Greg Asner: Ecology from the air

85,170 views ใƒป 2013-11-19

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Boaz Hovav ืžื‘ืงืจ: Ido Dekkers
00:12
Technology can change our understanding of nature.
0
12502
4191
ื˜ื›ื ื•ืœื•ื’ื™ื” ื™ื›ื•ืœื” ืœืฉื ื•ืช ืืช ื”ื“ืจืš ื‘ื” ืื ื—ื ื• ืžื‘ื™ื ื™ื ืืช ื”ื˜ื‘ืข.
00:16
Take for example the case of lions.
1
16693
3151
ื‘ื•ืื• ื ื“ื‘ืจ ืœื“ื•ื’ืžื” ืขืœ ื”ืืจื™ื•ืช.
00:19
For centuries, it's been said that female lions
2
19844
2170
ื‘ืžืฉืš ืžืื•ืช ืฉื ื™ื, ื”ืืžื ื• ืฉืœื‘ื™ืื•ืช
00:22
do all of the hunting out in the open savanna,
3
22014
2729
ืžื‘ืฆืขื•ืช ืืช ื›ืœ ื”ืฆื™ื“ ื‘ืกื•ื•ืื ื”,
00:24
and male lions do nothing until it's time for dinner.
4
24743
3981
ื‘ืขื•ื“ ื”ืืจื™ื•ืช ื”ื–ื›ืจื™ื ืขืฆืœื ื™ื, ื•ืžืฉืชืชืคื™ื ืจืง ื‘ืืจื•ื—ื•ืช.
00:28
You've heard this too, I can tell.
5
28724
3012
ื’ื ืืชื ืฉืžืขืชื ืขืœ ื–ื”, ืื ื™ ื‘ื˜ื•ื—.
00:31
Well recently, I led an airborne mapping campaign
6
31736
2586
ืื‘ืœ ืœืื—ืจื•ื ื”, ื”ื•ื‘ืœืชื™ ืชื”ืœื™ืš ืฉืœ ืžื™ืคื•ื™ ืฉื˜ื— ืžื•ื˜ืก
00:34
in the Kruger National Park in South Africa.
7
34322
2672
ื‘ืคืจืง ื”ืœืื•ืžื™ ืงืจื•ื’ืจ ื‘ื“ืจื•ื ืืคืจื™ืงื”.
00:36
Our colleagues put GPS tracking collars
8
36994
2592
ื”ืฉื•ืชืคื™ื ืฉืœื ื• ื”ืชืงื™ื ื• ืงื•ืœืจื™ื ืขื GPS
00:39
on male and female lions,
9
39586
1597
ืขืœ ืืจื™ื•ืช ื•ืœื‘ื™ืื•ืช,
00:41
and we mapped their hunting behavior
10
41183
1608
ื•ืขืงื‘ื ื• ืื—ืจื™ ื”ืจื’ืœื™ ื”ืฆื™ื“ ืฉืœื”ื
00:42
from the air.
11
42791
1448
ืžื”ืื•ื•ื™ืจ.
00:44
The lower left shows a lion sizing up
12
44239
2666
ืžืฉืžืืœ ืœืžื˜ื” ื ื™ืชืŸ ืœืจืื•ืช ืืจื™ื” ืžื ืกื” ืœื”ืขืจื™ืš ืืช ื”ื’ื•ื“ืœ
00:46
a herd of impala for a kill,
13
46905
2012
ืฉืœ ืขื“ืจ ืื™ืžืคืœื•ืช ืœืงืจืืช ื”ืฆื™ื“.
00:48
and the right shows what I call
14
48917
1569
ืžื™ืžื™ืŸ ืจื•ืื™ื ืืช ืžื” ืฉืื ื™ ืžื›ื ื”
00:50
the lion viewshed.
15
50486
1863
ืžืกืชื•ืจ ื”ืชืฆืคื™ืช ืฉืœ ื”ืืจื™ื•ืช.
00:52
That's how far the lion can see in all directions
16
52349
2622
ืชืจืื• ืœืื™ื–ื” ืžืจื—ืง ื”ืืจื™ื” ื™ื›ื•ืœ ืœืจืื•ืช ืžื›ืœ ื›ื™ื•ื•ืŸ
00:54
until his or her view is obstructed by vegetation.
17
54971
4175
ืขื“ ืฉื”ืฆืžื—ื™ื™ื” ืžืกืชื™ืจื” ืืช ื”ืคืจื˜ื™ื.
00:59
And what we found
18
59146
1441
ืื ื—ื ื• ื’ื™ืœื™ื ื•
01:00
is that male lions are not the lazy hunters
19
60587
2506
ืฉื”ืืจื™ื•ืช ื”ื–ื›ืจื™ื ืื™ื ื ื”ืฆื™ื™ื“ื™ื ื”ืขืฆืœื ื™ื
01:03
we thought them to be.
20
63093
1524
ืฉื—ืฉื‘ื ื• ืฉื”ื.
01:04
They just use a different strategy.
21
64617
2137
ื”ื ืคืฉื•ื˜ ืžืฉืชืžืฉื™ื ื‘ืืกื˜ืจื˜ื’ื™ื” ืฉื•ื ื”.
01:06
Whereas the female lions hunt
22
66754
1752
ื‘ื–ืžืŸ ืฉื”ืœื‘ื™ืื•ืช ืฆื“ื•ืช
01:08
out in the open savanna
23
68506
1132
ื‘ืฉื˜ื—ื™ ื”ืกื•ื•ืื ื” ื”ืคืชื•ื—ื™ื
01:09
over long distances, usually during the day,
24
69638
2661
ืขืœ ืคื ื™ ืžืจื—ืงื™ื ืขืฆื•ืžื™ื, ื‘ื“"ื› ื‘ืฉืขื•ืช ื”ืื•ืจ,
01:12
male lions use an ambush strategy
25
72299
3010
ื”ืืจื™ื•ืช ื‘ื“"ื› ืื•ืจื‘ื™ื ืœื˜ืจืฃ
01:15
in dense vegetation, and often at night.
26
75309
3733
ื‘ืชื•ืš ืฆืžื—ื™ื” ืขื‘ื•ืชื”, ืœืจื•ื‘ ื‘ืฉืขื•ืช ื”ื—ืฉื™ื›ื”.
01:19
This video shows the actual hunting viewsheds
27
79042
3006
ื‘ืกืจื˜ื•ืŸ ื”ื‘ื ื ืจืื” ืืช ืžืกืชื•ืจ ื”ืชืฆืคื™ืช ื”ืืžื™ืชื™
01:22
of male lions on the left
28
82048
1865
ืฉืœ ืืจื™ื” ื–ื›ืจ ืžืฉืžืืœ
01:23
and females on the right.
29
83913
1989
ื•ืฉืœ ืœื‘ื™ืื” ืžื™ืžื™ืŸ.
01:25
Red and darker colors show more dense vegetation,
30
85902
2556
ื”ืื–ื•ืจื™ื ื”ืžืกื•ืžื ื™ื ื‘ืื“ื•ื ื•ื‘ืฆื‘ืขื™ื ื›ื”ื™ื ืžืกืžืœื™ื ืฆืžื—ื™ื” ืขื‘ื•ืชื”,
01:28
and the white are wide open spaces.
31
88458
2115
ื•ื”ืื–ื•ืจื™ื ื”ืžืกื•ืžื ื™ื ื‘ืœื‘ืŸ ืžืกืžืœื™ื ืฉื˜ื—ื™ื ืคืชื•ื—ื™ื.
01:30
And this is the viewshed right literally at the eye level
32
90573
3100
ื•ื–ื• ืชืžื•ื ื” ืžืชื•ืš ืžืกืชื•ืจ ื”ืชืฆืคื™ืช ื‘ื’ื•ื‘ื” ื”ืขื™ื ื™ื™ื
01:33
of hunting male and female lions.
33
93673
2530
ืฉืœ ืืจื™ื•ืช ื•ืœื‘ื™ืื•ืช.
01:36
All of a sudden, you get a very clear understanding
34
96203
2329
ืคืชืื•ื, ื ื™ืชืŸ ืœื”ื‘ื™ืŸ ื‘ืฆื•ืจื” ื‘ืจื•ืจื”
01:38
of the very spooky conditions under which
35
98532
2853
ืืช ื”ืชื ืื™ื ื”ืžืคื—ื™ื“ื™ื ื‘ื”ื
01:41
male lions do their hunting.
36
101385
2080
ื”ืืจื™ื•ืช ื”ื–ื›ืจื™ื ืฆื“ื™ื.
01:43
I bring up this example to begin,
37
103465
1496
ื”ื“ื•ื’ืžื” ื”ืจืืฉื•ื ื” ืฉืœ ื”ืืจื™ื•ืช,
01:44
because it emphasizes how little we know about nature.
38
104961
4468
ืžืžื—ื™ืฉื” ื›ืžื” ืžืขื˜ ืื ื—ื ื• ื‘ืืžืช ื™ื•ื“ืขื™ื ืขืœ ื”ื˜ื‘ืข.
01:49
There's been a huge amount of work done so far
39
109429
2675
ืขื“ ื›ื” ื ืขืฉืชื” ื›ืžื•ืช ืขืฆื•ืžื” ืฉืœ ืขื‘ื•ื“ื”
01:52
to try to slow down our losses of tropical forests,
40
112104
3628
ืฉืžื˜ืจืชื” ืœื”ืื˜ ืืช ื”ืจืก ื”ื™ืขืจื•ืช ื”ื˜ืจื•ืคื™ื™ื,
01:55
and we are losing our forests at a rapid rate,
41
115732
1949
ื•ืงืฆื‘ ื”ืื•ื‘ื“ืŸ ื›ื™ื•ื ืžื”ื™ืจ ืžืื“,
01:57
as shown in red on the slide.
