A smart new business loan for people with no credit | Shivani Siroya

176,499 views ใƒป 2016-05-18

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Ido Dekkers ืžื‘ืงืจ: Sigal Tifferet
00:12
How much do you need to know about a person
0
12837
2001
ื›ืžื” ืืชื ืฆืจื™ื›ื™ื ืœื“ืขืช ืขืœ ืื“ื
00:14
before you'd feel comfortable making a loan?
1
14862
2534
ืœืคื ื™ ืฉืชืจื’ื™ืฉื• ื‘ื ื•ื— ืœืชืช ืœื• ื”ืœื•ื•ืื”?
00:18
Suppose you wanted to lend 1,000 dollars
2
18044
2455
ื ื ื™ื— ืฉืืชื ืจื•ืฆื™ื ืœื”ืœื•ื•ืช 1,000 ื“ื•ืœืจ
00:20
to the person sitting two rows behind you.
3
20523
2314
ืœืื“ื ืฉื™ื•ืฉื‘ ืฉืชื™ ืฉื•ืจื•ืช ืžืื—ื•ืจื™ื›ื.
00:23
What would you need to know about that person
4
23190
2132
ืžื” ื”ื™ื™ืชื ืฆืจื™ื›ื™ื ืœื“ืขืช ืขืœ ื”ืื“ื ื”ื–ื”
00:25
before you'd feel comfortable?
5
25346
1921
ืœืคื ื™ ืฉืชืจื’ื™ืฉื• ื‘ื ื•ื—?
00:27
My mom came to the US from India in her late thirties.
6
27291
3924
ืื™ืžื™ ื”ื’ื™ืขื” ืœืืจืฆื•ืช ื”ื‘ืจื™ืช ืžื”ื•ื“ื• ื‘ืฉื ื•ืช ื”ืฉืœื•ืฉื™ื ื”ืžืื•ื—ืจื•ืช ืฉืœื”.
00:31
She's a doctor in Brooklyn,
7
31614
1432
ื”ื™ื ืจื•ืคืื” ื‘ื‘ืจื•ืงืœื™ืŸ,
00:33
and she often lets friends and neighbors come to see her for health services,
8
33070
4223
ื•ื”ืจื‘ื” ืคืขืžื™ื ื”ื™ื ื ื•ืชื ืช ืœืื ืฉื™ื ื•ืฉื›ื ื™ื ืœื‘ื•ื ืืœื™ื” ืœืฉืจื•ืชื™ ื‘ืจื™ืื•ืช,
00:37
whether they can pay right away or not.
9
37317
2229
ื‘ื™ืŸ ืื ื”ื ื™ื›ื•ืœื™ื ืœืฉืœื ืžื™ื™ื“ื™ืช ืื• ืœื.
00:39
I remember running into her patients with her at the grocery store
10
39955
3207
ืื ื™ ื–ื•ื›ืจืช ืฉื ืคื’ืฉืชื™ ื‘ื—ื•ืœื™ื ืฉืœื” ืื™ืชื” ื‘ื—ื ื•ืช ื”ืžื›ื•ืœืช
00:43
or on the sidewalk,
11
43186
1151
ืื• ืขืœ ื”ืžื“ืจื›ื”,
00:44
and sometimes they would come and pay her right on the spot
12
44361
2840
ื•ืœืคืขืžื™ื ื”ื ื”ื™ื• ืžื’ื™ืขื™ื ื•ืžืฉืœืžื™ื ืœื” ื‘ืžืงื•ื
00:47
for previous appointments.
13
47225
1358
ืขื‘ื•ืจ ืคื’ื™ืฉื•ืช ืงื•ื“ืžื•ืช.
00:48
She would thank them,
14
48607
1239
ื”ื™ื ื”ื™ืชื” ืžื•ื“ื” ืœื”ื,
00:49
and ask them about their families and their health.
15
49870
2721
ื•ืฉื•ืืœืช ืื•ืชื ืขืœ ื”ืžืฉืคื—ื•ืช ืฉืœื”ื ื•ื”ื‘ืจื™ืื•ืช ืฉืœื”ื.
00:53
She gave them credit because she trusted them.
16
53466
3252
ื”ื™ื ื ืชื ื” ืœื”ื ืืฉืจืื™ ื›ื™ ื”ื™ื ื‘ื˜ื—ื” ื‘ื”ื.
00:57
Most of us are like my mom.
17
57122
2367
ืจื•ื‘ื ื• ื›ืžื• ืื™ืžื™.
00:59
We would give credit to someone we know
18
59899
2863
ื”ื™ื™ื ื• ื ื•ืชื ื™ื ืืฉืจืื™ ืœืžื™ืฉื”ื• ืฉื”ื›ืจื ื•
01:02
or that we live next to.
