Daphne Koller: What we're learning from online education

670,839 views ใƒป 2012-08-01

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

00:00
Translator: Morton Bast Reviewer: Thu-Huong Ha
0
0
7000
ืžืชืจื’ื: Orr Schlesinger ืžื‘ืงืจ: Sigal Tifferet
00:15
Like many of you, I'm one of the lucky people.
1
15985
3111
ื›ืžื• ืจื‘ื™ื ืžื›ื, ืื ื™ ื‘ืจืช ืžื–ืœ.
00:19
I was born to a family where education was pervasive.
2
19096
3400
ื ื•ืœื“ืชื™ ืœืžืฉืคื—ื” ื‘ืขืœืช ื—ื™ื ื•ืš ื ืจื—ื‘.
00:22
I'm a third-generation PhD, a daughter of two academics.
3
22496
4238
ืื ื™ ื“ื•ืจ ืฉืœื™ืฉื™ ืฉืœ PhD (ืชื•ืืจ ืฉืœื™ืฉื™), ื‘ืชื ืฉืœ ืฉื ื™ ืื ืฉื™ ืืงื“ืžื™ื”.
00:26
In my childhood, I played around in my father's university lab.
4
26734
3794
ื‘ื™ืœื“ื•ืชื™, ืฉื™ื—ืงืชื™ ื‘ืžืขื‘ื“ืช ื”ืื•ื ื™ื‘ืจืกื™ื˜ื” ืฉืœ ืื‘ื ืฉืœื™.
00:30
So it was taken for granted that I attend some of the best universities,
5
30528
3849
ื›ืš ืฉื”ื™ื” ืžื•ื‘ืŸ ืžืืœื™ื• ืฉืืœืš ืœืื•ื ื™ื‘ืจืกื™ื˜ืื•ืช ื”ื˜ื•ื‘ื•ืช ื‘ื™ื•ืชืจ,
00:34
which in turn opened the door to a world of opportunity.
6
34377
3801
ืืฉืจ ืคืชื—ื• ืœื™ ืืช ื”ื“ืœืช ืืœ ืขื•ืœื ืฉืœ ื”ื–ื“ืžื ื•ื™ื•ืช.
00:38
Unfortunately, most of the people in the world are not so lucky.
7
38178
4120
ืœืžืจื‘ื” ื”ืฆืขืจ, ืจื•ื‘ ื”ืื ืฉื™ื ื‘ืขื•ืœื ืื™ื ื ื›ืœ ื›ืš ื‘ืจื™ ืžื–ืœ.
00:42
In some parts of the world, for example, South Africa,
8
42298
3135
ื‘ื—ืœืงื™ื ืžืกื•ื™ืžื™ื ืฉืœ ื”ืขื•ืœื, ืœื“ื•ื’ืžื”, ื“ืจื•ื ืืคืจื™ืงื”,
00:45
education is just not readily accessible.
9
45433
2705
ื—ื™ื ื•ืš ื”ื•ื ืคืฉื•ื˜ ืœื ื ื’ื™ืฉ.
00:48
In South Africa, the educational system was constructed
10
48138
2975
ื‘ื“ืจื•ื ืืคืจื™ืงื”, ื ื‘ื ืชื” ืžืขืจื›ืช ื”ื—ื™ื ื•ืš
00:51
in the days of apartheid for the white minority.
11
51113
2873
ื‘ื™ืžื™ ื”ืืคืจื˜ื”ื™ื™ื“ ืขื‘ื•ืจ ื”ืžื™ืขื•ื˜ ื”ืœื‘ืŸ
00:53
And as a consequence, today there is just not enough spots
12
53986
2700
ื›ืชื•ืฆืื” ืžื›ืš, ื›ื™ื•ื ืคืฉื•ื˜ ืื™ืŸ ืžืกืคื™ืง ืžืงื•ืžื•ืช
00:56
for the many more people who want and deserve a high quality education.
13
56686
3852
ืขื‘ื•ืจ ืื ืฉื™ื ืจื‘ื™ื ืืฉืจ ืจื•ืฆื™ื ื—ื™ื ื•ืš ืื™ื›ื•ืชื™ ื•ื–ื›ืื™ื ืœื•.
01:00
That scarcity led to a crisis in January of this year
14
60538
3880
ืžื—ืกื•ืจ ื–ื” ื”ื•ื‘ื™ืœ ืœืžืฉื‘ืจ ื‘ื™ื ื•ืืจ ืฉืœ ื”ืฉื ื” (2012)
01:04
at the University of Johannesburg.
15
64418
1836
ื‘ืื•ื ื™ื‘ืจืกื™ื˜ืช ื™ื•ื”ื ืกื‘ื•ืจื’.
01:06
There were a handful of positions left open
16
66254
2131
ื ื•ืชืจ ืงื•ืžืฅ ืฉืœ ืžืงื•ืžื•ืช
01:08
from the standard admissions process, and the night before
17
68385
2969
ื‘ืชื”ืœื™ืš ื”ืงื‘ืœื” ื”ืจื’ื™ืœ, ื•ื‘ืœื™ืœื” ืœืคื ื™
01:11
they were supposed to open that for registration,
18
71354
2560
ืฉื”ื ื”ื™ื• ืืžื•ืจื™ื ืœืคืชื•ื— ืื•ืชื ืœืจื™ืฉื•ื,
01:13
thousands of people lined up outside the gate in a line a mile long,
19
73914
4052
ืืœืคื™ ืื ืฉื™ื ื”ืกืชื“ืจื• ื‘ืชื•ืจ ืฉืœ ืงื™ืœื•ืžื˜ืจ ืžื—ื•ืฅ ืœืฉืขืจ,
01:17
hoping to be first in line to get one of those positions.
20
77966
3880
ื‘ืชืงื•ื•ื” ืœื”ื™ื•ืช ื”ืจืืฉื•ื ื™ื ืœืงื‘ืœ ืืช ืื—ื“ ื”ืžืงื•ืžื•ืช ื”ืืœื•.
01:21
When the gates opened, there was a stampede,
21
81846
2308
ื‘ืขืช ืคืชื™ื—ืช ื”ืฉืขืจื™ื, ื”ื™ื™ืชื” ื”ืกืชืขืจื•ืช.
01:24
and 20 people were injured and one woman died.
22
84154
3652
20 ืื ืฉื™ื ื ืคืฆืขื• ื•ืื™ืฉื” ืื—ืช ืžืชื”.
01:27
She was a mother who gave her life
23
87806
1940
ื”ื™ื ื”ื™ื™ืชื” ืืžื ืฉื”ืงืจื™ื‘ื” ืืช ื—ื™ื™ื”
01:29
trying to get her son a chance at a better life.
24
89746
4063
ื›ื“ื™ ืœื”ืฉื™ื’ ืœื‘ื ื” ื”ื–ื“ืžื ื•ืช ืœื—ื™ื™ื ื˜ื•ื‘ื™ื ื™ื•ืชืจ.
01:33
But even in parts of the world like the United States
25
93809
3157
ืื‘ืœ ื’ื ื‘ื—ืœืงื™ื ืฉืœ ื”ืขื•ืœื ื›ืžื• ืืจืฆื•ืช ื”ื‘ืจื™ืช
01:36
where education is available, it might not be within reach.
26
96966
4356
ื”ื™ื›ืŸ ืฉื”ื—ื™ื ื•ืš ื”ื•ื ื–ืžื™ืŸ, ื™ื™ืชื›ืŸ ืฉื”ื•ื ืœื ื™ื”ื™ื” ื‘ื”ื™ืฉื’ ื™ื“.
01:41
There has been much discussed in the last few years
27
101322
2672
ื‘ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช ื“ื•ื‘ืจ ืจื‘ื•ืช
01:43
about the rising cost of health care.
28
103994
1989
ืขืœ ื”ืขืœื™ื™ื” ื‘ืžื—ื™ืจื™ ืฉื™ืจื•ืชื™ ื”ื‘ืจื™ืื•ืช.
01:45
What might not be quite as obvious to people
29
105983
2642
ืืš ืžื” ืฉืคื—ื•ืช ื™ื“ื•ืข ืœืฆื™ื‘ื•ืจ ื”ื•ื
01:48
is that during that same period the cost of higher education tuition
30
108625
4022
ืฉื‘ืื•ืชื” ื”ืชืงื•ืคื” ืขืœื•ืช ืฉื›ืจ ืœื™ืžื•ื“ ืื•ื ื™ื‘ืจืกื™ื˜ืื™
01:52
has been increasing at almost twice the rate,
31
112647
2480
ื’ื“ืœ ื‘ืงืฆื‘ ืฉืœ ื›ืžืขื˜ ืคื™ ืฉื ื™ื™ื,
01:55
for a total of 559 percent since 1985.
32
115127
4280
ื‘ืกืš ืฉืœ 559 ืื—ื•ื–ื™ื ืžืื– 1985.
01:59
This makes education unaffordable for many people.
33
119407
4534
ืœื›ืŸ ื—ื™ื ื•ืš ืื™ื ื• ื‘ื”ื™ืฉื’ ื™ื“ ืขื‘ื•ืจ ืื ืฉื™ื ืจื‘ื™ื.
02:03
Finally, even for those who do manage to get the higher education,
34
123941
3801
ืœื‘ืกื•ืฃ, ื’ื ืขื‘ื•ืจ ืืœื” ื”ืžืฆืœื™ื—ื™ื ืœื”ื’ื™ืข ืœื”ืฉื›ืœื” ื’ื‘ื•ื”ื”,
02:07
the doors of opportunity might not open.
35
127742
2625
ื™ื™ืชื›ืŸ ืฉื“ืœืชื•ืช ื”ื”ื–ื“ืžื ื•ืช ืœื ื™ืคืชื—ื•.
02:10
Only a little over half of recent college graduates
36
130367
3207
ื‘ืืจื”"ื‘, ืจืง ืžืขื˜ ืžืขืœ ืžื—ืฆื™ืช ื”ื‘ื•ื’ืจื™ื
02:13
in the United States who get a higher education
37
133574
2313
ืืฉืจ ืงื™ื‘ืœื• ื”ืฉื›ืœื” ื’ื‘ื•ื”ื”
02:15
actually are working in jobs that require that education.
38
135887
3463
ืขื•ื‘ื“ื™ื ื‘ืขื‘ื•ื“ื” ื”ื“ื•ืจืฉืช ืืช ื”ืฉื›ืœืชื.
02:19
This, of course, is not true for the students
39
139350
1840
ื–ื”, ื›ืžื•ื‘ืŸ, ืื™ื ื• ื ื›ื•ืŸ ืขื‘ื•ืจ ืกื˜ื•ื“ื ื˜ื™ื
02:21
who graduate from the top institutions,
40
141190
1952
ื”ืœื•ืžื“ื™ื ื‘ืื•ื ื™ื‘ืจืกื™ื˜ืื•ืช ื”ืžื•ื‘ื™ืœื•ืช,
02:23
but for many others, they do not get the value
41
143142
2632
ืื‘ืœ ืจื‘ื™ื ืื—ืจื™ื ืœื ืžืงื‘ืœื™ื ืืช ื”ืชืžื•ืจื”
02:25
for their time and their effort.
42
145774
3536
ืขื‘ื•ืจ ื”ื–ืžืŸ ื•ืžืืžืฅ ืฉืœื”ื.
02:29
Tom Friedman, in his recent New York Times article,
43
149310
3030
ื˜ื•ื ืคืจื™ื“ืžืŸ, ื‘ืžืืžืจ ืฉื›ืชื‘ ืœืื—ืจื•ื ื” ื‘ื ื™ื• ื™ื•ืจืง ื˜ื™ื™ืžืก,
02:32
captured, in the way that no one else could, the spirit behind our effort.
44
152340
4368
ืœื›ื“, ื‘ืื•ืคืŸ ืฉืืฃ ืื—ื“ ืื—ืจ ืœื ื™ื›ื•ืœ, ืืช ื”ืจื•ื— ืžืื—ื•ืจื™ ื”ืžืืžืฆื™ื ืฉืœื ื•.
02:36
He said the big breakthroughs are what happen
45
156708
3120
ื”ื•ื ืืžืจ ืฉืคืจื™ืฆื•ืช ื“ืจืš ื’ื“ื•ืœื•ืช ื”ืŸ ืžื” ืฉืงื•ืจื”
02:39
when what is suddenly possible meets what is desperately necessary.
46
159828
3899
ื›ืืฉืจ ืžื” ืฉืœืคืชืข ืืคืฉืจื™ ืคื•ื’ืฉ ืืช ืžื” ืฉื ื“ืจืฉ ื ื•ืืฉื•ืช.
02:43
I've talked about what's desperately necessary.
47
163727
2621
ื›ื‘ืจ ื“ื™ื‘ืจืชื™ ืขืœ ืžื” ื ื“ืจืฉ ื ื•ืืฉื•ืช.
02:46
Let's talk about what's suddenly possible.
48
166348
2512
ื‘ื•ื ื ื“ื‘ืจ ืขืœ ืžื” ืœืคืชืข ืืคืฉืจื™.
02:48
What's suddenly possible was demonstrated by
49
168860
3119
ืžื” ืฉืœืคืชืข ืืคืฉืจื™ ื”ื•ืžื—ืฉ
02:51
three big Stanford classes,
50
171979
1568
ื‘ืฉืœื•ืฉื” ืงื•ืจืกื™ื ื’ื“ื•ืœื™ื ื‘ืกื˜ื ืคื•ืจื“,
02:53
each of which had an enrollment of 100,000 people or more.
51
173547
3880
ืฉืœื›ืœ ืื—ื“ ืžื”ื ื ืจืฉืžื• 100,000 ืื ืฉื™ื ืื• ื™ื•ืชืจ.
02:57
So to understand this, let's look at one of those classes,
52
177427
3384
ืื– ื›ื“ื™ ืœื”ื‘ื™ืŸ ื–ืืช, ื”ื‘ื” ื ื‘ื—ืŸ ืืช ืื—ื“ ื”ืงื•ืจืกื™ื ื”ืืœื”,
03:00
the Machine Learning class offered by my colleague
53
180811
1920
ื”ืงื•ืจืก "ืœืžื™ื“ืช ืžื›ื•ื ื”" ืฉื”ื•ืขื‘ืจ ืขืœ-ื™ื“ื™ ืขืžื™ืช ืฉืœื™
03:02
and cofounder Andrew Ng.
