.
39
141120
1656
ใ”่ชฌๆ˜Žใ—ใพใ—ใ‚‡ใ†
02:22
You know, if you take the entire universe
40
142800
2896
ไบบไฝ“ใง่ตทใ“ใ‚Šใ†ใ‚‹
02:25
of all chemical reactions in the human body,
41
145720
3496
ใ‚ใ‚‰ใ‚†ใ‚‹ๅ…จใฆใฎ ๅŒ–ๅญฆๅๅฟœใ‚’่€ƒใˆใฆใฟใพใ—ใ‚‡ใ†
02:29
every chemical reaction that your body is capable of,
42
149240
3296
02:32
most people think that that number is on the order of a million.
43
152560
3016
ใปใจใ‚“ใฉใฎไบบใฏใใฎ็จฎ้กžใฏ ๆ•ฐ็™พไธ‡ใฎๅ˜ไฝใ ใ‚ใ†ใจ่€ƒใˆใพใ™
02:35
Let's call it a million.
44
155600
1296
ใ“ใ“ใงใฏ100ไธ‡ใจใ—ใพใ™
02:36
And now you ask the question,
45
156920
1696
ใงใฏ ่ณชๅ•ใงใ™
02:38
what number or fraction of reactions
46
158640
2656
ใ€Œใ‚ใ‚‰ใ‚†ใ‚‹ๅŒป่–ฌๅ“ๅŒ–ๅˆ็‰ฉใ€ ๅŒป่–ฌๅ“ใ‚’ไฝฟใ†ใจ
02:41
can actually be targeted
47
161320
1816
02:43
by the entire pharmacopoeia, all of medicinal chemistry?
48
163160
4816
ใ“ใฎๅๅฟœใฎใ†ใก ใฉใ‚Œใ ใ‘ใŒๆจ™็š„ใจใชใ‚‹ใฎใ ใ‚ใ†๏ผŸใ€
02:48
That number is 250.
49
168000
2040
็ญ”ใˆใฏใŸใฃใŸ250ใงใ™
02:51
The rest is chemical darkness.
50
171680
2536
ใใฎไป–ใฏๆœชใ  ่ฌŽใซๅŒ…ใพใ‚Œใฆใ„ใพใ™
02:54
In other words, 0.025 percent of all chemical reactions in your body
51
174240
6176
่จ€ใ„ๆ›ใˆใ‚Œใฐ ใ“ใฎ้ตใจ้ต็ฉดใฎ ใƒกใ‚ซใƒ‹ใ‚บใƒ ใงๆจ™็š„ใซใงใใ‚‹ใฎใฏ
03:00
are actually targetable by this lock and key mechanism.
52
180440
4120
ไฝ“ๅ†…ใง่ตทใ“ใ‚‹ๅŒ–ๅญฆๅๅฟœใฎใ†ใก ใŸใฃใŸ0.025๏ผ…ใ ใ‘ใจใ„ใ†ใ‚ใ‘ใงใ™
03:05
You know, if you think about human physiology
53
185680
3056
ใƒ’ใƒˆใฎ็”Ÿ็†ๅญฆ็š„็พ่ฑกใฏไพ‹ใˆใฆใฟใ‚‹ใจ
03:08
as a vast global telephone network
54
188760
3456
ๅบƒๅคงใช้›ป่ฉฑๅ›ž็ทš็ถฒใฎใ‚ˆใ†ใงใ™
03:12
with interacting nodes and interacting pieces,
55
192240
3880
ไบคไฟกใ—ๅˆใ†ใƒŽใƒผใƒ‰๏ผˆ็ฏ€็‚น๏ผ‰ ใใ—ใฆไบคไฟกใ—ๅˆใ†้ƒจๅˆ†ใŸใก
03:16
then all of our medicinal chemistry
56
196600
3176
ๅŒป่–ฌๅŒ–ๅˆ็‰ฉใฏ
03:19
is operating on one tiny corner
57
199800
2256
ใ‚ใ‚‹็‰‡้š…ใซใ‚ใ‚‹
03:22
at the edge, the outer edge, of that network.
58
202080
2696
ใƒใƒƒใƒˆใƒฏใƒผใ‚ฏใฎ็ซฏ โ€• ๆœซ็ซฏใงไฝœ็”จใ—ใพใ™
03:24
It's like all of our pharmaceutical chemistry
59
204800
3816
ๅŒป่–ฌๅ“ๅŒ–ๅญฆใฎๅ…จใฆใจใ„ใฃใฆใ‚‚
03:28
is a pole operator in Wichita, Kansas
60
208640
3776
ใ‚ซใƒณใ‚ถใ‚นใฎใ‚ฆใ‚ฃใƒใ‚ฟๅฑ€ใฎ ้›ป่ฉฑไบคๆ›ๆ‰‹ใŒ
03:32
who is tinkering with about 10 or 15 telephone lines.
61
212440
2960
10ใ‹ใ‚‰15ใฎๅ›ž็ทšใ‚’ๆ“ใฃใฆใ„ใ‚‹ ใจใ„ใ†ใ‚ˆใ†ใชใ‚‚ใฎใงใ™
03:36
So what do we do about this idea?
62
216880
2160
ใ“ใ‚Œใ‚’ใฉใ†่€ƒใˆใŸใ‚‰่‰ฏใ„ใงใ—ใ‚‡ใ†๏ผŸ
03:40
What if we reorganized this approach?
63
220160
2360
ใ“ใฎ่€ƒใˆๆ–นใ‚’ๆ–ฐใŸใชใ‚‚ใฎใซ ๅค‰ใˆใฆใ—ใพใฃใŸใ‚‰๏ผŸ
03:44
In fact, it turns out that the natural world
64
224080
3376
ๅฎŸ้š› ่‡ช็„ถ็•Œใฏ็งใŸใกใซ
03:47
gives us a sense of how one might think about illness
65
227480
5056
ๅ…จใ้•ใฃใŸใ‚„ใ‚Šๆ–นใง ็—…ๆฐ—ใซใคใ„ใฆ่€ƒใˆใ‚‹ใ‚ˆใ†ใซ
03:52
in a radically different way,
66
232560
1656
ๆ•™ใˆใฆใใ‚Œใ‚‹ใฎใงใ™
03:54
rather than disease, medicine, target.
67
234240
3720
็–พ็—…ใ€่–ฌใ€ๆจ™็š„ ใจใ„ใฃใŸใ‚ˆใ†ใช่€ƒใˆๆ–นใงใฏใชใใƒผ
03:59
In fact, the natural world is organized hierarchically upwards,
68
239080
3376
่‡ช็„ถ็•Œใฏ้šŽๅฑค็š„ใซ ไธŠใธไธŠใธใจๆˆใ‚Š็ซ‹ใฃใฆใ„ใพใ™
04:02
not downwards, but upwards,
69
242480
1856
ไธ‹ใธ ใงใฏใชใไธŠใธใจ
04:04
and we begin with a self-regulating, semi-autonomous unit called a cell.
70
244360
6240
ใใฎๆˆใ‚Š็ซ‹ใกใฏ่‡ชๅพ‹็š„ใ€ๅŠ่‡ช็™บ็š„ใงใ‚ใ‚‹ ๆง‹ๆˆๅ˜ไฝ ็ดฐ่ƒžใ‹ใ‚‰ๅง‹ใพใ‚Šใพใ™
04:11
These self-regulating, semi-autonomous units
71
251640
3216
ใ“ใ‚Œใ‚‰่‡ชๅพ‹็š„ใ€ๅŠ่‡ช็™บ็š„ๆง‹ๆˆๅ˜ไฝใฏ
04:14
give rise to self-regulating, semi-autonomous units called organs,
72
254880
4816
ๅŒใ˜ใ่‡ชๅพ‹็š„ใ€ๅŠ่‡ช็™บ็š„ใช ๆง‹ๆˆๅ˜ไฝ ใ€Œ่‡“ๅ™จใ€ใ‚’็”Ÿใฟๅ‡บใ—
04:19
and these organs coalesce to form things called humans,
73
259720
3000
ใใ‚Œใ‚‰ใŒ้›†ใพใ‚Š ใ€Œใƒ’ใƒˆใ€ใ‚’ไฝœใ‚Šๅ‡บใ—ใพใ™
04:23
and these organisms ultimately live in environments,
74
263920
3896
ใƒ’ใƒˆใฏ่‡ช็„ถ็’ฐๅขƒใฎไธญใซๅฑ…ไฝใ—
04:27
which are partly self-regulating and partly semi-autonomous.
75
267840
3600
่‡ช็„ถ็’ฐๅขƒใ‚‚ใพใŸ้ƒจๅˆ†็š„ใซ ่‡ชๅพ‹็š„ใ€ๅŠ่‡ช็™บ็š„ใ ใจ่จ€ใˆใพใ™
04:32
What's nice about this scheme, this hierarchical scheme
76
272920
2816
ไธ‹ใงใฏใชใไธŠใธๅ‘ใ‹ใฃใฆไผธใณใ‚‹ ใ“ใฎ้šŽๅฑคใ‚นใ‚ญใƒผใƒ ใฎ่‰ฏใ„ใจใ“ใ‚ใฏ
04:35
building upwards rather than downwards,
77
275760
2696
04:38
is that it allows us to think about illness as well
78
278480
3376
็—…ๆฐ—ใซใคใ„ใฆใ‚‚ใพใŸ ๅˆฅใฎ่€ƒใˆๆ–นใŒใงใใ‚‹ใ‚ˆใ†ใซใชใ‚‹ใ“ใจใงใ™
04:41
in a somewhat different way.