42
117681
1914
ื›ืคื™ ืฉืžืจืื” ืœื ื• ื”ืกื™ืžื•ืŸ ื”ืื“ื•ื ื‘ืฉืงื•ืคื™ืช.
01:59
I find it ironic that we're doing so much,
43
119595
2340
ืื ื™ ืžื•ืฆื ืื™ืจื•ื ื™ื” ื‘ืขื•ื‘ื“ื” ืฉืื ื—ื ื• ืžืฉืงื™ืขื™ื ื›ืœ ื›ืš ื”ืจื‘ื” ืžืืžืฅ,
02:01
yet these areas are fairly unknown to science.
44
121935
3633
ื‘ื ื•ืฉืื™ื ื‘ื”ื ื”ืžื“ืข ืžื‘ื™ืŸ ืžืขื˜ ืžืื“.
02:05
So how can we save what we don't understand?
45
125568
2657
ืื– ืื™ืš ื ื•ื›ืœ ืœื”ืฆื™ืœ ืืช ืžื” ืฉืื™ื ื ื• ืžื‘ื™ื ื™ื?
02:08
Now I'm a global ecologist and an Earth explorer
46
128225
2662
ืื ื™ ืขื•ืกืง ื‘ืืงื•ืœื•ื’ื™ื” ืขื•ืœืžื™ืช ื•ื‘ื—ืงืจ ื›ื“ื•ืจ ื”ืืจืฅ
02:10
with a background in physics and chemistry
47
130887
1691
ื•ื™ืฉ ืœื™ ืจืงืข ืฉืœ ื›ื™ืžื™ื” ื•ืคื™ื–ื™ืงื”
02:12
and biology and a lot of other boring subjects,
48
132578
3204
ื•ื‘ื™ื•ืœื•ื’ื™ื” ื•ื”ืจื‘ื” ื ื•ืฉืื™ื ืžืฉืขืžืžื™ื ืื—ืจื™ื,
02:15
but above all, I'm obsessed with what we don't know
49
135782
3002
ืื‘ืœ ื™ื•ืชืจ ืžื›ืœ, ืื ื™ ืžืชืขื ื™ื™ืŸ ื‘ืื•ืคืŸ ืื•ื‘ืกืกื™ื‘ื™ ื‘ื“ื‘ืจื™ื ืฉืื™ื ื ื• ื™ื•ื“ืขื™ื
02:18
about our planet.
50
138784
1712
ืœื’ื‘ื™ ื›ื“ื•ืจ ื”ืืจืฅ.
02:20
So I created this,
51
140496
1674
ืœื›ืŸ ื”ืงืžืชื™ ืืช ื”ืคืจื•ื™ืงื˜ ื”ื‘ื,
02:22
the Carnegie Airborne Observatory, or CAO.
52
142170
3277
ื”ืžืฆืคื” ื”ืื•ื•ื™ืจื™ ืฉืœ ืงืจื ื’ื™, ืื• CAO.
02:25
It may look like a plane with a fancy paint job,
53
145447
2057
ื ื›ื•ืŸ ืฉื”ื•ื ื ืจืื” ื›ืžื• ืกืชื ืžื˜ื•ืก ืขื ืฆื‘ื™ืขื” ื™ื•ืงืจืชื™ืช,
02:27
but I packed it with over 1,000 kilos
54
147504
2760
ื”ืชืงื ื• ืขืœื™ื• ื™ื•ืชืจ ืž- 1,000 ืงื™ืœื•
02:30
of high-tech sensors, computers,
55
150264
2436
ืฉืœ ืฆื™ื•ื“ ืžืชื•ื—ื›ื, ื—ื™ื™ืฉื ื™ื, ืžื—ืฉื‘ื™ื
02:32
and a very motivated staff
56
152700
2211
ื•ืฆื•ื•ืช ื‘ืขืœ ืžื•ื˜ื™ื‘ืฆื™ื” ืื“ื™ืจื”
02:34
of Earth scientists and pilots.
57
154911
2469
ืฉืžื•ืจื›ื‘ ืžื—ื•ืงืจื™ ื›ื“ื•ืจ ื”ืืจืฅ ื•ืžื˜ื™ื™ืกื™ื.
02:37
Two of our instruments are very unique:
58
157380
1860
ืื ื—ื ื• ืžืฉืชืžืฉื™ื ื‘ืฉื ื™ ื›ืœื™ื ืžื™ื•ื—ื“ื™ื:
02:39
one is called an imaging spectrometer
59
159240
1754
ื”ืจืืฉื•ืŸ ื ืงืจื ืกืคืงื˜ืจื•ืžื˜ืจ ื”ื“ืžื™ื”
02:40
that can actually measure the chemical composition
60
160994
1862
ื•ื”ื•ื ืžื•ื“ื“ ืืช ื”ืžื‘ื ื” ื”ื›ื™ืžื™
02:42
of plants as we fly over them.
61
162856
2929
ืฉืœ ื”ืฆืžื—ื™ื™ื” ืžืขืœื™ื” ืื ื—ื ื• ื˜ืกื™ื.
02:45
Another one is a set of lasers,
62
165785
1926
ื”ืฉื ื™ ื”ื•ื ืžื›ืฉื•ืจ ืœื™ื™ื–ืจ,
02:47
very high-powered lasers,
63
167711
1731
ืขื ืœื™ื™ื–ืจื™ื ื‘ืขืฆืžื” ื’ื‘ื•ื”ื”,
02:49
that fire out of the bottom of the plane,
64
169442
1960
ืฉืžื•ืงืจื ื™ื ืžืชื—ืชื™ืช ื”ืžื˜ื•ืก,
02:51
sweeping across the ecosystem
65
171402
1872
ื•ืกื•ืจืงื™ื ืืช ื”ืžืขืจื›ืช ื”ืืงื•ืœื•ื’ื™ืช ืขืœ ื”ืงืจืงืข
02:53
and measuring it at nearly 500,000 times per second
66
173274
4097
ื‘ืงืฆื‘ ืฉืœ ื—ืฆื™ ืžืœื™ื•ืŸ ืžื“ื™ื“ื•ืช ื‘ืฉื ื™ื”
02:57
in high-resolution 3D.
67
177371
2478
ื‘ืชืœืช ืžืžื“ ื•ื‘ืื™ื›ื•ืช HD.
02:59
Here's an image of the Golden Gate Bridge
68
179849
1984
ื”ื ื” ืชืžื•ื ื” ืฉืœ ื’ืฉืจ ืฉืขืจ ื”ื–ื”ื‘
03:01
in San Francisco, not far from where I live.
69
181833
2172
ื‘ืกืืŸ-ืคืจื ืกื™ืกืงื•, ืœื™ื“ ืžืงื•ื ืžื’ื•ืจื™.
03:04
Although we flew straight over this bridge,
70
184005
1803
ืœืžืจื•ืช ืฉื˜ืกื ื• ื™ืฉืจ ืžืขืœ ื”ื’ืฉืจ,
03:05
we imaged it in 3D, captured its color
71
185808
1656
ืงื™ื‘ืœื ื• ืชืžื•ื ื” ืชืœืช ืžืžื“ื™ืช, ื‘ืฆื‘ืข ืžืœื
03:07
in just a few seconds.
72
187464
2047
ืชื•ืš ืฉื ื™ื•ืช.
03:09
But the real power of the CAO
73
189511
2095
ืื‘ืœ ื›ื•ื—ื• ื”ืืžืชื™ ืฉืœ ืžื˜ื•ืก ื”- CAO
03:11
is its ability to capture the actual building blocks
74
191606
2175
ื˜ืžื•ืŸ ื‘ื™ื›ื•ืœืชื• ืœืชืขื“ ืืช ืื‘ื ื™ ื”ื‘ื ื™ื™ืŸ
03:13
of ecosystems.
75
193781
1769
ืฉืœ ื”ืžืขืจื›ืช ื”ืืงื•ืœื•ื’ื™ืช.
03:15
This is a small town in the Amazon,
76
195550
1699
ื–ื• ืขื™ืจ ืงื˜ื ื” ื‘ืืžื–ื•ื ืก,
03:17
imaged with the CAO.
77
197249
1615
ื›ืคื™ ืฉื”ื™ื ืชื•ืขื“ื” ื‘ืžืขืจื›ืช ื”- CAO.
03:18
We can slice through our data
78
198864
1739
ื ื™ืชืŸ ืœื—ืชื•ืš ืืช ื”ืžื™ื“ืข
03:20
and see, for example, the 3D structure
79
200603
2264
ื•ืœืจืื•ืช, ืœื“ื•ื’ืžื”, ืืช ื”ืžื‘ื ื” ื”ืชืœืช ืžืžื“ื™
03:22
of the vegetation and the buildings,
80
202867
2333
ืฉืœ ืฆืžื—ื™ื™ื” ื•ื‘ืชื™ื,
03:25
or we can use the chemical information
81
205200
1909
ื ื™ืชืŸ ื’ื ืœื”ืฉืชืžืฉ ื‘ื ืชื•ื ื™ื ื”ื›ื™ืžื™ื™ื
03:27
to actually figure out how fast the plants are growing
82
207109
2731
ืขืœ ืžื ืช ืœื—ืฉื‘ ื›ืžื” ืžื”ืจ ื’ื“ืœื” ื”ืฆืžื—ื™ื™ื”
03:29
as we fly over them.