19
62786
1396
ืื• ืฉืื ื—ื ื• ื—ื™ื™ื ืœื™ื™ื“ื.
01:04
But most of us are probably not going to lend to a stranger
20
64206
3704
ืื‘ืœ ืจื•ื‘ื ื• ื›ื ืจืื” ืœื ืขื•ืžื“ื™ื ืœื”ืœื•ื•ืช ืœื–ืจ
01:07
unless we know a little something about them.
21
67934
3066
ืืœื ืื ืื ื—ื ื• ื™ื•ื“ืขื™ื ืžืขื˜ ืขืœื™ื•.
01:11
Banks, credit card companies and other financial institutions
22
71634
3703
ื‘ื ืงื™ื, ื—ื‘ืจื•ืช ืืฉืจืื™ ื•ืžื•ืกื“ื•ืช ืคื™ื ื ืกื™ื™ื ืื—ืจื™ื
01:15
don't know us on a personal level,
23
75361
2260
ืœื ืžื›ื™ืจื™ื ืื•ืชื ื• ื‘ืจืžื” ืื™ืฉื™ืช,
01:17
but they do have a way of trusting us,
24
77645
2879
ืื‘ืœ ื™ืฉ ืœื”ื ื“ืจืš ืœื‘ื˜ื•ื— ื‘ื ื•,
01:20
and that's through our credit scores.
25
80548
2461
ื•ื–ื” ื“ืจืš ื“ืจื•ื’ื™ ื”ืืฉืจืื™ ืฉืœื ื•.
01:23
Our credit scores have been created
26
83033
1995
ื“ืจื•ื’ื™ ื”ืืฉืจืื™ ืฉืœื ื• ื ื•ืฆืจื•
01:25
through an aggregation and analysis of our public consumer credit data.
27
85052
4520
ื“ืจืš ืื™ืกื•ืฃ ื•ื‘ื—ื™ื ื” ืฉืœ ื”ืžื™ื“ืข ื”ืฆื™ื‘ื•ืจื™ ื”ืฆืจื›ื ื™ ืฉืœื ื•.
01:29
And because of them, we have pretty much easy access
28
89596
3241
ื•ื‘ื’ืœืœื, ื™ืฉ ืœื ื• ื’ื™ืฉื” ื“ื™ ืคืฉื•ื˜ื”
01:32
to all of the goods and services that we need,
29
92861
2444
ืœื›ืœ ื”ืกื—ื•ืจื•ืช ื•ื”ืฉืจื•ืชื™ื ืฉืื ื—ื ื• ืฆืจื™ื›ื™ื,
01:35
from getting electricity to buying a home,
30
95329
2844
ืžืงื‘ืœืช ื—ืฉืžืœ ืขื“ ืงื ื™ื™ืช ื‘ื™ืช,
01:38
or taking a risk and starting a business.
31
98197
2457
ืื• ืœืงื™ืช ืกื™ื›ื•ืŸ ื‘ืคืชื™ื—ืช ืขืกืง.
01:41
But ...
32
101561
1161
ืื‘ืœ...
01:42
there are 2.5 billion people around the world
33
102746
4367
ื™ืฉ 2.5 ืžื™ืœื™ืืจื“ ืื ืฉื™ื ืžืกื‘ื™ื‘ ืœืขื•ืœื
01:47
that don't have a credit score.
34
107137
2086
ืฉืื™ืŸ ืœื”ื ื“ืจื•ื’ ืืฉืจืื™.
01:49
That's a third of the world's population.
35
109247
3024
ื–ื” ืฉืœื™ืฉ ืžืื•ื›ืœื•ืกื™ื™ืช ื”ืขื•ืœื.
01:52
They don't have a score
36
112930
1255
ืื™ืŸ ืœื”ื ื“ืจื•ื’
01:54
because there are no formal public records on them --
37
114209
3261
ื‘ื’ืœืœ ืฉืื™ืŸ ืชืขื•ื“ ืคื•ืžื‘ื™ ืคื•ืจืžืœื™ ืฉืœื”ื --
01:57
no bank accounts,
38
117494
1364
ืื™ืŸ ื—ืฉื‘ื•ื ื•ืช ื‘ื ืง,
01:58
no credit histories
39
118882
1494
ืื™ืŸ ื”ืกื˜ื•ืจื™ืช ืืฉืจืื™
02:00
and no social security numbers.
40
120400
2058
ื•ืื™ืŸ ืžืกืคืจ ื‘ื™ื˜ื•ื— ืœืื•ืžื™.