79
281880
1334
04:44
Take a disease like cancer.
80
284400
2120
ใŒใ‚“ใ‚’ไพ‹ใซใจใฃใฆใฟใพใ—ใ‚‡ใ†
04:48
Since the 1950s,
81
288120
1296
1950ๅนดไปฃใ‹ใ‚‰
04:49
we've tried rather desperately to apply this lock and key model to cancer.
82
289440
5527
้ตใจ้ต็ฉดใƒขใƒ‡ใƒซใ‚’ใŒใ‚“ใซ้ฉ็”จใ—ใ‚ˆใ†ใจ ๆ‰‹ใ‚ใŸใ‚Šๆฌก็ฌฌ่ฉฆใฟใพใ—ใŸ
04:54
We've tried to kill cells
83
294991
2889
ใ‚ฌใƒณ็ดฐ่ƒžใ‚’ๆฎบใใ†ใจ
04:57
using a variety of chemotherapies or targeted therapies,
84
297905
4347
ใ‚ใ‚‰ใ‚†ใ‚‹ๅŒ–ๅญฆ็™‚ๆณ•ใ‚„ๆจ™็š„ๆฒป็™‚ใ‚’็”จใ„ใฆ
05:02
and as most of us know, that's worked.
85
302276
2420
ใ”ๅญ˜็Ÿฅใฎ้€šใ‚ŠๅŠนๆžœใŒใ‚ใ‚Šใพใ—ใŸ
05:04
It's worked for diseases like leukemia.
86
304720
1858
็™ฝ่ก€็—…ใฎใ‚ˆใ†ใช็—…ๆฐ—ใ‚„
05:06
It's worked for some forms of breast cancer,
87
306602
2374
ใ‚ใ‚‹็จฎใฎไนณใŒใ‚“ใซๅฏพใ—ใฆใฏ ๆœ‰ๅŠนใงใ—ใŸ
05:09
but eventually you run to the ceiling of that approach.
88
309000
3736
ใ—ใ‹ใ— ใ‚„ใŒใฆใ“ใฎใ‚ขใƒ—ใƒญใƒผใƒใฎ ้™็•ŒใŒ่ฆ‹ใˆใฆใใพใ—ใŸ
05:12
And it's only in the last 10 years or so
89
312760
2496
ใ”ใๆœ€่ฟ‘ ใ“ใฎๅๆ•ฐๅนดๆฅใฏ
05:15
that we've begun to think about using the immune system,
90
315280
3136
ๅ…็–ซ็ณปใ‚’ๅˆฉ็”จใ™ใ‚‹ใ“ใจใ‚’่€ƒใˆๅง‹ใ‚ใฆใ„ใพใ™
05:18
remembering that in fact the cancer cell doesn't grow in a vacuum.
91
318440
3096
ใŒใ‚“็ดฐ่ƒžใฏไป–ใฎใฉใ“ใซใงใ‚‚ใชใ
05:21
It actually grows in a human organism.
92
321560
2056
ไบบ้–“ใฎไฝ“ใฎไธญใง่‚ฒใคใฎใงใ™ใ‹ใ‚‰
05:23
And could you use the organismal capacity,
93
323640
2296
่บซไฝ“ใฎๆฉŸ่ƒฝใ‚’ๅˆฉ็”จใ—ใฆ
05:25
the fact that human beings have an immune system, to attack cancer?
94
325960
3143
ๅ…็–ซ็ณปใซใŒใ‚“ใ‚’ๆ”ปๆ’ƒใ•ใ›ใ‚‹ใ‚ˆใ†ใซ ใงใใชใ„ใ ใ‚ใ†ใ‹๏ผŸ
05:29
In fact, it's led to the some of the most spectacular new medicines in cancer.
95
329127
4200
ใ“ใ‚Œใฏ ใ„ใใคใ‹ใฎ็ด ๆ™ดใ‚‰ใ—ใ„ ใŒใ‚“ๆฒป็™‚่–ฌใซ็ตใณใคใใพใ—ใŸ
05:34
And finally there's the level of the environment, isn't there?
96
334480
3334
ใใ—ใฆ ๆœ€ๅพŒใซ่‡ช็„ถ็’ฐๅขƒใจใ„ใ† ้šŽๅฑคใŒใ‚ใ‚Šใพใ—ใŸใญ๏ผŸ
05:38
You know, we don't think of cancer as altering the environment.
97
338160
2976
็งใŸใกใฏใŒใ‚“ใŒ็’ฐๅขƒใซ ๅฝฑ้Ÿฟใ‚’ๅŠใผใ™ใจใฏ่€ƒใˆใพใ›ใ‚“ใŒ
05:41
But let me give you an example of a profoundly carcinogenic environment.
98
341160
4896
็’ฐๅขƒใŒ้žๅธธใซใŒใ‚“ใ‚’ๅผ•ใ่ตทใ“ใ—ใ‚„ใ™ใ„ ไพ‹ใŒใ‚ใ‚Šใพใ™
05:46
It's called a prison.
99
346080
1200
ๅˆ‘ๅ‹™ๆ‰€ใงใ™
05:48
You take loneliness, you take depression, you take confinement,
100
348160
5136
ๅญค็‹ฌๆ„Ÿใ€ๆŠ‘ใ†ใค็Šถๆ…‹ ็›ฃ็ฆ็Šถๆ…‹
05:53
and you add to that,
101
353320
1200
ใใ‚Œใ‚‰ใซๅŠ ใˆใฆ
05:55
rolled up in a little white sheet of paper,
102
355400
2560
ไธ€็‰‡ใฎ็™ฝ็ด™ใซใใ‚‹ใพใ‚ŒใŸ
05:59
one of the most potent neurostimulants that we know, called nicotine,
103
359000
3776
ๆœ€ใ‚‚ๅผทๅŠ›ใช็ฅž็ตŒๅˆบๆฟ€ไฝœ็”จใ‚’ๆœ‰ใ™ใ‚‹็‰ฉ่ณชใงใ‚ใ‚‹ ใƒ‹ใ‚ณใƒใƒณใ‚’
06:02
and you add to that one of the most potent addictive substances that you know,
104
362800
4936
ใคใพใ‚Šๆœ€ใ‚‚ๅ—œ็™–ๆ€งใฎๅผทใ„็‰ฉ่ณชใ‚’ๅŠ ใˆใ‚‹ใจ
06:07
and you have a pro-carcinogenic environment.
105
367760
2796
ใŒใ‚“ใ‚’ๅผ•ใ่ตทใ“ใ—ใ‚„ใ™ใ„ ็’ฐๅขƒใŒ็”Ÿใพใ‚Œใพใ™
06:11
But you can have anti-carcinogenic environments too.
106
371520
2456
ใ—ใ‹ใ—ใŒใ‚“ใ‚’ๆŠ‘ๅˆถใ—ใ‚„ใ™ใ„ ็’ฐๅขƒใจใ„ใ†ใฎใ‚‚ใ‚ใ‚Šใพใ™
06:14
There are attempts to create milieus,
107
374000
2696
ใใ†ใ—ใŸ็’ฐๅขƒใ‚’ไฝœใ‚Šๅ‡บใ™ๅŠชๅŠ›ใ‚‚ ใชใ•ใ‚Œใฆใใพใ—ใŸ
06:16
change the hormonal milieu for breast cancer, for instance.
108
376720
2762
ไนณใŒใ‚“ใซใŠใ„ใฆใƒ›ใƒซใƒขใƒณ็’ฐๅขƒใ‚’ๅค‰ใˆใŸใ‚Š ใจใ„ใฃใŸใ“ใจใงใ™
06:20
We're trying to change the metabolic milieu for other forms of cancer.
109
380440
3416
็งใŸใกใฏไป–ใฎใŒใ‚“ใซๅฏพใ—ใฆ ไปฃ่ฌ็’ฐๅขƒใ‚’ๅค‰ใˆใ‚ˆใ†ใจใ—ใฆใฟใฆใ„ใพใ™
06:23
Or take another disease, like depression.
110
383880
2416
ใ‚ใ‚‹ใ„ใฏไป–ใฎ็–พๆ‚ฃ ไพ‹ใˆใฐ ้ฌฑใ‚’ไพ‹ใซใจใฃใฆใฟใพใ—ใ‚‡ใ†
06:26
Again, working upwards,
111
386320
2656
ๅŒใ˜ใ‚ˆใ†ใซ ไธŠใธไธŠใธใจ ้šŽๅฑคใ‚’่พฟใ‚Šใพใ™
06:29
since the 1960s and 1970s, we've tried, again, desperately
112
389000
4016
1960ใ€œ70ๅนดไปฃใ‚ˆใ‚Š ็งใŸใกใฏๅฟ…ๆญปใซ
06:33
to turn off molecules that operate between nerve cells --
113
393040
4176
็ฅž็ตŒ็ดฐ่ƒžใฎ้–“ใงๆฉŸ่ƒฝใ™ใ‚‹ๅˆ†ๅญใงใ‚ใ‚‹
06:37
serotonin, dopamine --
114
397240
2176
ใ‚ปใƒญใƒˆใƒ‹ใƒณใ€ใƒ‰ใƒผใƒ‘ใƒŸใƒณใ‚’ ๆŠ‘ๅˆถใ™ใ‚‹ๆ–นๆณ•ใ‚’ๆŽขใ—
06:39
and tried to cure depression that way,
115
399440
1816
้ฌฑใ‚’ๆฒป็™‚ใ—ใ‚ˆใ†ใจใ—ใฆๆฅใพใ—ใŸ
06:41
and that's worked, but then that reached the limit.
