Greg Asner: Ecology from the air

84,693 views ใƒป 2013-11-19

TED


์•„๋ž˜ ์˜๋ฌธ์ž๋ง‰์„ ๋”๋ธ”ํด๋ฆญํ•˜์‹œ๋ฉด ์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค.

๋ฒˆ์—ญ: Jinna Choi ๊ฒ€ํ† : Gemma Lee
00:12
Technology can change our understanding of nature.
0
12502
4191
๊ณผํ•™ ๊ธฐ์ˆ ์€ ์ž์—ฐ์— ๋Œ€ํ•œ ์ดํ•ด๋ฅผ ๋ฐ”๊พธ์–ด ๋†“์Šต๋‹ˆ๋‹ค.
00:16
Take for example the case of lions.
1
16693
3151
์˜ˆ๋กœ ๋“ค์–ด ์‚ฌ์ž์˜ ๊ฒฝ์šฐ๋ฅผ ๋ณผ๊นŒ์š”.
00:19
For centuries, it's been said that female lions
2
19844
2170
์ˆ˜ ์„ธ๊ธฐ ๋™์•ˆ ์‚ฌ๋žŒ๋“ค์€ ์•”์‚ฌ์ž๋“ค์ด
00:22
do all of the hunting out in the open savanna,
3
22014
2729
๋Œ€์ดˆ์›์—์„œ ๋ชจ๋“  ์‚ฌ๋ƒฅ์„ ๋„๋งก์•„ ํ•˜๊ณ 
00:24
and male lions do nothing until it's time for dinner.
4
24743
3981
์ˆซ์‚ฌ์ž๋“ค์€ ์‹์‚ฌ ์‹œ๊ฐ„๊นŒ์ง€ ์•„๋ฌด๊ฒƒ๋„ ํ•˜์ง€ ์•Š๋Š”๋‹ค๊ณ  ๋งํ•ด์™”์ฃ .
00:28
You've heard this too, I can tell.
5
28724
3012
์—ฌ๋Ÿฌ๋ถ„๋„ ๋ถ„๋ช…ํžˆ ์ด๋ ‡๊ฒŒ ๋“ค์—ˆ์„๊ฑฐ์—์š”.
00:31
Well recently, I led an airborne mapping campaign
6
31736
2586
์ตœ๊ทผ์— ์ €๋Š” ๋‚จ์•„๊ณต์— ์žˆ๋Š” ํฌ๋ฃจ๊ฑฐ ๊ตญ๋ฆฝ๊ณต์›์—์„œ
00:34
in the Kruger National Park in South Africa.
7
34322
2672
ํ•ญ๊ณต์ดฌ์˜์ง€๋„ ์ œ์ž‘ ์บ ํŽ˜์ธ์„ ์ด๋Œ์—ˆ์Šต๋‹ˆ๋‹ค.
00:36
Our colleagues put GPS tracking collars
8
36994
2592
์ €ํฌ ๋™๋ฃŒ๋“ค์€ GPS ์ถ”์  ์žฅ์น˜๋ฅผ
00:39
on male and female lions,
9
39586
1597
์•”์‚ฌ์ž์™€ ์ˆซ์‚ฌ์ž ๋ชฉ์— ๋‹ฌ์•„ ๋†“๊ณ 
00:41
and we mapped their hunting behavior
10
41183
1608
์‚ฌ์ž๋“ค์˜ ์‚ฌ๋ƒฅ ํ–‰ํƒœ๋ฅผ
00:42
from the air.
11
42791
1448
๊ณต์ค‘์—์„œ ๊ทธ๋ ค ๋ณด์•˜์–ด์š”.
00:44
The lower left shows a lion sizing up
12
44239
2666
์™ผ์ชฝ ์•„๋ž˜๋Š” ์‚ฌ์ž๊ฐ€ ์‚ฌ๋ƒฅ๊ฐ์œผ๋กœ ์ง€๋ชฉํ•œ
00:46
a herd of impala for a kill,
13
46905
2012
์˜์–‘ ๋ฌด๋ฆฌ๋“ค์„ ์‚ดํ”ผ๋Š”๊ฒŒ ๋ณด์ด๊ณ 
00:48
and the right shows what I call
14
48917
1569
์˜ค๋ฅธ์ชฝ์—๋Š”
00:50
the lion viewshed.
15
50486
1863
์‚ฌ์ž์˜ ์กฐ๋ง ๊ฑฐ๋ฆฌ๋ฅผ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
00:52
That's how far the lion can see in all directions
16
52349
2622
์ฃผ๋ณ€ ์‹๋ฌผ๋“ค๋กœ ์ธํ•ด ์‹œ์•ผ๊ฐ€ ๊ฐ€๋ ค์ง€์ง€ ์•Š๋Š”๋‹ค๋ฉด
00:54
until his or her view is obstructed by vegetation.
17
54971
4175
์‚ฌ์ž๋Š” ๋ชจ๋“  ๋ฐฉํ–ฅ์œผ๋กœ ๋ฉ€๋ฆฌ๊นŒ์ง€ ๋ณผ ์ˆ˜ ์žˆ์–ด์š”.
00:59
And what we found
18
59146
1441
๋˜ํ•œ ์šฐ๋ฆฌ๊ฐ€ ์•Œ์•„๋‚ธ ๊ฒƒ์€
01:00
is that male lions are not the lazy hunters
19
60587
2506
์ˆซ์‚ฌ์ž๋Š” ์ƒ๊ฐํ–ˆ๋˜ ๊ฒƒ์ฒ˜๋Ÿผ
01:03
we thought them to be.
20
63093
1524
๊ฒŒ์œผ๋ฅธ ์‚ฌ๋ƒฅ๊พผ์ด ์•„๋‹ˆ๋ผ๋Š” ๊ฑฐ์ฃ .
01:04
They just use a different strategy.
21
64617
2137
์ˆซ์‚ฌ์ž๋Š” ๊ทธ์ € ๋‹ค๋ฅธ ์ „๋žต์„ ์‚ฌ์šฉํ•  ๋ฟ์ž…๋‹ˆ๋‹ค.
01:06
Whereas the female lions hunt
22
66754
1752
์•”์‚ฌ์ž๊ฐ€
01:08
out in the open savanna
23
68506
1132
๋‚ฎ์—๋Š” ๋ณดํ†ต ๋Œ€์ดˆ์›์œผ๋กœ
01:09
over long distances, usually during the day,
24
69638
2661
๋จผ ๊ฑฐ๋ฆฌ๋กœ ์‚ฌ๋ƒฅ์„ ๋‚˜๊ฐ€๋Š” ๋ฐ˜๋ฉด
01:12
male lions use an ambush strategy
25
72299
3010
์ˆซ์‚ฌ์ž๋Š” ๋ฐค์— ๋ฌด์„ฑํ•œ ์ดˆ๋ชฉ ์‚ฌ์ด์—์„œ
01:15
in dense vegetation, and often at night.
26
75309
3733
์ž ๋ณตํ•˜๋Š” ์ „๋žต์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.
01:19
This video shows the actual hunting viewsheds
27
79042
3006
์ด ๋น„๋””์˜ค๋ฅผ ํ†ตํ•ด
01:22
of male lions on the left
28
82048
1865
์™ผ์ชฝ์—์„œ ์ˆซ์‚ฌ์ž์˜ ์‹ค์งˆ์ ์ธ ์‚ฌ๋ƒฅ ์กฐ๋ง์„ ๋ณผ ์ˆ˜ ์žˆ๊ณ ,
01:23
and females on the right.
29
83913
1989
์˜ค๋ฅธ์ชฝ์—์„œ ์•”์‚ฌ์ž์˜ ์‚ฌ๋ƒฅ ์กฐ๋ง์„ ๋ณด์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
01:25
Red and darker colors show more dense vegetation,
30
85902
2556
๋นจ๊ฐ„์ƒ‰๊ณผ ์–ด๋‘์šด ์ƒ‰์€ ๋”์šฑ ๋ฐ€์ง‘๋œ ์ดˆ๋ชฉ์„ ์˜๋ฏธํ•˜๊ณ 
01:28
and the white are wide open spaces.
31
88458
2115
ํ•˜์–€์ƒ‰์€ ๋„“๊ฒŒ ํŽผ์ณ์ง„ ๊ณต๊ฐ„์„ ํ‘œ์‹œํ•ฉ๋‹ˆ๋‹ค.
01:30
And this is the viewshed right literally at the eye level
32
90573
3100
์ด๊ฒƒ์€ ๋ง ๊ทธ๋Œ€๋กœ ์‚ฌ๋ƒฅํ•˜๋Š” ์•”์‚ฌ์ž์™€ ์ˆซ์‚ฌ์ž์˜
01:33
of hunting male and female lions.
33
93673
2530
๋ˆˆ๋†’์ด์—์„œ ๋ณด๋Š” ์‚ฌ๋ƒฅ ์กฐ๋ง์ž…๋‹ˆ๋‹ค.
01:36
All of a sudden, you get a very clear understanding
34
96203
2329
๋ถˆํ˜„๋“ฏ ์ˆซ์‚ฌ์ž์˜
01:38
of the very spooky conditions under which
35
98532
2853
์‚ฌ๋ƒฅ ํ™˜๊ฒฝ์ด ๋งค์šฐ ์œผ์Šค์Šคํ•˜๋‹ค๋Š”
01:41
male lions do their hunting.
36
101385
2080
์ƒ๊ฐ์„ ๋ฐ”๋กœ ํ•˜๊ฒŒ ๋˜์ฃ .
01:43
I bring up this example to begin,
37
103465
1496
์ด ์‚ฌ์ž ์ด์•ผ๊ธฐ๋กœ ์‹œ์ž‘ํ•œ ์ด์œ ๋Š”
01:44
because it emphasizes how little we know about nature.
38
104961
4468
์šฐ๋ฆฌ๊ฐ€ ์ž์—ฐ์— ๋Œ€ํ•ด ์–ผ๋งˆ๋‚˜ ๋ชจ๋ฅด๋Š”์ง€ ์ ๋‚˜๋ผํ•˜๊ฒŒ ๋ณด์—ฌ์ฃผ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
01:49
There's been a huge amount of work done so far
39
109429
2675
์ง€๊ธˆ๊นŒ์ง€ ์—ด๋Œ€์šฐ๋ฆผ์˜ ์†์‹ค์„ ๋ง‰์œผ๋ ค๋Š”
01:52
to try to slow down our losses of tropical forests,
40
112104
3628
๋งŽ์€ ๋…ธ๋ ฅ์„ ๊ธฐ์šธ์˜€์ง€๋งŒ,
01:55
and we are losing our forests at a rapid rate,
41
115732
1949
์Šฌ๋ผ์ด๋“œ์—์„œ ๋นจ๊ฐ„์ƒ‰์œผ๋กœ ํ‘œ์‹œ๋œ ๋Œ€๋กœ
01:57
as shown in red on the slide.