02:02
And because they don't have a score,
41
122482
1719
ื•ื‘ื’ืœืœ ืฉืื™ืŸ ืœื”ื ื“ืจื•ื’,
02:04
they don't have access to the credit or financial products
42
124225
4651
ืื™ืŸ ืœื”ื ื’ื™ืฉื” ืœืžื•ืฆืจื™ื ื”ื›ืœื›ืœื™ื™ื ืื• ืœืืฉืจืื™
02:08
that can improve their lives.
43
128900
1846
ืฉื™ื›ื•ืœื™ื ืœืฉืคืจ ืืช ื—ื™ื™ื”ื.
02:11
They are not trusted.
44
131509
2062
ืœื ื‘ื•ื˜ื—ื™ื ื‘ื”ื.
02:14
So we wanted to find a way to build trust
45
134968
3170
ืื– ืจืฆื™ื ื• ืœืžืฆื•ื ื“ืจืš ืœื‘ื ื•ืช ืืช ื”ืืžื•ืŸ ื”ื–ื”
02:18
and to open up financial access for these 2.5 billion.
46
138162
4051
ื•ืœืคืชื•ื— ืืช ื”ื’ื™ืฉื” ื”ืคื™ื ื ืกื™ืช ืขื‘ื•ืจ 2.5 ื”ืžื™ืœื™ืืจื“ ื”ืืœื”.
02:22
So we created a mobile application
47
142772
2466
ืื– ื™ืฆืจื ื• ืืคืœื™ืงืฆื™ื”
02:25
that builds credit scores for them using mobile data.
48
145262
4290
ืฉื‘ื•ื ื” ื“ืจื•ื’ ืืฉืจืื™ ืขื‘ื•ืจื ื‘ืฉื™ืžื•ืฉ ื‘ืžื™ื“ืข ืžื ื™ื™ื“ื™ื.
02:30
There are currently over one billion smartphones in emerging markets.
49
150345
4456
ื™ืฉ ื›ืจื’ืข ื™ื•ืชืจ ืžืžื™ืœื™ืืจื“ ืกืžืจื˜ืคื•ื ื™ื ื‘ืฉื•ื•ืงื™ื ืžืชืขื•ืจืจื™ื.
02:34
And people are using them the same way that we do.
50
154825
2988
ื•ืื ืฉื™ื ืžืฉืชืžืฉื™ื ื‘ื”ื ื‘ืื•ืชื” ื“ืจืš ื›ืžื•ื ื•.
02:38
They're texting their friends, they're looking up directions,
51
158235
2969
ื”ื ืฉื•ืœื—ื™ื ื˜ืงืกื˜ื™ื ืœื—ื‘ืจื™ื”ื, ื”ื ืžื—ืคืฉื™ื ื”ื•ืจืื•ืช ื ื™ื•ื•ื˜,
02:41
they're browsing the Internet
52
161228
1412
ื”ื ื’ื•ืœืฉื™ื ื‘ืื™ื ื˜ืจื ื˜
02:42
and they're even making financial transactions.
53
162664
2479
ื•ื”ื ืืคื™ืœื• ืขื•ืฉื™ื ืขืกืงืื•ืช ืคื™ื ื ืกื™ื•ืช.
02:45
Over time, this data is getting captured on our phones,
54
165167
3186
ื‘ืžืฉืš ื”ื–ืžืŸ, ื”ืžื™ื“ืข ื”ื–ื” ื ืฉืžืจ ื‘ืกืœื•ืœืจื™ื™ื ืฉืœื ื•,
02:48
and it provides a really rich picture of a person's life.
55
168377
3795
ื•ื”ื•ื ืžืกืคืง ืชืžื•ื ื” ืžืื•ื“ ืขืฉื™ืจื” ืฉืœ ื—ื™ื™ื• ืฉืœ ืื“ื.
02:53
Our customers give us access to this data
56
173132
2176
ื”ืœืงื•ื—ื•ืช ืฉืœื ื• ื ื•ืชื ื™ื ืœื ื• ื’ื™ืฉื” ืœืžื™ื“ืข ื”ื–ื”
02:55
and we capture it through our mobile application.
57
175332
3110
ื•ืื ื—ื ื• ืฉื•ืžืจื™ื ืื•ืชื• ื“ืจืš ื”ืืคืœื™ืงืฆื™ื” ื”ื ื™ื™ื“ืช ืฉืœื ื•.
02:58
It helps us understand the creditworthiness
58
178466
2644
ื”ื™ื ืขื•ื–ืจืช ืœื ื• ืœื”ื‘ื™ืŸ ืืช ืฉื•ื•ื™ ื”ืืฉืจืื™
03:01
of people like Jenipher, a small-business owner in Nairobi, Kenya.