116
401280
2440
ใใ‚ŒใฏๅŠนๆžœใŒใ‚ใ‚Šใพใ—ใŸใŒ ้™็•Œใซ้”ใ—ใพใ—ใŸ
06:45
And we now know that what you really probably need to do
117
405000
2620
ไปŠใ‚„ ใฉใ†ใ‚„ใ‚‰่‡“ๅ™จ ใ™ใชใ‚ใก่„ณใฎ
06:47
is to change the physiology of the organ, the brain,
118
407644
2972
็”Ÿ็†ๆฉŸ่ƒฝใ‚’ๅค‰ใˆใ‚‹ใ“ใจใŒๅฟ…่ฆใ ใจๅˆ†ใ‹ใ‚Šใพใ—ใŸ
06:50
rewire it, remodel it,
119
410640
2136
้…็ทšใ—็›ดใ— ๅฝขใ‚’็›ดใ™ใฎใงใ™
06:52
and that, of course, we know study upon study has shown
120
412800
2576
ใใ—ใฆ ็ ”็ฉถใซ็ ”็ฉถใ‚’้‡ใญใฆ ่ฉฑใ—ๅˆใ„็™‚ๆณ•ใŒ
06:55
that talk therapy does exactly that,
121
415400
1715
ใใฎๆ–นๆณ•ใชใฎใ ใจๅˆคๆ˜Žใ—ใพใ—ใŸ
06:57
and study upon study has shown that talk therapy
122
417139
2256
็ ”็ฉถใซๆฌกใ็ ”็ฉถใงๆ˜Žใ‚‰ใ‹ใซใชใฃใŸใฎใฏ
06:59
combined with medicines, pills,
123
419419
3117
่ฉฑใ—ๅˆใ„็™‚ๆณ•ใจๆŠ•่–ฌใ‚’็ต„ใฟๅˆใ‚ใ›ใ‚‹ใ“ใจใŒ
07:02
really is much more effective than either one alone.
124
422560
2429
ใฉใกใ‚‰ใ‹ไธ€ๆ–นๅ˜็‹ฌใ‚ˆใ‚Šใ‚‚ๅŠนๆžœ็š„ใ  ใจใ„ใ†ใ“ใจใงใ™
07:05
Can we imagine a more immersive environment that will change depression?
125
425840
3576
้ฌฑ็Šถๆ…‹ใ‚’ๅค‰ใˆใฆใ—ใพใ†ใ‚ˆใ†ใช ็’ฐๅขƒใ‚’ไฝœใ‚Šๅ‡บใ™ใ“ใจใฏๅฏ่ƒฝใงใ—ใ‚‡ใ†ใ‹๏ผŸ
07:09
Can you lock out the signals that elicit depression?
126
429440
4056
้ฌฑใ‚’่ช˜็™บใ™ใ‚‹ใ‚ทใ‚ฐใƒŠใƒซใ‚’ ใƒ–ใƒญใƒƒใ‚ฏใ—ใฆใ—ใพใ†ใ“ใจใฏ๏ผŸ
07:13
Again, moving upwards along this hierarchical chain of organization.
127
433520
5480
ใ“ใฎ้šŽๅฑค็š„ใซ้€ฃ้Ž–ใ—ใŸ็ต„็น”ใ‚’ ไธŠใธใจ็™ปใฃใฆใ„ใใพใ—ใ‚‡ใ†
07:19
What's really at stake perhaps here
128
439760
2696
ใŠใใ‚‰ใ ๆœฌๅฝ“ใซๅคงๅˆ‡ใชใ“ใจใฏ
07:22
is not the medicine itself but a metaphor.
129
442480
3256
่–ฌๅ‰คใใฎใ‚‚ใฎใงใฏใชใ ๆฒป็™‚ใ‚’ไพ‹ใˆใ‚‹ๆ–นๆณ•ใชใฎใงใ™
07:25
Rather than killing something,
130
445760
2056
่…Žไธๅ…จใ‚„็ณ–ๅฐฟ็—…ใ€้ซ˜่ก€ๅœง ้ชจ้–ข็ฏ€็‚Žใจใ„ใฃใŸ
07:27
in the case of the great chronic degenerative diseases --
131
447840
3696
ๆ…ขๆ€ง็š„ใชๅค‰ๆ€ง็–พๆ‚ฃใฎๅ ดๅˆ
07:31
kidney failure, diabetes, hypertension, osteoarthritis --
132
451560
3496
ไฝ•ใ‹็—…ๅŽŸไฝ“ใ‚’ๆฎบใ™ ใจใ„ใ†ใ‚ˆใ‚Šใ‚‚
07:35
maybe what we really need to do is change the metaphor to growing something.
133
455080
3572
ๅคšๅˆ† ็งใŸใกใฏ ไฝ•ใ‹ใ‚’ๆˆ้•ทใ•ใ›ใ‚‹ ใจใ„ใ†ไพ‹ใˆใ‚’ไฝฟใ†ในใใชใฎใงใ™
07:38
And that's the key, perhaps,
134
458676
1940
ใใ—ใฆ ใใฃใจใใ‚Œใ“ใใŒ
07:40
to reframing our thinking about medicine.
135
460640
2496
็งใŸใกใฎๅŒปๅญฆใฎ่€ƒใˆๆ–นใ‚’ ๅ†ๆง‹ๆˆใ™ใ‚‹้ตใชใฎใงใ™
07:43
Now, this idea of changing,
136
463160
3456
ใ•ใฆ ใ“ใฎๅค‰้ฉใ™ใ‚‹ใจใ„ใ†ใ‚ขใ‚คใƒ‡ใ‚ข
07:46
of creating a perceptual shift, as it were,
137
466640
2336
่ฆณ็‚นใ‚’ใ‚ทใƒ•ใƒˆใ•ใ›ใ‚‹ใจใ„ใ†ใ“ใจใฏ
07:49
came home to me to roost in a very personal manner about 10 years ago.
138
469000
3296
10ๅนดใปใฉๅ‰ใซ็งใซ็ชๅฆ‚่ตทใ“ใฃใŸ ็ง็š„ใชไบ‹ไปถใ‹ใ‚‰ๅง‹ใพใ‚Šใพใ—ใŸ
07:52
About 10 years ago -- I've been a runner most of my life --
139
472320
2776
10ๅนดใปใฉๅ‰ใƒผ ็งใฏไบบ็”Ÿใฎๆฎ†ใฉใƒฉใƒณใƒ‹ใƒณใ‚ฐใ‚’ใ—ใฆใใพใ—ใŸใŒใƒผ
07:55
I went for a run, a Saturday morning run,
140
475120
1976
ๅœŸๆ›œใฎๆœใ‚‚่ตฐใ‚Šใซๅ‡บใ‹ใ‘ใพใ—ใŸ
07:57
I came back and woke up and I basically couldn't move.
141
477120
2656
ๅฎถใซๆˆปใ‚‹ใจ ไฝ“ใŒๅ‹•ใ‹ใชใใชใฃใฆใ„ใฆ
07:59
My right knee was swollen up,
142
479800
2016
ๅณ่†ใฏ่…ซใ‚ŒไธŠใŒใ‚Š
08:01
and you could hear that ominous crunch of bone against bone.
143
481840
3520
ใ‚ใฎๅซŒใชๆ„Ÿใ˜ใฎ ้ชจใŒ่ป‹ใ‚€้ŸณใŒ่žใ“ใˆใพใ—ใŸ
08:06
And one of the perks of being a physician is that you get to order your own MRIs.
144
486240
4896
ๅŒปๅธซใฎ็‰นๆจฉใง่‡ชๅˆ†ใฎMRIใ‚’ใ‚ชใƒผใƒ€ใƒผใงใใ‚‹ใฎใง
08:11
And I had an MRI the next week, and it looked like that.
145
491160
3976
็ฟŒ้€ฑใซใฏMRIใ‚’ๆ’ฎใ‚Šใพใ—ใŸ
08:15
Essentially, the meniscus of cartilage that is between bone
146
495160
4296
ใ™ใ‚‹ใจ้ชจใฎ้–“ใฎๅŠๆœˆๆฟ่ปŸ้ชจ็ต„็น”ใŒ
08:19
had been completely torn and the bone itself had been shattered.
147
499480
3416
ๅฎŒๅ…จใซ่ฃ‚ใ‘ใฆใŠใ‚Š ้ชจ่‡ชไฝ“ใ‚‚็ •ใ‘ใฆใ—ใพใฃใฆใ„ใŸใฎใงใ™
08:22
Now, if you're looking at me and feeling sorry,
148
502920
2456
็งใซๅŒๆƒ…ใ—ใฆใ„ใ‚‹็š†ใ•ใ‚“ใซ
08:25
let me tell you a few facts.
149
505400
1816
ใŠไผใˆใ—ใพใ™
08:27
If I was to take an MRI of every person in this audience,
150
507240
4176
ใ‚‚ใ—็งใŒ่ฆณๅฎขใฎ็š†ใ•ใ‚“ใฎ MRIใ‚’ๆ’ฎใ‚‹ใจใ™ใ‚‹ใจ
08:31
60 percent of you would show signs
151
511440
2056
๏ผ–ๅ‰ฒใฎๆ–นใฎ้ชจใซๅค‰็•ฐใŒใ‚ใฃใŸใ‚Š
08:33
of bone degeneration and cartilage degeneration like this.