42
117681
1914
๋น ๋ฅธ ์†๋„๋กœ ์ˆฒ์„ ์žƒ์–ด๊ฐ€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
01:59
I find it ironic that we're doing so much,
43
119595
2340
์ž์—ฐ๊ณผ ๊ด€๊ณ„๋œ ์ •๋ง ๋งŽ์€ ์ผ์„ ํ•˜์ง€๋งŒ
02:01
yet these areas are fairly unknown to science.
44
121935
3633
์ด ์ง€์—ญ๋“ค์ด ์•„์ง ๊ณผํ•™์ ์œผ๋กœ ๊ทœ๋ช…๋˜์ง€ ์•Š์€ ์ ์€ ๋ชจ์ˆœ์ด๋ผ๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
02:05
So how can we save what we don't understand?
45
125568
2657
๊ทธ๋ ‡๋‹ค๋ฉด ๊ทœ๋ช…๋˜์ง€ ์•Š์€ ๊ฒƒ์„ ์–ด๋–ป๊ฒŒ ๋ณด์กดํ•ด์•ผ ํ•˜๋‚˜์š”?
02:08
Now I'm a global ecologist and an Earth explorer
46
128225
2662
์ €๋Š” ์ง€๊ตฌ ์ƒํƒœํ•™์ž์ด์ž ํƒํ—˜๊ฐ€๋กœ์„œ
02:10
with a background in physics and chemistry
47
130887
1691
๋ฌผ๋ฆฌ์™€ ํ™”ํ•™, ์ƒ๋ฌผํ•™
02:12
and biology and a lot of other boring subjects,
48
132578
3204
๊ทธ๋ฆฌ๊ณ  ๋‹ค๋ฅธ ์ง€๋ฃจํ•œ ํ•™๋ฌธ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๊ณ  ์žˆ๋Š”๋ฐ
02:15
but above all, I'm obsessed with what we don't know
49
135782
3002
๊ทธ ์ค‘์—์„œ๋„ ํŠนํžˆ ์ง€๊ตฌ์ƒ์—์„œ ์šฐ๋ฆฌ๊ฐ€ ๋ชจ๋ฅด๋Š” ๋ถ€๋ถ„์„
02:18
about our planet.
50
138784
1712
์ง‘์ค‘ ์—ฐ๊ตฌํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
02:20
So I created this,
51
140496
1674
๊ทธ๋ž˜์„œ ์ €๋Š” ์นด๋„ค๊ธฐ ํ•ญ๊ณต ์ „๋ง๋Œ€,
02:22
the Carnegie Airborne Observatory, or CAO.
52
142170
3277
์ด๋ฆ„ํ•˜์—ฌ CAO๋ผ๋Š” ๊ฒƒ์„ ์ œ์ž‘ํ–ˆ์ฃ .
02:25
It may look like a plane with a fancy paint job,
53
145447
2057
๋ฉ‹์ง€๊ฒŒ ์ƒ‰์น ํ•œ ๋น„ํ–‰๊ธฐ์ฒ˜๋Ÿผ ๋ณด์ผ ์ˆ˜ ์žˆ์ง€๋งŒ
02:27
but I packed it with over 1,000 kilos
54
147504
2760
์ € ์•ˆ์—๋Š” 1,000ํ‚ฌ๋กœ ์ด์ƒ์˜
02:30
of high-tech sensors, computers,
55
150264
2436
์ฒจ๋‹จ ๊ฐ์ง€๊ธฐ, ์ปดํ“จํ„ฐ๋ฅผ ํƒ‘์žฌํ•˜๊ณ  ์žˆ๊ณ 
02:32
and a very motivated staff
56
152700
2211
๋งค์šฐ ์˜์š• ๋„˜์น˜๋Š”
02:34
of Earth scientists and pilots.
57
154911
2469
์ง€๊ตฌ ๊ณผํ•™์ž๋“ค๊ณผ ์กฐ์ข…์‚ฌ๋“ค๋„ ํƒ€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
02:37
Two of our instruments are very unique:
58
157380
1860
๋งค์šฐ ํŠน๋ณ„ํ•œ ๋‘ ๊ฐœ์˜ ์žฅ๋น„๋ฅผ ๋ณด์œ ํ•˜๊ณ  ์žˆ๋Š”๋ฐ
02:39
one is called an imaging spectrometer
59
159240
1754
ํ•˜๋‚˜๋Š” ์ƒ๊ณต์—์„œ ์‹ค์ œ๋กœ
02:40
that can actually measure the chemical composition
60
160994
1862
์‹๋ฌผ์˜ ํ™”ํ•™ ์กฐ์„ฑ์„ ์ธก์ •ํ•  ์ˆ˜ ์žˆ๋Š”
02:42
of plants as we fly over them.
61
162856
2929
์˜์ƒ ๋ถ„๊ด‘๊ณ„๋ผ๋Š” ๊ฒƒ์ด๊ณ ,
02:45
Another one is a set of lasers,
62
165785
1926
๋˜ ๋‹ค๋ฅธ ํ•˜๋‚˜๋Š”
02:47
very high-powered lasers,
63
167711
1731
๊ณ ์„ฑ๋Šฅ ๋ ˆ์ด์ € ์„ธํŠธ์ž…๋‹ˆ๋‹ค.
02:49
that fire out of the bottom of the plane,
64
169442
1960
๋น„ํ–‰๊ธฐ ์•„๋ž˜๋กœ ๋ฐœ์‚ฌํ•ด์„œ
02:51
sweeping across the ecosystem
65
171402
1872
์ „ ์ƒํƒœ๊ณ„๋ฅผ ํœฉ์“ธ๊ณ  ์ง€๋‚˜๊ฐ€๋ฉด
02:53
and measuring it at nearly 500,000 times per second
66
173274
4097
์ดˆ๋‹น ์•ฝ ์˜ค์‹ญ๋งŒ ๋ฒˆ ์ •๋„์˜
02:57
in high-resolution 3D.
67
177371
2478
3D ๊ณ ํ•ด์ƒ๋„ ์ธก์ •์ด ๊ฐ€๋Šฅํ•˜์ง€์š”.
02:59
Here's an image of the Golden Gate Bridge
68
179849
1984
์ด ์‚ฌ์ง„์€ ์šฐ๋ฆฌ๊ฐ€ ์‚ฌ๋Š” ๊ณณ์—์„œ ๋ฉ€์ง€ ์•Š์€
03:01
in San Francisco, not far from where I live.
69
181833
2172
์ƒŒํ”„๋ž€์Šค์‹œ์ฝ”์˜ ๊ธˆ๋ฌธ๊ต์ž…๋‹ˆ๋‹ค.
03:04
Although we flew straight over this bridge,
70
184005
1803
์šฐ๋ฆฌ๊ฐ€ ์ด ๋‹ค๋ฆฌ ์œ„๋กœ ๋ฐ”๋กœ ๋‚ ์•„๊ฐ”์ง€๋งŒ
03:05
we imaged it in 3D, captured its color
71
185808
1656
๋ถˆ๊ณผ ๋ช‡ ์ดˆ๋งŒ์— 3์ฐจ์›์œผ๋กœ
03:07
in just a few seconds.
72
187464
2047
์‚ฌ์ง„์„ ์ฐ์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
03:09
But the real power of the CAO
73
189511
2095
๊ทธ๋Ÿฌ๋‚˜ CAO์˜ ์‹ค์ œ ๊ธฐ๋Šฅ์€
03:11
is its ability to capture the actual building blocks
74
191606
2175
์ƒํƒœ๊ณ„์˜ ์‹ค์งˆ์ ์ธ ๊ธฐ๋ณธ ๊ตฌ์„ฑ ์š”์†Œ๋ฅผ
03:13
of ecosystems.
75
193781
1769
ํฌ์ฐฉํ•˜๋Š” ๋Šฅ๋ ฅ์ž…๋‹ˆ๋‹ค.
03:15
This is a small town in the Amazon,
76
195550
1699
์ด๊ฒƒ์€ CAO๋กœ ํ˜•์ƒํ™”ํ•œ
03:17
imaged with the CAO.
77
197249
1615
์•„๋งˆ์กด์— ์žˆ๋Š” ์ž‘์€ ๋งˆ์„์ž…๋‹ˆ๋‹ค.
03:18
We can slice through our data
78
198864
1739
์šฐ๋ฆฌ๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ„๋ฆฌํ•ด์„œ ๋ณผ ์ˆ˜ ์žˆ๋Š”๋ฐ
03:20
and see, for example, the 3D structure
79
200603
2264
์˜ˆ๋ฅผ ๋“ค๋ฉด, ๊ทธ ์œ„๋ฅผ ๋น„ํ–‰ํ•˜๋ฉด์„œ
03:22
of the vegetation and the buildings,
80
202867
2333
์‹๋ฌผ์ด๋‚˜ ๊ฑด๋ฌผ์˜ ์ž…์ฒด์ ์ธ ๊ตฌ์กฐ๋ฅผ ๋ณผ ์ˆ˜ ์žˆ๊ณ 
03:25
or we can use the chemical information
81
205200
1909
ํ™”ํ•™์  ์ •๋ณด๋ฅผ ์ด์šฉํ•ด์„œ
03:27
to actually figure out how fast the plants are growing
82
207109
2731
์‹๋ฌผ์ด ์‹ค์ œ๋กœ ์–ผ๋งˆ๋‚˜ ๋น ๋ฅด๊ฒŒ ์„ฑ์žฅํ•˜๋Š”์ง€
03:29
as we fly over them.
83
209840
1343
์•Œ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
03:31
The hottest pinks are the fastest-growing plants.
84
211183
3486
๊ฐ€์žฅ ์ง„ํ•œ ๋ถ„ํ™์ƒ‰์ด ๊ฐ€์žฅ ๋น ๋ฅด๊ฒŒ ์„ฑ์žฅํ•˜๋Š” ์‹๋ฌผ์ž…๋‹ˆ๋‹ค.