54
182731
1729
ื•ืžื™ื™ืกื“ ืฉื•ืชืฃ - ืื ื“ืจื• ื ื’.
03:04
Andrew teaches one of the bigger Stanford classes.
55
184460
2319
ืื ื“ืจื• ืžืœืžื“ ืืช ืื—ื“ ื”ืงื•ืจืกื™ื ื”ื’ื“ื•ืœื™ื ื™ื•ืชืจ ื‘ืกื˜ื ืคื•ืจื“.
03:06
It's a Machine Learning class,
56
186779
1209
ื–ื”ื• ืงื•ืจืก ื‘ื ื•ืฉื "ืœืžื™ื“ืช ืžื›ื•ื ื”",
03:07
and it has 400 people enrolled every time it's offered.
57
187988
3518
ื•ื™ืฉ 400 ืื ืฉื™ื ื”ื ืจืฉืžื™ื ื‘ื›ืœ ืคืขื ืฉื”ื•ื ืžื•ืฆืข.
03:11
When Andrew taught the Machine Learning class to the general public,
58
191506
3265
ื›ืืฉืจ ืื ื“ืจื• ืœื™ืžื“ ืืช ื”ืงื•ืจืก "ืœืžื™ื“ืช ืžื›ื•ื ื”" ืœืฆื™ื‘ื•ืจ ื”ืจื—ื‘,
03:14
it had 100,000 people registered.
59
194771
2616
ื”ื™ื• ืจืฉื•ืžื™ื ื‘ื• 100,000 ืื™ืฉ.
03:17
So to put that number in perspective,
60
197387
2009
ื›ื“ื™ ืœืฉื™ื ืžืกืคืจ ื–ื” ื‘ืคืจืกืคืงื˜ื™ื‘ื”,
03:19
for Andrew to reach that same size audience
61
199396
2359
ื›ื“ื™ ืฉืื ื“ืจื• ื™ื’ื™ืข ืœืื•ืชื• ื’ื•ื“ืœ ืงื”ืœ
03:21
by teaching a Stanford class,
62
201755
1826
ืขืœ-ื™ื“ื™ ื”ื•ืจืืช ืงื•ืจืก ื‘ืกื˜ื ืคื•ืจื“,
03:23
he would have to do that for 250 years.
63
203581
3926
ื”ื•ื ื™ืฆื˜ืจืš ืœืขืฉื•ืช ื–ืืช ื‘ืžืฉืš 250 ืฉื ื”.
03:27
Of course, he'd get really bored.
64
207507
3486
ื›ืžื•ื‘ืŸ, ื”ื•ื ื”ื™ื” ืžืฉืชืขืžื ืžืื•ื“.
03:30
So, having seen the impact of this,
65
210993
2737
ืื– ืื—ืจื™ ืฉืจืื™ื ื• ืืช ื”ื”ืฉืคืขื” ืฉืœ ื–ื”
03:33
Andrew and I decided that we needed to really try and scale this up,
66
213730
3128
ืื ื“ืจื• ื•ืื ื™ ื”ื—ืœื˜ื ื• ืฉืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื ืกื•ืช ืœื”ื’ื“ื™ืœ ืืช ื–ื” ืขื•ื“,
03:36
to bring the best quality education to as many people as we could.
67
216858
4120
ื‘ื›ื“ื™ ืœื”ื‘ื™ื ืืช ื”ื—ื™ื ื•ืš ื”ื›ื™ ืื™ื›ื•ืชื™ ืœืื ืฉื™ื ืจื‘ื™ื ื›ื›ืœ ืฉื ื•ื›ืœ.
03:40
So we formed Coursera,
68
220978
1495
ื›ืš ื™ืฆืจื ื• ืืช Coursera,
03:42
whose goal is to take the best courses
69
222473
3137
ืฉืžื˜ืจืชื” ืœืงื—ืช ืืช ื”ืงื•ืจืกื™ื ื”ื˜ื•ื‘ื™ื ื‘ื™ื•ืชืจ
03:45
from the best instructors at the best universities
70
225610
3317
ืžื”ืžืจืฆื™ื ื”ื˜ื•ื‘ื™ื ื‘ื™ื•ืชืจ ื‘ืื•ื ื™ื‘ืจืกื™ื˜ืื•ืช ื”ื˜ื•ื‘ื•ืช ื‘ื™ื•ืชืจ
03:48
and provide it to everyone around the world for free.
71
228927
4028
ื•ืœืกืคืง ืื•ืชื ืœื›ื•ืœื ื‘ืจื—ื‘ื™ ื”ืขื•ืœื ืœืœื ืชืฉืœื•ื.
03:52
We currently have 43 courses on the platform
72
232955
2600
ื›ืขืช ื™ืฉ ืœื ื• 43 ืงื•ืจืกื™ื ื‘ืืชืจ
03:55
from four universities across a range of disciplines,
73
235555
3199
ืžืืจื‘ืข ืื•ื ื™ื‘ืจืกื™ื˜ืื•ืช ื‘ืžื’ื•ื•ืŸ ืชื—ื•ืžื™ื,
03:58
and let me show you a little bit of an overview
74
238754
1833
ื•ื”ืจืฉื• ืœื™ ืœื”ืจืื•ืช ืœื›ื
04:00
of what that looks like.
75
240587
3278
ืื™ืš ื›ืœ ื”ื“ื‘ืจ ื”ื–ื” ื ืจืื”.
04:03
(Video) Robert Ghrist: Welcome to Calculus.
76
243865
1213
(ื•ื™ื“ืื•) ืจื•ื‘ืจื˜ ื’ื™ืจืกื˜: ื‘ืจื•ื›ื™ื ื”ื‘ืื™ื ืœื—ื“ื•"ื.
04:05
Ezekiel Emanuel: Fifty million people are uninsured.
77
245078
1880
ื™ื—ื–ืงืืœ ืขืžื ื•ืืœ: ื—ืžื™ืฉื™ื ืžื™ืœื™ื•ืŸ ืื ืฉื™ื ืื™ื ื ืžื‘ื•ื˜ื—ื™ื.
04:06
Scott Page: Models help us design more effective institutions and policies.
78
246958
3271
ืกืงื•ื˜ ืคื™ื™ื’': ืžื•ื“ืœื™ื ืขื•ื–ืจื™ื ืœื ื• ืœืขืฆื‘ ื‘ื™ืขื™ืœื•ืช ืจื‘ื” ื™ื•ืชืจ ืžื“ื™ื ื™ื•ืช ื•ืžื•ืกื“ื•ืช.
04:10
We get unbelievable segregation.
79
250229
2408
ืื ื—ื ื• ืžืงื‘ืœื™ื ื‘ื™ื“ื•ืœ ื‘ืœืชื™ ื™ื™ืืžืŸ.
04:12
Scott Klemmer: So Bush imagined that in the future,
80
252637
1792
ืกืงื•ื˜ ืงืœืžืจ: ื‘ื•ืฉ ื“ืžื™ื™ืŸ ืฉื‘ืขืชื™ื“
04:14
you'd wear a camera right in the center of your head.
81
254429
2378
ืชื—ื‘ืฉื• ืžืฆืœืžื” ื‘ืžืจื›ื– ื”ืจืืฉ ืฉืœื›ื.
04:16
Mitchell Duneier: Mills wants the student of sociology to develop the quality of mind ...
82
256807
4254
ืžื™ื˜ืฉืœ ื“ื•ื ื™ื™ืจ: ืžื™ืœืก ืจื•ืฆื” ืฉืกื˜ื•ื“ื ื˜ ืœืกื•ืฆื™ื•ืœื•ื’ื™ื” ื™ืคืชื— ืืช ื™ื›ื•ืœื•ืช ื”ื ืคืฉ...
04:21
RG: Hanging cable takes on the form of a hyperbolic cosine.
83
261061
3665
ืจ.ื’.: ื›ื‘ืœ ืชืœื•ื™ ืžืงื‘ืœ ืฆื•ืจื” ืฉืœ ืงื•ืกื™ื ื•ืก ื”ื™ืคืจื‘ื•ืœื™.
04:24
Nick Parlante: For each pixel in the image, set the red to zero.
84
264726
3071
ื ื™ืง ืคืจืœื ื˜ื”: ืœื›ืœ ืคื™ืงืกืœ ื‘ืชืžื•ื ื”, ืงื‘ืข ืืช ื”ืื“ื•ื ืœืืคืก.
04:27
Paul Offit: ... Vaccine allowed us to eliminate polio virus.
85
267797
2977
ืคื•ืœ ืื•ืคื™ื˜: ื”ื—ื™ืกื•ืŸ ืื™ืคืฉืจ ืœื ื• ืœื—ืกืœ ืืช ื•ื™ืจื•ืก ื”ืคื•ืœื™ื•.
04:30
Dan Jurafsky: Does Lufthansa serve breakfast and San Jose? Well, that sounds funny.
86
270774
3623
ื“ืŸ ื’'ื•ืจืคืกืงื™: ื”ืื ืœื•ืคื˜ื”ื ื–ื” ืžื’ื™ืฉื™ื ืืจื•ื—ืช ื‘ื•ืงืจ ื•ืกืŸ ื—ื•ื–ื”? ื˜ื•ื‘, ื–ื” ื ืฉืžืข ืžื•ื–ืจ.
04:34
Daphne Koller: So this is which coin you pick, and this is the two tosses.
87
274397
3616
ื“ืคื ื” ืงื•ืœืจ: ืื– ื–ื”ื• ื”ืžื˜ื‘ืข ืฉืืชื” ื‘ื•ื—ืจ, ื•ืืœื• ืฉืชื™ ื”ื”ื˜ืœื•ืช.
04:38
Andrew Ng: So in large-scale machine learning, we'd like to come up with computational ...
88
278013
3687
ืื ื“ืจื• ื ื’.: ื›ืš ื‘ืœืžื™ื“ืช ืžื›ื•ื ื” ื‘ืงื ื” ืžื™ื“ื” ื’ื“ื•ืœ, ืื ื—ื ื• ืจื•ืฆื™ื ืœื”ื’ื™ืข ืœื™ื›ื•ืœืช ื—ื™ืฉื•ื‘ื™ืช...
04:41
(Applause)
89
281700
5609
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
04:47
DK: It turns out, maybe not surprisingly,
90
287309
2274
ื“.ืง.: ืžืชื‘ืจืจ, ืื•ืœื™ ืœื ื‘ืžืคืชื™ืข,
04:49
that students like getting the best content
91
289583
2238
ืฉืกื˜ื•ื“ื ื˜ื™ื ืื•ื”ื‘ื™ื ืœืงื‘ืœ ืืช ื”ืชื•ื›ืŸ ื”ื˜ื•ื‘ ื‘ื™ื•ืชืจ
04:51
from the best universities for free.
92
291821
2887
ืžื”ืื•ื ื™ื‘ืจืกื™ื˜ืื•ืช ื”ื˜ื•ื‘ื•ืช ื‘ื™ื•ืชืจ ื‘ื—ื™ื ื.
04:54
Since we opened the website in February,
93
294708
2522
ืžืื– ืฉืคืชื—ื ื• ืืช ื”ืืชืจ ื‘ืคื‘ืจื•ืืจ,
04:57
we now have 640,000 students from 190 countries.
94
297230
4358
ื™ืฉ ืœื ื• ื›ืขืช 640,000 ืชืœืžื™ื“ื™ื ืž- 190 ืžื“ื™ื ื•ืช.
05:01
We have 1.5 million enrollments,
95
301588
2152
ื™ืฉ ืœื ื• 1.5 ืžื™ืœื™ื•ืŸ ื”ืจืฉืžื•ืช,
05:03
6 million quizzes in the 15 classes that have launched
96
303740
2850
ืขื“ ื›ื” ื ืฉืœื—ื• 6 ืžื™ืœื™ื•ืŸ ื‘ื—ื™ื ื•ืช ื‘15
05:06
so far have been submitted, and 14 million videos have been viewed.
97
306590
4916
ื”ืงื•ืจืกื™ื ืฉื ืคืชื—ื•, ื•14 ืžื™ืœื™ื•ืŸ ืงื˜ืขื™ ื•ื™ื“ืื• ื ืฆืคื•.
05:11
But it's not just about the numbers,
98
311506
2518
ืื‘ืœ ื–ื” ืœื ืจืง ื”ืžืกืคืจื™ื,
05:14
it's also about the people.
99
314024
1641
ื–ื” ื’ื ื”ืื ืฉื™ื.
05:15
Whether it's Akash, who comes from a small town in India
100
315665
2976
ื‘ื™ืŸ ืื ืžื“ื•ื‘ืจ ื‘ืืงืืฉ, ืฉืžื’ื™ืข ืžืขื™ื™ืจื” ืงื˜ื ื” ื‘ื”ื•ื“ื•
05:18
and would never have access in this case
101
318641
2175
ืฉืœืขื•ืœื ืœื ื”ื™ื” ืžืฆืœื™ื— ืœื”ืชืงื‘ืœ
05:20
to a Stanford-quality course
102
320816
1489
ืœืงื•ืจืก ื‘ืื™ื›ื•ืช ืฉืœ ืกื˜ื ืคื•ืจื“
05:22
and would never be able to afford it.
103
322305
2515
ื•ืœืขื•ืœื ืœื ื”ื™ื” ืžืกื•ื’ืœ ืœื”ืจืฉื•ืช ื–ืืช ืœืขืฆืžื•.
05:24
Or Jenny, who is a single mother of two
104
324820
2038
ืื• ื’'ื ื™, ืฉื”ื™ื ืื ื—ื“-ื”ื•ืจื™ืช ืœืฉื ื™ ื™ืœื“ื™ื
05:26
and wants to hone her skills
105
326858
1967
ืฉืจื•ืฆื” ืœื—ื“ื“ ืืช ื”ืžื™ื•ืžื ื•ื™ื•ืช ืฉืœื”
05:28
so that she can go back and complete her master's degree.