59
181134
4701
ืฉืœ ืื ืฉื™ื ื›ืžื• ื’'ื ื™ืคืจ, ื‘ืขืœืช ืขืกืง ืงื˜ืŸ ื‘ื ื™ื™ืจื•ื‘ื™ ืงื ื™ื”.
03:06
Jenipher is 65 years old, and for decades has been running a food stall
60
186290
4883
ื’'ื ื™ืคืจ ื”ื™ื ื‘ืช 65, ื•ื‘ืžืฉืš ืขืฉื•ืจื™ื ื”ืคืขื™ืœื” ื“ื•ื›ืŸ ืžื–ื•ืŸ
03:11
in the central business district.
61
191197
2058
ื‘ืื–ื•ืจ ื”ืขืกืงื™ื ื”ืžืจื›ื–ื™.
03:13
She has three sons who she put through vocational school,
62
193897
3199
ื™ืฉ ืœื” ืฉืœื•ืฉื” ื‘ื ื™ื ืฉื”ื™ื ื”ืขื‘ื™ืจื” ื‘ื™ืช ืกืคืจ ืžืงืฆื•ืขื™,
03:17
and she's also the leader of her local chama,
63
197120
2524
ื•ื”ื™ื ื’ื ืžื•ื‘ื™ืœื” ืืช ื”ืฆ'ืžื” ื”ืžืงื•ืžื™ืช ืฉืœื”,
03:19
or savings group.
64
199668
1463
ืื• ืงื‘ื•ืฆืช ื—ื™ืกื›ื•ืŸ.
03:21
Jenipher's food stall does well.
65
201609
1923
ื“ื•ื›ืŸ ื”ืžื–ื•ืŸ ืฉืœ ื’'ื ื™ืคืจ ืžืฆืœื™ื— ืžืื•ื“.
03:23
She makes just enough every day to cover her expenses.
66
203556
3444
ื”ื™ื ืขื•ืฉื” ืžืกืคื™ืง ื›ืœ ื™ื•ื ื›ื“ื™ ืœื›ืกื•ืช ืืช ื”ื”ื•ืฆืื•ืช.
03:27
But she's not financially secure.
67
207024
2368
ืื‘ืœ ื”ื™ื ืœื ื‘ื˜ื•ื—ื” ื›ืœื›ืœื™ืช.
03:29
Any emergency could force her into debt.
68
209842
2740
ื›ืœ ืžืงืจื” ื—ืจื•ื ืžื›ื ื™ืก ืื•ืชื” ืœื—ื•ื‘.
03:32
And she has no discretionary income
69
212887
1847
ื•ืื™ืŸ ืœื” ืฉื•ื ื”ื›ื ืกื” ืขื•ื“ืคืช
03:34
to improve her family's way of living,
70
214758
2238
ื›ื“ื™ ืœืฉืคืจ ืืช ื“ืจืš ื”ื—ื™ื™ื ืฉืœ ื”ืžืฉืคื—ื”.
03:37
for emergencies,
71
217020
1239
ืœืžืงืจื™ ื—ืจื•ื,
03:38
or for investing into growing her business.
72
218283
2673
ืื• ืœื”ืฉืงืขื” ื‘ื”ื’ื“ืœืช ื”ืขืกืง.
03:42
If Jenipher wants credit, her options are limited.
73
222065
3226
ืื ื’'ื ื™ืคืจ ืจื•ืฆื” ืืฉืจืื™, ื”ืื•ืคืฆื™ื•ืช ืฉืœื” ืžื•ื’ื‘ืœื•ืช.
03:45
She could get a microloan,
74
225733
1378
ื”ื™ื ื™ื›ื•ืœื” ืœืงื‘ืœ ืžื™ืงืจื• ื”ืœื•ื•ืื”,
03:47
but she'd have to form a group that could help vouch for her credibility.
75
227135
3844
ืื‘ืœ ื”ื™ื ืชืฆื˜ืจืš ืœื™ืฆื•ืจ ืงื‘ื•ืฆื” ืฉืชื•ื›ืœ ืœืขืจื•ื‘ ืœืืžื™ื ื•ืช ืฉืœื”.
03:51
And even then, the loan sizes would be way too small
76
231003
2972
ื•ืืคื™ืœื• ืื–, ืกื›ื•ื ื”ื”ืœื•ื•ืื•ืช ื™ื”ื™ื” ืงื˜ืŸ ืžื“ื™
03:53
to really have an impact on her business,
77
233999
2257
ื›ื“ื™ ืฉื‘ืืžืช ื™ื”ื™ื• ืœื”ืŸ ื”ืฉืคืขื•ืช ืขืœ ื”ืขืกืง ืฉืœื”,
03:56
averaging around 150 dollars.
78
236280
2288
ื‘ืžืžื•ืฆืข 150 ื“ื•ืœืจ.