03:34
And we can see biodiversity in ways
85
214669
1917
์šฐ๋ฆฌ๋Š” ์—ฌ๋Ÿฌ๋ถ„์ด ์ƒ์ƒํ•  ์ˆ˜ ์—†์—ˆ๋˜ ๋ฐฉ๋ฒ•์œผ๋กœ
03:36
that you never could have imagined.
86
216586
2159
์ƒ๋ฌผ ๋‹ค์–‘์„ฑ์„ ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
03:38
This is what a rainforest might look like
87
218745
1551
์ด๊ฒƒ์€ ์—ด๊ธฐ๊ตฌ๋ฅผ ํƒ€๊ณ  ๋‚ ๋ฉด์„œ ๋ณด๋Š”
03:40
as you fly over it in a hot air balloon.
88
220296
2207
์—ด๋Œ€์šฐ๋ฆผ ์‚ฌ์ง„์ž…๋‹ˆ๋‹ค.
03:42
This is how we see a rainforest,
89
222503
2094
์ด๊ฒƒ์€ ์šฐ๋ฆฌ๊ฐ€ ๋ณด๋Š”
03:44
in kaleidoscopic color that tells us
90
224597
2345
๋‹ค์ฑ„๋กœ์šด ์ƒ‰๊น”์˜ ์—ด๋Œ€์šฐ๋ฆผ์œผ๋กœ
03:46
that there are many species living with one another.
91
226942
2942
๋‹ค์–‘ํ•œ ์ข…์ด ๊ฐ™์ด ์„œ์‹ํ•˜๊ณ  ์žˆ๋‹ค๊ณ  ๋งํ•ด์ค๋‹ˆ๋‹ค.
03:49
But you have to remember that these trees
92
229884
1924
ํ•˜์ง€๋งŒ ๊ธฐ์–ตํ•ด์•ผ ํ•  ๊ฒƒ์€ ์ด๋Ÿฐ ๋‚˜๋ฌด๋“ค์€
03:51
are literally bigger than whales,
93
231808
2296
๋ง ๊ทธ๋Œ€๋กœ ๊ณ ๋ž˜๋ณด๋‹ค ๋” ํฌ๊ณ 
03:54
and what that means is that they're impossible to understand
94
234104
2912
๊ทธ๋ž˜์„œ ๋‚˜๋ฌด ์•„๋ž˜์— ์žˆ๋Š” ๋•…์„ ๊ฑท๋Š” ๊ฒƒ๋งŒ์œผ๋กœ๋Š”
03:57
just by walking on the ground below them.
95
237016
2975
๊ทธ ์ „๋ถ€๋ฅผ ์•Œ ์ˆ˜ ์—†๋‹ค๋Š” ๋œป์ž…๋‹ˆ๋‹ค.
03:59
So our imagery is 3D, it's chemical, it's biological,
96
239991
4638
๊ทธ๋ž˜์„œ ํ™”ํ•™์ ์ด๊ณ  ์ƒ๋ฌผํ•™์ ์ธ 3 ์ฐจ์› ์‚ฌ์ง„์€
04:04
and this tells us not only the species
97
244629
1758
์ˆฒ์ด ์šฐ๊ฑฐ์ง„ ์œ—๋ถ€๋ถ„์— ์„œ์‹ํ•˜๋Š”
04:06
that are living in the canopy,
98
246387
1884
์ข…์— ๋Œ€ํ•œ ์ •๋ณด๋ฟ๋งŒ ์•„๋‹ˆ๋ผ
04:08
but it tells us a lot of information
99
248271
1920
์—ด๋Œ€์šฐ๋ฆผ์„ ์ฐจ์ง€ํ•˜๋Š” ๋‚˜๋จธ์ง€ ์ข…์— ๋Œ€ํ•ด์„œ๋„
04:10
about the rest of the species that occupy the rainforest.
100
250191
3576
๋งŽ์€ ์ •๋ณด์„ ์•Œ๋ ค์ค๋‹ˆ๋‹ค.
04:13
Now I created the CAO
101
253767
2131
์ž, ์ œ๊ฐ€ CAO๋ฅผ ๋งŒ๋“  ๊นŒ๋‹ญ์€
04:15
in order to answer questions that have proven
102
255898
2139
์ง€์ƒ์—์„œ๋‚˜ ์œ„์„ฑ ๊ฐ์ง€๊ธฐ๋กœ ๋ด์„œ๋Š”
04:18
extremely challenging to answer from any other vantage point,
103
258037
3352
๋‹ตํ•˜๊ธฐ ์–ด๋ ค์šด ์งˆ๋ฌธ์—
04:21
such as from the ground, or from satellite sensors.
104
261389
2877
๋‹ต์„ ์–ป๊ธฐ ์œ„ํ•ด์„œ์ž…๋‹ˆ๋‹ค.
04:24
I want to share three of those questions with you today.
105
264266
3237
์ €๋Š” ์˜ค๋Š˜ ์„ธ ๊ฐ€์ง€ ์งˆ๋ฌธ์„ ๋“œ๋ฆฌ๊ณ  ์‹ถ์Šต๋‹ˆ๋‹ค.
04:27
The first questions is,
106
267503
1707
์ฒซ๋ฒˆ์งธ ์งˆ๋ฌธ์€
04:29
how do we manage our carbon reserves
107
269210
1729
์—ด๋Œ€์šฐ๋ฆผ ์ง€์—ญ์—์„œ ํƒ„์†Œ์ €์žฅ๋Ÿ‰์„
04:30
in tropical forests?
108
270939
2756
์–ด๋–ป๊ฒŒ ๊ด€๋ฆฌํ•ด์•ผ ํ• ๊นŒ์š”?
04:33
Tropical forests contain a huge amount of carbon in the trees,
109
273695
3559
์—ด๋Œ€์šฐ๋ฆผ์€ ๋‚˜๋ฌด ์•ˆ์— ๋ง‰๋Œ€ํ•œ ํƒ„์†Œ๋ฅผ ๋ณด์กดํ•˜๊ณ  ์žˆ๊ณ ,
04:37
and we need to keep that carbon in those forests
110
277254
2414
๋” ์ด์ƒ์˜ ์ง€๊ตฌ ์˜จ๋‚œํ™”๋ฅผ ๋ง‰๊ธฐ ์œ„ํ•ด์„œ
04:39
if we're going to avoid any further global warming.
111
279668
3414
ํƒ„์†Œ๋ฅผ ์—ด๋Œ€ ์ˆฒ ์•ˆ์— ๊ฐ€๋‘ฌ๋‘˜ ํ•„์š”๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
04:43
Unfortunately, global carbon emissions
112
283082
2226
๋ถˆํ–‰ํžˆ๋„ ์‚ผ๋ฆผ ๋ฒŒ์ฑ„๋กœ ์ธํ•œ
04:45
from deforestation
113
285308
1763
์„ธ๊ณ„์ ์ธ ํƒ„์†Œ ๋ฐฐ์ถœ๋Ÿ‰์€
04:47
now equals the global transportation sector.
114
287071
3175
์ „์„ธ๊ณ„ ์šด์†ก ์‚ฐ์—…๊ณผ ๋งฅ์„ ๊ฐ™์ด ํ•ฉ๋‹ˆ๋‹ค.
04:50
That's all ships, airplanes, trains and automobiles combined.
115
290246
4303
๋ชจ๋“  ๋ฐฐ, ํ•ญ๊ณต๊ธฐ, ๊ธฐ์ฐจ, ์ž๋™์ฐจ๋ฅผ ํ•ฉํ•œ ๊ฑฐ์ฃ .
04:54
So it's understandable that policy negotiators
116
294549
3091
๊ทธ๋ž˜์„œ ์ •์ฑ… ํ˜‘์ƒ์ž๋“ค์ด ์‚ผ๋ฆผ ๋ฒŒ์ฑ„๋ฅผ ์ค„์ด๊ณ ์ž
04:57
have been working hard to reduce deforestation,
117
297640
2488
์—ด์‹ฌํžˆ ๋…ธ๋ ฅํ•˜๋Š”๊ฒŒ ์ดํ•ด ๋˜์ง€๋งŒ
05:00
but they're doing it on landscapes
118
300128
1871
๊ทธ๋“ค์€ ์ž์—ฐ๊ฒฝ๊ด€์„ ์ค‘์‹ฌ์œผ๋กœ ์ผ์„ ํ•˜๊ณ  ์žˆ๋Š”๋ฐ
05:01
that are hardly known to science.
119
301999
2139
๊ณผํ•™์„ ๊ฑฐ์˜ ๋ชจ๋ฅธ์ฑ„๋กœ ์ผํ•ฉ๋‹ˆ๋‹ค.
05:04
If you don't know where the carbon is exactly,
120
304138
2361
๋งŒ์•ฝ ํƒ„์†Œ๊ฐ€ ์ •ํ™•ํžˆ ์–ด๋””์— ์žˆ๋Š”์ง€ ๋ชจ๋ฅธ๋‹ค๋ฉด,
05:06
in detail, how can you know what you're losing?
121
306499
2852
๊ตฌ์ฒด์ ์œผ๋กœ, ๋ฌด์—‡์„ ์žƒ๊ณ  ์žˆ๋Š”์ง€ ์–ด๋–ป๊ฒŒ ์•Œ ์ˆ˜ ์žˆ์„๊นŒ์š”?
05:09
Basically, we need a high-tech accounting system.
122
309351
4057
๊ธฐ๋ณธ์ ์œผ๋กœ ์ฒจ๋‹จ ํšŒ๊ณ„ ์‹œ์Šคํ…œ์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.
05:13
With our system, we're able to see the carbon stocks
123
313408
2316
๊ทธ ์‹œ์Šคํ…œ์œผ๋กœ ์—ด๋Œ€์šฐ๋ฆผ์˜ ํƒ„์†Œ ์ถ•์ ๋Ÿ‰์„
05:15
of tropical forests in utter detail.
124
315724
2798
์•„์ฃผ ์„ธ๋ฐ€ํ•˜๊ฒŒ ์•Œ ์ˆ˜ ์žˆ์œผ๋‹ˆ๊นŒ์š”.
05:18
The red shows, obviously, closed-canopy tropical forest,
125
318522
2855
๋นจ๊ฐ„์ƒ‰์€ ๋ถ„๋ช…ํ•˜๊ฒŒ ์ง€๋ถ• ๋ชจ์–‘์œผ๋กœ ๋ฎํžŒ ๋ฌด์„ฑํ•œ ์ˆฒ์„ ๋‚˜ํƒ€๋‚ด๋ฉฐ
05:21
and then you see the cookie cutting,
126
321377
2018
๊ทธ๋ฆฌ๊ณ  ๋…ธ๋ž€์ƒ‰๊ณผ ๋…น์ƒ‰์€ ์ฟ ํ‚ค๋ฅผ ์ž˜๋ผ ๋‚ธ ๊ฒƒ์ฒ˜๋Ÿผ ๋ณด์ด๋Š”
05:23
or the cutting of the forest in yellows and greens.