106
328825
3135
ื•ืœื—ื–ื•ืจ ื•ืœื”ืฉืœื™ื ืืช ื”ืชื•ืืจ ื”ืฉื ื™ ืฉืœื”.
05:31
Or Ryan, who can't go to school,
107
331960
3136
ืื• ืจืื™ื™ืŸ, ืฉืœื ื™ื›ื•ืœ ืœืœื›ืช ืœื‘ื™ืช ื”ืกืคืจ,
05:35
because his immune deficient daughter
108
335096
1865
ื‘ื’ืœืœ ืฉืœื‘ืชื• ื™ืฉ ื›ืฉืœ ื—ื™ืกื•ื ื™
05:36
can't be risked to have germs come into the house,
109
336961
3383
ื•ื”ื•ื ืœื ื™ื›ื•ืœ ืœื”ืกืชื›ืŸ ื‘ื”ื›ื ืกืช ื—ื™ื™ื“ืงื™ื ืืœ ืชื•ืš ื”ื‘ื™ืช,
05:40
so he couldn't leave the house.
110
340344
1840
ื•ืœื›ืŸ ื”ื•ื ืœื ื™ื›ื•ืœ ืœืขื–ื•ื‘ ืืช ื”ื‘ื™ืช.
05:42
I'm really glad to say --
111
342184
1632
ืื ื™ ื‘ืืžืช ืฉืžื—ื” ืœื•ืžืจ -
05:43
recently, we've been in correspondence with Ryan --
112
343816
2252
ื”ืชื›ืชื‘ื ื• ืœืื—ืจื•ื ื” ืขื ืจืื™ื™ืŸ -
05:46
that this story had a happy ending.
113
346068
1932
ื›ื™ ืœืกื™ืคื•ืจ ื”ื–ื” ื”ื™ื” ืกื•ืฃ ืฉืžื—.
05:48
Baby Shannon -- you can see her on the left --
114
348000
1903
ืฉืื ื•ืŸ ื”ืชื™ื ื•ืงืช - ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืื•ืชื” ื‘ืฆื“ ืฉืžืืœ โ€“
05:49
is doing much better now,
115
349903
1351
ื‘ืžืฆื‘ ื”ืจื‘ื” ื™ื•ืชืจ ื˜ื•ื‘ ืขื›ืฉื™ื•,
05:51
and Ryan got a job by taking some of our courses.
116
351254
4198
ื•ืจืื™ื™ืŸ ื”ืชืงื‘ืœ ืœืขื‘ื•ื“ื” ื‘ื–ื›ื•ืช ื”ืงื•ืจืกื™ื ืฉืœื ื•.
05:55
So what made these courses so different?
117
355452
2244
ืื– ืžื” ื’ืจื ืœืงื•ืจืกื™ื ื”ืืœื• ืœื”ื™ื•ืช ืฉื•ื ื™ื ื›ืœ-ื›ืš?
05:57
After all, online course content has been available for a while.
118
357696
3720
ืื—ืจื™ ื”ื›ืœ, ืงื•ืจืกื™ื ืžืงื•ื•ื ื™ื ื–ืžื™ื ื™ื ื›ื‘ืจ ื‘ืžืฉืš ื–ืžืŸ ืžื”.
06:01
What made it different was that this was real course experience.
119
361416
3712
ืžื” ืฉืขื•ืฉื” ืืช ื”ื”ื‘ื“ืœ ื”ื•ื ื”ื—ื•ื•ื™ื” ืฉืœ ืงื•ืจืก ืืžื™ืชื™.
06:05
It started on a given day,
120
365128
1726
ื”ืงื•ืจืก ืžืชื—ื™ืœ ื‘ื™ื•ื ื ืชื•ืŸ,
06:06
and then the students would watch videos on a weekly basis
121
366854
3634
ื•ืœืื—ืจ ืžื›ืŸ ื”ืชืœืžื™ื“ื™ื ืฆื•ืคื™ื ื‘ืงื˜ืขื™ ื•ื™ื“ืื• ืขืœ ื‘ืกื™ืก ืฉื‘ื•ืขื™
06:10
and do homework assignments.
122
370488
1855
ื•ืขื•ืฉื™ื ืฉื™ืขื•ืจื™ ื‘ื™ืช.
06:12
And these would be real homework assignments
123
372343
1791
ืืœื” ืฉื™ืขื•ืจื™ ื‘ื™ืช ืืžื™ืชื™ื™ื
06:14
for a real grade, with a real deadline.
124
374134
3304
ืขื ืฆื™ื•ืŸ ืืžื™ืชื™, ืขื ืชืืจื™ืš ื™ืขื“ ืืžื™ืชื™.
06:17
You can see the deadlines and the usage graph.
125
377438
2056
ืืคืฉืจ ืœืจืื•ืช ืืช ืชืืจื™ื›ื™ ื”ื™ืขื“ ื•ื’ืจืฃ ื”ืฉื™ืžื•ืฉ.
06:19
These are the spikes showing
126
379494
2088
ื”ืฉื™ืื™ื ื›ืืŸ ืžืจืื™ื
06:21
that procrastination is global phenomenon.
127
381582
3789
ืฉื“ื—ื™ื™ื ื•ืช ื”ื™ื ืชื•ืคืขื” ื’ืœื•ื‘ืœื™ืช.
06:25
(Laughter)
128
385371
2576
(ืฆื—ื•ืง)
06:27
At the end of the course,
129
387947
1672
ื‘ืกื•ืฃ ื”ืงื•ืจืก,
06:29
the students got a certificate.
130
389619
1856
ื”ืกื˜ื•ื“ื ื˜ื™ื ืงื™ื‘ืœื• ืชืขื•ื“ื”.
06:31
They could present that certificate
131
391475
2160
ื”ื ื™ื›ืœื• ืœื”ืฆื™ื’ ืชืขื•ื“ื” ื–ื•
06:33
to a prospective employer and get a better job,
132
393635
2153
ืœืžืขื‘ื™ื“, ื•ืœืงื‘ืœ ืขื‘ื•ื“ื” ื™ื•ืชืจ ื˜ื•ื‘ื”,
06:35
and we know many students who did.
133
395788
2060
ื•ื™ื“ื•ืข ืœื ื• ืขืœ ืกื˜ื•ื“ื ื˜ื™ื ืจื‘ื™ื ืืฉืจ ืขืฉื• ื›ืŸ.
06:37
Some students took their certificate
134
397848
1919
ื—ืœืง ืžื”ืกื˜ื•ื“ื ื˜ื™ื ืœืงื—ื• ืืช ื”ืชืขื•ื“ื” ืฉืœื”ื
06:39
and presented this to an educational institution at which they were enrolled
135
399767
3122
ืœืžื•ืกื“ ื—ื™ื ื•ื›ื™ ืฉืืœื™ื• ืจืฆื• ืœื”ื™ืจืฉื
06:42
for actual college credit.
136
402889
1841
ื•ืงื™ื‘ืœื• ื ืงื•ื“ื•ืช ื–ื›ื•ืช.
06:44
So these students were really getting something meaningful
137
404730
2214
ืื– ื”ืชืœืžื™ื“ื™ื ื”ืืœื” ื‘ืืžืช ืžืงื‘ืœื™ื ืžืฉื”ื• ืžืฉืžืขื•ืชื™
06:46
for their investment of time and effort.
138
406944
2834
ืขื‘ื•ืจ ื”ื–ืžืŸ ื•ื”ืžืืžืฅ ืฉืœื”ื.
06:49
Let's talk a little bit about some of the components
139
409778
2555
ื‘ื•ืื• ื ื“ื‘ืจ ืงืฆืช ืขืœ ื—ืœืง ืžื”ืจื›ื™ื‘ื™ื
06:52
that go into these courses.
140
412333
1892
ืืฉืจ ื ื›ื ืกื™ื ืœืงื•ืจืกื™ื ื”ืืœื”.
06:54
The first component is that when you move away
141
414225
2628
ื”ืจื›ื™ื‘ ื”ืจืืฉื•ืŸ ื”ื•ื ืฉื›ืืฉืจ ืžืชืจื—ืงื™ื
06:56
from the constraints of a physical classroom
142
416853
2297
ืžื”ืื™ืœื•ืฆื™ื ืฉืœ ืœื™ืžื•ื“ ื‘ื›ื™ืชื•ืช ืคื™ื–ื™ื•ืช
06:59
and design content explicitly for an online format,
143
419150
2840
ื•ืžืขืฆื‘ื™ื ืชื•ื›ืŸ ืฉืžื™ื•ืขื“ ื‘ืžื›ื•ื•ืŸ ืœืœื™ืžื•ื“ ืžืงื•ื•ืŸ,
07:01
you can break away from, for example,
144
421990
2528
ืืคืฉืจ ืœื”ืชื ืชืง, ืœื“ื•ื’ืžื”,
07:04
the monolithic one-hour lecture.
145
424518
2415
ืžื”ืคื•ืจืžื˜ ื”ืงื‘ื•ืข ืฉืœ ื”ืจืฆืื•ืช ื‘ืื•ืจืš ืฉืขื”.
07:06
You can break up the material, for example,
146
426933
1785
ื ื™ืชืŸ ืœืคืจืง ืืช ื”ื—ื•ืžืจ, ืœื“ื•ื’ืžื”,
07:08
into these short, modular units of eight to 12 minutes,
147
428718
3376
ืœื™ื—ื™ื“ื•ืช ืžื•ื“ื•ืœืจื™ื•ืช ืงืฆืจื•ืช ืฉืœ 8 ืขื“ 12 ื“ืงื•ืช,
07:12
each of which represents a coherent concept.
148
432094
2974
ืฉื›ืœ ืื—ืช ืžื”ืŸ ืžื™ื™ืฆื’ืช ืจืขื™ื•ืŸ ืงื•ื”ืจื ื˜ื™.
07:15
Students can traverse this material in different ways,
149
435068
2570
ื”ืกื˜ื•ื“ื ื˜ื™ื ื™ื›ื•ืœื™ื ืœืขื‘ื•ืจ ืขืœ ื”ื—ื•ืžืจ ื”ื–ื” ื‘ื“ืจื›ื™ื ืฉื•ื ื•ืช,
07:17
depending on their background, their skills or their interests.
150
437638
3704
ื‘ื”ืชืื ืœืจืงืข, ืœื›ื™ืฉื•ืจื™ื ืื• ืœืขื ื™ื™ืŸ ืฉืœื”ื.
07:21
So, for example, some students might benefit
151
441342
2520
ื›ืš, ืœื“ื•ื’ืžื”, ื—ืœืง ืžื”ืชืœืžื™ื“ื™ื ื™ืคื™ืงื• ื”ืจื‘ื”
07:23
from a little bit of preparatory material
152
443862
2760
ืžืงืฆืช ื—ื•ืžืจ ื”ื›ื ื”
07:26
that other students might already have.
153
446622
2071
ืฉืกื˜ื•ื“ื ื˜ื™ื ืื—ืจื™ื ืื•ืœื™ ื›ื‘ืจ ืจื›ืฉื•.
07:28
Other students might be interested in a particular
154
448693
2440
ืกื˜ื•ื“ื ื˜ื™ื ืื—ืจื™ื ืขืฉื•ื™ื™ื ืœื”ืชืขื ื™ื™ืŸ
07:31
enrichment topic that they want to pursue individually.
155
451133
3086
ื‘ื ื•ืฉื ื”ืขืฉืจื” ืžืกื•ื™ื™ื ืฉื”ื ืจื•ืฆื™ื ืœื”ืขืžื™ืง ื‘ื• ื‘ืื•ืคืŸ ืื™ืฉื™.
07:34
So this format allows us to break away
156
454219
3235
ืœื›ืŸ ืชื‘ื ื™ืช ื–ื• ืžืืคืฉืจืช ืœื ื• ืœืคืจื•ืฅ
07:37
from the one-size-fits-all model of education,
157
457454
2824
ืžืŸ ื”ืžื•ื“ืœ ื”ื—ื“-ืžื™ื“ืชื™ ืฉืœ ื”ื—ื™ื ื•ืš,
07:40
and allows students to follow a much more personalized curriculum.
158
460278
3992
ื‘ื›ืš ืฉืื ื• ืžืืคืฉืจื™ื ืœืกื˜ื•ื“ื ื˜ื™ื ืœื‘ื—ื•ืจ ืชื•ื›ื ื™ืช ืœื™ืžื•ื“ื™ื ื”ืจื‘ื” ื™ื•ืชืจ ืื™ืฉื™ืช.
07:44
Of course, we all know as educators
159
464270
2343
ื›ืžื—ื ื›ื™ื, ื›ืžื•ื‘ืŸ, ื›ื•ืœื ื• ื™ื•ื“ืขื™ื
07:46
that students don't learn by sitting and passively watching videos.
160
466613
3360
ืฉื”ืชืœืžื™ื“ื™ื ืœื ืœื•ืžื“ื™ื ืขืœ-ื™ื“ื™ ื™ืฉื™ื‘ื” ื•ืฆืคื™ื™ื” ืคืืกื™ื‘ื™ืช ื‘ืกืจื˜ื•ื ื™ื.
07:49
Perhaps one of the biggest components of this effort
161
469973
2945
ืื•ืœื™ ืื—ื“ ื”ืžืจื›ื™ื‘ื™ื ื”ื’ื“ื•ืœื™ื ื‘ื™ื•ืชืจ ืฉืœ ื ืกื™ื•ืŸ ื–ื”
07:52
is that we need to have students
162
472918
2592
ื”ื•ื ื”ืฆื•ืจืš ืฉื”ืกื˜ื•ื“ื ื˜ื™ื
07:55
who practice with the material
163
475510
2409
ื™ืชืจื’ืœื• ืืช ื”ื—ื•ืžืจ
07:57
in order to really understand it.
164
477919
3156
ื›ื“ื™ ื‘ืืžืช ืœื”ื‘ื™ืŸ ืื•ืชื•.
08:01
There's been a range of studies that demonstrate the importance of this.