03:59
Loan sharks are always an option,
79
239525
2518
ื›ืจื™ืฉื™ ื”ืœื•ื•ืื•ืช ื”ื ืชืžื™ื“ ืื•ืคืฆื™ื”,
04:02
but with interest rates that are well above 300 percent,
80
242067
3950
ืื‘ืœ ืขื ืฉื™ืขื•ืจื™ ืจื™ื‘ื™ืช ื’ื‘ื•ื”ื™ื ื‘ื”ืจื‘ื” ืž 300 ืื—ื•ื–,
04:06
they're financially risky.
81
246041
1554
ื”ืŸ ืžืกื•ื›ื ื•ืช ื›ืœื›ืœื™ืช.
04:08
And because Jenipher doesn't have collateral or a credit history,
82
248079
3985
ื•ื‘ื’ืœืœ ืฉืœื’'ื ื™ืคืจ ืื™ืŸ ืขืจื‘ื•ืŸ ืื• ื”ืกื˜ื•ืจื™ืช ืืฉืจืื™,
04:12
she can't walk into a bank and ask for a business loan.
83
252088
3787
ื”ื™ื ืœื ื™ื›ื•ืœื” ืœืœื›ืช ืœื‘ื ืง ื•ืœื‘ืงืฉ ื”ืœื•ื•ืื” ืขืกืงื™ืช.
04:16
But one day,
84
256331
1323
ืื‘ืœ ื™ื•ื ืื—ื“,
04:17
Jenipher's son convinced her to download our application
85
257678
3978
ื”ื‘ืŸ ืฉืœ ื’'ื ื™ืคืจ ืฉื›ื ืข ืื•ืชื” ืœื”ื•ืจื™ื“ ืืช ื”ืืคืœื™ืงืฆื™ื”
04:21
and apply for a loan.
86
261680
1251
ื•ืœื‘ืงืฉ ื”ืœื•ื•ืื”.
04:23
Jenipher answered a few questions on her phone
87
263407
2539
ื’'ื ื™ืคืจ ืขื ืชื” ืขืœ ื›ืžื” ืฉืืœื•ืช ื‘ืกืœื•ืœืจื™ ืฉืœื”
04:25
and she gave us access to a few key data points on her device.
88
265970
3994
ื•ื ืชื ื” ืœื ื• ื’ื™ืฉื” ืœื›ืžื” ื ืงื•ื“ื•ืช ืžื™ื“ืข ืขืœ ื”ืžื›ืฉื™ืจ ืฉืœื”.
04:30
And here's what we saw.
89
270561
1338
ื•ื”ื ื” ืžื” ืฉืจืื™ื ื•.
04:32
So, bad news first.
90
272392
1499
ืงื•ื“ื ื”ื—ื“ืฉื•ืช ื”ืจืขื•ืช.
04:34
Jenipher had a low savings balance and no previous loan history.
91
274996
4766
ืœื’'ื ื™ืคืจ ื™ืฉ ืžืื–ืŸ ื—ื™ืกื›ื•ืŸ ื ืžื•ืš ื•ืื™ืŸ ืœื” ื”ืกื˜ื•ืจื™ืช ื”ืœื•ื•ืื•ืช ืงื•ื“ืžืช.
04:40
These are factors
92
280395
1151
ืืœื” ื’ื•ืจืžื™ื
04:41
that would have thrown up a red flag to a traditional bank.
93
281570
3026
ืฉื”ื™ื• ืžืจื™ืžื™ื ื“ื’ืœ ืื“ื•ื ืœื‘ื ืง ืžืกื•ืจืชื™.
04:44
But there were other points in her history that showed us
94
284620
2731
ืื‘ืœ ื”ื™ื• ื ืงื•ื“ื•ืช ืื—ืจื•ืช ื‘ื”ืกื˜ื•ืจื™ื” ืฉืœื” ืฉื”ืจืื• ืœื ื•
04:47
a much richer picture of her potential.
95
287375
3331
ืชืžื•ื ื” ื”ืจื‘ื” ื™ื•ืชืจ ืขืฉื™ืจื” ืฉืœ ื”ืคื•ื˜ื ืฆื™ืืœ ืฉืœื”.
04:51
So for one,
96
291342
1151
ืื– ืจืืฉื™ืช,
04:52
we saw that she made regular phone calls to her family in Uganda.
97
292517
3855
ืจืื™ื ื• ืฉื”ื™ื• ืœื” ืฉื™ื—ื•ืช ื˜ืœืคื•ืŸ ืกื“ื™ืจื•ืช ืœืžืฉืคื—ื” ืฉืœื” ื‘ืื•ื’ื ื“ื”.