83
209840
1343
ืžืžืฉ ืชื•ืš ื›ื“ื™ ื”ื˜ื™ืกื”.
03:31
The hottest pinks are the fastest-growing plants.
84
211183
3486
ื”ืื–ื•ืจื™ื ื”ื•ื•ืจื•ื“ื™ื ืžืจืื™ื ืฆืžื—ื™ื” ืฉื’ื“ืœื” ืžื”ืจ.
03:34
And we can see biodiversity in ways
85
214669
1917
ื•ื ื™ืชืŸ ืœืจืื•ืช ืืช ื”ืžื’ื•ื•ืŸ ื”ื‘ื™ื•ืœื•ื’ื™ ื‘ืฆื•ืจื”
03:36
that you never could have imagined.
86
216586
2159
ื˜ื•ื‘ื” ื‘ื”ืจื‘ื” ืžื›ืœ ืžื” ืฉื™ื›ื•ืœื ื• ืœื“ืžื™ื™ืŸ ื‘ืขื‘ืจ.
03:38
This is what a rainforest might look like
87
218745
1551
ื›ืš ื ืจืื” ื™ืขืจ ื’ืฉื
03:40
as you fly over it in a hot air balloon.
88
220296
2207
ื›ืืจ ื˜ืกื™ื ืžืขืœื™ื• ื‘ื›ื“ื•ืจ ืคื•ืจื—.
03:42
This is how we see a rainforest,
89
222503
2094
ื›ืš ืื ื—ื ื• ืจื•ืื™ื ื™ืขืจ ื’ืฉื,
03:44
in kaleidoscopic color that tells us
90
224597
2345
ื‘ืฆื‘ืขื™ื ืจื‘ื’ื•ื ื™ื™ื ืฉืžืจืื™ื ืœื ื•
03:46
that there are many species living with one another.
91
226942
2942
ืืช ืžื’ื•ื•ืŸ ื”ืžื™ื ื™ื ื”ืขืฆื•ื ืฉืžืชืงื™ื™ื ื‘ื™ืขืจ.
03:49
But you have to remember that these trees
92
229884
1924
ืื‘ืœ ื—ื™ื™ื‘ื™ื ืœื–ื›ื•ืจ ืฉื”ืขืฆื™ื ื”ืืœื•
03:51
are literally bigger than whales,
93
231808
2296
ื’ื“ื•ืœื™ื ื™ื•ืชืจ ืžืœื•ื•ื™ื™ืชื ื™ื,
03:54
and what that means is that they're impossible to understand
94
234104
2912
ื•ื”ืžืฉืžืขื•ืช ื”ื™ื ืฉืœื ื ื™ืชืŸ ืœื”ื‘ื™ืŸ ืื•ืชื
03:57
just by walking on the ground below them.
95
237016
2975
ืจืง ืžื›ื™ื•ื•ืŸ ื”ืงืจืงืข ืฉืžืชื—ืชื.
03:59
So our imagery is 3D, it's chemical, it's biological,
96
239991
4638
ืœื›ืŸ ืื ื—ื ื• ืžืฉืชืžืฉื™ื ื‘ื”ื“ืžื™ื•ืช ืชืœืช ืžืžื“, ืขื ื ื™ืชื•ื— ื›ื™ืžื™ ื•ื‘ื™ื•ืœื•ื’ื™,
04:04
and this tells us not only the species
97
244629
1758
ืฉืžืจืื” ืœื ื• ืœื ืจืง ืื™ืœื• ืžื™ื ื™ื
04:06
that are living in the canopy,
98
246387
1884
ื—ื™ื™ื ื‘ืฆืžืจื•ืช ื”ืขืฆื™ื,
04:08
but it tells us a lot of information
99
248271
1920
ืืœื ืžืกืคืง ื’ื ืžื™ื“ืข
04:10
about the rest of the species that occupy the rainforest.
100
250191
3576
ืขืœ ืฉืืจ ื”ืžื™ื ื™ื ืฉื—ื™ื™ื ื‘ื™ืขืจ ื”ื’ืฉื.
04:13
Now I created the CAO
101
253767
2131
ืขื›ืฉื™ื• ื™ืฆืจืชื™ ืืช ืžืขืจื›ืช ื”- CAO
04:15
in order to answer questions that have proven
102
255898
2139
ื›ื“ื™ ืœืขื ื•ืช ืขืœ ืฉืืœื•ืช
04:18
extremely challenging to answer from any other vantage point,
103
258037
3352
ืฉืœื ื ื™ืชืŸ ื”ื™ื” ืœืขื ื•ืช ืขืœื™ื”ืŸ ืžื ืงื•ื“ื•ืช ืžื‘ื˜ ืื—ืจื•ืช,
04:21
such as from the ground, or from satellite sensors.
104
261389
2877
ื›ืžื• ืžื”ืงืจืงืข, ืื• ืžืชืžื•ื ื•ืช ืœื•ื•ื™ื™ืŸ.
04:24
I want to share three of those questions with you today.
105
264266
3237
ื•ืจืฆื™ืชื™ ืœื“ื•ืŸ ืืชื›ื ื‘ืฉืœื•ืฉ ืฉืืœื•ืช ื›ืืœื” ื”ื™ื•ื.
04:27
The first questions is,
106
267503
1707
ื”ืฉืืœื” ื”ืจืืฉื•ื ื” ื”ื™ื,
04:29
how do we manage our carbon reserves
107
269210
1729
ืื™ืš ืฆืจื™ืš ืœื ื”ืœ ืืช ืขืชื•ื“ื•ืช ื”ืคื—ืžืŸ
04:30
in tropical forests?
108
270939
2756
ื‘ื™ืขืจื•ืช ื”ื’ืฉื?
04:33
Tropical forests contain a huge amount of carbon in the trees,
109
273695
3559
ื™ืขืจื•ืช ื”ื’ืฉื ืžื›ื™ืœื™ื ื›ืžื•ืช ืขืฆื•ืžื” ืฉืœ ืคื—ืžืŸ ื‘ืขืฆื™ื,
04:37
and we need to keep that carbon in those forests
110
277254
2414
ื•ื—ืฉื•ื‘ ืฉื ืฉืžื•ืจ ืขืœ ื”ืคื—ืžืŸ ื‘ื™ืขืจื•ืช
04:39
if we're going to avoid any further global warming.
111
279668
3414
ืขืœ ืžื ืช ืœื”ื™ืžื ืข ืžื”ืžืฉืš ื”ื”ืชื—ืžืžื•ืช ื›ื“ื•ืจ ื”ืืจืฅ.
04:43
Unfortunately, global carbon emissions
112
283082
2226
ืœืจื•ืข ื”ืžื–ืœ, ืคืœื™ื˜ื•ืช ื”ืคื—ืžืŸ ื”ืขื•ืœืžื™ื•ืช
04:45
from deforestation
113
285308
1763
ื”ื ื•ื‘ืขืช ืžื›ืจื™ืชืช ื•ืฉืจื™ืคืช ื™ืขืจื•ืช
04:47
now equals the global transportation sector.
114
287071
3175
ืฉื•ื•ืช ื›ื™ื•ื ืœืคืœื™ื˜ืช ื”ืคื—ืžืŸ ืฉืœ ื›ืœ ืžื’ื–ืจ ื”ืชื—ื‘ื•ืจื”.
04:50
That's all ships, airplanes, trains and automobiles combined.
115
290246
4303
ืฉืœ ื›ืœ ื”ืื ื™ื•ืช, ื”ืžื˜ื•ืกื™ื, ื”ืจื›ื‘ื•ืช ื•ื”ืžื›ื•ื ื™ื•ืช ื™ื—ื“.
04:54
So it's understandable that policy negotiators
116
294549
3091
ืœื›ืŸ ืžื•ื‘ืŸ ืฉืงื•ื‘ืขื™ ื”ืžื“ื™ื ื™ื•ืช ื”ืขื•ืœืžื™ืช
04:57
have been working hard to reduce deforestation,
117
297640
2488
ื ื™ืกื• ืœืฆืžืฆื ืืช ื›ืจื™ืชืช ื”ื™ืขืจื•ืช ื‘ื›ืœ ื›ื•ื—ื,
05:00
but they're doing it on landscapes
118
300128
1871
ืื‘ืœ ื”ื ืคื•ืขืœื™ื ื‘ืชื—ื•ื
05:01
that are hardly known to science.
119
301999
2139
ืฉืื™ื ื• ืžื•ื›ืจ ื›ืžืขื˜ ืœืžื“ืข.
05:04
If you don't know where the carbon is exactly,
120
304138
2361
ืื ืื™ื ื ื• ื™ื•ื“ืขื™ื ื”ื™ื›ืŸ ื‘ื“ื™ื•ืง ื ืžืฆื ื”ืคื—ืžืŸ,
05:06
in detail, how can you know what you're losing?
121
306499
2852
ื‘ืคืจื•ื˜ ืจื‘, ืื™ืš ื ื™ืชืŸ ืœื“ืขืช ืžื” ืงืฆื‘ ื”ืื•ื‘ื“ืŸ?
05:09
Basically, we need a high-tech accounting system.
122
309351
4057
ื‘ืขืฆื, ืื ื—ื ื• ืฆืจื™ื›ื™ื ืžืขืจื›ืช ื—ืฉื‘ื•ื ืื™ืช ืžืฉื•ื›ืœืœืช.