165
481075
3268
ืงื™ื™ื ืžื’ื•ื•ืŸ ืžื—ืงืจื™ื ื”ืžื“ื’ื™ืžื™ื ืืช ื”ื—ืฉื™ื‘ื•ืช ืฉืœ ื–ื”.
08:04
This one that appeared in Science last year, for example,
166
484343
2532
ื–ื” ืžื—ืงืจ ืฉื”ื•ืคื™ืข ื‘ืžื’ื–ื™ืŸ Science ื‘ืฉื ื” ืฉืขื‘ืจื”, ืœื“ื•ื’ืžื”,
08:06
demonstrates that even simple retrieval practice,
167
486875
2832
ื•ื”ื•ื ืžื“ื’ื™ื ื›ื™ ืืคื™ืœื• ืชืจื’ื•ืœ ืฉืœ ืฉืœื™ืคื” ืคืฉื•ื˜ื”,
08:09
where students are just supposed to repeat
168
489707
2792
ื‘ื• ืกื˜ื•ื“ื ื˜ื™ื ืืžื•ืจื™ื ืจืง ืœื—ื–ื•ืจ
08:12
what they already learned
169
492499
1400
ืขืœ ืžื” ืฉื”ื ื›ื‘ืจ ืœืžื“ื•,
08:13
gives considerably improved results
170
493899
1920
ื ื•ืชืŸ ืชื•ืฆืื•ืช ืžืฉื•ืคืจื•ืช ื‘ืžื™ื“ื” ื ื™ื›ืจืช
08:15
on various achievement tests down the line
171
495819
2269
ื‘ืžื‘ื—ื ื™ ื”ื™ืฉื’ื™ื ืฉื•ื ื™ื ื‘ื”ืžืฉืš ื”ื“ืจืš,
08:18
than many other educational interventions.
172
498088
4304
ื”ืจื‘ื” ื™ื•ืชืจ ืžื”ืชืขืจื‘ื•ื™ื•ืช ื—ื™ื ื•ื›ื™ื•ืช ืื—ืจื•ืช.
08:22
We've tried to build in retrieval practice into the platform,
173
502392
2962
ื ื™ืกื™ื ื• ืœื‘ื ื•ืช ืชืจื’ื•ืœ ืฉืœื™ืคื” ื‘ืชื•ืš ื”ืคืœื˜ืคื•ืจืžื” ืฉืœื ื•,
08:25
as well as other forms of practice in many ways.
174
505354
2254
ื›ืžื• ื’ื ืฆื•ืจื•ืช ืื—ืจื•ืช ืฉืœ ืชืจื’ื•ืœ ื‘ื“ืจื›ื™ื ืจื‘ื•ืช.
08:27
For example, even our videos are not just videos.
175
507608
4144
ืœื“ื•ื’ืžื”, ืืคื™ืœื• ืกืจื˜ื™ ื”ื•ื™ื“ืื• ืฉืœื ื• ืื™ื ื ืจืง ืกืจื˜ื™ ื•ื™ื“ืื•.
08:31
Every few minutes, the video pauses
176
511752
2043
ื›ืœ ืžืกืคืจ ื“ืงื•ืช, ื”ื•ื™ื“ืื• ืžื•ืฉื”ื”
08:33
and the students get asked a question.
177
513795
2151
ื•ื”ืชืœืžื™ื“ื™ื ื ืฉืืœื™ื ืฉืืœื”.
08:35
(Video) SP: ... These four things. Prospect theory, hyperbolic discounting,
178
515946
2221
(ื•ื™ื“ืื•) SP:... ืืจื‘ืขื” ื“ื‘ืจื™ื ืืœื”. ืชื•ืจืช ื”ืขืจืš, ื”ื™ื•ื•ืŸ ื”ื™ืคืจื‘ื•ืœื™,
08:38
status quo bias, base rate bias. They're all well documented.
179
518167
3092
ื”ื˜ื™ื™ืช ื”ืกื˜ื˜ื•ืก ืงื•ื•, ื”ื˜ื™ื™ืช ื”ืฉื™ืขื•ืจ ื”ื‘ืกื™ืกื™. ื”ื ื›ื•ืœื ืžืชื•ืขื“ื™ื ื”ื™ื˜ื‘.
08:41
So they're all well documented deviations from rational behavior.
180
521259
2767
ื›ืœ ืืœื” ื”ืŸ ืกื˜ื™ื•ืช ืžื”ืชื ื”ื’ื•ืช ืจืฆื™ื•ื ืœื™ืช ื”ืžืชื•ืขื“ื•ืช ื”ื™ื˜ื‘.
08:44
DK: So here the video pauses,
181
524026
1624
DK: ืื– ื›ืืŸ ื”ื•ื•ื™ื“ืื• ืžื•ืฉื”ื”,
08:45
and the student types in the answer into the box
182
525650
2256
ื•ื”ืกื˜ื•ื“ื ื˜ ืžืงืœื™ื“ ืืช ื”ืชืฉื•ื‘ื” ื‘ืชื™ื‘ื”
08:47
and submits. Obviously they weren't paying attention.
183
527906
3223
ื•ืฉื•ืœื— ืื•ืชื”. ื›ืžื•ื‘ืŸ ืฉื”ื ืœื ืฉืžื• ืœื‘.
08:51
(Laughter)
184
531144
869
(ืฆื—ื•ืง)
08:52
So they get to try again,
185
532013
2010
ืื– ื”ื ื™ื›ื•ืœื™ื ืœื ืกื•ืช ืฉื•ื‘,
08:54
and this time they got it right.
186
534023
2536
ื”ืคืขื ื”ื ืขื•ื ื™ื ื›ืžื• ืฉืฆืจื™ืš.
08:56
There's an optional explanation if they want.
187
536559
2193
ื™ืฉ ื”ืกื‘ืจ ืื•ืคืฆื™ื•ื ืœื™, ืื ื”ื ืจื•ืฆื™ื.
08:58
And now the video moves on to the next part of the lecture.
188
538752
4257
ื›ืขืช ื”ื•ื•ื™ื“ืื• ืขื•ื‘ืจ ืœื—ืœืง ื”ื‘ื ืฉืœ ื”ื”ืจืฆืื”.
09:03
This is a kind of simple question
189
543009
1878
ื–ื”ื• ืกื•ื’ ืฉืœ ืฉืืœื” ืคืฉื•ื˜ื”
09:04
that I as an instructor might ask in class,
190
544887
2081
ืฉืื ื™ ื‘ืชื•ืจ ืžืจืฆื” ืขืฉื•ื™ื” ืœืฉืื•ืœ ื‘ื›ื™ืชื”,
09:06
but when I ask that kind of a question in class,
191
546968
2500
ืื‘ืœ ื›ืฉืื ื™ ืฉื•ืืœืช ืฉืืœื” ื›ื–ื• ื‘ื›ื™ืชื”,
09:09
80 percent of the students
192
549468
1300
80 ืื—ื•ื– ืžื”ืกื˜ื•ื“ื ื˜ื™ื
09:10
are still scribbling the last thing I said,
193
550768
1866
ืขืกื•ืงื™ื ืขื“ื™ื™ืŸ ื‘ืฉืจื‘ื•ื˜ ื”ื“ื‘ืจ ื”ืื—ืจื•ืŸ ืฉืืžืจืชื™,
09:12
15 percent are zoned out on Facebook,
194
552634
3321
15 ืื—ื•ื–ื™ื ื‘ื›ืœืœ ืขืกื•ืงื™ื ื‘ืคื™ื™ืกื‘ื•ืง,
09:15
and then there's the smarty pants in the front row
195
555955
2456
ื•ื™ืฉ ื’ื ืืช ื”ื—ื›ืžื•ืœื•ื’ื™ื ื‘ืฉื•ืจื” ื”ืจืืฉื•ื ื”
09:18
who blurts out the answer
196
558411
1359
ืฉื™ื•ืจื™ื ืืช ื”ืชืฉื•ื‘ื”
09:19
before anyone else has had a chance to think about it,
197
559770
2207
ืœืคื ื™ ืฉืœืื—ืจื™ื ื”ื™ืชื” ื”ื–ื“ืžื ื•ืช ืœื—ืฉื•ื‘ ืขืœ ื–ื”,
09:21
and I as the instructor am terribly gratified
198
561977
2872
ื•ืื ื™, ื›ืžืจืฆื”, ืžืžืฉ ืฉืžื—ื”
09:24
that somebody actually knew the answer.
199
564849
1648
ืฉืžื™ืฉื”ื• ื‘ืืžืช ื™ื“ืข ืืช ื”ืชืฉื•ื‘ื”.
09:26
And so the lecture moves on before, really,
200
566497
2792
ื•ืื– ื”ื”ืจืฆืื” ืžืžืฉื™ื›ื” ืขื•ื“ ืœืคื ื™
09:29
most of the students have even noticed that a question had been asked.
201
569289
3529
ืฉืจื•ื‘ ื”ืชืœืžื™ื“ื™ื ืืคื™ืœื• ื”ื‘ื—ื™ื ื• ืฉืฉืืœืชื™ ืฉืืœื”.
09:32
Here, every single student
202
572818
2607
ื›ืืŸ, ื›ืœ ืกื˜ื•ื“ื ื˜
09:35
has to engage with the material.
203
575425
2784
ืฆืจื™ืš ืœื”ืชืขืกืง ืขื ื”ื—ื•ืžืจ.
09:38
And of course these simple retrieval questions
204
578209
1936
ื•ื›ืžื•ื‘ืŸ ืฉืฉืืœื•ืช ืฉืœื™ืคื” ืคืฉื•ื˜ื•ืช ื›ืืœื”
09:40
are not the end of the story.
205
580145
1662
ืื™ื ืŸ ืกื•ืฃ ื”ืกื™ืคื•ืจ.
09:41
One needs to build in much more meaningful practice questions,
206
581807
2970
ืฆืจื™ืš ืœื‘ื ื•ืช ืฉืืœื•ืช ืชืจื’ื•ืœ ืžืฉืžืขื•ืชื™ื•ืช ื”ืจื‘ื” ื™ื•ืชืจ,
09:44
and one also needs to provide the students with feedback
207
584777
2353
ื•ืฆืจื™ืš ื’ื ืœืกืคืง ืœืกื˜ื•ื“ื ื˜ื™ื ืžืฉื•ื‘
09:47
on those questions.
208
587130
1663
ืขืœ ืฉืืœื•ืช ืืœื”.
09:48
Now, how do you grade the work of 100,000 students
209
588793
2888
ืขื›ืฉื™ื•, ืื™ืš ืืคืฉืจ ืœืชืช ืฆื™ื•ื ื™ื ืœ 100,000 ืกื˜ื•ื“ื ื˜ื™ื
09:51
if you do not have 10,000 TAs?
210
591681
3082
ืื ืื™ืŸ ืœื›ื 10,000 ืขื•ื–ืจื™ ื”ื•ืจืื”?
09:54
The answer is, you need to use technology
211
594763
2354
ื”ืชืฉื•ื‘ื” ื”ื™ื, ืฆืจื™ืš ืœื”ืฉืชืžืฉ ื‘ื˜ื›ื ื•ืœื•ื’ื™ื”
09:57
to do it for you.
212
597117
1495
ื›ื“ื™ ืœืขืฉื•ืช ืืช ื–ื” ื‘ืฉื‘ื™ืœื›ื.
09:58
Now, fortunately, technology has come a long way,
213
598612
2648
ืœืžืจื‘ื” ื”ืžื–ืœ, ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ื”ืชืงื“ืžื” ืžืื•ื“,
10:01
and we can now grade a range of interesting types of homework.
214
601260
3268
ื•ื›ืขืช ืื ื• ื™ื›ื•ืœื™ื ืœืชืช ืฆื™ื•ื ื™ื ืœืžื’ื•ื•ืŸ ืžืขื ื™ื™ืŸ ืฉืœ ืžื˜ืœื•ืช ื‘ื™ืช.
10:04
In addition to multiple choice
215
604528
1527
ื‘ื ื•ืกืฃ ืœืฉืืœื•ืช ืจื‘-ื‘ืจื™ืจื”
10:06
and the kinds of short answer questions that you saw in the video,
216
606055
3153
ื•ืฉืืœื•ืช ื‘ืขืœื•ืช ืชืฉื•ื‘ื” ืงืฆืจื” ืฉืจืื™ืชื ื‘ืžื”ืœืš ื”ื•ื™ื“ืื•,
10:09
we can also grade math, mathematical expressions
217
609208
3260
ืื ื• ื’ื ื™ื›ื•ืœื™ื ืœืชืช ืฆื™ื•ื ื™ื ืœืฉืืœื•ืช ื‘ืžืชืžื˜ื™ืงื”, ื‘ื™ื˜ื•ื™ื™ื ืžืชืžื˜ื™ื™ื
10:12
as well as mathematical derivations.
218
612468
1952
ื•ื›ืŸ ื’ื–ื™ืจื” ืžืชืžื˜ื™ืช.
10:14
We can grade models, whether it's
219
614420
2874
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืชืช ืฆื™ื•ื ื™ื ืœืžื•ื“ืœื™ื, ื‘ื™ืŸ ืื ืžื“ื•ื‘ืจ
10:17
financial models in a business class
220
617294
2176
ื‘ืžื•ื“ืœื™ื ืคื™ื ื ืกื™ื™ื ื‘ืงื•ืจืกื™ื ื‘ืžื ื”ืœ ืขืกืงื™ื
10:19
or physical models in a science or engineering class
221
619470
2984
ืื• ืžื•ื“ืœื™ื ืคื™ื–ื™ื™ื ื‘ืงื•ืจืกื™ื ื‘ืžื“ืข ืื• ื”ื ื“ืกื”
10:22
and we can grade some pretty sophisticated programming assignments.
222
622454
3744
ื•ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ืขืจื™ืš ืžืฉื™ืžื•ืช ืชื™ื›ื ื•ืช ืžืชื•ื—ื›ืžื•ืช ืœืžื“ื™.
10:26
Let me show you one that's actually pretty simple
223
626198
1919
ืชื ื• ืœื™ ืœื”ืจืื•ืช ืœื›ื ืžืฉื™ืžื” ื“ื™ ืคืฉื•ื˜ื”
10:28
but fairly visual.