152
513520
2776
่ปŸ้ชจใŒใ“ใฎใ‚ˆใ†ใซๅค‰ๆ€งใ—ใŸใ‚Š ใจใ„ใ†ๅ…†ๅ€™ใŒ่ฆ‹ใคใ‹ใ‚Šใพใ™
08:36
85 percent of all women by the age of 70
153
516320
3776
70ๆญณใพใงใซ85%ใฎๅฅณๆ€งใฏ
08:40
would show moderate to severe cartilage degeneration.
154
520120
3256
ไธญๅบฆใ‹ใ‚‰ๅผทๅบฆใฎ ่ปŸ้ชจๅค‰ๆ€งใŒ่ฆ‹ใ‚‰ใ‚Œใพใ™
08:43
50 to 60 percent of the men in this audience
155
523400
2296
ใ“ใฎไธญใฎ50~60%ใฎ็”ทๆ€งใ‚‚
08:45
would also have such signs.
156
525720
1336
ๅŒๆง˜ใงใ™
08:47
So this is a very common disease.
157
527080
1776
ใงใ™ใ‹ใ‚‰ใ“ใ‚Œใฏ้žๅธธใซ ใ‚ˆใใ‚ใ‚‹็–พๆ‚ฃใชใฎใงใ™
08:48
Well, the second perk of being a physician
158
528880
2096
ไบŒ็•ช็›ฎใฎๅŒปๅธซใฎ็‰นๆจฉใฏ
08:51
is that you can get to experiment on your own ailments.
159
531000
3135
่‡ชๅˆ†ใฎ็–พ็—…ใซใคใ„ใฆ็ ”็ฉถใŒใงใใ‚‹ใ“ใจ
08:54
So about 10 years ago we began,
160
534159
2217
ใใ‚Œใง10ๅนดใปใฉๅ‰ใ‹ใ‚‰
08:56
we brought this process into the laboratory,
161
536400
2416
็งใŸใกใฏใ“ใฎ่ปŸ้ชจๅค‰ๆ€งใฎใƒ—ใƒญใ‚ปใ‚นใ‚’ ็ ”็ฉถๅฎคใซๆŒใก่พผใ‚“ใง
08:58
and we began to do simple experiments,
162
538840
2016
็ฐกๅ˜ใชๅฎŸ้จ“ใ‚’ๅง‹ใ‚ใพใ—ใŸ
09:00
mechanically trying to fix this degeneration.
163
540880
2456
ใ“ใฎๅค‰ๆ€งใซใคใ„ใฆ ๆฉŸๆขฐ็š„ใชๆฒป็™‚ใ‚’่ฉฆใฟใพใ—ใŸ
09:03
We tried to inject chemicals into the knee spaces of animals
164
543360
4816
่ปŸ้ชจใฎ้€€่กŒๅค‰ๆ€งใ‚’้€†่กŒใ•ใ›ใ‚‹ใŸใ‚ใซ
09:08
to try to reverse cartilage degeneration,
165
548200
2656
ๅ‹•็‰ฉใฎ่†ใซๅŒ–ๅญฆ็‰ฉ่ณชใฎๆณจๅฐ„ใ‚’่ฉฆใฟใพใ—ใŸ
09:10
and to put a short summary on a very long and painful process,
166
550880
4536
ใ“ใฎใจใฆใ‚‚้•ทใ่พ›ใ„ใƒ—ใƒญใ‚ปใ‚นใฏ็ตๅฑ€
09:15
essentially it came to naught.
167
555440
1776
ไฝ•ใ‚‚็”Ÿใฟๅ‡บใ—ใพใ›ใ‚“ใงใ—ใŸ
09:17
Nothing happened.
168
557240
1200
ไฝ•ใ‚‚่ตทใ“ใ‚‰ใชใ‹ใฃใŸใฎใงใ™
09:18
And then about seven years ago, we had a research student from Australia.
169
558880
4776
ใใ—ใฆ๏ผ—ๅนดใปใฉๅ‰ ใ‚ชใƒผใ‚นใƒˆใƒฉใƒชใ‚ขใ‹ใ‚‰ๅญฆ็”ŸใŒ็ ”็ฉถใซๆฅใพใ—ใŸ
09:23
The nice thing about Australians
170
563680
1525
ใ‚ชใƒผใ‚นใƒˆใƒฉใƒชใ‚ขไบบใŸใกใฎ่‰ฏใ„ใจใ“ใ‚ใฏ
09:25
is that they're habitually used to looking at the world upside down.
171
565205
3316
ๅธธใซไธ–็•Œใ‚’้€†ใ•ใพใซ่ฆ‹ใฆใ„ใ‚‹ใจใ„ใ†ใ“ใจใงใ™
09:28
(Laughter)
172
568546
1157
๏ผˆ็ฌ‘๏ผ‰
09:29
And so Dan suggested to me, "You know, maybe it isn't a mechanical problem.
173
569727
4089
ใƒ€ใƒณใฏ่จ€ใ„ใพใ—ใŸ ใ€Œใฒใ‚‡ใฃใจใ—ใŸใ‚‰ๆฉŸๆขฐ็š„ใชๅ•้กŒใ˜ใ‚ƒใชใ
09:33
Maybe it isn't a chemical problem. Maybe it's a stem cell problem."
174
573840
4000
ๅŒ–ๅญฆ็‰ฉ่ณชใฎๅ•้กŒใงใ‚‚ใชใ ๅนน็ดฐ่ƒžใซๅ•้กŒใŒใ‚ใ‚‹ใฎใ‹ใ‚‚็Ÿฅใ‚Œใพใ›ใ‚“ใญใ€
09:39
In other words, he had two hypotheses.
175
579760
1896
่จ€ใ„ๆ›ใˆใ‚‹ใจ ๅฝผใซใฏ๏ผ’ใคใฎไปฎ่ชฌใŒใ‚ใ‚Šใพใ—ใŸ
09:41
Number one, there is such a thing as a skeletal stem cell --
176
581680
3816
ไธ€ใค็›ฎใฏ ้ชจๆ ผๅนน็ดฐ่ƒžใจใ„ใ†ใ‚‚ใฎใฎๅญ˜ๅœจ
09:45
a skeletal stem cell that builds up the entire vertebrate skeleton,
177
585520
3520
้ชจๆ ผๅนน็ดฐ่ƒžใฏๅ…จ่„ŠๆคŽใ€้ชจใ€่ปŸ้ชจใ‚„
09:49
bone, cartilage and the fibrous elements of skeleton,
178
589064
2532
้ชจๆ ผใฎ็ทš็ถญใ‚’ๅฝขๆˆใ—ใพใ™
09:51
just like there's a stem cell in blood,
179
591620
1865
ใกใ‚‡ใ†ใฉ่ก€ๆถฒใฎๅนน็ดฐ่ƒžใ‚„
09:53
just like there's a stem cell in the nervous system.
180
593510
2435
็ฅž็ตŒ็ณปใฎๅนน็ดฐ่ƒžใŒใ‚ใ‚‹ใ‚ˆใ†ใซ
09:55
And two, that maybe that, the degeneration or dysfunction of this stem cell
181
595969
3560
ไบŒใค็›ฎใฏ ใŠใใ‚‰ใใ“ใฎๅนน็ดฐ่ƒžใฎๅค‰ๆ€งใ‚„ๆฉŸ่ƒฝ็•ฐๅธธใŒ
09:59
is what's causing osteochondral arthritis, a very common ailment.
182
599554
3502
้ชจ่ปŸ้ชจ้–ข็ฏ€็‚Žใจใ„ใฃใŸ้žๅธธใซใ‚ˆใ่ฆ‹ใ‚‰ใ‚Œใ‚‹ ็–พๆ‚ฃใ‚’ๅผ•ใ่ตทใ“ใ—ใฆใ„ใ‚‹ใฎใ ใจใ„ใ†ใ“ใจ
10:03
So really the question was, were we looking for a pill
183
603080
3216
ใคใพใ‚Š ็งใŸใกใฏ ใšใฃใจ ๆฒป็™‚่–ฌใ‚’ๆฑ‚ใ‚ใฆใ„ใŸใจใ“ใ‚ใŒ
10:06
when we should have really been looking for a cell.
184
606320
2616
ๅฎŸใฏๆŽขใ™ในใใ‚‚ใฎใฏ็ดฐ่ƒžใ ใฃใŸใฎใงใฏ ใชใ„ใ‹ใจใ„ใ†ใ“ใจใงใ™
10:08
So we switched our models,
185
608960
2856
ใใ‚Œใง็–พๆ‚ฃใƒขใƒ‡ใƒซใ‚’ๅค‰ใˆ
10:11
and now we began to look for skeletal stem cells.
186
611840
3120
้ชจๆ ผๅนน็ดฐ่ƒžใ‚’ๆŽขใ—ๅง‹ใ‚ใŸใฎใงใ™
10:15
And to cut again a long story short,
187
615560
2496
้•ทใ„่ฉฑใ‚’ใฏใ—ใ‚‡ใ‚‹ใจ
10:18
about five years ago, we found these cells.
188
618080
2920
ใŠใ‚ˆใ๏ผ•ๅนดๅ‰ใซใ“ใ‚Œใ‚‰ใฎ็ดฐ่ƒžใ‚’่ฆ‹ใคใ‘ใพใ—ใŸ
10:21
They live inside the skeleton.
189
621800
2496
้ชจใฎๅ†…้ƒจใซๅญ˜ๅœจใ—ใพใ™
10:24
Here's a schematic and then a real photograph of one of them.