05:13
With our system, we're able to see the carbon stocks
123
313408
2316
ืขื ื”ืžืขืจื›ืช ืฉืœื ื• ื ื™ืชืŸ ืœืจืื•ืช ืืช ืžืื’ืจื™ ื”ืคื—ืžืŸ
05:15
of tropical forests in utter detail.
124
315724
2798
ื”ืžืฆื•ื™ื™ื ื‘ื™ืขืจื•ืช ื”ื˜ืจื•ืคื™ื™ื ื‘ืคืจื•ื˜ ืจื‘.
05:18
The red shows, obviously, closed-canopy tropical forest,
125
318522
2855
ื‘ืื“ื•ื ืจื•ืื™ื ืืช ื”ื™ืขืจื•ืช ื”ื˜ืจื•ืคื™ื™ื ืฆืคื•ืคื™ ื”ืฆืžืจืช,
05:21
and then you see the cookie cutting,
126
321377
2018
ื•ืื– ื ื™ืชืŸ ืœืจืื•ืช ื—ื•ืจื™ื,
05:23
or the cutting of the forest in yellows and greens.
127
323395
3907
ืฉืžืกืžืœื™ื ืืช ื›ืจื™ืชืช ื”ื™ืขืจื•ืช ื•ืžื•ืคื™ืขื™ื ื‘ืฆื”ื•ื‘ ื•ื™ืจื•ืง.
05:27
It's like cutting a cake except this cake
128
327302
2823
ื–ื” ื›ืžื• ืœืคืจื•ืก ืขื•ื’ื”, ืืœื ืฉืขื•ืžืง ื”ืขื•ื’ื” ื”ื–ื•
05:30
is about whale deep.
129
330125
2199
ื”ื•ื ื›ื’ื•ื‘ื” ืœื•ื•ื™ืชืŸ.
05:32
And yet, we can zoom in and see the forest
130
332324
1968
ื•ื‘ื›ืœ ื–ืืช, ื ื™ืชืŸ ืœื”ืชืžืงื“ ื•ืœืจืื•ืช ื’ื ืืช ื”ื™ืขืจ
05:34
and the trees at the same time.
131
334292
2013
ื•ื’ื ืืช ื”ืขืฆื™ื ื‘ื• ื–ืžื ื™ืช.
05:36
And what's amazing is, even though we flew
132
336305
2202
ื•ืžื” ืฉืžื“ื”ื™ื, ื–ื” ืฉืœืžืจื•ืช ืฉื˜ืกื ื•
05:38
very high above this forest,
133
338507
2277
ื’ื‘ื•ื” ืžืื“ ืžืขืœ ื”ื™ืขืจ,
05:40
later on in analysis, we can go in
134
340784
1903
ื‘ื”ืžืฉืš ื”ืกืงื™ืจื” ื ื•ื›ืœ ืœื”ื™ื›ื ืก
05:42
and actually experience the treetrops,
135
342687
2220
ื•ืœื—ื•ื•ืช ืืช ืฆืžืจื•ืช ื”ืขืฆื™ื,
05:44
leaf by leaf, branch by branch,
136
344907
2347
ื›ืœ ืขืœื” ื‘ื ืคืจื“, ื›ืœ ืขื ืฃ ื‘ื ืคืจื“,
05:47
just as the other species that live in this forest
137
347254
3507
ืžืžืฉ ื›ืžื• ืฉื‘ืขืœื™ ื”ื—ื™ื™ื ื”ื—ื™ื™ื ื‘ื™ืขืจ
05:50
experience it along with the trees themselves.
138
350761
2817
ื—ื•ื•ื™ื ืื•ืชื, ืžืžืฉ ื›ืžื• ื”ืขืฆื™ื ืขืฆืžื.
05:53
We've been using the technology to explore
139
353578
2166
ืื ื—ื ื• ืžืฉืชืžืฉื™ื ื‘ื˜ื›ื ื•ืœื•ื’ื™ื” ืขืœ ืžื ืช ืœื—ืงื•ืจ
05:55
and to actually put out the first carbon geographies
140
355744
2870
ื•ืœืชืขื“ ืืช ื”ืžื™ืงื•ื ื”ื’ืื•ื’ืจืคื™ ืฉืœ ื”ืคื—ืžืŸ
05:58
in high resolution
141
358614
1614
ื‘ืจื–ื•ืœื•ืฆื™ื” ื’ื‘ื•ื”ื”
06:00
in faraway places like the Amazon Basin
142
360228
2246
ื‘ืื–ื•ืจื™ื ืžืจื•ื—ืงื™ื ื›ืžื• ืื’ืŸ ื”ืืžื–ื•ื ืก
06:02
and not-so-faraway places like the United States
143
362474
2287
ื•ื‘ืื–ื•ืจื™ื ืงืจื•ื‘ื™ื ื™ื•ืชืจ ื›ืžื• ืืจืฆื•ืช ื”ื‘ืจื™ืช
06:04
and Central America.
144
364761
1733
ื•ืžืจื›ื– ืืžืจื™ืงื”.
06:06
What I'm going to do is I'm going to take you on a high-resolution, first-time tour
145
366494
3500
ื•ืขื›ืฉื™ื• ืื ื™ ืืงื— ืืชื›ื ืœืกื™ื•ืจ ื‘ืจื–ื•ืœื•ืฆื™ื” ื’ื‘ื•ื”ื”, ืกื™ื•ืจ ืจืืฉื•ืŸ
06:09
of the carbon landscapes of Peru and then Panama.
146
369994
3929
ื‘ื ื•ืคื™ ื”ืคื—ืžืŸ ืฉืœ ืคืจื• ื•ืคื ืžื”.
06:13
The colors are going to be going from red to blue.
147
373923
2762
ื”ืฆื‘ืขื™ื ื™ื ื•ืขื• ื‘ื™ืŸ ืื“ื•ื ืœื›ื—ื•ืœ.
06:16
Red is extremely high carbon stocks,
148
376685
1994
ืื“ื•ื ืžื™ื™ืฆื’ ืžืื’ืจื™ ืคื—ืžืŸ ื’ื“ื•ืœื™ื,
06:18
your largest cathedral forests you can imagine,
149
378679
2539
ื”ื™ืขืจ ื”ื’ื“ื•ืœ ื•ื”ืžืจืฉื™ื ื‘ื™ื•ืชืจ ืฉืชื•ื›ืœื• ืœื“ืžื™ื™ืŸ,
06:21
and blue are very low carbon stocks.
150
381218
2242
ื•ื›ื—ื•ืœ ืžื™ื™ืฆื’ ืžืื’ืจื™ ืคื—ืžืŸ ืžื“ื•ืœืœื™ื.
06:23
And let me tell you, Peru alone is an amazing place,
151
383460
2434
ื•ื›ืคื™ ืฉืชืจืื• ืžื™ื“, ืคืจื• ื”ื™ื ืžืงื•ื ืžื“ื”ื™ื,
06:25
totally unknown in terms of its carbon geography
152
385894
2389
ืฉืคื™ื–ื•ืจ ื”ืคื—ืžืŸ ื‘ื• ืœื ืžื•ื›ืจ ื›ืœืœ
06:28
until today.
153
388283
1586
ืขื“ ื”ื™ื•ื.
06:29
We can fly to this area in northern Peru
154
389869
1846
ืื ื—ื ื• ื ื˜ื•ืก ืืœ ืื–ื•ืจ ื‘ืฆืคื•ืŸ ืคืจื•
06:31
and see super high carbon stocks in red,
155
391715
2136
ื•ื ืจืื” ืžืื’ืจื™ ืคื—ืžืŸ ืขืฆื•ืžื™ื ื‘ืื“ื•ื,
06:33
and the Amazon River and floodplain
156
393851
1489
ื•ืืช ื ื”ืจ ื”ืืžื–ื•ื ืก ื•ื”ืื–ื•ืจื™ื ืกื‘ื™ื‘ื•
06:35
cutting right through it.
157
395340
1745
ืฉื—ื•ืชื›ื™ื ืืช ื”ืื–ื•ืจ.
06:37
We can go to an area of utter devastation
158
397085
1898
ื•ื ืžืฉื™ืš ืœืื–ื•ืจื™ ื”ืจืก ืžื•ื—ืœื˜
06:38
caused by deforestation in blue,
159
398983
1835
ืฉื’ืจืžื” ื›ืจื™ืชืช ื™ืขืจื•ืช ื•ืžื•ืคื™ืขื™ื ื‘ื›ื—ื•ืœ,
06:40
and the virus of deforestation spreading out in orange.
160
400818
3442
ื•ื ืจืื” ืื™ืš ื”ื›ืจื™ืชื” ืžืชืงื“ืžืช ื›ืžื• ืžื—ืœื” ื•ื™ืจืืœื™ืช ื‘ื›ืชื•ื.
06:44
We can also fly to the southern Andes
161
404260
2684
ื ื•ื›ืœ ื’ื ืœื˜ื•ืก ืžืขืœ ื”ืจื™ ื”ืื ื“ื™ื ื”ื“ืจื•ืžื™ื™ื
06:46
to see the tree line and see exactly how
162
406944
1850
ืœืจืื•ืช ืืช ืงื• ื”ื™ืขืจ ื•ืœืจืื•ืช ื‘ื“ื™ื•ืง ื›ื™ืฆื“
06:48
the carbon geography ends
163
408794
1916
ืžืื’ืจื™ ื”ืคื—ืžืŸ ืžืกืชื™ื™ืžื™ื
06:50
as we go up into the mountain system.