04:57
Well, it turns out that the data shows
98
297629
2457
ื•ื‘ื›ืŸ, ืžืกืชื‘ืจ ืฉื”ืžื™ื“ืข ืžืจืื”
05:00
a four percent increase in repayment
99
300110
2734
ืขืœื™ื” ืฉืœ ืืจื‘ืขื” ืื—ื•ื–ื™ื ื‘ื”ื—ื–ืจื™ื
05:02
among people who consistently communicate with a few close contacts.
100
302868
4736
ืืฆืœ ืื ืฉื™ื ืฉืžืชืงืฉืจื™ื ื‘ืงื‘ื™ืขื•ืช ืขื ื›ืžื” ืื ืฉื™ ืงืฉืจ ืงืจื•ื‘ื™ื.
05:08
We could also see
101
308657
1159
ื™ื›ื•ืœื ื• ื’ื ืœืจืื•ืช
05:09
that though she traveled around a lot throughout the day,
102
309840
2808
ืฉืœืžืจื•ืช ืฉื”ื™ื ื ืกืขื” ื”ืจื‘ื” ื‘ืžืฉืš ื”ื™ื•ื,
05:12
she actually had pretty regular travel patterns,
103
312672
2731
ืœืžืขืฉื” ื”ื™ื• ืœื” ืชื‘ื ื™ื•ืช ืชื ื•ืขื” ื“ื™ ืงื‘ื•ืขื•ืช,
05:15
and she was either at home or at her food stall.
104
315427
3135
ื•ื”ื™ื ื”ื™ืชื” ืื• ื‘ื‘ื™ืช ืื• ื‘ื“ื•ื›ืŸ ื”ืื•ื›ืœ ืฉืœื”.
05:19
And the data shows a six percent increase in repayment
105
319315
3987
ื•ื”ืžื™ื“ืข ืžืจืื” ืขืœื™ื” ืฉืœ ืฉื™ืฉื” ืื—ื•ื–ื™ื ื‘ื”ื—ื–ืจื™ื
05:23
among customers who are consistent
106
323326
2387
ืืฆืœ ืœืงื•ื—ื•ืช ืฉืขืงื‘ื™ื™ื
05:25
with where they spend most of their time.
107
325737
2609
ื‘ืžืงื•ืžื•ืช ื‘ื”ื ื”ื ืžื‘ืœื™ื ืืช ืจื•ื‘ ื–ืžื ื.
05:29
We could also see that she communicated a lot
108
329349
2581
ื™ื›ื•ืœื ื• ื’ื ืœืจืื•ืช ืฉื”ื™ื ืชืงืฉืจื” ื”ืจื‘ื”
05:31
with many different people throughout the day
109
331954
2348
ืขื ื”ืจื‘ื” ืื ืฉื™ื ืฉื•ื ื™ื ื‘ืžืฉืš ื”ื™ื•ื
05:34
and that she had a strong support network.
110
334326
2342
ื•ืฉื”ื™ืชื” ืœื” ืจืฉืช ืชืžื™ื›ื” ืจื—ื‘ื”.
05:37
Our data shows
111
337287
1393
ื”ืžื™ื“ืข ืฉืœื ื• ืžืจืื”
05:38
that people who communicate with more than 58 different contacts
112
338704
4680
ืฉืื ืฉื™ื ืฉืžืชืงืฉืจื™ื ืขื ื™ื•ืชืจ ืž 58 ืื ืฉื™ ืงืฉืจ ืฉื•ื ื™ื
05:43
tend to be more likely to be good borrowers.
113
343408
2901
ื ื•ื˜ื™ื ืœื”ื™ื•ืช ืœื•ื•ื™ื ื˜ื•ื‘ื™ื ื™ื•ืชืจ.
05:46
In Jenipher's case,
114
346333
1269
ื‘ืžืงืจื” ืฉืœ ื’'ื ื™ืคืจ,
05:47
she communicated with 89 different individuals,
115
347626
4043
ื”ื™ื ืžืชืงืฉืจืช ืขื 89 ืื ืฉื™ื ืฉื•ื ื™ื,
05:51
which showed a nine percent increase in her repayment.
116
351693
3251
ืžื” ืฉืžืจืื” ืขืœื™ื” ืฉืœ ืชืฉืขื” ืื—ื•ื–ื™ื ื‘ื”ื—ื–ืจื™ื ืฉืœื”.
05:55
These are just some of the thousands of different data points
117
355888
3767
ืืœื” ืจืง ื›ืžื” ืžืืœืคื™ ื ืงื•ื“ื•ืช ืžื™ื“ืข ืฉื•ื ื•ืช
05:59
that we look at to understand a person's creditworthiness.