224
628117
1480
ืื‘ืœ ื•ื™ื–ื•ืืœื™ืช.
10:29
This is from Stanford's Computer Science 101 class,
225
629597
2477
ื–ื• ื“ื•ื’ืžื ืžืงื•ืจืก ืžื‘ื•ื ืœืžื“ืขื™ ื”ืžื—ืฉื‘ ืฉืœ ืื•ื ื™ื‘ืจืกื™ื˜ืช ืกื˜ื ืคื•ืจื“,
10:32
and the students are supposed to color-correct
226
632074
1604
ื”ืชืœืžื™ื“ื™ื ืืžื•ืจื™ื ืœื‘ืฆืข ืชื™ืงื•ืŸ ืฆื‘ืข
10:33
that blurry red image.
227
633678
1592
ืฉืœ ืชืžื•ื ื” ื–ื• ืฉืžื˜ื•ืฉื˜ืฉืช ื‘ืื“ื•ื.
10:35
They're typing their program into the browser,
228
635270
2018
ื”ื ืžืงืœื™ื“ื™ื ืืช ื”ืชื•ื›ื ื™ืช ืฉืœื”ื ืœืชื•ืš ื”ื“ืคื“ืคืŸ,
10:37
and you can see they didn't get it quite right, Lady Liberty is still seasick.
229
637288
4058
ืืคืฉืจ ืœืจืื•ืช ืฉื”ื ืœื ืขืฉื• ื–ืืช ื›ืžื• ืฉืฆืจื™ืš, ื•ืœื›ืŸ ื’ื‘ืจืช ื”ื—ื™ืจื•ืช ืขื“ื™ื™ืŸ ื ืจืื™ืช ื—ื•ืœื”.
10:41
And so, the student tries again, and now they got it right, and they're told that,
230
641346
3756
ืื– ื”ืกื˜ื•ื“ื ื˜ ืžื ืกื” ืฉื•ื‘, ื•ืขื›ืฉื™ื• ื–ื” ืขื•ื‘ื“ ื›ืžื• ืฉืฆืจื™ืš, ื•ืื•ืžืจื™ื ืœื”ื,
10:45
and they can move on to the next assignment.
231
645102
2359
ื•ื”ื ื™ื›ื•ืœื™ื ืœื”ืžืฉื™ืš ืœืžืฉื™ืžื” ื”ื‘ืื”.
10:47
This ability to interact actively with the material
232
647461
3148
ื”ื™ื›ื•ืœืช ื”ื–ื• ืœืชืงืฉืจ ื‘ืื•ืคืŸ ืคืขื™ืœ ืขื ื”ื—ื•ืžืจ
10:50
and be told when you're right or wrong
233
650609
1684
ื•ืœื“ืขืช ืื ืืชื ืฆื•ื“ืงื™ื ืื• ื˜ื•ืขื™ื
10:52
is really essential to student learning.
234
652293
3126
ื”ื™ื ื—ื™ื•ื ื™ืช ืžืื•ื“ ืœืกื˜ื•ื“ื ื˜.
10:55
Now, of course we cannot yet grade
235
655419
2275
ืขื›ืฉื™ื•, ื›ืžื•ื‘ืŸ ืฉืื ื—ื ื• ืœื ื™ื›ื•ืœื™ื ืขื“ื™ื™ืŸ ืœืชืช ืฆื™ื•ื ื™ื
10:57
the range of work that one needs for all courses.
236
657694
2834
ืœื˜ื•ื•ื— ื”ืžื˜ืœื•ืช ืฉืงื™ื™ื ืขื‘ื•ืจ ื›ืœ ื”ืงื•ืจืกื™ื.
11:00
Specifically, what's lacking is the kind of critical thinking work
237
660528
3301
ื‘ืื•ืคืŸ ืกืคืฆื™ืคื™, ืžื” ืฉื—ืกืจ ื”ื•ื ืžืขื™ืŸ ืขื‘ื•ื“ืช ื—ืฉื™ื‘ื” ื‘ื™ืงื•ืจืชื™ืช
11:03
that is so essential in such disciplines
238
663829
1922
ืฉื—ื™ื•ื ื™ืช ื‘ื“ื™ืกืฆื™ืคืœื™ื ื•ืช ื›ื’ื•ืŸ
11:05
as the humanities, the social sciences, business and others.
239
665751
3597
ืžื“ืขื™ ื”ืจื•ื—, ืžื“ืขื™ ื”ื—ื‘ืจื”, ืžื ื”ืœ ืขืกืงื™ื ื•ืขื•ื“.
11:09
So we tried to convince, for example,
240
669348
2249
ืื– ื ื™ืกื™ื ื• ืœืฉื›ื ืข, ืœื“ื•ื’ืžื,
11:11
some of our humanities faculty
241
671597
1616
ื—ืœืง ืžื”ืกื’ืœ ืฉืœื ื• ืœืžื“ืขื™ ื”ืจื•ื—
11:13
that multiple choice was not such a bad strategy.
242
673213
2696
ืฉืฉืืœื•ืช ืืžืจื™ืงืื™ื•ืช ื”ืŸ ืœืื• ื“ื•ื•ืงื ืืกื˜ืจื˜ื’ื™ื” ืจืขื”.
11:15
That didn't go over really well.
243
675909
2191
ื–ื” ืœื ื›ืœ-ื›ืš ื”ืฆืœื™ื—.
11:18
So we had to come up with a different solution.
244
678100
2433
ืื– ื”ื™ื™ื ื• ืฆืจื™ื›ื™ื ืœืžืฆื•ื ืคืชืจื•ืŸ ืื—ืจ.
11:20
And the solution we ended up using is peer grading.
245
680533
3074
ื”ืคืชืจื•ืŸ ืฉืื ื• ืžืฉืชืžืฉื™ื ื‘ื• ื›ืขืช ื”ื•ื ืฆื™ื•ื ื™ ืขืžื™ืชื™ื.
11:23
It turns out that previous studies show,
246
683607
2422
ืžืกืชื‘ืจ ืฉืžื—ืงืจื™ื ืงื•ื“ืžื™ื
11:26
like this one by Saddler and Good,
247
686029
1672
ื›ืžื• ื–ื” ืฉืœ ืกืื“ืœืจ ื•ื’ื•ื“,
11:27
that peer grading is a surprisingly effective strategy
248
687701
2488
ืฉืฆื™ื•ื ื™ ืขืžื™ืชื™ื ื”ื ืืกื˜ืจื˜ื’ื™ื” ืžืคืชื™ืขื” ื‘ื™ืขื™ืœื•ืชื”
11:30
for providing reproducible grades.
249
690189
3214
ืœืžืชืŸ ืฆื™ื•ื ื™ื ืžื”ื™ืžื ื™ื.
11:33
It was tried only in small classes,
250
693403
1770
ื–ื” ื ื•ืกื” ืจืง ื‘ื›ื™ืชื•ืช ืงื˜ื ื•ืช,
11:35
but there it showed, for example,
251
695173
1487
ืืš ืฉื ื–ื” ื”ืจืื”, ืœื“ื•ื’ืžื”,
11:36
that these student-assigned grades on the y-axis
252
696660
2482
ืฉื”ืฆื™ื•ื ื™ื ื”ืœืœื• ืฉื”ื•ืขื ืงื• ืขืœ ื™ื“ื™ ื”ืกื˜ื•ื“ื ื˜ื™ื ืขืœ ืฆื™ืจ ื”-y
11:39
are actually very well correlated
253
699142
1311
ื”ื ื‘ืžืชืื ื˜ื•ื‘ ืžืื•ื“
11:40
with the teacher-assigned grade on the x-axis.
254
700453
2296
ืขื ื”ืฆื™ื•ืŸ ืฉื ื™ืชืŸ ืขืœ ื™ื“ื™ ื”ืžืจืฆื” ื‘ืฆื™ืจ ื”-x.
11:42
What's even more surprising is that self-grades,
255
702749
3160
ืžื” ืฉืžืคืชื™ืข ืขื•ื“ ื™ื•ืชืจ ื”ื•ื ืฉืฆื™ื™ื ื•ืŸ ืขืฆืžื™,
11:45
where the students grade their own work critically --
256
705909
2311
ืฉื‘ื• ื”ืกื˜ื•ื“ื ื˜ื™ื ื ื•ืชื ื™ื ืœืขืฆืžื ืฆื™ื•ื ื™ื ื‘ืื•ืคืŸ ื‘ื™ืงื•ืจืชื™ -
11:48
so long as you incentivize them properly
257
708220
1737
ื›ืœ ืขื•ื“ ื ื•ืชื ื™ื ืœื”ื ืชืžืจื™ืฆื™ื ื›ืจืื•ื™
11:49
so they can't give themselves a perfect score --
258
709957
1938
ื›ืš ืฉื”ื ืœื ื ื•ืชื ื™ื ืœืขืฆืžื ืฆื™ื•ืŸ ืžื•ืฉืœื -
11:51
are actually even better correlated with the teacher grades.
259
711895
3191
ื”ื ืœืžืขืฉื” ื‘ืžืชืื ื˜ื•ื‘ ื™ื•ืชืจ ืขื ื”ืฆื™ื•ื ื™ื ืฉืœ ื”ืžืจืฆื”.
11:55
And so this is an effective strategy
260
715086
1607
ืื– ื–ืืช ืืกื˜ืจื˜ื’ื™ื” ื™ืขื™ืœื”
11:56
that can be used for grading at scale,
261
716693
2104
ื‘ื” ื ื™ืชืŸ ืœื”ืฉืชืžืฉ ืœืฆื™ื™ื ื•ืŸ ื‘ืงื ื” ืžื™ื“ื” ืจื—ื‘,
11:58
and is also a useful learning strategy for the students,
262
718797
2736
ื•ื–ื• ื’ื ืืกื˜ืจื˜ื’ื™ืช ืœืžื™ื“ื” ืฉื™ืžื•ืฉื™ืช ืขื‘ื•ืจ ื”ืกื˜ื•ื“ื ื˜ื™ื
12:01
because they actually learn from the experience.
263
721533
2255
ืžื›ื™ื•ื•ืŸ ืฉื”ื ืœืžืขืฉื” ื™ื›ื•ืœื™ื ืœืœืžื•ื“ ืžื”ื ื™ืกื™ื•ืŸ.
12:03
So we now have the largest peer-grading pipeline ever devised,
264
723788
4649
ืื– ืขื›ืฉื™ื• ื™ืฉ ืœื ื• ืืช ืžื™ื–ื ื“ื™ืจื•ื’ ืขืžื™ืชื™ื ื”ื’ื“ื•ืœ ื‘ื™ื•ืชืจ ืฉืคื™ืชื—ื• ืื™ ืคืขื,
12:08
where tens of thousands of students
265
728437
2504
ื‘ื• ืขืฉืจื•ืช ืืœืคื™ ืชืœืžื™ื“ื™ื
12:10
are grading each other's work,
266
730941
1198
ื ื•ืชื ื™ื ืฆื™ื•ืŸ ื–ื” ืœื–ื”,
12:12
and quite successfully, I have to say.
267
732139
3069
ื“ื™ ื‘ื”ืฆืœื—ื”, ืื ื™ ื—ื™ื™ื‘ืช ืœื•ืžืจ.
12:15
But this is not just about students
268
735208
2260
ืื‘ืœ ืœื ืžื“ื•ื‘ืจ ื›ืืŸ ืจืง ืขืœ ืกื˜ื•ื“ื ื˜ื™ื
12:17
sitting alone in their living room working through problems.
269
737468
3041
ืฉื™ื•ืฉื‘ื™ื ืœื‘ื“ ื‘ืกืœื•ืŸ ื•ืขื•ื‘ื“ื™ื ืขืœ ื”ื‘ืขื™ื•ืช.
12:20
Around each one of our courses,
270
740509
1807
ืกื‘ื™ื‘ ื›ืœ ืื—ื“ ืžื”ืงื•ืจืกื™ื ืฉืœื ื•,
12:22
a community of students had formed,
271
742316
2160
ื”ืชื’ื‘ืฉื” ืงื”ื™ืœื” ืฉืœ ืกื˜ื•ื“ื ื˜ื™ื,
12:24
a global community of people
272
744476
1880
ืงื”ื™ืœื” ื’ืœื•ื‘ืœื™ืช ืฉืœ ืื ืฉื™ื
12:26
around a shared intellectual endeavor.
273
746356
2532
ืกื‘ื™ื‘ ืžืฉื™ืžื” ืื™ื ื˜ืœืงื˜ื•ืืœื™ืช ืžืฉื•ืชืคืช.
12:28
What you see here is a self-generated map
274
748888
2652
ืžื” ืฉืืชื ืจื•ืื™ื ื›ืืŸ ื–ื• ืžืคื” ืฉื™ืฆืจื•
12:31
from students in our Princeton Sociology 101 course,
275
751540
2961
ืกื˜ื•ื“ื ื˜ื™ื ื‘ืงื•ืจืก ืฉืœื ื• ืžื‘ื•ื ืœืกื•ืฆื™ื•ืœื•ื’ื™ื” ืฉืœ ืคืจื™ื ืกื˜ื•ืŸ,
12:34
where they have put themselves on a world map,
276
754501
2759
ืฉื‘ื” ื”ืกื˜ื•ื“ื ื˜ื™ื ืžื™ืงืžื• ืขืฆืžื ืขืœ ืžืคืช ื”ืขื•ืœื,
12:37
and you can really see the global reach of this kind of effort.
277
757260
2960
ื•ืืชื ื‘ืืžืช ื™ื›ื•ืœื™ื ืœืจืื•ืช ืฉื”ืคืจื•ื™ื™ืงื˜ ื”ื–ื” ื”ื•ื ื‘ืกื“ืจ ื’ื•ื“ืœ ืขื•ืœืžื™.
12:40
Students collaborated in these courses in a variety of different ways.
278
760220
4567
ืกื˜ื•ื“ื ื˜ื™ื ืฉื™ืชืคื• ืคืขื•ืœื” ื‘ืงื•ืจืกื™ื ื”ืืœื” ื‘ืžื’ื•ื•ืŸ ื“ืจื›ื™ื ืฉื•ื ื•ืช.