164
410710
2706
ื›ืืฉืจ ื’ื•ื‘ื” ื”ื”ืจื™ื ืขื•ืœื”.
06:53
And we can go to the biggest swamp in the western Amazon.
165
413416
2905
ื•ื ื•ื›ืœ ืœื˜ื•ืก ืœื‘ื™ืฆื•ืช ื”ืขืฆื•ืžื•ืช ื‘ืžืขืจื‘ ื”ืืžื–ื•ื ืก.
06:56
It's a watery dreamworld
166
416321
1373
ื–ื” ืขื•ืœื ื—ืœื•ืžื•ืช ืžื™ื™ืžื™
06:57
akin to Jim Cameron's "Avatar."
167
417694
2346
ื›ืžื• ื‘ืกืจื˜ ืื•ื•ื˜ืจ ืฉืœ ื’'ื™ื ืงืžืจื•ืŸ.
07:00
We can go to one of the smallest tropical countries,
168
420040
3304
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื˜ื•ืก ืืœ ืื—ืช ืžื”ืžื“ื™ื ื•ืช ื”ื˜ืจื•ืคื™ื•ืช ื”ืงื˜ื ื•ืช,
07:03
Panama, and see also a huge range
169
423344
2357
ืคื ืžื”, ื•ืœืจืื•ืช ืืช ื”ื˜ื•ื•ื— ื”ืขืฆื•ื
07:05
of carbon variation,
170
425701
1562
ืฉืœ ืžืื’ืจื™ ื”ืคื—ืžืŸ,
07:07
from high in red to low in blue.
171
427263
2001
ืžืื“ื•ื ื’ื‘ื•ื”, ืœื›ื—ื•ืœ ื ืžื•ืš.
07:09
Unfortunately, most of the carbon is lost in the lowlands,
172
429264
2932
ืœืจื•ืข ื”ืžื–ืœ, ืจื•ื‘ ื”ืคื—ืžืŸ ืื•ื‘ื“ ื‘ืื–ื•ืจื™ ื”ืฉืคืœื”,
07:12
but what you see that's left,
173
432196
1546
ืื‘ืœ ื”ืžืื’ืจื™ื ืฉืจืื™ื ื• ืฉื ืฉืืจื•,
07:13
in terms of high carbon stocks in greens and reds,
174
433742
2733
ืฉืกื•ืžื ื• ื‘ื™ืจื•ืง ื•ืื“ื•ื,
07:16
is the stuff that's up in the mountains.
175
436475
2114
ืžืจื•ื›ื–ื™ื ื‘ืžืขืœื” ื”ื”ืจื™ื.
07:18
One interesting exception to this
176
438589
2358
ื—ืจื™ื’ ืื—ื“ ืฉืจืื™ื ื•
07:20
is right in the middle of your screen.
177
440947
1616
ืžื•ืคื™ืข ื‘ืžืจื›ื– ื”ืžืกืš.
07:22
You're seeing the buffer zone around the Panama Canal.
178
442563
2644
ื ื™ืชืŸ ืœืจืื•ืช ืืช ืื–ื•ืจ ื”ื—ื™ืฅ ืกื‘ื™ื‘ ืชืขืœืช ืคื ืžื”.
07:25
That's in the reds and yellows.
179
445207
1913
ื”ื•ื ืžื•ืคื™ืข ื‘ืื“ื•ื ื•ืฆื”ื•ื‘.
07:27
The canal authorities are using force
180
447120
1740
ืฉืœื˜ื•ื ื•ืช ื”ืชืขืœื” ืžืฉืชืžืฉื™ื ื‘ื›ื•ื—
07:28
to protect their watershed and global commerce.
181
448860
3115
ืขืœ ืžื ืช ืœื”ื’ืŸ ืขืœ ื”ืชืขืœื” ื•ืขืœ ื”ืžืกื—ืจ ื”ื‘ื™ื "ืœ.
07:31
This kind of carbon mapping
182
451975
1490
ืžื™ืคื•ื™ ืคื—ืžืŸ ื›ืžื• ืฉื‘ื™ืฆืขื ื•
07:33
has transformed conservation
183
453465
1918
ืžืฉื ื” ืืช ืื•ืคื™ ืฉื™ืžื•ืจ ื”ื™ืขืจื•ืช
07:35
and resource policy development.
184
455383
1596
ื•ืืช ืชื›ื ื•ืŸ ืคื™ืชื•ื— ื”ืžืฉืื‘ื™ื.
07:36
It's really advancing our ability to save forests
185
456979
2360
ื–ื” ื‘ืืžืช ืžืงื“ื ืืช ื™ื›ื•ืœืชื ื• ืœื”ืฆื™ืœ ืืช ื”ื™ืขืจื•ืช
07:39
and to curb climate change.
186
459339
2375
ื•ืœืžื ื•ืข ืืช ืฉื™ื ื•ื™ื™ ื”ืืงืœื™ื.
07:41
My second question: How do we prepare for climate change
187
461714
3431
ื”ืฉืืœื” ื”ืฉื ื™ื™ื” ืฉืœื™: ืื™ืš ื ืชื›ื•ื ืŸ ืœืฉื™ื ื•ื™ื™ ื”ืืงืœื™ื
07:45
in a place like the Amazon rainforest?
188
465145
2146
ื‘ืžืงื•ืžื•ืช ื›ืžื• ื™ืขืจ ื”ื’ืฉื ื‘ืืžื–ื•ื ืก?
07:47
Let me tell you, I spend a lot of time
189
467291
1653
ืชืืžื™ื ื• ืœื™, ื‘ื™ืœื™ืชื™ ื”ืžื•ืŸ ื–ืžืŸ
07:48
in these places, and we're seeing the climate changing already.
190
468944
3225
ื‘ื™ืขืจื•ืช ื”ืœืœื•, ื•ื ื™ืชืŸ ืœืจืื•ืช ื›ื™ื•ื ื‘ื‘ืจื•ืจ ืืช ืฉื™ื ื•ื™ื™ ื”ืืงืœื™ื.
07:52
Temperatures are increasing,
191
472169
1612
ื”ื˜ืžืคืจื˜ื•ืจื•ืช ืขื•ืœื•ืช,
07:53
and what's really happening is we're getting a lot of droughts,
192
473781
2632
ื•ื”ื‘ื™ื˜ื•ื™ ื”ืขื™ืงืจื™ ื”ื•ื ื‘ื”ื•ืคืขืช ื‘ืฆื•ืจืช,
07:56
recurring droughts.
193
476413
1657
ื‘ืฆื•ืจืช ืฉื—ื•ื–ืจืช ืฉื•ื‘ ื•ืฉื•ื‘.
07:58
The 2010 mega-drought is shown here
194
478070
1817
ื‘ืฆื•ืจืช ื”ืขื ืง ืฉืืจืขื” ื‘- 2010 ืžื•ืคื™ืขื” ื›ืืŸ
07:59
with red showing an area about the size of Western Europe.
195
479887
3450
ื‘ืฆื‘ืข ืื“ื•ื ื•ืžื›ืกื” ืื–ื•ืจ ืฉืฉื˜ื—ื• ื“ื•ืžื” ืœืฉื˜ื— ืžืขืจื‘ ืื™ืจื•ืคื”.
08:03
The Amazon was so dry in 2010
196
483337
2262
ื”ืืžื–ื•ื ืก ื”ื™ื” ื™ื‘ืฉ ื›ืœ ื›ืš ื‘- 2010
08:05
that even the main stem of the Amazon river itself
197
485599
2402
ืฉืืคื™ืœื• ื”ื™ื•ึผื‘ืœ ื”ืขื™ืงืจื™ ืฉืœ ื ื”ืจ ื”ืืžื–ื•ื ืก
08:08
dried up partially, as you see in the photo
198
488001
2134
ื”ืชื™ื™ื‘ืฉ ื‘ื—ืœืงื•, ื›ืคื™ ืฉืชืจืื• ื‘ืฆื™ืœื•ื
08:10
in the lower portion of the slide.
199
490150
3406
ื‘ื—ืœืงื” ื”ืชื—ืชื•ืŸ ืฉืœ ื”ืฉืงื•ืคื™ืช.
08:13
What we found is that in very remote areas,
200
493556
3170
ื’ื™ืœื™ื ื• ืฉื‘ืื–ื•ืจื™ื ืžื‘ื•ื“ื“ื™ื ืžืื“,
08:16
these droughts are having a big negative impact
201
496726
2746
ื™ืฉ ืœื‘ืฆื•ืจืช ื”ืฉืคืขื” ืฉืœื™ืœื™ืช ื‘ื™ื•ืชืจ
08:19
on tropical forests.
202
499472
1588
ืขืœ ื”ื™ืขืจื•ืช ื”ื˜ืจื•ืคื™ื™ื.
08:21
For example, these are all of the dead trees in red
203
501060
2720
ืœื“ื•ื’ืžื”, ื”ืฆื‘ืข ื”ืื“ื•ื ืžื™ื™ืฆื’ ืขืฆื™ื ืžืชื™ื
08:23
that suffered mortality following the 2010 drought.
204
503780
3061
ืฉื”ืชื™ื™ื‘ืฉื• ื‘ืขืงื‘ื•ืช ื”ื‘ืฆื•ืจืช ืฉืœ 2010.