190
624320
2896
ๆจกๅผๅ›ณใจๆœฌ็‰ฉใฎ็”ปๅƒใงใ™
10:27
The white stuff is bone,
191
627240
1936
็™ฝใ„ใฎใŒ้ชจใง
10:29
and these red columns that you see and the yellow cells
192
629200
3016
ใ“ใ‚Œใ‚‰ใฎ่ตคใ„ๆŸฑใจ้ป„่‰ฒใฎ็ดฐ่ƒžใฏ
10:32
are cells that have arisen from one single skeletal stem cell --
193
632240
3256
ไธ€ใคใฎ้ชจๆ ผๅนน็ดฐ่ƒžใ‹ใ‚‰็พใ‚ŒใŸ็ดฐ่ƒžใง
10:35
columns of cartilage, columns of bone coming out of a single cell.
194
635520
3296
่ปŸ้ชจใจ้ชจใฎๆŸฑใŒ ไธ€ใคใฎ็ดฐ่ƒžใ‹ใ‚‰ๅ‡บๆฅใฆใใฆใ„ใพใ™
10:38
These cells are fascinating. They have four properties.
195
638840
3296
ใ“ใ‚Œใ‚‰ใฏ่ˆˆๅ‘ณๆทฑใ„็ดฐ่ƒžใง ๅ››ใคใฎๆ€ง่ณชใŒใ‚ใ‚Šใพใ™
10:42
Number one is that they live where they're expected to live.
196
642160
3776
ไธ€ใคใฏ ใใ‚ŒใŒไบˆๆœŸใ•ใ‚ŒใŸๅ ดๆ‰€ใซ ๅญ˜ๅœจใ™ใ‚‹ใจใ„ใ†ใ“ใจ
10:45
They live just underneath the surface of the bone,
197
645960
2376
้ชจใฎ่กจ้ขไธ‹
10:48
underneath cartilage.
198
648360
1536
่ปŸ้ชจ็ต„็น”ใฎไธ‹ๅฑคใงใ™
10:49
You know, in biology, it's location, location, location.
199
649920
2620
็”Ÿ็‰ฉๅญฆใงใฏ ๅ ดๆ‰€ใŒ้žๅธธใซ้‡่ฆใงใ™
10:52
And they move into the appropriate areas and form bone and cartilage.
200
652564
4252
ใใ—ใฆใใ“ใ‹ใ‚‰ ็‰นๅฎšใฎๅ ดๆ‰€ใซ ็งปๅ‹•ใ— ้ชจใ‚„่ปŸ้ชจใจใชใ‚‹ใฎใงใ™
10:56
That's one.
201
656840
1256
ใใ‚ŒใŒใพใšไธ€ใค
10:58
Here's an interesting property.
202
658120
1536
ๆฌกใซใ“ใฎๆ€ง่ณชใ‚‚้ข็™ฝใ„ใฎใงใ™ใŒ
10:59
You can take them out of the vertebrate skeleton,
203
659680
2656
ใ“ใ‚Œใ‚’้ชจๆ ผใ‹ใ‚‰ๅ–ใ‚Šๅ‡บใ—
11:02
you can culture them in petri dishes in the laboratory,
204
662360
2576
็ ”็ฉถๅฎคใฎๅŸน้คŠ็šฟใงๅŸน้คŠใงใใพใ™
11:04
and they are dying to form cartilage.
205
664960
1976
ใ™ใ‚‹ใจใใ‚Œใ‚‰ใฏ็››ใ‚“ใซ่ปŸ้ชจใ‚’ ๅฝขๆˆใ—ใ‚ˆใ†ใจใ—ใพใ™
11:06
Remember how we couldn't form cartilage for love or money?
206
666960
2722
ไปŠใพใงใฏใฉใ†ใ‚„ใฃใฆใ‚‚ ่ปŸ้ชจใ‚’ไฝœใ‚Šๅ‡บใ›ใชใ‹ใฃใŸใฎใซ
11:09
These cells are dying to form cartilage.
207
669706
1919
ใ“ใ‚Œใ‚‰ใฎ็ดฐ่ƒžใฏ่ปŸ้ชจใ‚’ ไฝœใ‚ŠใŸใใฆใŸใพใ‚‰ใชใ„ใฎใงใ™
11:11
They form their own furls of cartilage around themselves.
208
671650
3005
่‡ชใ‚‰ใฎๅ‘จๅ›ฒใซ่ปŸ้ชจใฎๅฑคใ‚’ไฝœใ‚Šๅ‡บใ—ใพใ™
11:14
They're also, number three,
209
674680
1616
ใใ‚Œใ‹ใ‚‰ไธ‰็•ช็›ฎ
11:16
the most efficient repairers of fractures that we've ever encountered.
210
676320
4176
้ชจๆŠ˜ใ‚’้ฉš็•ฐ็š„ใซๆฒป็™’ใ—ใพใ™
11:20
This is a little bone, a mouse bone that we fractured
211
680520
3296
ใ“ใ‚Œใฏ้ชจๆŠ˜ใ—ใŸใƒžใ‚ฆใ‚นใฎ้ชจใงใ™
11:23
and then let it heal by itself.
212
683840
1536
่‡ช็„ถใซๆฒป็™’ใ•ใ›ใฆใ„ใพใ™
11:25
These stem cells have come in and repaired, in yellow, the bone,
213
685400
3016
ๅนน็ดฐ่ƒžใฏ ้ป„่‰ฒใง็คบใ—ใŸ้ชจใจ
11:28
in white, the cartilage, almost completely.
214
688440
2616
็™ฝใง็คบใ—ใŸ่ปŸ้ชจใ‚’ ใปใผๅฎŒๅ…จใซไฟฎๅพฉใ—ใฆใ„ใพใ™
11:31
So much so that if you label them with a fluorescent dye
215
691080
3536
่›ๅ…‰่‰ฒ็ด ใงๆŸ“่‰ฒใ™ใ‚‹ใจ
11:34
you can see them like some kind of peculiar cellular glue
216
694640
3736
ใใ‚Œใ‚‰ใŒ็‰นๆฎŠใช ็ดฐ่ƒžๆŽฅ็€ๅ‰คใฎใ‚ˆใ†ใซๅƒใ
11:38
coming into the area of a fracture,
217
698400
1856
้ชจๆŠ˜้ƒจไฝใซ้›†ใพใ‚Š
11:40
fixing it locally and then stopping their work.
218
700280
2976
ๅฑ€ๆ‰€็š„ใซๅƒใ„ใŸใ‚ใจ ๆดปๅ‹•ใ‚’็ต‚ใˆใ‚‹ใฎใŒ่ฆณๅฏŸใงใใพใ™
11:43
Now, the fourth one is the most ominous,
219
703280
2336
ๅ››็•ช็›ฎใฏ ๆœ€ใ‚‚ไธๅ‰ใชใ‚‚ใฎใงใ™
11:45
and that is that their numbers decline precipitously,
220
705640
4136
ใใ‚Œใฏใใฎๆ•ฐใŒ ็ช็„ถๆธ›ๅฐ‘ใ™ใ‚‹ใจใ„ใ†ใ“ใจใงใ™
11:49
precipitously, tenfold, fiftyfold, as you age.
221
709800
4696
ๅ”็ชใซ 10ๅˆ†ใฎ1ใใ‚Œใ‹ใ‚‰50ๅˆ†ใฎ1ใธ ่€ๅŒ–ใจๅ…ฑใซๆธ›ๅฐ‘ใ—ใพใ™
11:54
And so what had happened, really,
222
714520
1576
็ตๅฑ€ ไฝ•ใŒ่ตทใ“ใฃใŸใฎใ‹ใจใ„ใ†ใจ
11:56
is that we found ourselves in a perceptual shift.
223
716120
2856
่ฆณ็‚นใฎใ‚ทใƒ•ใƒˆใŒ็”Ÿใ˜ใŸใฎใงใ—ใŸ
11:59
We had gone hunting for pills
224
719000
2736
ๆฒป็™‚่–ฌใฎๆŽขๆฑ‚ใŒ
12:01
but we ended up finding theories.
225
721760
2496
็†่ซ–ใ‚’็™บ่ฆ‹ใ™ใ‚‹ใจใ„ใ†็ตๆžœใซ่กŒใ็€ใใพใ—ใŸ
12:04
And in some ways
226
724280
1216
ใ‚ใ‚‹ๆ„ๅ‘ณ
12:05
we had hooked ourselves back onto this idea:
227
725520
2616
็งใŸใกใฎ็ ”็ฉถใฏไปฅไธ‹ใฎๆฆ‚ๅฟตใซ ๅŸบใฅใ„ใฆใ„ใŸใจใฏ่จ€ใˆใพใ™
12:08
cells, organisms, environments,
228
728160
2896
็ดฐ่ƒžใ€ๅ‹•็‰ฉ๏ผˆๅ€‹ไฝ“๏ผ‰ใ€็’ฐๅขƒ
12:11
because we were now thinking about bone stem cells,
229
731080
2576
ใพใš ้ชจๅนน็ดฐ่ƒžใ‹ใ‚‰่ฆ‹ใ‚‹ใจ
12:13
we were thinking about arthritis in terms of a cellular disease.
230
733680
3440
้–ข็ฏ€็‚Žใ‚’็ดฐ่ƒžใƒฌใƒ™ใƒซใฎ็–พ็—…ใจใ—ใฆ่€ƒใˆใฆใ„ใพใ™
12:17
And then the next question was, are there organs?
231
737840
2286
ใงใฏ ๆฌกใฎ็–‘ๅ•ใงใ™ ่‡“ๅ™จใฏ๏ผŸ
12:20
Can you build this as an organ outside the body?
232
740150
2239
ไฝ“ใฎๅค–ใซ ่‡“ๅ™จใ‚’ไฝœใ‚Šๅ‡บใ™ใ“ใจใฏ ๅฏ่ƒฝใงใ—ใ‚‡ใ†ใ‹๏ผŸ
12:22
Can you implant cartilage into areas of trauma?