127
323395
3907
์—ด๋Œ€์šฐ๋ฆผ์„ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค.
05:27
It's like cutting a cake except this cake
128
327302
2823
๋งˆ์น˜ ์ผ€์ต์„ ์ž˜๋ผ๋‚ธ ๊ฒƒ ๊ฐ™์ฃ .
05:30
is about whale deep.
129
330125
2199
ํ•˜์ง€๋งŒ ์ด ์ผ€์ต์€ ๊ณ ๋ž˜๋งŒํผ์ด๋‚˜ ๋‘๊ป์Šต๋‹ˆ๋‹ค.
05:32
And yet, we can zoom in and see the forest
130
332324
1968
๊ทธ๋Ÿฌ๋ฉด์„œ ๋™์‹œ์— ์šฐ๋ฆฌ๋Š” ์ˆฒ๊ณผ ๋‚˜๋ฌด๋“ค์„
05:34
and the trees at the same time.
131
334292
2013
ํ™•๋Œ€ํ•ด์„œ ์ž์„ธํžˆ ๋ณผ ์ˆ˜ ์žˆ์ฃ .
05:36
And what's amazing is, even though we flew
132
336305
2202
๋†€๋ผ์šด ๊ฒƒ์€ ์šฐ๋ฆฌ๊ฐ€ ์ด ์ˆฒ ์œ„๋ฅผ
05:38
very high above this forest,
133
338507
2277
์ •๋ง ๋†’์ด ๋น„ํ–‰ํ•œ๋‹ค ํ•˜๋”๋ผ๋„
05:40
later on in analysis, we can go in
134
340784
1903
๋‚˜์ค‘์— ๋ถ„์„ํ•  ๋•Œ๋Š”
05:42
and actually experience the treetrops,
135
342687
2220
๊ทธ ๋‚˜๋ฌด๋“ค๊ณผ ํ•จ๊ป˜ ์ด ์ˆฒ์— ์„œ์‹ํ•˜๋Š” ๋‹ค๋ฅธ ์ข…๋ฅ˜์˜ ์ƒ๋ฌผ์ด
05:44
leaf by leaf, branch by branch,
136
344907
2347
๋Š๋ผ๋Š” ๊ฒƒ์ฒ˜๋Ÿผ ์‹ค์ œ๋กœ ๋‚˜๋ฌด ๊ผญ๋Œ€๊ธฐ
05:47
just as the other species that live in this forest
137
347254
3507
๋‚˜๋ญ‡์žŽ ํ•˜๋‚˜ํ•˜๋‚˜์™€ ๋‚˜๋ญ‡๊ฐ€์ง€๋“ค์„
05:50
experience it along with the trees themselves.
138
350761
2817
๋Š๋‚„ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์ด์ฃ .
05:53
We've been using the technology to explore
139
353578
2166
์šฐ๋ฆฌ๋Š” ๊ณผํ•™ ๊ธฐ์ˆ ์„ ์ด์šฉํ•˜๊ณ  ์žˆ๋Š”๋ฐ
05:55
and to actually put out the first carbon geographies
140
355744
2870
์‹ค์ œ๋กœ ์ฒซ ํƒ„์†Œ ์ง€๋„๋ฅผ
05:58
in high resolution
141
358614
1614
๊ณ ํ•ด์ƒ๋„๋กœ ๋งŒ๋“ค๊ธฐ๋„ ํ–ˆ์Šต๋‹ˆ๋‹ค.
06:00
in faraway places like the Amazon Basin
142
360228
2246
์•„๋งˆ์กด ์œ ์—ญ ๊ฐ™์€ ๋จผ ๊ณณ์ด๋‚˜
06:02
and not-so-faraway places like the United States
143
362474
2287
๊ทธ๋ฆฌ ๋ฉ€์ง€ ์•Š์€ ์ค‘์•™ ์•„๋ฉ”๋ฆฌ์นด๋‚˜
06:04
and Central America.
144
364761
1733
๋ฏธ๊ตญ์—์„œ ๋งŒ๋“ค์—ˆ์Šต๋‹ˆ๋‹ค.
06:06
What I'm going to do is I'm going to take you on a high-resolution, first-time tour
145
366494
3500
์—ฌ๋Ÿฌ๋ถ„์—๊ฒŒ ๋ณด์—ฌ๋“œ๋ฆด ์‚ฌ์ง„์€ ๊ณ ํ•ด์ƒ๋„๋กœ ์ฐ์€
06:09
of the carbon landscapes of Peru and then Panama.
146
369994
3929
ํŽ˜๋ฃจ์™€ ํŒŒ๋‚˜๋งˆ์˜ ํƒ„์†Œ ๊ฒฝ๊ด€์ž…๋‹ˆ๋‹ค.
06:13
The colors are going to be going from red to blue.
147
373923
2762
์ƒ‰๊น”์€ ๋นจ๊ฐ•์ƒ‰์—์„œ ํŒŒ๋ž‘์ƒ‰์œผ๋กœ ๋ฐ”๋€” ๊ฒ๋‹ˆ๋‹ค.
06:16
Red is extremely high carbon stocks,
148
376685
1994
๋นจ๊ฐ•์ƒ‰์€ ๊ทนํžˆ ๋†’์€ ํƒ„์†Œ ๋ณด์œ ๋Ÿ‰์„ ์˜๋ฏธํ•˜๋Š”๋ฐ
06:18
your largest cathedral forests you can imagine,
149
378679
2539
์—ฌ๋Ÿฌ๋ถ„์ด ์ƒ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€์žฅ ํฐ ์ˆฒ์ด๊ฒ ์ฃ .
06:21
and blue are very low carbon stocks.
150
381218
2242
๊ทธ๋ฆฌ๊ณ  ํŒŒ๋ž€์ƒ‰์€ ๋งค์šฐ ๋‚ฎ์€ ํƒ„์†Œ ๋ณด์œ ๋Ÿ‰์„ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค
06:23
And let me tell you, Peru alone is an amazing place,
151
383460
2434
ํŽ˜๋ฃจ ๊ทธ ์ž์ฒด๋กœ๋Š”
06:25
totally unknown in terms of its carbon geography
152
385894
2389
ํƒ„์†Œ ์ง€๋„ ๋ถ„์•ผ์—์„œ๋Š” ์ง€๊ธˆ๊นŒ์ง€ ๊ฑฐ์˜ ์•Œ๋ ค์ง€์ง€ ์•Š๋Š”
06:28
until today.
153
388283
1586
ํฅ๋ฏธ๋กœ์šด ์ง€์—ญ์ด๋ผ๋Š” ๊ฒƒ์„ ๋ง์”€๋“œ๋ฆฌ๊ณ  ์‹ถ์Šต๋‹ˆ๋‹ค.
06:29
We can fly to this area in northern Peru
154
389869
1846
ํŽ˜๋ฃจ์˜ ๋ถ๋ถ€ ์ง€์—ญ์„ ๋น„ํ–‰ํ•˜๋ฉฐ
06:31
and see super high carbon stocks in red,
155
391715
2136
๋นจ๊ฐ„์ƒ‰์œผ๋กœ ํ‘œ์‹œ๋œ ๊ฐ€์žฅ ๋†’์€ ํƒ„์†Œ ๋ณด์œ ๋Ÿ‰์„ ๋ณผ ์ˆ˜ ์žˆ๊ณ 
06:33
and the Amazon River and floodplain
156
393851
1489
์•„๋งˆ์กด ๊ฐ•๊ณผ ๋ฐ”๋กœ ๊ทธ๋กœ ์ธํ•ด ๋งŒ๋“ค์–ด์ง„
06:35
cutting right through it.
157
395340
1745
๋ฒ”๋žŒ์›๋„ ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
06:37
We can go to an area of utter devastation
158
397085
1898
ํŒŒ๋ž€์ƒ‰์€ ์‚ผ๋ฆผ๋ฒŒ์ฑ„๋กœ ์ธํ•˜์—ฌ
06:38
caused by deforestation in blue,
159
398983
1835
์™„์ „ํžˆ ํ™ฉํ๋œ ์ง€์—ญ์„ ๋‚˜ํƒ€๋‚ด๊ณ 
06:40
and the virus of deforestation spreading out in orange.
160
400818
3442
์‚ฐ๋ฆผ๋ฒŒ์ฑ„์˜ ๋ฐ”์ด๋Ÿฌ์Šค๊ฐ€ ํ™•์‚ฐ๋œ ์ง€์—ญ์€ ์ฃผํ™ฉ์ƒ‰์œผ๋กœ ํ‘œ์‹œ๋˜์–ด ์žˆ์–ด์š”.
06:44
We can also fly to the southern Andes
161
404260
2684
์šฐ๋ฆฌ๋Š” ๋˜ํ•œ ๋‚จ๋ถ€ ์•ˆ๋ฐ์Šค ์‚ฐ๋งฅ์„ ๋น„ํ–‰ํ•จ์œผ๋กœ์„œ
06:46
to see the tree line and see exactly how
162
406944
1850
ํ˜•์„ฑ๋œ ๋‚˜๋ฌด ์„ ์„ ๋ณด๊ณ  ์ •ํ™•ํžˆ ์–ด๋–ป๊ฒŒ
06:48
the carbon geography ends
163
408794
1916
ํƒ„์†Œ ์ง€๋„๊ฐ€ ๋๋‚˜๋Š”์ง€
06:50
as we go up into the mountain system.
164
410710
2706
๋ป—์–ด์žˆ๋Š” ์—ฌ๋Ÿฌ ์‚ฐ๋งฅ์„ ํ†ตํ•ด ์•Œ ์ˆ˜ ์žˆ์ฃ .
06:53
And we can go to the biggest swamp in the western Amazon.
165
413416
2905
๊ทธ๋ฆฌ๊ณ  ์„œ๋ถ€ ์•„๋งˆ์กด์— ์žˆ๋Š” ๊ฐ€์žฅ ํฐ ๋Šช์œผ๋กœ ๊ฐ‘๋‹ˆ๋‹ค.