08:26
This area happens to be on the border
205
506841
1877
ื”ืื–ื•ืจ ื”ื–ื” ื ืžืฆื ื‘ื’ื‘ื•ืœ
08:28
of Peru and Brazil,
206
508718
1399
ื‘ื™ืŸ ืคืจื• ื•ื‘ืจื–ื™ืœ,
08:30
totally unexplored,
207
510117
1536
ืื–ื•ืจ ืฉื˜ืจื ื ื—ืงืจ,
08:31
almost totally unknown scientifically.
208
511653
2803
ืžืžืฉ ืœื ืžื•ื›ืจ ืœืžื“ืข.
08:34
So what we think, as Earth scientists,
209
514456
2466
ืื– ื—ืฉื‘ื ื•, ื—ื•ืงืจื™ ื›ื“ื•ืจ ื”ืืจืฅ,
08:36
is species are going to have to migrate
210
516922
1959
ืฉืžื™ื ื™ ื‘ืขืœื™ ื—ื™ื™ื ืฉื•ื ื™ื ื™ื ื“ื“ื•
08:38
with climate change from the east in Brazil
211
518881
2792
ื™ื—ื“ ืขื ืฉื™ื ื•ื™ื™ ื”ืืงืœื™ื, ืžืžื–ืจื— ื‘ืจื–ื™ืœ
08:41
all the way west into the Andes
212
521673
2064
ืžืขืจื‘ื” ืœื›ื™ื•ื•ืŸ ื”ืจื™ ื”ืื ื“ื™ื
08:43
and up into the mountains
213
523737
1473
ื•ืืœ ื”ื”ืจื™ื ื”ื’ื‘ื•ื”ื™ื
08:45
in order to minimize their exposure to climate change.
214
525210
3536
ืขืœ ืžื ืช ืœืฆืžืฆื ืืช ื”ื—ืฉื™ืคื” ืฉืœื”ื ืœืฉื™ื ื•ื™ื™ ื”ืืงืœื™ื.
08:48
One of the problems with this is that humans
215
528746
2008
ื”ื‘ืขื™ื” ื”ื™ื ืฉื‘ื ื™ ื”ืื“ื
08:50
are taking apart the western Amazon as we speak.
216
530754
3025
ื”ื•ืจืกื™ื ืืช ืžืขืจื‘ ื”ืืžื–ื•ื ืก ืžืžืฉ ื‘ืจื’ืขื™ื ืืœื”.
08:53
Look at this 100-square-kilometer gash
217
533779
2109
ืชืจืื• ืืช ื”ื—ื•ืจ ืฉืฉื˜ื—ื• 100 ืง"ืž ืžืจื•ื‘ืข
08:55
in the forest created by gold miners.
218
535888
2902
ืฉื ื•ืฆืจ ื‘ื™ืขืจ ืขืงื‘ ื›ืจื™ื™ืช ื–ื”ื‘.
08:58
You see the forest in green in 3D,
219
538790
2278
ืืชื ืจื•ืื™ื ืืช ื”ื™ืขืจ ืžื•ืคื™ืข ื‘ื™ืจื•ืง ื‘ืชืžื•ื ืช ืชืœืช ืžืžื“,
09:01
and you see the effects of gold mining
220
541068
1834
ื•ื ื™ืชืŸ ืœืจืื•ืช ืืช ื”ืฉืคืขืช ื›ืจื™ื™ืช ื”ื–ื”ื‘
09:02
down below the soil surface.
221
542902
2539
ืžืชื—ืช ืœืคื ื™ ื”ืงืจืงืข.
09:05
Species have nowhere to migrate in a system like this, obviously.
222
545441
4459
ืœื‘ืขืœื™ ื”ื—ื™ื™ื ืื™ืŸ ืœืืŸ ืœื ื“ื•ื“ ื‘ืžืขืจื›ืช ื›ื–ื•.
09:09
If you haven't been to the Amazon, you should go.
223
549900
2652
ืื ืœื ื‘ื™ืงืจืชื ืขื“ื™ื™ืŸ ื‘ืืžื–ื•ื ืก, ื›ื“ืื™ ืœื›ื ืœื ืกื•ืข ืœืฉื.
09:12
It's an amazing experience every time,
224
552552
2038
ื–ื• ื—ื•ื•ื™ื” ืžื“ื”ื™ืžื” ื‘ื›ืœ ืคืขื,
09:14
no matter where you go.
225
554590
1543
ืœื ืžืฉื ื” ืœืืŸ ืชื’ื™ืขื•.
09:16
You're going to probably see it this way, on a river.
226
556133
3396
ืกื‘ื™ืจ ืฉืชื˜ื™ื™ืœื• ื›ืš, ื‘ืกื™ืจื•ืช ื ื”ืจ.
09:19
But what happens is a lot of times
227
559529
1764
ืื‘ืœ ื‘ืžืงืจื™ื ืจื‘ื™ื
09:21
the rivers hide what's really going on
228
561293
1852
ืกื‘ื™ื‘ืช ื”ื ื”ืจ ืžืกืชื™ืจื” ืืช ืžื” ืฉืงื•ืจื”
09:23
back in the forest itself.
229
563145
2765
ื‘ืฉืืจ ืฉื˜ื—ื™ ื”ื™ืขืจ.
09:25
We flew over this same river,
230
565910
1714
ื˜ืกื ื• ืžืขืœ ืื•ืชื• ื ื”ืจ,
09:27
imaged the system in 3D.
231
567624
1840
ื•ืฆื™ืœืžื ื• ื‘ืชืœืช ืžืžื“.
09:29
The forest is on the left.
232
569464
1816
ื”ื™ืขืจ ืžื•ืคื™ืข ืžืฉืžืืœ.
09:31
And then we can digitally remove the forest
233
571280
1986
ื•ื ื™ืชืŸ ืœื”ืกื™ืจ ืืช ืชืžื•ื ืช ื”ื™ืขืจ ื‘ืื•ืคืŸ ืžืžื•ื—ืฉื‘,
09:33
and see what's going on below the canopy.
234
573266
2459
ื•ืœืจืื•ืช ืžื” ืงื•ืจื” ืžืชื—ืช ืœืฆืžืจื•ืช.
09:35
And in this case, we found gold mining activity,
235
575725
2450
ื‘ืžืงืจื” ืฉืœื ื• ืจืื™ื ื• ืคืขื™ืœื•ืช ืฉืœ ื›ื•ืจื™ ื–ื”ื‘,
09:38
all of it illegal,
236
578175
1237
ื›ื•ืœื” ื‘ืœืชื™ ื—ื•ืงื™ืช,
09:39
set back away from the river's edge,
237
579412
2196
ืฉืžืžื•ืงืžืช ื”ืจื—ืง ืžื’ื“ื•ืช ื”ื ื”ืจ,
09:41
as you'll see in those strange pockmarks
238
581608
1904
ื•ืžื•ืคื™ืขื™ื ื›ื—ื•ืจื™ื ื”ืžื•ื–ืจื™ื
09:43
coming up on your screen on the right.
239
583512
2027
ื‘ืฆื“ ื™ืžื™ืŸ ืฉืœ ื”ืชืžื•ื ื”.
09:45
Don't worry, we're working with the authorities
240
585539
2329
ืืœ ืชื“ืื’ื•, ืื ื—ื ื• ืžืฉืชืคื™ื ืคืขื•ืœื” ืขื ื”ืฉืœื˜ื•ื ื•ืช
09:47
to deal with this and many, many other problems
241
587868
2451
ืขืœ ืžื ืช ืœื˜ืคืœ ื‘ื”ืžื•ืŸ ื‘ืขื™ื•ืช
09:50
in the region.
242
590319
2610
ืฉืžืชื’ืœื•ืช ื‘ืื–ื•ืจ.
09:52
So in order to put together a conservation plan
243
592929
3055
ืขืœ ืžื ืช ืœื‘ื ื•ืช ืชื›ื ื™ืช ืฉื™ืžื•ืจ
09:55
for these unique, important corridors
244
595984
1740
ืœืžืกื“ืจื•ืŸ ื”ืืงื•ืœื•ื’ื™ ื”ื—ืฉื•ื‘ ื•ื”ื™ื™ื—ื•ื“ื™
09:57
like the western Amazon and the Andes Amazon corridor,
245
597724
2987
ืฉื ืžืฆื ื‘ืžืขืจื‘ ื”ืืžื–ื•ื ืก, ื•ื‘ืžืกื“ืจื•ืŸ ื”ืžืงืฉืจ ื‘ื™ืŸ ื”ืจื™ ื”ืื ื“ื™ื ืœืืžื–ื•ื ืก,
10:00
we have to start making
246
600711
2164
ื—ืฉื•ื‘ ืฉื ืชื—ื™ืœ ืœื‘ื ื•ืช
10:02
geographically explicit plans now.
247
602875
2406
ืชื›ื ื™ื•ืช ืขืœ ื‘ืกื™ืก ื’ืื•ื’ืจืคื™ ื›ื‘ืจ ื”ื™ื•ื.
10:05
How do we do that if we don't know the geography of biodiversity in the region,
248
605283
3975
ืื‘ืœ ืื™ืš ื ื•ื›ืœ ืœืขืฉื•ืช ื–ืืช ื‘ืœื™ ืœื”ื›ื™ืจ ืืช ื”ืคื™ื–ื•ืจ ื”ื’ืื•ื’ืจืคื™ ืฉืœ ื”ืžื™ื ื™ื ื”ื‘ื™ื•ืœื•ื’ื™ื™ื ื”ืฉื•ื ื™ื ื‘ืื–ื•ืจ,
10:09
if it's so unknown to science?
249
609258
1695
ืื ื”ืžื“ืข ืœื ืžื›ื™ืจ ืื•ืชื?