233
742413
3843
๏ผˆไฝ“ๅค–ใงไฝœใฃใŸ๏ผ‰่ปŸ้ชจใ‚’ๆๅ‚ท้ƒจไฝใซ็งปๆคใ™ใ‚‹ใ“ใจใฏ ใงใใ‚‹ใงใ—ใ‚‡ใ†ใ‹๏ผŸ
12:26
And perhaps most interestingly,
234
746280
1976
ใใ—ใฆใ“ใ‚ŒใฏใŠใใ‚‰ใ ๆœ€ใ‚‚่ˆˆๅ‘ณๆทฑใ„่ณชๅ•ใงใ™ใŒ
12:28
can you ascend right up and create environments?
235
748280
2376
ใ•ใ‚‰ใซ้šŽๅฑคใ‚’ไธŠใธใจๆ˜‡ใ‚Šใƒผ ็’ฐๅขƒใ‚’ไฝœใ‚‹ใ“ใจใŒใงใใ‚‹ใงใ—ใ‚‡ใ†ใ‹๏ผŸ
12:30
You know, we know that exercise remodels bone,
236
750680
3056
้ชจใฏ้‹ๅ‹•ใซใ‚ˆใ‚Šๅ†ๆง‹็ฏ‰ใ•ใ‚Œใพใ™ใŒ
12:33
but come on, none of us is going to exercise.
237
753760
2416
่ชฐใ‚‚ใใฎใŸใ‚ใซ้‹ๅ‹•ใ—ใพใ›ใ‚“ใ‚ˆใญ๏ผŸ
12:36
So could you imagine ways of passively loading and unloading bone
238
756200
5176
ใใ‚Œใชใ‚‰ ๅ—ๅ‹•็š„ใซ้ชจใซๅŠ›ใ‚’ๅŠ ใˆใŸใ‚Š ๅผ›ใ‚ใŸใ‚Šใ™ใ‚‹ใ“ใจใง
12:41
so that you can recreate or regenerate degenerating cartilage?
239
761400
4816
ๅค‰ๆ€งใ—ใฆใ„ใ่ปŸ้ชจใ‚’ๅ†ๆง‹็ฏ‰ใ—ใŸใ‚Š ๅ†็”Ÿใ—ใŸใ‚Šใงใใชใ„ใงใ—ใ‚‡ใ†ใ‹๏ผŸ
12:46
And perhaps more interesting, and more importantly,
240
766240
2381
ใ‚‚ใฃใจ่ˆˆๅ‘ณๆทฑใ ้‡่ฆใชๅ•ใ„ใ‹ใ‘ใฏ
12:48
the question is, can you apply this model more globally outside medicine?
241
768645
3451
ใ“ใฎใƒขใƒ‡ใƒซใ‚’ๆ›ดใซๅบƒใ’ใฆ ๅŒปๅญฆใฎๅค–ใธใจๅฟœ็”จใงใใชใ„ใ‹ใจใ„ใ†ใ‚‚ใฎใงใ™
12:52
What's at stake, as I said before, is not killing something,
242
772120
4056
ใ“ใ“ใงไธ€่ฒซใ—ใฆ้‡่ฆใชๆฆ‚ๅฟตใฏ ใ€Œไฝ•ใ‹ใ‚’ๆฎบใ™ใฎใงใฏใชใ
12:56
but growing something.
243
776200
1440
ไฝ•ใ‹ใ‚’่‚ฒๆˆใ™ใ‚‹ใ“ใจใ€ใงใ™
12:58
And it raises a series of, I think, some of the most interesting questions
244
778280
4816
ใ“ใ‚Œใฏ็งใŸใกใŒๆœชๆฅใฎๅŒปๅญฆใ‚’ ใฉใ†ๆ‰ใˆใ‚‹ใ‹ใซใคใ„ใฆ
13:03
about how we think about medicine in the future.
245
783120
2520
ไธ€้€ฃใฎ ๆคœ่จŽใ™ในใใ€ๆœ€ใ‚‚่ˆˆๅ‘ณใ‚ใ‚‹ ็–‘ๅ•ใ‚’ๆตฎใ‹ใณไธŠใŒใ‚‰ใ›ใพใ™
13:07
Could your medicine be a cell and not a pill?
246
787040
2880
ใ‚ใชใŸใฎ่–ฌใŒ้Œ ๅ‰คใงใฏใชใ ็ดฐ่ƒžใซใชใฃใŸใ‚‰ใฉใ†ใงใ™ใ‹๏ผŸ
13:10
How would we grow these cells?
247
790840
2376
ใใ‚Œใฏใฉใ†ใ‚„ใฃใฆๅŸน้คŠใ™ใ‚‹ใงใ—ใ‚‡ใ†๏ผŸ
13:13
What we would we do to stop the malignant growth of these cells?
248
793240
3016
็ดฐ่ƒžใฎใŒใ‚“ๅŒ–ใฏใฉใ†้˜ฒใใฎใงใ—ใ‚‡ใ†๏ผŸ
13:16
We heard about the problems of unleashing growth.
249
796280
3896
็ดฐ่ƒžๅข—ๆฎ–ใฎๆŸ็ธ›ใ‚’่งฃใใ“ใจใฎ ๅ•้กŒ็‚นใ‚‚่€ณใซใ—ใฆใใพใ—ใŸใŒ
13:20
Could we implant suicide genes into these cells
250
800200
2776
่‡ชๆฎบ้บไผๅญใ‚’ใใ‚Œใ‚‰ใฎ็ดฐ่ƒžใซ็ต„ใฟ่พผใฟ ใ‚นใƒˆใƒƒใƒ—ใ‚’ใ‹ใ‘ใ‚‹ใ“ใจใฏ
13:23
to stop them from growing?
251
803000
1440
ๅฏ่ƒฝใงใ—ใ‚‡ใ†ใ‹๏ผŸ
13:25
Could your medicine be an organ that's created outside the body
252
805040
3936
ใ€Œ่–ฌใ€ใŒ่บซไฝ“ใฎๅค–ใง็”Ÿๆˆใ•ใ‚ŒใŸ่‡“ๅ™จใงใ‚ใ‚Š
13:29
and then implanted into the body?
253
809000
1936
ใใ‚ŒใŒ็งปๆคใ•ใ‚Œใ‚‹ ใใ‚“ใชใ“ใจใฏๅฏ่ƒฝใงใ—ใ‚‡ใ†ใ‹๏ผŸ
13:30
Could that stop some of the degeneration?
254
810960
2736
ๅค‰ๆ€งใ‚’ใใ‚Œใง ๆญขใ‚ใ‚‹ใ“ใจใŒใงใใ‚‹ใงใ—ใ‚‡ใ†ใ‹
13:33
What if the organ needed to have memory?
255
813720
1905
ใ‚‚ใ—่‡“ๅ™จใŒ่จ˜ๆ†ถใ‚’ ๅฟ…่ฆใจใ—ใŸใ‚‰๏ผŸ
13:35
In cases of diseases of the nervous system some of those organs had memory.
256
815649
4767
็ฅž็ตŒ็ณป็–พๆ‚ฃใงใฏ ่‡“ๅ™จใŒ่จ˜ๆ†ถใ‚’ๆŒใฃใฆใ„ใŸไพ‹ใŒใ‚ใ‚Šใพใ™
13:40
How could we implant those memories back in?
257
820440
2456
ใฉใ†ใ‚„ใฃใฆใใ†ใ—ใŸ่จ˜ๆ†ถใ‚’ ็งปๆคใจๅ…ฑใซๆˆปใ™ใ“ใจใŒๅ‡บๆฅใ‚‹ใงใ—ใ‚‡ใ†๏ผŸ
13:42
Could we store these organs?
258
822920
1816
่‡“ๅ™จใฏ่ฒฏ่”ตใงใใ‚‹ใฎใงใ—ใ‚‡ใ†ใ‹๏ผŸ
13:44
Would each organ have to be developed for an individual human being
259
824760
3143
่‡“ๅ™จใฏใใ‚Œใžใ‚Œใฎๅ€‹ไบบๅ€‹ไบบ ๅฐ‚็”จใซ็”Ÿๆˆใ•ใ‚Œ
13:47
and put back?
260
827927
1200
ใใฎไฝ“ใซๆˆปใ•ใ‚Œใชใ‘ใ‚Œใฐ ใชใ‚‰ใชใ„ใฎใงใ—ใ‚‡ใ†ใ‹๏ผŸ
13:50
And perhaps most puzzlingly,
261
830520
2616
ใใ—ใฆ ้›ฃใ—ใ„ๅ•ใ„ใงใ™
13:53
could your medicine be an environment?
262
833160
1810
็’ฐๅขƒใŒ่–ฌใจใชใ‚‹ใ“ใจใŒใงใใ‚‹ใงใ—ใ‚‡ใ†ใ‹๏ผŸ
13:56
Could you patent an environment?
263
836160
1656
็’ฐๅขƒใ‚’็‰น่จฑใซใงใใ‚‹ใงใ—ใ‚‡ใ†ใ‹๏ผŸ
13:57
You know, in every culture,
264
837840
3456
ใ‚ใ‚‰ใ‚†ใ‚‹ๆ–‡ๅŒ–ใง
14:01
shamans have been using environments as medicines.
265
841320
2936
ๅ‘ช่ก“ๅธซใฏ็’ฐๅขƒใ‚’่–ฌใจใ—ใฆ ็”จใ„ใฆใใพใ—ใŸใญ
14:04
Could we imagine that for our future?