06:56
It's a watery dreamworld
166
416321
1373
๊ทธ๊ณณ์€ ์ง ์นด๋ฉ”๋ก ์˜ ์˜ํ™” "์•„๋ฐ”ํƒ€"๋ฅผ ์—ฐ์ƒ์‹œํ‚ค๋Š”
06:57
akin to Jim Cameron's "Avatar."
167
417694
2346
๊ฟˆ์˜ ์Šต์ง€ ์„ธ๊ณ„์ž…๋‹ˆ๋‹ค.
07:00
We can go to one of the smallest tropical countries,
168
420040
3304
์ž‘์€ ์—ด๋Œ€ ๊ตญ๊ฐ€ ์ค‘ ํ•˜๋‚˜์ธ ํŒŒ๋‚˜๋งˆ์—์„œ
07:03
Panama, and see also a huge range
169
423344
2357
๋นจ๊ฐ„์ƒ‰์ธ ๋†’์€ ๋ฒ”์œ„์—์„œ ๋‚ฎ์€ ๋ฒ”์œ„์˜ ํŒŒ๋ž€์ƒ‰์œผ๋กœ ํ‘œ์‹œ๋œ
07:05
of carbon variation,
170
425701
1562
์—„์ฒญ๋‚˜๊ฒŒ ๋‹ค์–‘ํ•œ ํƒ„์†Œ๋Ÿ‰์˜ ๋ณ€ํ™”๋ฅผ
07:07
from high in red to low in blue.
171
427263
2001
ํ™•์ธ ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
07:09
Unfortunately, most of the carbon is lost in the lowlands,
172
429264
2932
๋ถˆํ–‰ํžˆ๋„ ๋Œ€๋ถ€๋ถ„์˜ ํƒ„์†Œ๊ฐ€ ์ €์ง€๋Œ€์—์„œ๋Š” ์‚ฌ๋ผ์กŒ์ง€๋งŒ
07:12
but what you see that's left,
173
432196
1546
์™ผ์ชฝ์—์„œ ๋ณด์‹œ๋‹ค์‹œํ”ผ
07:13
in terms of high carbon stocks in greens and reds,
174
433742
2733
๋…น์ƒ‰๊ณผ ๋นจ๊ฐ„์ƒ‰์œผ๋กœ ํ‘œ์‹œ๋œ ๋†’์€ ํƒ„์†Œ ๋ณด์œ ๋Ÿ‰์€
07:16
is the stuff that's up in the mountains.
175
436475
2114
์‚ฐ ์œ„์ชฝ์— ์žˆ์Šต๋‹ˆ๋‹ค.
07:18
One interesting exception to this
176
438589
2358
์ด์— ๋Œ€ํ•œ ํ•œ๊ฐ€์ง€ ํŠน์ดํ•œ ์‚ฌํ•ญ์€
07:20
is right in the middle of your screen.
177
440947
1616
๋ฐ”๋กœ ํ™”๋ฉด ์ค‘๊ฐ„์ž…๋‹ˆ๋‹ค.
07:22
You're seeing the buffer zone around the Panama Canal.
178
442563
2644
์—ฌ๋Ÿฌ๋ถ„์€ ๋ณด๋Š” ๊ฒƒ์€ ํŒŒ๋‚˜๋งˆ ์šดํ•˜ ์ฃผ๋ณ€์˜ ์™„์ถฉ์ง€๋Œ€์ž…๋‹ˆ๋‹ค.
07:25
That's in the reds and yellows.
179
445207
1913
๋นจ๊ฐ„์ƒ‰๊ณผ ๋…ธ๋ž€์ƒ‰์œผ๋กœ ํ‘œ์‹œ๋˜์–ด ์žˆ๊ตฌ์š”.
07:27
The canal authorities are using force
180
447120
1740
์šดํ•˜ ๋‹น๊ตญ์€ ์œ ์—ญ ๋ฐ ๊ตญ์ œ ๊ต์—ญ์„ ๋ณดํ˜ธํ•˜๊ธฐ ์œ„ํ•ด
07:28
to protect their watershed and global commerce.
181
448860
3115
๊ตฐ์‚ฌ๋ ฅ์„ ์‚ฌ์šฉํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
07:31
This kind of carbon mapping
182
451975
1490
์ด๋Ÿฌํ•œ ํƒ„์†Œ ์ง€๋„ ์ œ์ž‘์€
07:33
has transformed conservation
183
453465
1918
์ž์—ฐ ํ™˜๊ฒฝ ๋ณด์กด๊ณผ ์ž์› ์ •์ฑ… ๊ฐœ๋ฐœ์„
07:35
and resource policy development.
184
455383
1596
๋ฐ”๊พธ์–ด ๋†“์Šต๋‹ˆ๋‹ค.
07:36
It's really advancing our ability to save forests
185
456979
2360
์‚ผ๋ฆผ์„ ๋ณดํ˜ธํ•˜๊ณ  ๊ธฐํ›„ ๋ณ€ํ™”๋ฅผ ๋ง‰๊ธฐ์œ„ํ•œ
07:39
and to curb climate change.
186
459339
2375
์ธ๊ฐ„์˜ ๊ธฐ์ˆ  ๋Šฅ๋ ฅ์€ ์ •๋ง๋กœ ์ง„๋ณดํ•˜๊ณ  ์žˆ์ฃ .
07:41
My second question: How do we prepare for climate change
187
461714
3431
์ €์˜ ๋‘ ๋ฒˆ์งธ ์งˆ๋ฌธ์€ ์•„๋งˆ์กด ์šฐ๋ฆผ ๊ฐ™์€ ๊ณณ์—์„œ๋Š”
07:45
in a place like the Amazon rainforest?
188
465145
2146
๊ธฐํ›„ ๋ณ€ํ™”์— ๋Œ€ํ•ด ์–ด๋–ป๊ฒŒ ์ค€๋น„ํ•ด์•ผ ํ• ๊นŒ์š”?
07:47
Let me tell you, I spend a lot of time
189
467291
1653
์ €๋Š” ๋งŽ์€ ์‹œ๊ฐ„์„ ๊ทธ ๊ณณ์—์„œ ๋ณด๋‚ด๋ฉด์„œ
07:48
in these places, and we're seeing the climate changing already.
190
468944
3225
์ด๋ฏธ ๊ธฐํ›„ ๋ณ€ํ™”๋ฅผ ๋ณด๊ณ  ๊ฒช์—ˆ์ง€์š”.
07:52
Temperatures are increasing,
191
472169
1612
๊ธฐ์˜จ์€ ์ƒ์Šนํ•˜๊ณ 
07:53
and what's really happening is we're getting a lot of droughts,
192
473781
2632
์šฐ๋ฆฌ๋Š” ์ •๋ง ์ž์ฃผ ๋ฐ˜๋ณต๋˜๋Š”
07:56
recurring droughts.
193
476413
1657
๊ฐ€๋ญ„์„ ๊ฒช์—ˆ์Šต๋‹ˆ๋‹ค.
07:58
The 2010 mega-drought is shown here
194
478070
1817
์„œ์œ ๋Ÿฝ ํฌ๊ธฐ ์ •๋„์˜ 2010๋…„์˜ ์—„์ฒญ๋‚œ ๊ฐ€๋ญ„์€
07:59
with red showing an area about the size of Western Europe.
195
479887
3450
์—ฌ๊ธฐ ๋นจ๊ฐ„์ƒ‰์œผ๋กœ ํ‘œ์‹œ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.
08:03
The Amazon was so dry in 2010
196
483337
2262
2010๋…„์— ์•„๋งˆ์กด์€ ์ •๋ง ๋ฉ”๋ง๋ž์–ด์š”.
08:05
that even the main stem of the Amazon river itself
197
485599
2402
์Šฌ๋ผ์ด๋“œ ์•„๋ž˜์ชฝ ์‚ฌ์ง„์—์„œ ๋ณด๋‹ค์‹œํ”ผ
08:08
dried up partially, as you see in the photo
198
488001
2134
์•„๋งˆ์กด ์ฃผ์š” ๊ฐ•์ค„๊ธฐ์กฐ์ฐจ ๋ถ€๋ถ„์ ์œผ๋กœ
08:10
in the lower portion of the slide.
199
490150
3406
๋ฉ”๋งˆ๋ฅธ ๋ชจ์Šต์„ ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
08:13
What we found is that in very remote areas,
200
493556
3170
์šฐ๋ฆฌ๋Š” ์ด๋Ÿฌํ•œ ๊ฐ€๋ญ„์ด ์™ธ๋”ด ์ง€์—ญ์—์„œ๋Š”
08:16
these droughts are having a big negative impact
201
496726
2746
์—ด๋Œ€์šฐ๋ฆผ์— ์ƒ๋‹นํžˆ ๋ถ€์ •์ ์ธ ์˜ํ–ฅ์„ ๋ผ์นœ๋‹ค๋Š”
08:19
on tropical forests.
202
499472
1588
์‚ฌ์‹ค์„ ์•Œ์•„ ๋ƒˆ์Šต๋‹ˆ๋‹ค.
08:21
For example, these are all of the dead trees in red
203
501060
2720
์˜ˆ๋ฅผ ๋“ค๋ฉด, ๋นจ๊ฐ„์ƒ‰์œผ๋กœ ํ‘œ์‹œ๋œ ๊ฒƒ์€
08:23
that suffered mortality following the 2010 drought.
204
503780
3061
2010๋…„ ๊ฐ€๋ญ„์œผ๋กœ ์ฃฝ์€ ๋‚˜๋ฌด๋“ค์ž…๋‹ˆ๋‹ค.
08:26
This area happens to be on the border
205
506841
1877
์ด๊ณณ์€ ํŽ˜๋ฃจ์™€ ๋ธŒ๋ผ์งˆ์˜
08:28
of Peru and Brazil,
206
508718
1399
๊ตญ๊ฒฝ์— ์ ‘ํ•ด ์žˆ๋Š”๋ฐ
08:30
totally unexplored,
207
510117
1536
์™„์ „ ๋ฏธ๊ฐœ์ฒ™ ์ง€์—ญ์ด๊ณ 
08:31
almost totally unknown scientifically.
208
511653
2803
๊ณผํ•™์ ์œผ๋กœ ๊ฑฐ์˜ ์•Œ ์ˆ˜ ์—†๋Š” ๊ณณ์ด์ฃ .