12:44
First of all, there was a question and answer forum,
279
764787
2639
ืงื•ื“ื ื›ืœ, ื”ื™ื” ืคื•ืจื•ื ืฉืืœื•ืช ื•ืชืฉื•ื‘ื•ืช,
12:47
where students would pose questions,
280
767426
2144
ืฉื‘ื• ื”ืกื˜ื•ื“ื ื˜ื™ื ื”ืขืœื• ืฉืืœื•ืช,
12:49
and other students would answer those questions.
281
769570
2424
ื•ืกื˜ื•ื“ื ื˜ื™ื ืื—ืจื™ื ืขื ื• ืขืœ ืฉืืœื•ืช ืืœื”.
12:51
And the really amazing thing is,
282
771994
1713
ื•ื”ื“ื‘ืจ ื”ืžื“ื”ื™ื ื‘ืืžืช ื”ื•ื
12:53
because there were so many students,
283
773707
1670
ืฉื‘ื’ืœืœ ืฉื”ื™ื• ืฉื ื›ืœ ื›ืš ื”ืจื‘ื” ืชืœืžื™ื“ื™ื,
12:55
it means that even if a student posed a question
284
775377
2365
ืžืฉืžืขื•ืช ื”ื“ื‘ืจ ื”ื™ืชื” ืฉื’ื ืื ืชืœืžื™ื“ ื”ืขืœื” ืฉืืœื”
12:57
at 3 o'clock in the morning,
285
777742
1632
ื‘ืฉืขื” 3 ื‘ื‘ื•ืงืจ,
12:59
somewhere around the world,
286
779374
1582
ืื™ืคืฉื”ื• ื‘ืจื—ื‘ื™ ื”ืขื•ืœื,
13:00
there would be somebody who was awake
287
780956
2074
ื”ื™ื” ืžื™ืฉื”ื• ืขืจ
13:03
and working on the same problem.
288
783030
2313
ืฉืขื‘ื“ ืขืœ ืื•ืชื” ื‘ืขื™ื”.
13:05
And so, in many of our courses,
289
785343
1958
ื•ื›ืš, ื‘ืจื‘ื™ื ืžื”ืงื•ืจืกื™ื ืฉืœื ื•,
13:07
the median response time for a question
290
787301
2329
ื–ืžืŸ ื”ืชื’ื•ื‘ื” ื”ื—ืฆื™ื•ื ื™ ืœืฉืืœื”
13:09
on the question and answer forum was 22 minutes.
291
789630
3418
ื‘ืคื•ืจื•ื ื”ื™ื” 22 ื“ืงื•ืช.
13:13
Which is not a level of service I have ever offered to my Stanford students.
292
793048
4577
ื–ืืช ืจืžืช ืฉื™ืจื•ืช ืฉืžืขื•ืœื ืœื ื™ื›ื•ืœืชื™ ืœื”ืฆื™ืข ืœืกื˜ื•ื“ื ื˜ื™ื ืฉืœื™ ื‘ืกื˜ื ืคื•ืจื“.
13:17
(Laughter)
293
797625
1341
(ืฆื—ื•ืง)
13:18
And you can see from the student testimonials
294
798966
1942
ื•ืืคืฉืจ ืœืจืื•ืช ืžืขื“ื•ื™ื•ืช ื”ืกื˜ื•ื“ื ื˜ื™ื
13:20
that students actually find
295
800908
1687
ืฉืกื˜ื•ื“ื ื˜ื™ื ืœืžืขืฉื” ืžื’ืœื™ื
13:22
that because of this large online community,
296
802595
2521
ืฉื‘ื’ืœืœ ื”ืงื”ื™ืœื” ื”ืžืงื•ื•ื ืช ื”ื’ื“ื•ืœื” ื”ื–ื•,
13:25
they got to interact with each other in many ways
297
805116
2599
ื”ื ืชื™ืงืฉืจื• ื–ื” ืขื ื–ื” ื‘ื“ืจื›ื™ื ืจื‘ื•ืช
13:27
that were deeper than they did in the context of the physical classroom.
298
807715
4193
ืฉื”ื™ื• ืขืžื•ืงื•ืช ื™ื•ืชืจ ืžืžื” ืฉื”ื ืขืฉื• ื‘ื™ืฉื™ื‘ื” ืคื™ื–ื™ืช ื‘ื›ื™ืชื”.
13:31
Students also self-assembled,
299
811908
2344
ื”ืชืœืžื™ื“ื™ื ื’ื ื”ืชืืจื’ื ื• ื‘ืขืฆืžื,
13:34
without any kind of intervention from us,
300
814252
1863
ืœืœื ื›ืœ ื”ืชืขืจื‘ื•ืช ืžืฆื™ื“ื ื•,
13:36
into small study groups.
301
816115
1903
ื‘ืงื‘ื•ืฆื•ืช ืœื™ืžื•ื“ ืงื˜ื ื•ืช.
13:38
Some of these were physical study groups
302
818018
2362
ื—ืœืงืŸ ื”ื™ื• ืงื‘ื•ืฆื•ืช ืœืžื™ื“ื” ืคื™ื–ื™ื•ืช
13:40
along geographical constraints
303
820380
1826
ืชื—ืช ืื™ืœื•ืฆื™ื ื’ื™ืื•ื’ืจืคื™ื™ื
13:42
and met on a weekly basis to work through problem sets.
304
822206
2722
ืฉื ืคื’ืฉื• ืขืœ ื‘ืกื™ืก ืฉื‘ื•ืขื™ ืœืขื‘ื•ื“ื” ืขืœ ื‘ืขื™ื•ืช ืฉื”ื•ืฆื‘ื• ืœื”ื ื‘ืงื•ืจืก.
13:44
This is the San Francisco study group,
305
824928
1900
ื–ื•ื”ื™ ืงื‘ื•ืฆืช ืœื™ืžื•ื“ ืžืกืŸ ืคืจื ืกื™ืกืงื•,
13:46
but there were ones all over the world.
306
826828
2319
ืื‘ืœ ื”ื™ื• ื›ืืœื” ื‘ื›ืœ ืจื—ื‘ื™ ื”ืขื•ืœื.
13:49
Others were virtual study groups,
307
829147
2032
ืงื‘ื•ืฆื•ืช ืื—ืจื•ืช ื”ื™ื• ืงื‘ื•ืฆื•ืช ืœืžื™ื“ื” ื•ื™ืจื˜ื•ืืœื™ื•ืช,
13:51
sometimes along language lines or along cultural lines,
308
831179
2989
ืœืขื™ืชื™ื ื”ื™ื• ืงื‘ื•ืฆื•ืช ืกื‘ื™ื‘ ืฉืคื” ืื• ืกื‘ื™ื‘ ืชืจื‘ื•ืช ืžืฉื•ืชืคืช,
13:54
and on the bottom left there,
309
834168
1444
ื•ื‘ืชื—ืชื™ืช ื‘ืฆื“ ืฉืžืืœ,
13:55
you see our multicultural universal study group
310
835612
3796
ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืืช ืงื‘ื•ืฆืช ื”ืœื™ืžื•ื“ ื”ืจื‘-ืชืจื‘ื•ืชื™ืช ื”ืื•ื ื™ื‘ืจืกืœื™ืช ืฉืœื ื•
13:59
where people explicitly wanted to connect
311
839408
1763
ืฉื‘ื” ืื ืฉื™ื ื‘ืžืคื•ืจืฉ ืจืฆื• ืœื”ืชื—ื‘ืจ
14:01
with people from other cultures.
312
841171
3006
ืขื ืื ืฉื™ื ืžืชืจื‘ื•ื™ื•ืช ืื—ืจื•ืช.
14:04
There are some tremendous opportunities
313
844177
2111
ื™ืฉ ืžื’ื•ื•ืŸ ืืคืฉืจื•ื™ื•ืช ืื“ื™ืจ
14:06
to be had from this kind of framework.
314
846288
3325
ื‘ืชืฉืชื™ืช ืžืกื•ื’ ื–ื”.
14:09
The first is that it has the potential of giving us
315
849613
3654
ืจืืฉื™ืช, ื™ืฉ ืœื–ื” ืคื•ื˜ื ืฆื™ืืœ ืœื”ืขื ื™ืง ืœื ื•
14:13
a completely unprecedented look
316
853267
2434
ืžื‘ื˜ ื—ืกืจ ืชืงื“ื™ื
14:15
into understanding human learning.
317
855701
2289
ืขืœ ื”ื‘ื ื” ืฉืœ ืœืžื™ื“ื” ืื ื•ืฉื™ืช.
14:17
Because the data that we can collect here is unique.
318
857990
3463
ืžื›ื™ื•ื•ืŸ ืฉื”ื ืชื•ื ื™ื ืฉื ื™ืชืŸ ืœืืกื•ืฃ ื›ืืŸ ื”ื ื™ื™ื—ื•ื“ื™ื™ื.
14:21
You can collect every click, every homework submission,
319
861453
4009
ืืคืฉืจ ืœืืกื•ืฃ ื›ืœ ืœื—ื™ืฆืช ืขื›ื‘ืจ, ื›ืœ ื”ื’ืฉืช ืขื‘ื•ื“ื”,
14:25
every forum post from tens of thousands of students.
320
865462
4363
ื›ืœ ื”ื•ื“ืขื” ื‘ืคื•ืจื•ื, ืฉืœ ืขืฉืจื•ืช ืืœืคื™ ืกื˜ื•ื“ื ื˜ื™ื.
14:29
So you can turn the study of human learning
321
869825
2343
ื›ืš ื ื™ืชืŸ ืœื”ืคื•ืš ืืช ื—ืงืจ ื”ืœืžื™ื“ื” ื”ืื ื•ืฉื™ืช
14:32
from the hypothesis-driven mode
322
872168
1933
ืžืžื—ืงืจ ื”ืžื•ื ืข ืžื”ืฉืขืจื•ืช
14:34
to the data-driven mode, a transformation that,
323
874101
2858
ืœืžื—ืงืจ ื”ืžื•ื ืข ืžื ืชื•ื ื™ื, ืฉื™ื ื•ื™
14:36
for example, has revolutionized biology.
324
876959
3041
ืฉื’ืจื ืœืžื”ืคื›ื” ื‘ื‘ื™ื•ืœื•ื’ื™ื”, ืœื“ื•ื’ืžื”.
14:40
You can use these data to understand fundamental questions
325
880000
3424
ืืคืฉืจ ืœื”ืฉืชืžืฉ ื‘ื ืชื•ื ื™ื ื”ืืœื” ื›ื“ื™ ืœื”ื‘ื™ืŸ ืฉืืœื•ืช ื™ืกื•ื“
14:43
like, what are good learning strategies
326
883424
1880
ืœืžืฉืœ, ืžื”ืŸ ืืกื˜ืจื˜ื’ื™ื•ืช ืœืžื™ื“ื”
14:45
that are effective versus ones that are not?
327
885304
2696
ื™ืขื™ืœื•ืช ืœืขื•ืžืช ืื—ืจื•ืช ืฉืื™ื ืŸ?
14:48
And in the context of particular courses,
328
888000
2240
ื•ื‘ื”ืงืฉืจ ืฉืœ ืงื•ืจืกื™ื ืžืกื•ื™ืžื™ื,
14:50
you can ask questions
329
890240
1537
ืืคืฉืจ ืœืฉืื•ืœ ืฉืืœื•ืช
14:51
like, what are some of the misconceptions that are more common
330
891777
3255
ื›ืžื•, ืžื”ืŸ ื”ืชืคื™ืกื•ืช ื”ืฉื’ื•ื™ื•ืช ื”ื ืคื•ืฆื•ืช ื‘ื™ื•ืชืจ
14:55
and how do we help students fix them?
331
895032
2177
ื•ื›ื™ืฆื“ ืื ื• ื™ื›ื•ืœื™ื ืœืกื™ื™ืข ืœืชืœืžื™ื“ื™ื ืœืชืงืŸ ืื•ืชืŸ?
14:57
So here's an example of that,
332
897209
1424
ืื– ื”ื ื” ื“ื•ื’ืžื”
14:58
also from Andrew's Machine Learning class.
333
898633
2016
ื’ื ื”ื™ื ืžื”ืงื•ืจืก ืฉืœ ืื ื“ืจื• ืœืœืžื™ื“ืช ืžื›ื•ื ื”.
15:00
This is a distribution of wrong answers
334
900649
2208
ื–ื•ื”ื™ ื”ืชืคืœื’ื•ืช ืฉืœ ืชืฉื•ื‘ื•ืช ืฉื’ื•ื™ื•ืช
15:02
to one of Andrew's assignments.
335
902857
1610
ืฉืœ ืื—ืช ื”ืžื˜ืœื•ืช ืฉืœ ืื ื“ืจื•.
15:04
The answers happen to be pairs of numbers,
336
904467
1893
ื”ืชืฉื•ื‘ื•ืช ืฆืจื™ื›ื•ืช ืœื”ื™ื•ืช ื–ื•ื’ื•ืช ืฉืœ ืžืกืคืจื™ื,
15:06
so you can draw them on this two-dimensional plot.
337
906360
2271
ื›ืš ืฉืืคืฉืจ ืœืฆื™ื™ืจ ืื•ืชื ืขืœ ื’ืจืฃ ื“ื• ืžื™ืžื“ื™.
15:08
Each of the little crosses that you see is a different wrong answer.
338
908631
3778
ื›ืœ ืื—ื“ ืžื”ืฆืœื‘ื™ื ื”ืงื˜ื ื™ื ืฉืืชื ืจื•ืื™ื ื”ื•ื ืชืฉื•ื‘ื” ืฉื’ื•ื™ื” ืฉื•ื ื”.
15:12
The big cross at the top left
339
912409
2406
ื”ืฆืœื‘ ื”ื’ื“ื•ืœ ื‘ืงืฆื” ื”ื™ืžื ื™ ื”ืขืœื™ื•ืŸ
15:14
is where 2,000 students
340
914815
2148
ืžื™ื™ืฆื’ 2,000 ืกื˜ื•ื“ื ื˜ื™ื
15:16
gave the exact same wrong answer.