266
844280
2320
ใใ†ใ„ใ†ๆœชๆฅใ‚’ ๆƒณๅƒใงใใ‚‹ใงใ—ใ‚‡ใ†ใ‹
14:08
I've talked a lot about models. I began this talk with models.
267
848080
3376
็–พๆ‚ฃๆฒป็™‚ใƒขใƒ‡ใƒซใ‹ใ‚‰่ฉฑใ—ๅง‹ใ‚ใพใ—ใŸใฎใง
14:11
So let me end with some thoughts about model building.
268
851480
2696
ใƒขใƒ‡ใƒซๆง‹็ฏ‰ใซใคใ„ใฆใŠ่ฉฑใ—ใ—ใฆ ็ท ใ‚ใใใ‚Šใพใ—ใ‚‡ใ†
14:14
That's what we do as scientists.
269
854200
2096
ใใ‚Œใฏ ็ง‘ๅญฆ่€…ใจใ—ใฆๅฝ“็„ถ่กŒใ†ใ“ใจใงใ™
14:16
You know, when an architect builds a model,
270
856320
3296
ๅปบ็ฏ‰ๅฎถใŒใƒขใƒ‡ใƒซใ‚’ไฝœใ‚‹ๆ™‚
14:19
he or she is trying to show you a world in miniature.
271
859640
3296
ใ‚ใ‚‹ไธ–็•Œใฎๆจกๅž‹ใ‚’็คบใ—ใฆใ„ใพใ™
14:22
But when a scientist is building a model,
272
862960
2896
ใ—ใ‹ใ—็ง‘ๅญฆ่€…ใŒใƒขใƒ‡ใƒซใ‚’ไฝœใ‚‹ๆ™‚
14:25
he or she is trying to show you the world in metaphor.
273
865880
2524
ใ‚ใ‚‹ไธ–็•Œใฎไพ‹ใˆใ‚’็คบใ—ใฆใ„ใ‚‹ใฎใงใ™
14:29
He or she is trying to create a new way of seeing.
274
869600
3856
ใใ†ใ—ใฆๆ–ฐใŸใช่ฆ‹ๆ–นใ‚’ๅ‰ต้€ ใ—ใ‚ˆใ†ใจใ—ใพใ™
14:33
The former is a scale shift. The latter is a perceptual shift.
275
873480
4120
ใคใพใ‚Šๅ‰่€…ใฏๅคงใใ•ใซใŠใ‘ใ‚‹ใ‚ทใƒ•ใƒˆ ใจใ“ใ‚ใŒๅพŒ่€…ใฏ่ฆณ็‚นใซใŠใ‘ใ‚‹ใ‚ทใƒ•ใƒˆใชใฎใงใ™
14:38
Now, antibiotics created such a perceptual shift
276
878920
4936
ๆŠ—็”Ÿ็‰ฉ่ณชใฏใใฎใ‚ˆใ†ใช ่ฆณ็‚นใฎใ‚ทใƒ•ใƒˆใ‚’ใ‚‚ใŸใ‚‰ใ—
14:43
in our way of thinking about medicine that it really colored, distorted,
277
883880
3816
้ŽๅŽป100ๅนด ็งใŸใกใฎ ๅŒปๅญฆใซๅฏพใ™ใ‚‹่€ƒใˆๆ–นใ‚’
14:47
very successfully, the way we've thought about medicine for the last hundred years.
278
887720
3920
ๅฎŒๅ…จใซๅฝฉใ‚Š ๆปใ˜ๆ›ฒใ’ใฆใ—ใพใ„ใพใ—ใŸ
14:52
But we need new models to think about medicine in the future.
279
892400
4416
ใ—ใ‹ใ— ็งใŸใกใซใฏ ๆœชๆฅใฎๅŒปๅญฆใฎๆ–ฐใ—ใ„ใƒขใƒ‡ใƒซใŒๅฟ…่ฆใชใฎใงใ™
14:56
That's what's at stake.
280
896840
1480
ใใ‚ŒใŒๅคงไบ‹ใชใ“ใจใชใฎใงใ™
14:59
You know, there's a popular trope out there
281
899480
3336
ใ“ใ‚“ใช่จ€ใ„ๆ–นใ‚’ใ‚ˆใ่ฆ‹ใ‹ใ‘ใพใ™
15:02
that the reason we haven't had the transformative impact
282
902840
3976
้ฉๆ–ฐ็š„ใชใ‚คใƒณใƒ‘ใ‚ฏใƒˆใฎใ‚ใ‚‹ใƒผ
15:06
on the treatment of illness
283
906840
1976
็–พๆ‚ฃๆฒป็™‚ๆณ•ใŒ็„กใ„็†็”ฑใฏ
15:08
is because we don't have powerful-enough drugs,
284
908840
2856
ๅŒป่–ฌๅ“ใŒ ใพใ ๅๅˆ†ใซๅผทๅŠ›ใงใฏใชใ„ใ‹ใ‚‰ใ 
15:11
and that's partly true.
285
911720
1360
ใใ‚Œใซใฏไธ€็†ใ‚ใ‚‹ใงใ—ใ‚‡ใ†
15:14
But perhaps the real reason is
286
914120
1496
ใ—ใ‹ใ—ๆœฌๅฝ“ใฎ็†็”ฑใฏ
15:15
that we don't have powerful-enough ways of thinking about medicines.
287
915640
3200
ๅŒป่–ฌใซใคใ„ใฆใฎ่€ƒใˆๆ–นใŒ ใพใ ๅๅˆ†ใซๅผทๅŠ›ใงใฏใชใ„ใ‹ใ‚‰ใงใ™
15:20
It's certainly true that
288
920560
2416
ๆ–ฐ่–ฌใŒ็พใ‚Œใ‚‹ใฎใฏ็ขบใ‹ใซ
15:23
it would be lovely to have new medicines.
289
923000
3776
็ด ๆ™ดใ‚‰ใ—ใ„ใ“ใจใงใ™
15:26
But perhaps what's really at stake are three more intangible M's:
290
926800
4656
ใ—ใ‹ใ— ๆ นๆœฌ็š„ใซๅคงๅˆ‡ใชใ“ใจใฏ ใ“ใ‚Œใ‚‰ไธ‰ใคใฎๆฆ‚ๅฟตใชใฎใงใ™
15:31
mechanisms, models, metaphors.
291
931480
3816
ใ€Œใƒกใ‚ซใƒ‹ใ‚บใƒ ใ€ใƒขใƒ‡ใƒซใ€ใƒกใ‚ฟใƒ•ใ‚กใƒผ๏ผˆไพ‹ใˆ๏ผ‰ใ€
15:35
Thank you.
292
935320
1336
ใ‚ใ‚ŠใŒใจใ†ใ”ใ–ใ„ใพใ—ใŸ
15:36
(Applause)
293
936680
6840
๏ผˆๆ‹ๆ‰‹๏ผ‰
15:45
Chris Anderson: I really like this metaphor.
294
945600
3416
ใ‚ฏใƒชใ‚นใƒปใ‚ขใƒณใƒ€ใƒผใ‚ฝใƒณ๏ผš ใใฎใ€Œไพ‹ใˆใ€ใŒใจใฆใ‚‚ๆฐ—ใซๅ…ฅใ‚Šใพใ—ใŸ
15:49
How does it link in?
295
949040
1536
ใใ‚Œใฏใฉใ†็น‹ใŒใ‚‹ใ‚“ใงใ™ใ‹๏ผŸ
15:50
There's a lot of talk in technologyland
296
950600
3136
ใƒ†ใ‚ฏใƒŽใƒญใ‚ธใƒผ็•Œใซใฏใƒ‘ใƒผใ‚ฝใƒŠใƒซๅŒป็™‚ใซใคใ„ใฆ
15:53
about the personalization of medicine,
297
953760
2136
ๅคšใใฎ่ฉฑ้กŒใŒใ‚ใ‚Šใพใ™ใญ
15:55
that we have all this data and that medical treatments of the future
298
955920
3416
ใ“ใ‚Œใ ใ‘ใŸใใ•ใ‚“ใฎๅŒป็™‚ใƒ‡ใƒผใ‚ฟใŒใ‚ใฃใฆ ๆœชๆฅใฎๆฒป็™‚ใงใฏ
15:59
will be for you specifically, your genome, your current context.
299
959360
4496
ใ‚ใชใŸๅ€‹ไบบใ‚„ใ‚ใชใŸใฎ้บไผๅญ ใใฎๆ™‚ใฎไฝ“่ชฟใซ็‰นๅŒ–ใ™ใ‚‹ใฎใงใ—ใ‚‡ใ†ใ‹
16:03
Does that apply to this model you've got here?
300
963880
3936
ใใ†ใ—ใŸใ‚‚ใฎใ‚‚ใ‚ใชใŸใฎใƒขใƒ‡ใƒซใซ ้ฉ็”จใงใใ‚‹ใ‚“ใงใ—ใ‚‡ใ†ใ‹๏ผŸ
16:07
Siddhartha Mukherjee: It's a very interesting question.
301
967840
2616
ใ‚ทใƒƒใƒ€ใƒผใƒซใ‚ฟใƒปใƒ ใ‚ซใ‚ธใƒผ๏ผš่ˆˆๅ‘ณๆทฑใ„่ณชๅ•ใงใ™ใญ
16:10
We've thought about personalization of medicine
302
970480
2216
ใˆใˆ ๅŒป็™‚ใฎใƒ‘ใƒผใ‚ฝใƒŠใƒซๅŒ–ใ‚‚่€ƒใˆใพใ—ใŸ
16:12
very much in terms of genomics.