118
359679
3233
ืฉืื ื—ื ื• ืžื‘ื™ื˜ื™ื ืขืœื™ื”ืŸ ื›ื“ื™ ืœื”ื‘ื™ืŸ ืืช ืขืจืš ื”ืืฉืจืื™ ืฉืœ ืื“ื.
06:03
And after analyzing all of these different data points,
119
363397
3073
ื•ืื—ืจื™ ื ื™ืชื•ื— ื ืงื•ื“ื•ืช ื”ืžื™ื“ืข ื”ืฉื•ื ื•ืช ื”ืืœื•,
06:06
we took the first risk
120
366494
1972
ืื ื—ื ื• ืœืงื—ื ื• ืืช ื”ืกื™ื›ื•ืŸ ื”ืจืืฉื•ืŸ
06:08
and gave Jenipher a loan.
121
368490
2043
ื•ื ืชื ื• ืœื’'ื ื™ืคืจ ื”ืœื•ื•ืื”.
06:11
This is data that would not be found on a paper trail
122
371370
3326
ื–ื” ืžื™ื“ืข ืฉืœื ื”ื™ื” ื ืžืฆื ืขืœ ืฉื•ื‘ืœ ื ื™ื™ืจ
06:14
or in any formal financial record.
123
374720
2568
ืื• ื‘ื›ืœ ืชืขื•ื“ ืคื™ื ื ืกื™ ืคื•ืจืžืœื™.
06:17
But it proves trust.
124
377720
1788
ืื‘ืœ ื–ื” ืžื•ื›ื™ื— ืืžื•ืŸ.
06:20
By looking beyond income,
125
380193
1977
ื›ืฉืžื‘ื™ื˜ื™ื ืžืขื‘ืจ ืœื”ื›ื ืกื”,
06:22
we can see that people in emerging markets
126
382194
2157
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืจืื•ืช ืฉืื ืฉื™ื ื‘ืฉื•ื•ืงื™ื ืžืชืขื•ืจืจื™ื
06:24
that may seem risky and unpredictable on the surface
127
384375
3669
ืฉืื•ืœื™ ื ืจืื™ื ืžืกื•ื›ื ื™ื ื•ืœื ืฆืคื•ื™ื™ื ืขืœ ืคื ื™ ื”ืฉื˜ื—
06:28
are actually willing and have the capacity to repay.
128
388068
4226
ืœืžืขืฉื” ืžื•ื›ื ื™ื ื•ื™ืฉ ืœื”ื ืืช ื”ื™ื›ื•ืœืช ืœื”ื—ื–ื™ืจ.
06:33
Our credit scores have helped us deliver over 200,000 loans in Kenya
129
393334
5185
ื“ืจื•ื’ ื”ืืฉืจืื™ ืฉืœื ื• ืขื–ืจ ืœื ื• ืœืกืคืง ื™ื•ืชืจ ืž 200,000 ื”ืœื•ื•ืื•ืช ื‘ืงื ื™ื”
06:38
in just the past year.
130
398543
1597
ืชื•ืš ืคื—ื•ืช ืžืฉื ื”.
06:40
And our repayment rates are above 90 percent --
131
400164
3302
ื•ืฉื™ืขื•ืจื™ ื”ื”ื—ื–ืจื™ื ืฉืœื ื• ื”ื ืžืขืœ 90 ืื—ื•ื– --
06:43
which, by the way, is in line with traditional bank repayment rates.
132
403490
5295
ืฉื“ืจืš ืื’ื‘, ืžืงื‘ื™ืœื™ื ืœืฉื™ืขื•ืจื™ ื”ื”ื—ื–ืจื™ื ืฉืœ ื‘ื ืงื™ื ืžืกื•ืจืชื™ื™ื.
06:49
With something as simple as a credit score,
133
409564
2909
ืขื ืžืฉื”ื• ืคืฉื•ื˜ ื›ืžื• ื“ืจื•ื’ ืืฉืจืื™,
06:52
we're giving people the power to build their own futures.
134
412497
3515
ืื ื—ื ื• ื ื•ืชื ื™ื ืœืื ืฉื™ื ืืช ื”ื›ื•ื— ืœื‘ื ื•ืช ืืช ื”ืขืชื™ื“ ืฉืœื”ื.
06:56
Our customers have used their loans for family expenses,
135
416647
3307
ื”ืœืงื•ื—ื•ืช ืฉืœื ื• ื”ืฉืชืžืฉื• ื‘ื”ืœื•ื•ืื•ืช ืฉืœื”ื ืœื”ื•ืฆืื•ืช ืžืฉืคื—ืชื™ื•ืช,
06:59
emergencies, travel
136
419978
1857
ืžืงืจื™ ื—ืจื•ื, ื ืกื™ืขื•ืช
07:01
and for investing back into growing their businesses.