341
916963
3045
ืฉื ืชื ื• ืืช ืื•ืชื” ืชืฉื•ื‘ื” ืฉื’ื•ื™ื” ื‘ื“ื™ื•ืง.
15:20
Now, if two students in a class of 100
342
920008
2327
ื›ืขืช, ืื ืฉื ื™ ืชืœืžื™ื“ื™ื ื‘ื›ื™ืชื” ืฉืœ 100
15:22
give the same wrong answer,
343
922335
1287
ื ื•ืชื ื™ื ืชืฉื•ื‘ื” ืฉื’ื•ื™ื” ื–ื”ื”,
15:23
you would never notice.
344
923622
1351
ืœื ืชื‘ื—ื™ื ื• ื‘ื›ืš.
15:24
But when 2,000 students give the same wrong answer,
345
924973
2560
ืืš ื›ืืฉืจ 2,000 ืชืœืžื™ื“ื™ื ื ื•ืชื ื™ื ืืช ืื•ืชื” ืชืฉื•ื‘ื” ืฉื’ื•ื™ื”,
15:27
it's kind of hard to miss.
346
927533
1697
ืงืฉื” ืœืคืกืคืก ืืช ื–ื”.
15:29
So Andrew and his students went in,
347
929230
2192
ืื– ืื ื“ืจื• ื•ืชืœืžื™ื“ื™ื•
15:31
looked at some of those assignments,
348
931422
1520
ื”ืกืชื›ืœื• ืœืขื•ืžืง ืขืœ ื—ืœืง ืžื”ืžื˜ืœื•ืช ื”ืœืœื•,
15:32
understood the root cause of the misconception,
349
932942
4088
ื•ื”ื‘ื™ื ื• ืืช ื”ืกื™ื‘ื” ืœืชืคื™ืกื” ื”ืฉื’ื•ื™ื”,
15:37
and then they produced a targeted error message
350
937030
2520
ื•ืœืื—ืจ ืžื›ืŸ ื”ื ื™ื™ืฆืจื• ื”ื•ื“ืขืช ืฉื’ื™ืื” ืžื™ื•ื—ื“ืช
15:39
that would be provided to every student
351
939550
2249
ืฉื ื™ืชื ื” ืœื›ืœ ืชืœืžื™ื“
15:41
whose answer fell into that bucket,
352
941799
2179
ืฉื”ืชืฉื•ื‘ื” ืฉืœื• ื’ื ื ืคืœื” ืœืงื˜ื’ื•ืจื™ื” ื”ื–ื•,
15:43
which means that students who made that same mistake
353
943978
2084
ื›ืœื•ืžืจ, ืกื˜ื•ื“ื ื˜ื™ื ืฉืขืฉื• ืืช ืื•ืชื” ื”ื˜ืขื•ืช
15:46
would now get personalized feedback
354
946062
2026
ื™ืงื‘ืœื• ื›ืขืช ืžืฉื•ื‘ ืื™ืฉื™
15:48
telling them how to fix their misconception much more effectively.
355
948088
4399
ืฉืื•ืžืจ ืœื”ื ืื™ืš ืœืชืงืŸ ืืช ื”ืชืคื™ืกื” ื”ืฉื’ื•ื™ื” ืฉืœื”ื ื‘ืฆื•ืจื” ื™ืขื™ืœื” ื”ืจื‘ื” ื™ื•ืชืจ.
15:52
So this personalization is something that one can then build
356
952487
3811
ื”ืชืืžื” ืื™ืฉื™ืช ื›ื–ืืช ื ื™ืชื ืช ืœื‘ื ื™ื™ื”
15:56
by having the virtue of large numbers.
357
956298
3140
ื‘ืฉืœ ื”ื™ืชืจื•ืŸ ืฉื™ืฉ ืœื ื• ื‘ืžืกืคืจื™ื ื”ื’ื“ื•ืœื™ื.
15:59
Personalization is perhaps
358
959438
2312
ื”ืชืืžื” ืื™ืฉื™ืช ื”ื™ื ืื•ืœื™
16:01
one of the biggest opportunities here as well,
359
961750
2423
ืื—ืช ื”ื”ื–ื“ืžื ื•ื™ื•ืช ื”ื’ื“ื•ืœื•ืช ื‘ื™ื•ืชืจ ืคื”,
16:04
because it provides us with the potential
360
964173
2345
ืžื›ื™ื•ื•ืŸ ืฉื”ื™ื ืžืกืคืงืช ืœื ื• ืืช ื”ืืคืฉืจื•ืช
16:06
of solving a 30-year-old problem.
361
966518
2690
ืœืคืชื•ืจ ื‘ืขื™ื” ื‘ืช 30 ืฉื ื”.
16:09
Educational researcher Benjamin Bloom, in 1984,
362
969208
3349
ื—ื•ืงืจ ื”ื—ื™ื ื•ืš ื‘ื ื’'ืžื™ืŸ ื‘ืœื•ื, ื‘ืฉื ืช 1984,
16:12
posed what's called the 2 sigma problem,
363
972557
2251
ื”ืฆื™ื’ ืืช ื‘ืขื™ื™ืช ืฉืชื™ ื”ืกื™ื’ืžื•ืช,
16:14
which he observed by studying three populations.
364
974808
3062
ืื•ืชื” ื–ื™ื”ื” ื›ืฉื‘ื—ืŸ ืฉืœื•ืฉ ืื•ื›ืœื•ืกื™ื•ืช.
16:17
The first is the population that studied in a lecture-based classroom.
365
977870
3608
ื”ืจืืฉื•ื ื” ื”ื™ื ื”ืื•ื›ืœื•ืกื™ื™ื” ืฉืœืžื“ื” ื‘ืฉื™ืขื•ืจ ืžื‘ื•ืกืก-ื”ืจืฆืื”.
16:21
The second is a population of students that studied
366
981478
2777
ื”ืฉื ื™ื” ื”ื™ื ืื•ื›ืœื•ืกื™ื™ืช ืกื˜ื•ื“ื ื˜ื™ื ืฉืœืžื“ื”
16:24
using a standard lecture-based classroom,
367
984255
1719
ื‘ืฉื™ืขื•ืจ ืžื‘ื•ืกืก-ื”ืจืฆืื” ืจื’ื™ืœ,
16:25
but with a mastery-based approach,
368
985974
2080
ืืš ืขื ื’ื™ืฉื” ื”ืžื‘ื•ืกืกืช ืขืœ ื‘ืงื™ืื•ืช,
16:28
so the students couldn't move on to the next topic
369
988054
1920
ื›ืš ืฉื”ืชืœืžื™ื“ื™ื ืœื ื™ื›ืœื• ืœืขื‘ื•ืจ ืœื ื•ืฉื ื”ื‘ื
16:29
before demonstrating mastery of the previous one.
370
989974
3354
ืœืคื ื™ ืฉื”ืคื’ื™ื ื• ื™ื“ืข ืจื—ื‘ ืฉืœ ื”ื ื•ืฉื ื”ืงื•ื“ื.
16:33
And finally, there was a population of students
371
993328
2294
ืœื‘ืกื•ืฃ, ื”ื™ื™ืชื” ืื•ื›ืœื•ืกื™ื™ื” ืฉืœ ืชืœืžื™ื“ื™ื
16:35
that were taught in a one-on-one instruction using a tutor.
372
995622
4528
ืฉืœืžื“ื• ืขื ืžื•ืจื” ืคืจื˜ื™ ื‘ืฉื™ื˜ืช ืื—ื“-ืขืœ-ืื—ื“.
16:40
The mastery-based population was a full standard deviation,
373
1000150
3272
ื”ืื•ื›ืœื•ืกื™ื™ื” ืฉืœืžื“ื” ืขืœ ืกืžืš ื‘ืงื™ืื•ืช ื”ื™ืชื” ื’ื‘ื•ื”ื” ื‘ืกื˜ื™ื™ืช ืชืงืŸ ืื—ืช
16:43
or sigma, in achievement scores better
374
1003422
2288
ืื• ืกื™ื’ืžื”, ื‘ื”ื™ืฉื’ื™ื”
16:45
than the standard lecture-based class,
375
1005710
2394
ืžื”ืงื‘ื•ืฆื” ื”ืžื‘ื•ืกืกืช ืขืœ ื”ืจืฆืื” ืจื’ื™ืœื”,
16:48
and the individual tutoring gives you 2 sigma
376
1008104
2144
ื•ืฉื™ืขื•ืจื™ื ืคืจื˜ื™ื™ื ื ืชื ื• ืฉื™ืคื•ืจ ืฉืœ 2 ืกื™ื’ืžื•ืช
16:50
improvement in performance.
377
1010248
1830
ืœื”ื™ืฉื’ื™ื.
16:52
To understand what that means,
378
1012078
1463
ื›ื“ื™ ืœื”ื‘ื™ืŸ ืžื” ืžืฉืžืขื•ืช ื”ื“ื‘ืจ,
16:53
let's look at the lecture-based classroom,
379
1013541
1833
ื”ื‘ื” ื ื‘ื—ืŸ ืืช ื”ื›ื™ืชื” ื”ืžื‘ื•ืกืกืช ืขืœ ื”ืจืฆืื”,
16:55
and let's pick the median performance as a threshold.
380
1015374
2919
ื‘ื•ืื• ื ื‘ื—ืŸ ืืช ื”ื—ืฆื™ื•ืŸ ื‘ื‘ื™ืฆื•ืขื™ื ื‘ืชื•ืจ ืกืฃ ืžืขื‘ืจ.
16:58
So in a lecture-based class,
381
1018293
1338
ื›ืš ืฉื‘ื›ื™ืชื” ืžื‘ื•ืกืกืช ื”ืจืฆืื”,
16:59
half the students are above that level and half are below.
382
1019631
3879
ืžื—ืฆื™ืช ื”ืชืœืžื™ื“ื™ื ืžืขืœ ืœืจืžื” ื–ื•, ื•ืžื—ืฆื™ืช ืชื—ืชื™ื”.
17:03
In the individual tutoring instruction,
383
1023510
2098
ื‘ืฉื™ื˜ืช ื”ื”ื•ืจืื” ืื—ื“-ืขืœ-ืื—ื“,
17:05
98 percent of the students are going to be above that threshold.
384
1025608
4801
98 ืื—ื•ื–ื™ื ืžื”ืกื˜ื•ื“ื ื˜ื™ื ืขื•ืžื“ื™ื ืžืขืœ ืกืฃ ื–ื”.
17:10
Imagine if we could teach so that 98 percent of our students
385
1030409
3920
ื“ืžื™ื™ื ื• ืื™ืœื• ื™ื›ื•ืœื ื• ืœืœืžื“ ื›ืš ืฉ98 ืื—ื•ื– ืžื”ืชืœืžื™ื“ื™ื ืฉืœื ื•
17:14
would be above average.
386
1034329
2198
ื™ื”ื™ื• ืžืขืœ ื”ืžืžื•ืฆืข.
17:16
Hence, the 2 sigma problem.
387
1036527
3423
ืœื›ืŸ, ื”ื‘ืขื™ื” ื ืงืจืืช 2 ืกื™ื’ืžื•ืช.
17:19
Because we cannot afford, as a society,
388
1039950
2399
ืžื›ื™ื•ื•ืŸ ืฉืื™ื ื ื• ื™ื›ื•ืœื™ื ืœื”ืจืฉื•ืช ืœืขืฆืžื ื•, ื›ื—ื‘ืจื”,
17:22
to provide every student with an individual human tutor.
389
1042349
3072
ืœืกืคืง ืœื›ืœ ืกื˜ื•ื“ื ื˜ ืžื•ืจื” ืคืจื˜ื™ ืื ื•ืฉื™.
17:25
But maybe we can afford to provide each student
390
1045421
2249
ืืš ืื•ืœื™ ื ื•ื›ืœ ืœื”ืจืฉื•ืช ืœืขืฆืžื ื• ืœืกืคืง ืœื›ืœ ืชืœืžื™ื“
17:27
with a computer or a smartphone.
391
1047670
2019
ืžื—ืฉื‘ ืื• ื˜ืœืคื•ืŸ ื—ื›ื.
17:29
So the question is, how can we use technology
392
1049689
2189
ืื ื›ืŸ, ื”ืฉืืœื” ื”ื™ื ืื™ืš ืื ื—ื ื• ืžืฉืชืžืฉื™ื ื‘ื˜ื›ื ื•ืœื•ื’ื™ื”
17:31
to push from the left side of the graph, from the blue curve,
393
1051878
3375
ืขืœ ืžื ืช ืœื“ื—ื•ืฃ ืžื”ืฆื“ ื”ืฉืžืืœื™ ืฉืœ ื”ื’ืจืฃ, ืžื”ืขืงื•ืžื” ื”ื›ื—ื•ืœื”,
17:35
to the right side with the green curve?
394
1055253
2738
ืœืฆื“ ื”ื™ืžื ื™ ืขื ื”ืขืงื•ืžื” ื”ื™ืจื•ืงื”?
17:37
Mastery is easy to achieve using a computer,
395
1057991
2337
ืงืœ ืœื”ืฉื™ื’ ื‘ืงื™ืื•ืช ื‘ืืžืฆืขื•ืช ืžื—ืฉื‘,
17:40
because a computer doesn't get tired
396
1060328
1405
ื›ื™ ื”ืžื—ืฉื‘ ืื™ื ื ื• ืžืชืขื™ื™ืฃ
17:41
of showing you the same video five times.
397
1061733
3073
ืžื”ืฆื’ืช ืื•ืชื• ื”ื•ื•ื™ื“ืื• ื—ืžืฉ ืคืขืžื™ื.
17:44
And it doesn't even get tired of grading the same work multiple times,
398
1064806
3251
ื”ื•ื ืืคื™ืœื• ืœื ืžืชืขื™ื™ืฃ ืžืœืชืช ืฆื™ื•ืŸ ืžืกืคืจ ืคืขืžื™ื ืขืœ ืื•ืชื” ืขื‘ื•ื“ื”,
17:48
we've seen that in many of the examples that I've shown you.