303
972720
1536
้บไผๅญๅญฆใซๅŸบใฅใ„ใฆใญ
16:14
That's because the gene is such a dominant metaphor,
304
974280
2576
้บไผๅญใฏไปŠๆ—ฅใฎๅŒปๅญฆใซใŠใ„ใฆ ใพใŸใ“ใฎ่กจ็พใงใ™ใŒใƒผ
16:16
again, to use that same word, in medicine today,
305
976880
2976
ๅผทๅŠ›ใชใƒกใ‚ฟใƒ•ใ‚กใƒผใงใ™ใ‹ใ‚‰
16:19
that we think the genome will drive the personalization of medicine.
306
979880
3736
้บไผๅญใฏๅŒป็™‚ใฎใƒ‘ใƒผใ‚ฝใƒŠใƒฉใ‚คใ‚ผใƒผใ‚ทใƒงใƒณใ‚’ ใ‚‚ใŸใ‚‰ใ™ใจๆ€ใ„ใพใ™
16:23
But of course the genome is just the bottom
307
983640
3096
ใ—ใ‹ใ— ใ‚‚ใกใ‚ใ‚“้บไผๅญใฏ
16:26
of a long chain of being, as it were.
308
986760
3816
ไบบ้–“ใจใ„ใ†ๅญ˜ๅœจใฎ ้•ทใ„้€ฃ้Ž–ใฎๆœ€ไธ‹้ƒจใงใ™ใŒ
16:30
That chain of being, really the first organized unit of that, is the cell.
309
990600
3816
ใ€Œๆœ€ๅฐใฎ็ต„็น”ๅŒ–ใ•ใ‚ŒใŸๅ˜ไฝใ€ใฏใ‚ใใพใงใ‚‚็ดฐ่ƒžใงใ™
16:34
So, if we are really going to deliver in medicine in this way,
310
994440
2976
ใงใ™ใ‹ใ‚‰ใ“ใฎๆ–นๆณ•ใง ๅŒปๅญฆใซไฝ•ใ‹ใ‚’ๆไพ›ใ™ใ‚‹ใจใ™ใ‚Œใฐ
16:37
we have to think of personalizing cellular therapies,
311
997440
2816
็ดฐ่ƒžๆฒป็™‚ใ‚’ใƒ‘ใƒผใ‚ฝใƒŠใƒฉใ‚คใ‚บใ™ใ‚‹ใ“ใจใ‚’ ่€ƒใˆใชใ‘ใ‚Œใฐใชใ‚‰ใชใ„ใฎใงใ™
16:40
and then personalizing organ or organismal therapies,
312
1000280
3176
ๆฌกใซ ใƒ‘ใƒผใ‚ฝใƒŠใƒซ่‡“ๅ™จ็™‚ๆณ•
16:43
and ultimately personalizing immersion therapies for the environment.
313
1003480
3816
ใใ—ใฆ็ฉถๆฅต็š„ใซ ๅ‘จๅ›ฒใฎ็’ฐๅขƒใ‚’ ใƒ‘ใƒผใ‚ฝใƒŠใƒฉใ‚คใ‚บใ—ใฆใ—ใพใ†ใ“ใจใงใ™
16:47
So I think at every stage, you know --
314
1007320
3096
ใงใ™ใ‹ใ‚‰ๅ…จใฆใฎใ‚นใƒ†ใƒผใ‚ธใง
16:50
there's that metaphor, there's turtles all the way.
315
1010440
2416
ใ“ใฎไพ‹ใˆใŒ ๆ นๅบ•ใซใ‚ใ‚‹ใฎใงใ™
16:52
Well, in this, there's personalization all the way.
316
1012880
2381
ใƒ‘ใƒผใ‚ฝใƒŠใƒฉใ‚คใ‚ผใƒผใ‚ทใƒงใƒณใŒใ™ในใฆใซใคใ„ใฆใใพใ™
16:55
CA: So when you say medicine could be a cell
317
1015285
2891
ใ‚ฏใƒชใ‚น๏ผšใ‚ใชใŸใŒใ€Œ่–ฌใŒ็ดฐ่ƒžใงใ‚ใ‚‹ใ‹ใ‚‚ใ—ใ‚Œใชใ„ใ€ใจใ„ใ†ๆ™‚ ใใ‚Œใฏ้Œ ๅ‰คใงใฏใชใ„ใงใ™ใญ
16:58
and not a pill,
318
1018200
1816
17:00
you're talking about potentially your own cells.
319
1020040
2256
ใใ‚Œใฏ่‡ชๅˆ†ใฎ็ดฐ่ƒžใงใ‚‚ๆœ‰ใ‚Šๅพ—ใ‚‹ ใจใ„ใ†ใ“ใจใงใ™ใ‹๏ผŸ
17:02
SM: Absolutely. CA: So converted to stem cells,
320
1022320
2376
ใ‚ทใƒƒใƒ€ใƒผใƒซใƒ€๏ผšใ‚‚ใกใ‚ใ‚“ใงใ™ ใ‚ฏใƒชใ‚น๏ผšใใ‚ŒใŒๅนน็ดฐ่ƒžใซๅค‰ๆ›ใ•ใ‚Œใƒผ
17:04
perhaps tested against all kinds of drugs or something, and prepared.
321
1024720
4536
ใŠใใ‚‰ใใ‚ใ‚‰ใ‚†ใ‚‹่–ฌใ‚„ไฝ•ใ‹ใซๅฏพใ—ใฆ ใƒ†ใ‚นใƒˆใ•ใ‚Œ ๆบ–ๅ‚™ใ•ใ‚Œใ‚‹
17:09
SM: And there's no perhaps. This is what we're doing.
322
1029280
2536
ใ‚ทใƒƒใƒ€ใƒผใƒซใƒ€๏ผšใใ—ใฆใ“ใ‚ŒใฏๅฎŸ้š›ใซ ็งใŸใกใŒใ‚„ใฃใฆใ„ใ‚‹ใ“ใจใชใฎใงใ™
17:11
This is what's happening, and in fact, we're slowly moving,
323
1031840
3736
ๅฎŸ้š›ใซ่ตทใ“ใฃใฆใ„ใฆ ็งใŸใกใฏ้บไผๅญๅญฆใ‹ใ‚‰
17:15
not away from genomics, but incorporating genomics
324
1035600
3815
้ ใ–ใ‹ใ‚‹ใฎใงใฏใชใ
17:19
into what we call multi-order, semi-autonomous, self-regulating systems,
325
1039440
4735
ใใ‚Œใ‚’็ดฐ่ƒžใ€่‡“ๅ™จใ€ ็’ฐๅขƒใชใฉใฎ
17:24
like cells, like organs, like environments.
326
1044200
2616
ๅคšๆฌกใ€ๅŠ่‡ช็™บใ€่‡ชๅพ‹ใ‚ทใ‚นใƒ†ใƒ ใซ็ตฑๅˆใ™ใ‚‹ใฎใงใ™
17:26
CA: Thank you so much.
327
1046829
1378
ใ‚ฏใƒชใ‚น๏ผšใ‚ใ‚ŠใŒใจใ†ใ”ใ–ใ„ใพใ—ใŸ
17:28
SM: Pleasure. Thanks.
328
1048227
1290
ใ‚ทใƒƒใƒ€ใƒผใƒซใƒ€๏ผšใ“ใกใ‚‰ใ“ใ ใ‚ใ‚ŠใŒใจใ†ใ”ใ–ใ„ใพใ—ใŸ
ใ“ใฎใ‚ฆใ‚งใƒ–ใ‚ตใ‚คใƒˆใซใคใ„ใฆ

ใ“ใฎใ‚ตใ‚คใƒˆใงใฏ่‹ฑ่ชžๅญฆ็ฟ’ใซๅฝน็ซ‹ใคYouTubeๅ‹•็”ปใ‚’็ดนไป‹ใ—ใพใ™ใ€‚ไธ–็•Œไธญใฎไธ€ๆต่ฌ›ๅธซใซใ‚ˆใ‚‹่‹ฑ่ชžใƒฌใƒƒใ‚นใƒณใ‚’่ฆ‹ใ‚‹ใ“ใจใŒใงใใพใ™ใ€‚ๅ„ใƒ“ใƒ‡ใ‚ชใฎใƒšใƒผใ‚ธใซ่กจ็คบใ•ใ‚Œใ‚‹่‹ฑ่ชžๅญ—ๅน•ใ‚’ใƒ€ใƒ–ใƒซใ‚ฏใƒชใƒƒใ‚ฏใ™ใ‚‹ใจใ€ใใ“ใ‹ใ‚‰ใƒ“ใƒ‡ใ‚ชใ‚’ๅ†็”Ÿใ™ใ‚‹ใ“ใจใŒใงใใพใ™ใ€‚ๅญ—ๅน•ใฏใƒ“ใƒ‡ใ‚ชใฎๅ†็”ŸใจๅŒๆœŸใ—ใฆใ‚นใ‚ฏใƒญใƒผใƒซใ—ใพใ™ใ€‚ใ”ๆ„่ฆ‹ใƒปใ”่ฆๆœ›ใŒใ”ใ–ใ„ใพใ—ใŸใ‚‰ใ€ใ“ใกใ‚‰ใฎใŠๅ•ใ„ๅˆใ‚ใ›ใƒ•ใ‚ฉใƒผใƒ ใ‚ˆใ‚Šใ”้€ฃ็ตกใใ ใ•ใ„ใ€‚

https://forms.gle/WvT1wiN1qDtmnspy7