08:34
So what we think, as Earth scientists,
209
514456
2466
๊ทธ๋ž˜์„œ ์ง€๊ตฌ๊ณผํ•™์ž๋กœ์„œ ์˜ˆ์ธกํ•˜๋Š” ๊ฒƒ์€
08:36
is species are going to have to migrate
210
516922
1959
๊ธฐํ›„ ๋ณ€ํ™”๋กœ ์ธํ•ด
08:38
with climate change from the east in Brazil
211
518881
2792
์ƒ๋ฌผ์ข…๋“ค์€ ๋ธŒ๋ผ์งˆ ๋™์ชฝ์—์„œ
08:41
all the way west into the Andes
212
521673
2064
์„œ๋ถ€ ์•ˆ๋ฐ์Šค ์‚ฐ๋งฅ๊ณผ ์‚ฐ ์œ„์ชฝ์œผ๋กœ
08:43
and up into the mountains
213
523737
1473
์ด์ฃผํ•  ๊ฑฐ๋ผ๋Š” ๊ฑฐ์ฃ .
08:45
in order to minimize their exposure to climate change.
214
525210
3536
๊ธฐํ›„ ๋ณ€ํ™”๋กœ๋ถ€ํ„ฐ ์ž์‹ ์„ ๋ณดํ˜ธํ•˜๊ธฐ ์œ„ํ•ด์„œ์ฃ .
08:48
One of the problems with this is that humans
215
528746
2008
์ด๊ฒƒ๊ณผ ์—ฐ๊ด€๋œ ๋ฌธ์ œ ์ค‘ ํ•˜๋‚˜๋Š”
08:50
are taking apart the western Amazon as we speak.
216
530754
3025
์ธ๋ฅ˜๊ฐ€ ์„œ๋ถ€ ์•„๋งˆ์กด ์ง€์—ญ์„ ํŒŒํ—ค์น˜๊ณ  ์žˆ๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค.
08:53
Look at this 100-square-kilometer gash
217
533779
2109
๊ธˆ ๊ด‘์‚ฐ์—…์ž๋“ค์ด ์‚ฐ๋ฆผ ์†์— ๋งŒ๋“ค์–ด ๋†“์€
08:55
in the forest created by gold miners.
218
535888
2902
100 ํ‰๋ฐฉํ‚ฌ๋กœ๋ฏธํ„ฐ ํฌ๊ธฐ์˜ ์ž”ํ•ด๋ฌผ์„ ๋ณด์„ธ์š”.
08:58
You see the forest in green in 3D,
219
538790
2278
3D ๋…น์ƒ‰์œผ๋กœ ํ‘œ์‹œ๋œ ์ˆฒ์„ ๋ณด๋ฉด
09:01
and you see the effects of gold mining
220
541068
1834
ํ† ์–‘ ์•„๋ž˜์ชฝ์— ๋‚˜ํƒ€๋‚˜๋Š”
09:02
down below the soil surface.
221
542902
2539
๊ธˆ ๊ด‘์‚ฐ์˜ ์˜ํ–ฅ์„ ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
09:05
Species have nowhere to migrate in a system like this, obviously.
222
545441
4459
์ด๋Ÿฌํ•œ ํ™˜๊ฒฝ ์†์—์„œ๋Š” ์ƒ๋ฌผ๋“ค์ด ์ด์ฃผํ•  ์žฅ์†Œ๊ฐ€ ์—†๋Š” ๊ฒƒ์€ ๋‹น์—ฐํ•ฉ๋‹ˆ๋‹ค.
09:09
If you haven't been to the Amazon, you should go.
223
549900
2652
์•„๋งˆ์กด์— ๊ฐ€ ๋ณธ ์ ์ด ์—†๋‹ค๋ฉด ๊ผญ ๊ฐ€๋ณด์„ธ์š”.
09:12
It's an amazing experience every time,
224
552552
2038
์•„๋งˆ์กด ์–ด๋Š ์ง€์—ญ์„ ๊ฐ€๋”๋ผ๋„
09:14
no matter where you go.
225
554590
1543
๋งค์ˆœ๊ฐ„ ๊ฒฝ์ด๋กœ์šด ๊ฒฝํ—˜์„ ํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
09:16
You're going to probably see it this way, on a river.
226
556133
3396
์—ฌ๋Ÿฌ๋ถ„์€ ์•„๋งˆ๋„ ๊ฐ• ์œ„์—์„œ ์ด๋ ‡๊ฒŒ ๋ณด๊ฒ ์ฃ .
09:19
But what happens is a lot of times
227
559529
1764
ํ•˜์ง€๋งŒ ์‚ฐ๋ฆผ ์•ˆ์—์„œ
09:21
the rivers hide what's really going on
228
561293
1852
๋ฐœ์ƒํ•˜๋Š” ๋งŽ์€ ๊ฒƒ๋“ค์„
09:23
back in the forest itself.
229
563145
2765
๊ฐ•์ด ๊ฐ์ถฐ๋ฒ„๋ฆฝ๋‹ˆ๋‹ค.
09:25
We flew over this same river,
230
565910
1714
์šฐ๋ฆฌ๋Š” ๋˜‘๊ฐ™์€ ์ด ๊ฐ•์œ„๋ฅผ ๋‚ ์•„์„œ
09:27
imaged the system in 3D.
231
567624
1840
์ƒํƒœ๊ณ„๋ฅผ 3์ฐจ์›์œผ๋กœ ์ฐ์—ˆ์Šต๋‹ˆ๋‹ค.
09:29
The forest is on the left.
232
569464
1816
์—ด๋Œ€์šฐ๋ฆผ์€ ์™ผ์ชฝ์ž…๋‹ˆ๋‹ค.
09:31
And then we can digitally remove the forest
233
571280
1986
์‚ฌ์ง„ ์ƒ์—์„œ ์ˆฒ์„ ์ œ๊ฑฐํ•˜๋ฉด,
09:33
and see what's going on below the canopy.
234
573266
2459
์ˆ˜ํ’€ ๋”๋ฏธ ๋ฐ‘์—์„œ ์ผ์–ด๋‚˜๋Š” ์ผ์„ ๋ณผ ์ˆ˜ ์žˆ์ฃ .
09:35
And in this case, we found gold mining activity,
235
575725
2450
๊ทธ๋ฆฌ๊ณ  ์šฐ๋ฆฌ๋Š” ๋ถˆ๋ฒ•์ ์ธ
09:38
all of it illegal,
236
578175
1237
๊ธˆ๊ด‘ ์ฑ„๊ตด์„ ๋ฐœ๊ฒฌํ–ˆ๊ณ ,
09:39
set back away from the river's edge,
237
579412
2196
๊ฐ•๊ฐ€์—์„œ ๋–จ์–ด์ ธ์„œ
09:41
as you'll see in those strange pockmarks
238
581608
1904
์˜ค๋ฅธ์ชฝ ํ™”๋ฉด์— ๋‚˜ํƒ€๋‚˜๋Š”
09:43
coming up on your screen on the right.
239
583512
2027
์ด์ƒํ•œ ๊ณฐ๋ณด์ž๊ตญ์„ ๋ชฉ๊ฒฉํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
09:45
Don't worry, we're working with the authorities
240
585539
2329
๊ฑฑ์ • ๋งˆ์„ธ์š”. ์ด ๋ฌธ์ œ์™€ ๋”๋ถˆ์–ด
09:47
to deal with this and many, many other problems
241
587868
2451
์ง€์—ญ์ ์ธ ์—ฌ๋Ÿฌ ๋งŽ์€ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด
09:50
in the region.
242
590319
2610
์šฐ๋ฆฌ๋Š” ๋‹น๊ตญ๊ณผ ๊ฐ™์ด ์ผํ•˜๊ณ  ์žˆ์ฃ .
09:52
So in order to put together a conservation plan
243
592929
3055
์„œ๋ถ€ ์•„๋งˆ์กด๊ณผ ์•ˆ๋ฐ์Šค ์ง€์—ญ ์•„๋งˆ์กด๊ณผ ๊ฐ™์€
09:55
for these unique, important corridors
244
595984
1740
ํŠน์ดํ•˜๊ณ  ์ค‘์š”ํ•œ ๊ฑฐ์ ์„ ์œ„ํ•œ
09:57
like the western Amazon and the Andes Amazon corridor,
245
597724
2987
์ž์—ฐ ๋ณด์กด ๊ณ„ํš์„ ์„ค๋ฆฝํ•˜๊ธฐ ์œ„ํ•ด๋Š”
10:00
we have to start making
246
600711
2164
์ง€๋ฆฌํ•™์ ์œผ๋กœ ํ™•์‹คํ•œ ๊ณ„ํš์„ ๊ฐ€์ง€๊ณ 
10:02
geographically explicit plans now.
247
602875
2406
์‹œ์ž‘ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
10:05
How do we do that if we don't know the geography of biodiversity in the region,
248
605283
3975
๋งŒ์•ฝ ๊ทธ ์ง€์—ญ์—์„œ ์ƒ๋ฌผ์˜ ๋‹ค์–‘์„ฑ์„ ์ง€๋ฆฌํ•™์ ์œผ๋กœ ์•Œ์ง€ ๋ชปํ•˜๊ณ 
10:09
if it's so unknown to science?
249
609258
1695
๋˜ํ•œ ๊ณผํ•™์ ์œผ๋กœ ์•Œ์ง€ ๋ชปํ•œ๋‹ค๋ฉด ์–ด๋–ป๊ฒŒ ํ•  ์ˆ˜ ์žˆ์„๊นŒ์š”?
10:10
So what we've been doing is using
250
610953
1864
๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ๊ฐ€ ํ•ด ์˜จ ๊ฒƒ์€
10:12
the laser-guided spectroscopy from the CAO
251
612817
2973
CAO์˜ ๋ ˆ์ด์ € ์œ ๋„ ๋ถ„๊ด‘ํ•™์„ ์‚ฌ์šฉํ•ด์„œ
10:15
to map for the first time the biodiversity
252
615790
2224
์•„๋งˆ์กด ์šฐ๋ฆผ์˜
10:18
of the Amazon rainforest.
253
618014
1579
์ƒ๋ฌผ ๋‹ค์–‘์„ฑ ์ง€๋„๋ฅผ ์ตœ์ดˆ๋กœ ๋งŒ๋“œ๋Š” ์ผ์ž…๋‹ˆ๋‹ค.
10:19
Here you see actual data showing different species in different colors.
254
619593
3537
์—ฌ๋Ÿฌ๋ถ„์ด ์—ฌ๊ธฐ์„œ ๋ณด์‹œ๋Š” ๋ฐ์ดํ„ฐ๋Š” ๋‹ค๋ฅธ ์ƒ‰์ƒ์œผ๋กœ ์„œ๋กœ ๋‹ค๋ฅธ ์ข…์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค.