10:10
So what we've been doing is using
250
610953
1864
ื›ื™ื•ื ืื ื—ื ื• ืžืฉืชืžืฉื™ื
10:12
the laser-guided spectroscopy from the CAO
251
612817
2973
ื‘ืกืคืงื˜ืจื•ื’ืจืคื™ื™ืช ื”ืœื™ื™ื–ืจ ืฉืœ ื”- CAO
10:15
to map for the first time the biodiversity
252
615790
2224
ืขืœ ืžื ืช ืœืžืคื•ืช ืืช ื”ืžื’ื•ื•ืŸ ื”ื‘ื™ื•ืœื•ื’ื™
10:18
of the Amazon rainforest.
253
618014
1579
ืฉืœ ื™ืขืจื•ืช ื”ื’ืฉื ื‘ืืžื–ื•ื ืก.
10:19
Here you see actual data showing different species in different colors.
254
619593
3537
ื›ืืŸ ื ื™ืชืŸ ืœืจืื•ืช ืžื™ื“ืข ืืžืชื™ ืœื’ื‘ื™ ื”ืžื™ื ื™ื ื”ืฉื•ื ื™ื ื‘ืฆื‘ืขื™ื ืฉื•ื ื™ื.
10:23
Reds are one type of species, blues are another,
255
623130
2140
ืื“ื•ื ืžืกืžืœ ืžื™ืŸ ืื—ื“, ื›ื—ื•ืœ ืžื™ืŸ ืื—ืจ,
10:25
and greens are yet another.
256
625270
2345
ื•ื™ืจื•ืง ื”ื•ื ืžื™ืŸ ื ื•ืกืฃ.
10:27
And when we take this together and scale up
257
627615
2163
ื•ื›ืืฉืจ ืžื‘ื™ื˜ื™ื ื‘ื ืชื•ื ื™ื ืžื’ื‘ื•ื”,
10:29
to the regional level,
258
629778
1884
ื‘ืจืžืช ื”ืื–ื•ืจ,
10:31
we get a completely new geography
259
631662
2569
ืžืงื‘ืœื™ื ืžื™ืคื•ื™ ื—ื“ืฉ ืœื’ืžืจื™
10:34
of biodiversity unknown prior to this work.
260
634231
4388
ืฉืœ ืžื’ื•ื•ืŸ ื”ืžื™ื ื™ื, ืฉืœื ืชื•ืขื“ ืžืขื•ืœื.
10:38
This tells us where the big biodiversity changes
261
638619
2148
ื”ืžืคื” ืžืจืื” ืœื ื• ืืช ื”ื™ื›ืŸ ืžื’ื•ื•ืŸ ื”ืžื™ื ื™ื ืžืฉืชื ื”
10:40
occur from habitat to habitat,
262
640767
2014
ื‘ืžืขื‘ืจ ืžืื–ื•ืจ ืื—ื“ ืœืื—ืจ,
10:42
and that's really important because it tells us
263
642781
2183
ื•ื–ื” ื ืชื•ืŸ ื—ืฉื•ื‘ ื‘ื™ื•ืชืจ ืžื›ื™ื•ื•ืŸ ืฉื”ื•ื ืžืจืื”
10:44
a lot about where species may migrate to
264
644964
2895
ืœืืŸ ื”ืžื™ื ื™ื ืžื”ื’ืจื™ื
10:47
and migrate from as the climate shifts.
265
647859
2883
ื•ืžืื™ืคื” ื”ื ื‘ื•ืจื—ื™ื ื‘ืขืงื‘ื•ืช ืฉื™ื ื•ื™ื™ ื”ืืงืœื™ื.
10:50
And this is the pivotal information that's needed
266
650742
3222
ื•ื–ื” ื”ืžื™ื“ืข ื”ืจืืฉื•ื ื™ ืฉื ื—ื•ืฅ
10:53
by decision makers to develop protected areas
267
653964
3508
ืœืงื•ื‘ืขื™ ื”ืžื“ื™ื ื™ื•ืช ืขืœ ืžื ืช ืœืคืชื— ืื–ื•ืจื™ื ืžื•ื’ื ื™ื
10:57
in the context of their regional development plans.
268
657472
3419
ื‘ื”ื ืœื ื™ื‘ื•ืฆืข ืคื™ืชื•ื— ื‘ืจืžื” ื”ืžืงื•ืžื™ืช.
11:00
And third and final question is,
269
660891
1897
ื•ื”ืฉืืœื” ื”ืฉืœื™ืฉื™ืช ื•ื”ืื—ืจื•ื ื” ื”ื™ื,
11:02
how do we manage biodiversity on a planet
270
662788
2108
ืื™ืš ืžื ื”ืœื™ื ืืช ื”ืžื’ื•ื•ืŸ ื”ื‘ื™ื•ืœื•ื’ื™ ื‘ืื–ื•ืจ
11:04
of protected ecosystems?
271
664896
1978
ืฉื‘ื• ื™ืฉ ืžืขืจื›ื•ืช ืืงื•ืœื•ื’ื™ืช ืžื•ื’ื ืช?
11:06
The example I started out with about lions hunting,
272
666874
2751
ื ื—ื–ื•ืจ ืœื“ื•ื’ืžื” ื‘ื” ืคืชื—ื ื• ืœื’ื‘ื™ ืžื ื”ื’ื™ ื”ืฆื™ื“ ืฉืœ ื”ืืจื™ื•ืช,
11:09
that was a study we did
273
669625
1855
ื”ื™ื ืžื‘ื•ืกืกืช ืขืœ ืžื—ืงืจ ืฉืขืจื›ื ื•
11:11
behind the fence line of a protected area
274
671480
1992
ื‘ืื–ื•ืจื™ื ืžื•ื’ื ื™ื ื•ืžื’ื•ื“ืจื™ื
11:13
in South Africa.
275
673472
1732
ื‘ื“ืจื•ื ืืคืจื™ืงื”.
11:15
And the truth is, much of Africa's nature
276
675204
1998
ื•ื”ืืžืช ื”ื™ื, ืฉื—ืœืง ื’ื“ื•ืœ ืžื”ื˜ื‘ืข ื‘ืืคืจื™ืงื”
11:17
is going to persist into the future
277
677202
1915
ื™ืฉืชืžืจ ื’ื ื‘ืขืชื™ื“
11:19
in protected areas like I show in blue on the screen.
278
679117
3246
ื‘ืื–ื•ืจื™ื ืžื•ื’ื ื™ื ื›ืžื• ื”ืื–ื•ืจ ื”ื›ื—ื•ืœ ื‘ืชืžื•ื ื”.
11:22
This puts incredible pressure and responsibility
279
682363
2476
ื–ื” ืฉื ืื—ืจื™ื•ืช ื•ืœื—ืฅ ืขืฆื•ืžื™ื
11:24
on park management.
280
684839
1619
ืขืœ ื”ื ื”ืœื•ืช ื”ืคืจืงื™ื ื”ืœืื•ืžื™ื™ื.
11:26
They need to do and make decisions
281
686458
2617
ื”ื ื—ื™ื™ื‘ื™ื ืœื‘ืฆืข ื•ืœื”ื•ืฆื™ื ืœืคื•ืขืœ ื”ื—ืœื˜ื•ืช
11:29
that will benefit all of the species that they're protecting.
282
689075
3291
ืฉื™ื•ืขื™ืœื• ืœื›ืœ ื”ืžื™ื ื™ื ืขืœื™ื”ื ื”ื ืžื’ื ื™ื.
11:32
Some of their decisions have really big impacts.
283
692366
3069
ื•ืœื—ืœืง ืžื”ื”ื—ืœื˜ื•ืช ืฉืœื”ื ื™ืฉ ื”ืฉืคืขื” ืขืฆื•ืžื”.
11:35
For example, how much and where
284
695435
2076
ืœื“ื•ื’ืžื”, ืขื“ ื›ืžื” ื•ืื™ืคื”
11:37
to use fire as a management tool?
285
697511
2640
ืœื”ืฉืชืžืฉ ื‘ืฉืจืคื•ืช ื›ื›ืœื™ ืœื ื™ื”ื•ืœ ื”ืฆืžื—ื™ื™ื”?
11:40
Or, how to deal with a large species like elephants,
286
700151
3225
ืื•, ืื™ืš ืœื ื”ืœ ืืช ื”ืžื™ื ื™ื ื”ื’ื“ื•ืœื™ื, ื›ืžื• ืคื™ืœื™ื,
11:43
which may, if their populations get too large,
287
703376
2453
ืฉืขืฉื•ื™ื™ื, ืื ืžืกืคืจื ื™ื’ื“ืœ ื™ื•ืชืจ ืžื“ื™,
11:45
have a negative impact on the ecosystem
288
705829
2047
ืœื’ืจื•ื ืœื”ืจืก ื”ืกื‘ื™ื‘ื” ื”ื˜ื‘ืขื™ืช ืกื‘ื™ื‘ื
11:47
and on other species.
289
707876
1602
ื•ืœืคื’ื•ืข ื‘ืžื™ื ื™ื ืื—ืจื™ื.
11:49
And let me tell you, these types of dynamics
290
709478
2493
ื•ืชืืžื™ื ื• ืœื™, ืœืฉื™ื ื•ื™ื™ื ื›ืืœื”
11:51
really play out on the landscape.
291
711971
1948
ื™ืฉ ื”ืฉืคืขื” ืขืฆื•ืžื” ื‘ืฉื˜ื—.