137
421859
2972
ื•ื”ืฉืงืขื” ื—ื–ืจื” ื‘ื”ื’ื“ืœืช ื”ืขืกืง ืฉืœื”ื.
07:05
They're now building better economies and communities
138
425792
3472
ื”ื ืขื›ืฉื™ื• ื‘ื•ื ื™ื ื›ืœื›ืœื•ืช ื•ืงื”ื™ืœื•ืช ื˜ื•ื‘ื•ืช ื™ื•ืชืจ
07:09
where more people can succeed.
139
429288
2324
ื‘ื”ืŸ ื™ื•ืชืจ ืื ืฉื™ื ื™ื›ื•ืœื™ื ืœื”ืฆืœื™ื—.
07:12
Over the past two years of using our product,
140
432664
2728
ื‘ืžืฉืš ื”ืฉื ืชื™ื™ื ื”ืื—ืจื•ื ื•ืช ืฉืœ ืฉื™ืžื•ืฉ ื‘ืžื•ืฆืจ ืฉืœื ื•,
07:15
Jenipher has increased her savings by 60 percent.
141
435416
4184
ื’'ื ื™ืคืจ ื”ื’ื“ื™ืœื” ืืช ื”ื—ืกื›ื•ื ื•ืช ืฉืœื” ื‘ 60 ืื—ื•ื–.
07:19
She's also started two additional food stalls
142
439624
2652
ื”ื™ื ื’ื ื”ืชื—ื™ืœื” ืฉื ื™ ื“ื•ื›ื ื™ ืžื–ื•ืŸ ื ื•ืกืคื™ื
07:22
and is now making plans for her own restaurant.
143
442300
3077
ื•ืขื›ืฉื™ื• ืžืชื›ื ื ืช ืžืกืขื“ื” ืžืฉืœื”.
07:25
She's applying for a small-business loan from a commercial bank,
144
445401
3404
ื”ื™ื ื”ื’ื™ืฉื” ื‘ืงืฉื” ืœื”ืœื•ื•ืืช ืขืกืง ืงื˜ืŸ ืžื‘ื ืง ืžืกื—ืจื™,
07:28
because she now has the credit history to prove she deserves it.
145
448829
4725
ื›ื™ ืขื›ืฉื™ื• ื™ืฉ ืœื” ื”ืกื˜ื•ืจื™ื™ืช ืืฉืจืื™ ื”ืžื•ื›ื™ื—ื” ืฉื–ื” ืžื’ื™ืข ืœื”.
07:34
I saw Jenipher in Nairobi just last week,
146
454038
2915
ืจืื™ืชื™ ืืช ื’'ื ื™ืคืจ ื‘ื ื™ื™ืจื•ื‘ื™ ื‘ืฉื‘ื•ืข ืฉืขื‘ืจ,
07:36
and she told me how excited she was to get started.
147
456977
3251
ื•ื”ื™ื ืืžืจื” ืœื™ ื›ืžื” ื”ื™ื ืžืชืจื’ืฉืช ืœื”ืชื—ื™ืœ.
07:40
She said,
148
460252
1288
ื”ื™ื ืืžืจื”,
07:42
"Only my son believed I could do this. I didn't think this was for me."
149
462178
5479
"ืจืง ื”ื‘ืŸ ืฉืœื™ ื”ืืžื™ืŸ ืฉืื ื™ ื™ื›ื•ืœื” ืœืขืฉื•ืช ืืช ื–ื”. ืœื ื—ืฉื‘ืชื™ ืฉื–ื” ื‘ืฉื‘ื™ืœื™."
07:48
She's lived her whole life
150
468250
2286
ื”ื™ื ื—ื™ื” ืืช ื›ืœ ื—ื™ื™ื”
07:50
believing that there was a part of the world that was closed off to her.
151
470560
4293
ื‘ืืžื•ื ื” ืฉื—ืœืง ืžื”ืขื•ืœื ื—ืกื•ื ื‘ืคื ื™ื”.
07:55
Our job now is to open the world to Jenipher
152
475536
4356
ื”ืžืฉื™ืžื” ืฉืœื ื• ืขื›ืฉื™ื• ื”ื™ื ืœืคืชื•ื— ืืช ื”ืขื•ืœื ืœื’'ื ื™ืคืจ
07:59
and the billions like her that deserve to be trusted.
153
479916
4195
ื•ื”ืžื™ืœื™ืืจื“ื™ื ื›ืžื•ื” ืฉืžื’ื™ืข ืœื”ื ืฉื™ื‘ื˜ื—ื• ื‘ื”ื.
08:04
Thank you.
154
484135
1159
ืชื•ื“ื” ืœื›ื.
08:05
(Applause)
155
485318
4332
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7