10:23
Reds are one type of species, blues are another,
255
623130
2140
๋นจ๊ฐ„์ƒ‰์€ ํ•˜๋‚˜์˜ ์ข…์ด๊ณ  ํŒŒ๋ž€์ƒ‰์€ ๋‹ค๋ฅธ ์ข…์ด๋ฉฐ
10:25
and greens are yet another.
256
625270
2345
๊ทธ๋ฆฌ๊ณ  ๋…น์ƒ‰์€ ๋˜ ๋‹ค๋ฅธ ์ข…์ž…๋‹ˆ๋‹ค.
10:27
And when we take this together and scale up
257
627615
2163
์šฐ๋ฆฌ๊ฐ€ ์ด๊ฒƒ์„ ์ง€์—ญ์ ์ธ ์ฐจ์›์œผ๋กœ
10:29
to the regional level,
258
629778
1884
ํ•จ๊ป˜ ํ™•๋Œ€ ์‹œํ‚ค๋ฉด
10:31
we get a completely new geography
259
631662
2569
์ „์—๋Š” ์•Œ๋ ค์ง€์ง€ ์•Š์€ ์ƒ๋ฌผ์˜ ๋‹ค์–‘์„ฑ ์ธก๋ฉด์—์„œ
10:34
of biodiversity unknown prior to this work.
260
634231
4388
์™„์ „ํžˆ ์ƒˆ๋กœ์šด ์ง€๋„๋ฅผ ๊ฐ–๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
10:38
This tells us where the big biodiversity changes
261
638619
2148
์ด ์˜๋ฏธ๋Š” ์–ด๋””์„œ ์ƒ๋ฌผ์˜ ๋‹ค์–‘์„ฑ ๋ณ€ํ™”๊ฐ€ ํฌ๊ฒŒ ์ผ์–ด๋‚˜๋Š”์ง€๋ฅผ
10:40
occur from habitat to habitat,
262
640767
2014
์„œ์‹์ง€๋ณ„๋กœ ๋ณด์—ฌ์ฃผ๊ณ ,
10:42
and that's really important because it tells us
263
642781
2183
์ด๊ฒƒ์€ ๊ธฐํ›„ ๋ณ€ํ™”๊ฐ€ ์ผ์–ด๋‚จ์— ๋”ฐ๋ผ
10:44
a lot about where species may migrate to
264
644964
2895
์ข…๋“ค์ด ์–ด๋””์—์„œ ์–ด๋””๋กœ ์ด๋™ํ•˜๋Š”์ง€
10:47
and migrate from as the climate shifts.
265
647859
2883
์•Œ๋ ค์ค„ ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์•„์ฃผ ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค.
10:50
And this is the pivotal information that's needed
266
650742
3222
๊ทธ๋ฆฌ๊ณ  ์ด๊ฒƒ์€ ๊ฒฐ์ •๊ถŒ์ž๊ฐ€ ๋ณดํ˜ธ๋œ ์ง€์—ญ์„ ๊ฐœ๋ฐœํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š”
10:53
by decision makers to develop protected areas
267
653964
3508
์ง€์—ญ์ ์ธ ๊ฐœ๋ฐœ ๊ณ„ํš ์„ ์ƒ์—์„œ
10:57
in the context of their regional development plans.
268
657472
3419
์ ˆ๋Œ€์ ์œผ๋กœ ํ•„์š”ํ•œ ์ค‘์‹ฌ์  ์ •๋ณด์ž…๋‹ˆ๋‹ค.
11:00
And third and final question is,
269
660891
1897
๊ทธ๋ฆฌ๊ณ  ๋งˆ์ง€๋ง‰์œผ๋กœ ์„ธ๋ฒˆ์งธ ์งˆ๋ฌธ์€
11:02
how do we manage biodiversity on a planet
270
662788
2108
์šฐ๋ฆฌ๋Š” ๋ณดํ˜ธ๋œ ์ƒํƒœ๊ณ„ ์•ˆ์—์„œ
11:04
of protected ecosystems?
271
664896
1978
์ง€๊ตฌ ์ƒ์˜ ์ƒ๋ฌผ ๋‹ค์–‘์„ฑ์„ ์–ด๋–ป๊ฒŒ ๊ด€๋ฆฌํ•ด์•ผ ํ• ๊นŒ์š”?
11:06
The example I started out with about lions hunting,
272
666874
2751
์ฒ˜์Œ ์‹œ์ž‘ํ•  ๋•Œ ํ–ˆ๋˜ ์‚ฌ์ž๋“ค์˜ ์‚ฌ๋ƒฅ ํ–‰ํƒœ ์˜ˆ์ œ๋Š”
11:09
that was a study we did
273
669625
1855
๋‚จ์•„ํ”„๋ฆฌ์นด ๊ณตํ™”๊ตญ์˜
11:11
behind the fence line of a protected area
274
671480
1992
๋ณดํ˜ธ๊ตฌ์—ญ ์šธํƒ€๋ฆฌ ๋’ค์—์„œ
11:13
in South Africa.
275
673472
1732
์—ฐ๊ตฌํ–ˆ๋˜ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
11:15
And the truth is, much of Africa's nature
276
675204
1998
๋˜ํ•œ ์‚ฌ์‹ค, ๋งŽ์€ ์•„ํ”„๋ฆฌ์นด์˜ ์ž์—ฐ์€
11:17
is going to persist into the future
277
677202
1915
ํ™”๋ฉด ์ƒ์—์„œ ํŒŒ๋ž€์ƒ‰์œผ๋กœ ํ‘œ์‹œ๋œ ๋ณดํ˜ธ ๊ตฌ์—ญ ์•ˆ์—์„œ
11:19
in protected areas like I show in blue on the screen.
278
679117
3246
๋ฏธ๋ž˜๋ฅผ ์œ„ํ•ด ์œ ์ง€๋˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
11:22
This puts incredible pressure and responsibility
279
682363
2476
์ด๊ฒƒ์€ ๊ณต์› ๊ด€๋ฆฌ ์šด์˜์— ์žˆ์–ด
11:24
on park management.
280
684839
1619
์—„์ฒญ๋‚œ ์••๋ ฅ๊ณผ ์ฑ…์ž„์ด ๋’ค๋”ฐ๋ฆ…๋‹ˆ๋‹ค.
11:26
They need to do and make decisions
281
686458
2617
๊ทธ๋“ค์ด ๋ณดํ˜ธํ•˜๋Š” ๋ชจ๋“  ์ข…์—๊ฒŒ
11:29
that will benefit all of the species that they're protecting.
282
689075
3291
์ด๋“์ด ๋˜๋„๋ก ์˜์‚ฌ๊ฒฐ์ •์„ ํ•  ํ•„์š”๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
11:32
Some of their decisions have really big impacts.
283
692366
3069
์–ด๋–ค ๊ฒฐ์ •์€ ์ •๋ง๋กœ ํฐ ์˜ํ–ฅ์„ ๋ผ์นฉ๋‹ˆ๋‹ค.
11:35
For example, how much and where
284
695435
2076
์˜ˆ๋ฅผ ๋“ค๋ฉด, ๊ด€๋ฆฌ ๋„๊ตฌ๋กœ์จ ๋ถˆ์„ ์ด์šฉํ•  ๋•Œ๋Š”
11:37
to use fire as a management tool?
285
697511
2640
์–ผ๋งˆ๋‚˜ ๋งŽ์ด, ์–ด๋””์— ๋ถˆ์„ ์จ์•ผ ํ• ๊นŒ์š”?
11:40
Or, how to deal with a large species like elephants,
286
700151
3225
๋˜๋Š” ์ฝ”๋ผ๋ฆฌ ๊ฐ™์€ ํฐ ์ข…์€ ์–ด๋–ป๊ฒŒ ๋‹ค๋ฃจ์–ด์•ผ ํ•˜๋Š”์ง€
11:43
which may, if their populations get too large,
287
703376
2453
๋งŒ์•ฝ ๊ทธ ๊ฐœ์ฒด ์ง‘๋‹จ์ด ๋„ˆ๋ฌด ์ปค์ ธ ์ƒํƒœ๊ณ„์™€
11:45
have a negative impact on the ecosystem
288
705829
2047
๋‹ค๋ฅธ ์ƒ๋ฌผ์˜ ์ข…์— ๋ถ€์ •์ ์ธ ์˜ํ–ฅ์ด ์žˆ๋Š” ๊ฒฝ์šฐ์—
11:47
and on other species.
289
707876
1602
๋‚ด๋ ค์ง€๋Š” ๊ฒฐ์ •์€ ์ข…์—๊ฒŒ ํฐ ์˜ํ–ฅ์„ ๋ผ์นฉ๋‹ˆ๋‹ค.
11:49
And let me tell you, these types of dynamics
290
709478
2493
๋ง์”€๋“œ๋ฆฌ์ž๋ฉด, ์ด๋Ÿฐ ์ข…๋ฅ˜์˜ ์—ญ๋™์„ฑ์€
11:51
really play out on the landscape.
291
711971
1948
๊ฒฝ๊ด€์— ์ •๋ง๋กœ ์˜ํ–ฅ์„ ๋ฏธ์นฉ๋‹ˆ๋‹ค.
11:53
In the foreground is an area with lots of fire
292
713919
2461
์•ž์— ๋ณด์ด๋Š” ๊ฒƒ์€ ๋ถˆ์ด ๋งŽ์ด ๋‚˜๊ณ 
11:56
and lots of elephants:
293
716380
1267
์ฝ”๋ผ๋ฆฌ๊ฐ€ ๋งŽ์€ ์ง€์—ญ์ž…๋‹ˆ๋‹ค.
11:57
wide open savanna in blue, and just a few trees.
294
717647
3676
ํŒŒ๋ž€์ƒ‰์œผ๋กœ ํ‘œ์‹œ๋œ ๋“œ๋„“์€ ์—ด๋Œ€ ์ดˆ์›๊ณผ ๋ช‡๋ช‡ ๋‚˜๋ฌด๋“ค.
12:01
As we cross this fence line, now we're getting
295
721323
2181
์ด ์šธํƒ€๋ฆฌ ์„ ์„ ๋„˜์œผ๋ฉด,
12:03
into an area that has had protection from fire
296
723504
2324
์šฐ๋ฆฌ๋Š” ํ™”์žฌ๋กœ๋ถ€ํ„ฐ ๋ณดํ˜ธ๋˜๊ณ  ์ฝ”๋ผ๋ฆฌ๊ฐ€ ์—†๋Š”
12:05
and zero elephants:
297
725828
1857
๋ณดํ˜ธ ๊ตฌ์—ญ์œผ๋กœ ๋“ค์–ด ๊ฐ€๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
12:07
dense vegetation, a radically different ecosystem.