11:53
In the foreground is an area with lots of fire
292
713919
2461
ืžืœืคื ื™ื ืจื•ืื™ื ืื–ื•ืจ ืฉื—ื•ื” ื”ืจื‘ื” ืฉืจืคื•ืช
11:56
and lots of elephants:
293
716380
1267
ื•ืขื“ืจื™ ืคื™ืœื™ื:
11:57
wide open savanna in blue, and just a few trees.
294
717647
3676
ืกื•ื•ืื ื” ืคืชื•ื—ื” ืžืกื•ืžื ืช ื‘ื›ื—ื•ืœ, ื•ืžืขื˜ ืžืื“ ืขืฆื™ื.
12:01
As we cross this fence line, now we're getting
295
721323
2181
ื•ืžืขื‘ืจ ืœื’ื“ืจ, ืจื•ืื™ื
12:03
into an area that has had protection from fire
296
723504
2324
ืื–ื•ืจ ืฉื”ื•ื’ืŸ ืžืคื ื™ ืฉืจืคื•ืช
12:05
and zero elephants:
297
725828
1857
ื•ื ื—ืกื ืœืคื™ืœื™ื:
12:07
dense vegetation, a radically different ecosystem.
298
727685
4158
ื”ืฆืžื—ื™ื™ื” ืขื‘ื•ืชื”, ืกื‘ื™ื‘ื” ืฉื•ื ื” ืœื—ืœื•ื˜ื™ืŸ.
12:11
And in a place like Kruger,
299
731843
2390
ื•ื‘ืื–ื•ืจ ื›ืžื• ื”ืคืจืง ื”ืœืื•ืžื™ ืงืจื•ื’ืจ,
12:14
the soaring elephant densities
300
734233
1741
ื”ืขืœื™ื™ื” ื‘ืื•ื›ืœื•ืกื™ื™ืช ื”ืคื™ืœื™ื
12:15
are a real problem.
301
735974
1743
ื”ื™ื ื‘ืขื™ื” ืืžืชื™ืช.
12:17
I know it's a sensitive issue for many of you,
302
737717
2364
ืื ื™ ืžื‘ื™ืŸ ืฉืขื‘ื•ืจ ืจื•ื‘ื›ื ืžื“ื•ื‘ืจ ื‘ื ื•ืฉื ืจื’ื™ืฉ,
12:20
and there are no easy answers with this.
303
740081
2660
ื•ืื™ืŸ ืœื™ ืชืฉื•ื‘ื•ืช ืคืฉื•ื˜ื•ืช.
12:22
But what's good is that the technology we've developed
304
742741
2316
ืื‘ืœ ื”ื‘ืฉื•ืจื” ื˜ืžื•ื ื” ื‘ื˜ื›ื ื•ืœื•ื’ื™ื” ืฉืคื™ืชื—ื ื•
12:25
and we're working with in South Africa, for example,
305
745057
2472
ื•ืื ื—ื ื• ืžืฉืชืคื™ื ืคืขื•ืœื” ืขื ื“ืจื•ื ืืคืจื™ืงื”, ืœื“ื•ื’ืžื”,
12:27
is allowing us to map every single tree in the savanna,
306
747529
3356
ืฉืžืืคืฉืจืช ืœื ื• ืœืžืคื•ืช ื›ืœ ืขืฅ ื‘ืกื•ื•ืื ื”,
12:30
and then through repeat flights
307
750885
1569
ื•ืื– ืœื—ื–ื•ืจ ื•ืœื˜ื•ืก ืžืขืœ ืื•ืชื ืื–ื•ืจื™ื
12:32
we're able to see which trees
308
752454
1746
ื•ืœืจืื•ืช ืื™ืœื• ืขืฆื™ื
12:34
are being pushed over by elephants,
309
754200
2030
ืžื•ืคืœื™ื ืขืœ ื™ื“ื™ ื”ืคื™ืœื™ื,
12:36
in the red as you see on the screen, and how much that's happening
310
756230
3258
ื”ื ืžื•ืฆื’ื™ื ื‘ืื“ื•ื ื‘ืžืกืš, ื•ื›ืžื” ื–ื” ืงื•ืจื”
12:39
in different types of landscapes in the savanna.
311
759488
2537
ื‘ืื–ื•ืจื™ื ืฉื•ื ื™ื ื‘ืกื•ื•ืื ื”.
12:42
That's giving park managers
312
762025
1641
ืื ื—ื ื• ื ื•ืชื ื™ื ืœืžื ื”ืœื™ ื”ืคืจืง
12:43
a very first opportunity to use
313
763666
2363
ื”ื–ื“ืžื ื•ืช ืจืืฉื•ื ื” ืœื”ืฉืชืžืฉ
12:46
tactical management strategies that are more nuanced
314
766029
3342
ื‘ืืกื˜ืจื˜ื’ื™ื™ืช ื ื™ื”ื•ืœ ืžื‘ื•ืกืกื•ืช ื•ืจื’ื™ืฉื•ืช
12:49
and don't lead to those extremes that I just showed you.
315
769371
3822
ืฉืœื ืžื•ื‘ื™ืœื•ืช ืœืžืฆื‘ื™ื ื”ืงื™ืฆื•ื ื™ื™ื ืฉื”ืฆื’ืชื™ ืงื•ื“ื.
12:54
So really, the way we're looking
316
774282
2623
ื‘ืคื•ืขืœ, ื”ื“ืจืš ื‘ื” ืื ื—ื ื• ืžืกืชื›ืœื™ื ืขืœ
12:56
at protected areas nowadays
317
776905
2041
ืฉื˜ื—ื™ื ืžื•ื’ื ื™ื ื›ื™ื•ื
12:58
is to think of it as tending to a circle of life,
318
778946
2888
ืžืชื‘ืกืกืช ืขืœ ืžืขื’ืœ ื”ื—ื™ื™ื,
13:01
where we have fire management,
319
781834
2048
ืื ื—ื ื• ืžื ื”ืœื™ื ืืช ื”ืฉืจืคื•ืช,
13:03
elephant management, those impacts on the structure of the ecosystem,
320
783882
4134
ืืช ื’ื•ื“ืœ ืื•ื›ืœื•ืกื™ื™ืช ื”ืคื™ืœื™ื, ื’ื•ืจืžื™ื ื”ืžืฉืคื™ืขื™ื ืขืœ ื‘ืกื™ืก ื”ืžื‘ื ื” ื”ืืงื•ืœื•ื’ื™,
13:08
and then those impacts
321
788016
1990
ื•ื’ื•ืจืžื™ื ืืœื”
13:10
affecting everything from insects
322
790006
2306
ืžืฉืคื™ืขื™ื ืขืœ ื›ืœ ื”ื™ืฆื•ืจื™ื ืกื‘ื™ื‘ื, ืžื—ืจืงื™ื
13:12
up to apex predators like lions.
323
792312
2800
ื•ืขื“ ืœื˜ื•ืจืคื™ ืขืœ ื›ืžื• ืืจื™ื•ืช.
13:15
Going forward, I plan to greatly expand
324
795112
1765
ื‘ืขืชื™ื“, ืื ื™ ืžืชื›ื•ื•ืŸ ืœื”ืจื—ื™ื‘
13:16
the airborne observatory.
325
796877
1728
ืืช ื”ืชืฆืคื™ื•ืช ืžื”ืื•ื•ื™ืจ.
13:18
I'm hoping to actually put the technology into orbit
326
798605
2167
ืื ื™ ืžืงื•ื•ื” ืœืฉื’ืจ ืœื•ื•ื™ื™ืŸ ืœื—ืœืœ
13:20
so we can manage the entire planet
327
800772
1683
ื›ืš ืฉื ื•ื›ืœ ืœื ื”ืœ ืืช ื›ืœ ืฉื˜ื—ื™ ื›ื“ื•ืจ ื”ืืจืฅ
13:22
with technologies like this.
328
802455
1733
ื‘ืขื–ืจืช ื›ืœื™ื ื˜ื›ื ื•ืœื•ื’ื™ื™ื ื›ืžื• ืฉืชื™ืืจื ื•.
13:24
Until then, you're going to find me flying
329
804188
1849
ื•ืขื“ ืื–, ืื ื™ ืžืชื›ื•ื•ืŸ ืœื˜ื•ืก
13:26
in some remote place that you've never heard of.
330
806037
2503
ืžืขืœ ื›ืžื” ืžื”ืื–ื•ืจื™ื ื”ื ื™ื“ื—ื™ื ื‘ื™ื•ืชืจ ื‘ืขื•ืœื.
13:28
I just want to end by saying that technology is
331
808540
2542
ืืกื™ื™ื ื•ืื’ื™ื“ ืฉื”ื˜ื›ื ื•ืœื•ื’ื™ื”
13:31
absolutely critical to managing our planet,
332
811082
3739
ื”ื™ื ืงืจื™ื˜ื™ืช ืœื ื™ื”ื•ืœ ืžืฉืื‘ื™ ื”ื˜ื‘ืข ื‘ื›ื“ื•ืจ ื”ืืจืฅ,
13:34
but even more important is the understanding
333
814821
2099
ืื‘ืœ ื—ืฉื•ื‘ ืžืื“ ืฉื ื‘ื™ืŸ
13:36
and wisdom to apply it.
334
816920
1732
ืืช ื”ื“ืจืš ื”ื—ื›ืžื” ืœื‘ืฆืข ื–ืืช.
13:38
Thank you.
335
818652
2099
ืชื•ื“ื”.
13:40
(Applause)
336
820751
4077
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)

Original video on YouTube.com
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7