298
727685
4158
๋ฌด์„ฑํ•œ ์ดˆ์›, ๊ทผ๋ณธ์ ์œผ๋กœ ๋‹ค๋ฅธ ์ƒํƒœ๊ณ„์ด์ฃ .
12:11
And in a place like Kruger,
299
731843
2390
๊ทธ๋ฆฌ๊ณ  ํฌ๋ฃจ๊ฑฐ๊ฐ™์€ ์ง€์—ญ์—์„œ
12:14
the soaring elephant densities
300
734233
1741
์ฝ”๋ผ๋ฆฌ ๋ฐ€๋„๊ฐ€ ๋†’์•„์ง€๋Š” ๊ฒƒ์€
12:15
are a real problem.
301
735974
1743
ํฐ ๋ฌธ์ œ์ž…๋‹ˆ๋‹ค.
12:17
I know it's a sensitive issue for many of you,
302
737717
2364
๋งŽ์€ ์‚ฌ๋žŒ๋“ค๋“ค์ด ์ด๊ฑด ๋ฏผ๊ฐํ•œ ๋ฌธ์ œ๋ผ๊ณ  ์ƒ๊ฐํ•˜์ง€๋งŒ,
12:20
and there are no easy answers with this.
303
740081
2660
๊ฐ„๋‹จํ•œ ํ•ด๊ฒฐ์ฑ…์€ ์—†์Šต๋‹ˆ๋‹ค.
12:22
But what's good is that the technology we've developed
304
742741
2316
๊ธ์ •์ ์ธ ์ ์€ ์šฐ๋ฆฌ๊ฐ€ ๋ฐœ์ „์‹œํ‚จ ๊ณผํ•™๊ธฐ์ˆ ์ž…๋‹ˆ๋‹ค.
12:25
and we're working with in South Africa, for example,
305
745057
2472
์˜ˆ๋ฅผ ๋“ค๋ฉด, ๋‚จ์•„ํ”„๋ฆฌ์นด ๊ณตํ™”๊ตญ์—์„œ๋Š”
12:27
is allowing us to map every single tree in the savanna,
306
747529
3356
์—ด๋Œ€ ์ดˆ์›์— ์žˆ๋Š” ๋‚˜๋ฌด ํ•˜๋‚˜ํ•˜๋‚˜๋ฅผ ์ง€๋„ํ™” ํ•  ์ˆ˜ ์žˆ๊ณ 
12:30
and then through repeat flights
307
750885
1569
๋ฐ˜๋ณต์ ์ธ ๋น„ํ–‰์„ ํ†ตํ•ด
12:32
we're able to see which trees
308
752454
1746
์ฝ”๋ผ๋ฆฌ๊ฐ€ ์–ด๋Š ๋‚˜๋ฌด๋ฅผ ๋ฐ€์–ด ๋„˜์–ด๋œจ๋ฆฌ๋Š”์ง€
12:34
are being pushed over by elephants,
309
754200
2030
์•Œ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
12:36
in the red as you see on the screen, and how much that's happening
310
756230
3258
ํ™”๋ฉด์— ํ‘œ์‹œ๋œ ๋นจ๊ฐ„์ƒ‰์—์„œ ์—ด๋Œ€ ์ดˆ์›์˜ ์„œ๋กœ ๋‹ค๋ฅธ ์ง€์—ญ์—์„œ
12:39
in different types of landscapes in the savanna.
311
759488
2537
์–ผ๋งˆ๋‚˜ ์ž์ฃผ ๊ทธ ์ผ์ด ๋ฐœ์ƒํ•˜๋Š”์ง€ ์•Œ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
12:42
That's giving park managers
312
762025
1641
๊ณต์› ๊ด€๋ฆฌ์ž๋Š” ์น˜๋ฐ€ํ•œ ๊ด€๋ฆฌ ์ „๋žต์„ ์‚ฌ์šฉํ• 
12:43
a very first opportunity to use
313
763666
2363
์ฒซ ๊ธฐํšŒ๋ฅผ ๊ฐ–๊ฒŒ ๋˜๊ณ ,
12:46
tactical management strategies that are more nuanced
314
766029
3342
์ „์ˆ ์ ์ธ ๊ด€๋ฆฌ ์ „๋žต์€ ์ข€ ๋” ๋ฏธ๋ฌ˜ํ•œ ์ฐจ์ด๊ฐ€ ์žˆ์ง€๋งŒ
12:49
and don't lead to those extremes that I just showed you.
315
769371
3822
์—ฌ๋Ÿฌ๋ถ„์ด ๋ณด์…จ๋˜ ๊ทน๋‹จ์œผ๋กœ ์ด์–ด์ง€์ง€๋Š” ์•Š์Šต๋‹ˆ๋‹ค.
12:54
So really, the way we're looking
316
774282
2623
๋”ฐ๋ผ์„œ ์š”์ฆˆ์Œ ์‹ค์ œ๋กœ
12:56
at protected areas nowadays
317
776905
2041
๋ณดํ˜ธ๊ตฌ์—ญ์„ ๋ฐ”๋ผ๋ณด๋Š” ๋ฐฉ๋ฒ•์€
12:58
is to think of it as tending to a circle of life,
318
778946
2888
๊ทธ๊ฒƒ์„ ์ƒ๋ช… ์ˆœํ™˜์˜ ๊ฒฝํ–ฅ์œผ๋กœ ์—ฌ๊ธฐ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
13:01
where we have fire management,
319
781834
2048
๋ถˆ์„ ๊ด€๋ฆฌํ•˜๋Š” ๊ณณ๊ณผ
13:03
elephant management, those impacts on the structure of the ecosystem,
320
783882
4134
์ฝ”๋ผ๋ฆฌ๋ฅผ ๊ด€๋ฆฌํ•˜๋Š” ๊ณณ์€
13:08
and then those impacts
321
788016
1990
์ƒํƒœ๊ณ„ ๊ตฌ์กฐ์— ์˜ํ–ฅ์„ ์ฃผ๊ณ ,
13:10
affecting everything from insects
322
790006
2306
๊ทธ ๋‹ค์Œ ์ด ์˜ํ–ฅ์€ ๊ณค์ถฉ์—์„œ๋ถ€ํ„ฐ
13:12
up to apex predators like lions.
323
792312
2800
์‚ฌ์ž ๊ฐ™์€ ํฌ์‹ ๋™๋ฌผ์˜ ์™•์— ์ด๋ฅด๊ธฐ๊นŒ์ง€ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ฑฐ์ฃ .
13:15
Going forward, I plan to greatly expand
324
795112
1765
์•ž์œผ๋กœ ์ €๋Š” ํ•ญ๊ณต ๊ด€์ฐฐ์„
13:16
the airborne observatory.
325
796877
1728
๋” ํ™•์žฅํ•  ๊ณ„ํš์ž…๋‹ˆ๋‹ค.
13:18
I'm hoping to actually put the technology into orbit
326
798605
2167
๊ณผํ•™๊ธฐ์ˆ ์„ ์‹ค์ œ ๊ถค๋„์— ์˜ฌ๋ ค ๋†“์•„์„œ
13:20
so we can manage the entire planet
327
800772
1683
์ง€๊ตฌ ์ „์ฒด๋ฅผ ์ด๊ฐ™์€ ๊ณผํ•™๊ธฐ์ˆ ๋กœ
13:22
with technologies like this.
328
802455
1733
๊ด€๋ฆฌํ•  ์ˆ˜ ์žˆ๊ธฐ๋ฅผ ํฌ๋งํ•ฉ๋‹ˆ๋‹ค.
13:24
Until then, you're going to find me flying
329
804188
1849
๊ทธ๋•Œ๊นŒ์ง€ ์ €๋Š” ์•„๋งˆ ์—ฌ๋Ÿฌ๋ถ„์ด ์ „ํ˜€ ๋“ค์–ด ๋ณด์ง€ ๋ชปํ•œ ์ง€์—ญ์„
13:26
in some remote place that you've never heard of.
330
806037
2503
๋น„ํ–‰ํ•˜๊ณ  ์žˆ๊ฒ ์ฃ .
13:28
I just want to end by saying that technology is
331
808540
2542
๋์œผ๋กœ ๋ง์”€๋“œ๋ฆฌ๊ณ  ์‹ถ์€ ๊ฒƒ์€
13:31
absolutely critical to managing our planet,
332
811082
3739
์ง€๊ตฌ๋ฅผ ์œ ์ง€ํ•˜๋Š” ๋ฐ ๊ณผํ•™๊ธฐ์ˆ ์ด
13:34
but even more important is the understanding
333
814821
2099
์ ˆ๋Œ€์ ์œผ๋กœ ์ค‘์š”ํ•˜์ง€๋งŒ ์‹ค์ฒœํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š”
13:36
and wisdom to apply it.
334
816920
1732
์ดํ•ด์™€ ์ง€ํ˜œ๊ฐ€ ๋” ์ค‘์š”ํ•˜๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค.
13:38
Thank you.
335
818652
2099
๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
13:40
(Applause)
336
820751
4077
(๋ฐ•์ˆ˜)

Original video on YouTube.com
์ด ์›น์‚ฌ์ดํŠธ ์ •๋ณด

์ด ์‚ฌ์ดํŠธ๋Š” ์˜์–ด ํ•™์Šต์— ์œ ์šฉํ•œ YouTube ๋™์˜์ƒ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ์„ ์ƒ๋‹˜๋“ค์ด ๊ฐ€๋ฅด์น˜๋Š” ์˜์–ด ์ˆ˜์—…์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋™์˜์ƒ ํŽ˜์ด์ง€์— ํ‘œ์‹œ๋˜๋Š” ์˜์–ด ์ž๋ง‰์„ ๋”๋ธ” ํด๋ฆญํ•˜๋ฉด ๊ทธ๊ณณ์—์„œ ๋™์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค. ๋น„๋””์˜ค ์žฌ์ƒ์— ๋งž์ถฐ ์ž๋ง‰์ด ์Šคํฌ๋กค๋ฉ๋‹ˆ๋‹ค. ์˜๊ฒฌ์ด๋‚˜ ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด ๋ฌธ์˜ ์–‘์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์˜ํ•˜์‹ญ์‹œ์˜ค.

https://forms.gle/WvT1wiN1qDtmnspy7