399
1068062
3026
ืจืื™ื ื• ืืช ื–ื” ื›ื‘ืจ ื‘ื”ืจื‘ื” ืžื”ื“ื•ื’ืžืื•ืช ืฉื”ื‘ืืชื™ ื”ื™ื•ื.
17:51
And even personalization
400
1071088
1854
ื•ืืคื™ืœื• ื”ืชืืžื” ืื™ืฉื™ืช
17:52
is something that we're starting to see the beginnings of,
401
1072942
2136
ื”ื™ื ืžืฉื”ื• ืฉืžืชื—ื™ืœื™ื ืœืจืื•ืช,
17:55
whether it's via the personalized trajectory through the curriculum
402
1075078
3192
ืื ื–ื” ื“ืจืš ืžืกืœื•ืœ ืžื•ืชืื ืื™ืฉื™ืช ื‘ืชื•ื›ื ื™ืช ื”ืœื™ืžื•ื“ื™ื
17:58
or some of the personalized feedback that we've shown you.
403
1078270
3264
ืื• ืžืฉื•ื‘ ืื™ืฉื™ ืฉืžื•ืฆื’ ืœืš.
18:01
So the goal here is to try and push,
404
1081534
2488
ืื– ื›ืืŸ ื”ืžื˜ืจื” ื”ื™ื ืœื ืกื•ืช ืœื“ื—ื•ืฃ,
18:04
and see how far we can get towards the green curve.
405
1084022
3497
ื•ืœืจืื•ืช ืขื“ ื›ืžื” ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ื’ื™ืข ืœื›ื™ื•ื•ืŸ ื”ืขืงื•ืžื” ื”ื™ืจื•ืงื”.
18:07
So, if this is so great, are universities now obsolete?
406
1087519
5359
ืื– ืื ื–ื” ื›ืœ ื›ืš ื˜ื•ื‘, ื”ืื ืื•ื ื™ื‘ืจืกื™ื˜ืื•ืช ื”ื•ืคื›ื•ืช ื›ืขืช ืœืžื™ื•ืชืจื•ืช?
18:12
Well, Mark Twain certainly thought so.
407
1092878
2992
ื•ื‘ื›ืŸ, ืžืืจืง ื˜ื•ื•ื™ื™ืŸ ื‘ื”ื—ืœื˜ ื—ืฉื‘ ื›ืš.
18:15
He said that, "College is a place where a professor's lecture notes
408
1095870
2545
ื”ื•ื ืืžืจ, "ื”ืื•ื ื™ื‘ืจืกื™ื˜ื” ื”ื™ื ืžืงื•ื ืฉื‘ื• ืจืฉื™ืžื•ืช ื”ืคืจื•ืคืกื•ืจ
18:18
go straight to the students' lecture notes,
409
1098415
1703
ืขื•ื‘ืจื•ืช ื™ืฉืจ ืœืกื™ื›ื•ืžื™ื ืฉืœ ื”ืกื˜ื•ื“ื ื˜ื™ื,
18:20
without passing through the brains of either."
410
1100118
2376
ืžื‘ืœื™ ืฉืขื‘ืจื• ื“ืจืš ืžื•ื—ื• ืฉืœ ืืฃ ืื—ื“ ืžื”ื."
18:22
(Laughter)
411
1102494
4047
(ืฆื—ื•ืง)
18:26
I beg to differ with Mark Twain, though.
412
1106541
2668
ืื ื™ ืจื•ืฆื” ืœื”ืกืชื™ื™ื’ ืžื“ื‘ืจื™ื• ืฉืœ ืžืืจืง ื˜ื•ื•ื™ื™ืŸ.
18:29
I think what he was complaining about is not
413
1109209
2665
ืื ื™ ื—ื•ืฉื‘ืช ืฉืžื” ืฉื”ื•ื ืžืชืœื•ื ืŸ ืขืœื™ื• ื”ื•ื ืœื
18:31
universities but rather the lecture-based format
414
1111874
2750
ืื•ื ื™ื‘ืจืกื™ื˜ืื•ืช, ืืœื ื”ืคื•ืจืžื˜ ื”ืงื™ื™ื ืฉืœ ืœื™ืžื•ื“ื™ื ืžื‘ื•ืกืกื™-ื”ืจืฆืื”
18:34
that so many universities spend so much time on.
415
1114624
2784
ืฉื›ืœ ื›ืš ื”ืจื‘ื” ืื•ื ื™ื‘ืจืกื™ื˜ืื•ืช ืžืงื“ื™ืฉื•ืช ืœื• ื–ืžืŸ ืจื‘ ื›ืœ ื›ืš.
18:37
So let's go back even further, to Plutarch,
416
1117408
3159
ืื– ื ื—ื–ื•ืจ ื‘ื–ืžืŸ ืขื•ื“ ืื—ื•ืจื”, ืœืคืœื•ื˜ืืจื›ื•ืก,
18:40
who said that, "The mind is not a vessel that needs filling,
417
1120567
2227
ืฉืืžืจ ืฉ"ื”ืžื•ื— ืื™ื ื• ื›ืœื™ ืงื™ื‘ื•ืœ ืฉื™ืฉ ืœืžืœืื•,
18:42
but wood that needs igniting."
418
1122794
2023
ืืœื ืขืฅ ืฉื™ืฉ ืœื”ืฆื™ืชื•."
18:44
And maybe we should spend less time at universities
419
1124817
2190
ืื•ืœื™ ืื ื• ืฆืจื™ื›ื™ื ืœื”ืงื“ื™ืฉ ืคื—ื•ืช ื–ืžืŸ ื‘ืื•ื ื™ื‘ืจืกื™ื˜ืื•ืช
18:47
filling our students' minds with content
420
1127007
2571
ืœืžื™ืœื•ื™ ืžื•ื—ื ืฉืœ ื”ืกื˜ื•ื“ื ื˜ื™ื ื‘ืชื•ื›ืŸ
18:49
by lecturing at them, and more time igniting their creativity,
421
1129578
3800
ื”ืžื•ืขื‘ืจ ืขืœ-ื™ื“ื™ ืžืจืฆื”, ื•ื™ื•ืชืจ ื–ืžืŸ ื‘ืœื”ืฆื™ืช ืืช ื”ื™ืฆื™ืจืชื™ื•ืช ืฉืœื”ื,
18:53
their imagination and their problem-solving skills
422
1133378
3255
ืืช ื”ื“ืžื™ื•ืŸ ืฉืœื”ื ื•ืืช ื›ื™ืฉื•ืจื™ื”ื ืœืคืชืจื•ืŸ ื‘ืขื™ื•ืช
18:56
by actually talking with them.
423
1136633
2498
ืขืœ-ื™ื“ื™ ื›ืš ืฉื ื“ื‘ืจ ืื™ืชื.
18:59
So how do we do that?
424
1139131
1367
ืื– ืื™ืš ืขื•ืฉื™ื ืืช ื–ื”?
19:00
We do that by doing active learning in the classroom.
425
1140498
3431
ืื ื• ืขื•ืฉื™ื ื–ืืช ื‘ืขื–ืจืช ืœืžื™ื“ื” ืคืขื™ืœื” ื‘ื›ื™ืชื”.
19:03
So there's been many studies, including this one,
426
1143929
2449
ื”ื™ื• ืžื—ืงืจื™ื ืจื‘ื™ื, ื›ื•ืœืœ ื–ื”
19:06
that show that if you use active learning,
427
1146378
2080
ืืฉืจ ื”ืจืื• ื›ื™ ืื ืชืฉืชืžืฉื• ื‘ืœืžื™ื“ื” ืคืขื™ืœื”,
19:08
interacting with your students in the classroom,
428
1148458
2416
ื‘ืื™ื ื˜ืจืืงืฆื™ื” ืขื ื”ืชืœืžื™ื“ื™ื ื‘ื›ื™ืชื”,
19:10
performance improves on every single metric --
429
1150874
2696
ื™ื”ื™ื” ืฉื™ืคื•ืจ ื‘ื‘ื™ืฆื•ืขื™ื ื‘ื›ืœ ืžื“ื“ -
19:13
on attendance, on engagement and on learning
430
1153570
2449
ื‘ื ื•ื›ื—ื•ืช, ื‘ืžืขื•ืจื‘ื•ืช ื•ื‘ืœืžื™ื“ื”
19:16
as measured by a standardized test.
431
1156019
2055
ื›ืคื™ ืฉื ืžื“ื“ ืขืœ-ื™ื“ื™ ื‘ื“ื™ืงื” ืžืชื•ืงื ื ืช.
19:18
You can see, for example, that the achievement score
432
1158074
1864
ื ื™ืชืŸ ืœืจืื•ืช, ืœื“ื•ื’ืžื”, ืฉื”ืฆื™ื•ืŸ ืขืœ ื”ื™ืฉื’ื™ื
19:19
almost doubles in this particular experiment.
433
1159938
2870
ื›ืžืขื˜ ืžื›ืคื™ืœ ืืช ืขืฆืžื• ื‘ื ื™ืกื•ื™ ื–ื”.
19:22
So maybe this is how we should spend our time at universities.
434
1162808
4401
ืื•ืœื™ ื–ืืช ื”ื“ืจืš ืฉื‘ื” ืื ื• ืฆืจื™ื›ื™ื ืœื”ืงื“ื™ืฉ ืืช ื–ืžื ื ื• ื‘ืื•ื ื™ื‘ืจืกื™ื˜ืื•ืช.
19:27
So to summarize, if we could offer a top quality education
435
1167209
4577
ืื– ืœืกื™ื›ื•ื, ืื ื ื•ื›ืœ ืœื”ืฆื™ืข ื—ื™ื ื•ืš ื‘ืื™ื›ื•ืช ื’ื‘ื•ื”ื”
19:31
to everyone around the world for free,
436
1171786
1903
ืœื›ืœ ืื—ื“ ื‘ืขื•ืœื ื•ื‘ื—ื™ื ื,
19:33
what would that do? Three things.
437
1173689
2821
ืžื” ื–ื” ื™ืขืฉื”? ืฉืœื•ืฉื” ื“ื‘ืจื™ื.
19:36
First it would establish education as a fundamental human right,
438
1176510
3421
ืจืืฉื™ืช, ื–ื” ื™ื‘ืกืก ืืช ื”ื—ื™ื ื•ืš ื›ื–ื›ื•ืช ื™ืกื•ื“ ืื ื•ืฉื™ืช,
19:39
where anyone around the world
439
1179931
1366
ืฉื›ืœ ืื“ื ื‘ืจื—ื‘ื™ ื”ืขื•ืœื
19:41
with the ability and the motivation
440
1181297
1921
ืขื ื”ื™ื›ื•ืœืช ื•ื”ืžื•ื˜ื™ื‘ืฆื™ื”
19:43
could get the skills that they need
441
1183218
1951
ื™ื•ื›ืœ ืœืงื‘ืœ ืืช ื”ืžื™ื•ืžื ื•ื™ื•ืช ื”ื ื—ื•ืฆื•ืช
19:45
to make a better life for themselves,
442
1185169
1585
ื›ื“ื™ ืœื™ืฆื•ืจ ื—ื™ื™ื ื˜ื•ื‘ื™ื ื™ื•ืชืจ,
19:46
their families and their communities.
443
1186754
2017
ื”ืžืฉืคื—ื•ืช ืฉืœื”ื ื•ื”ืงื”ื™ืœื•ืช ืฉืœื”ื.
19:48
Second, it would enable lifelong learning.
444
1188771
2631
ืฉื ื™ืช, ื”ื™ื ืชืืคืฉืจ ืœืžื™ื“ื” ืœืื•ืจืš ื›ืœ ื”ื—ื™ื™ื.
19:51
It's a shame that for so many people,
445
1191402
1951
ื–ื” ื—ื‘ืœ ืฉืขื‘ื•ืจ ื›ืœ ื›ืš ื”ืจื‘ื” ืื ืฉื™ื,
19:53
learning stops when we finish high school or when we finish college.
446
1193353
3312
ื”ืœืžื™ื“ื” ืžืคืกื™ืงื” ื›ืืฉืจ ืื ื• ืžืกื™ื™ืžื™ื ืชื™ื›ื•ืŸ ืื• ื›ืืฉืจ ืžืกื™ื™ืžื™ื ืืช ื”ืžื›ืœืœื”.
19:56
By having this amazing content be available,
447
1196665
2481
ื‘ื›ืš ืฉื”ืชื•ื›ืŸ ื”ืžื“ื”ื™ื ื”ื–ื” ื™ื”ื™ื” ื–ืžื™ืŸ,
19:59
we would be able to learn something new
448
1199146
2743
ื ื•ื›ืœ ืœืœืžื•ื“ ืžืฉื”ื• ื—ื“ืฉ
20:01
every time we wanted,
449
1201889
1136
ืžืชื™ ืฉื ืจืฆื”,
20:03
whether it's just to expand our minds
450
1203025
1329
ื’ื ืื ื–ื” ืจืง ื›ื“ื™ ืœื”ืจื—ื™ื‘ ืืช ืื•ืคืงื™ื ื•
20:04
or it's to change our lives.
451
1204354
1959
ืื• ื›ื“ื™ ืœืฉื ื•ืช ืืช ื—ื™ื™ื ื•.
20:06
And finally, this would enable a wave of innovation,
452
1206313
3145
ื•ืœื‘ืกื•ืฃ, ื–ื” ื™ืืคืฉืจ ื’ื ื’ืœ ืฉืœ ื—ื“ืฉื ื•ืช,
20:09
because amazing talent can be found anywhere.
453
1209458
3072
ืžื›ื™ื•ื•ืŸ ืฉื ื™ืชืŸ ืœืžืฆื•ื ื›ืฉืจื•ืŸ ืžื“ื”ื™ื ื‘ื›ืœ ืžืงื•ื.
20:12
Maybe the next Albert Einstein or the next Steve Jobs
454
1212530
3008
ืื•ืœื™ ืืœื‘ืจื˜ ืื™ื™ื ืฉื˜ื™ื™ืŸ ื”ื‘ื ืื• ืกื˜ื™ื‘ ื’'ื•ื‘ืก ื”ื‘ื
20:15
is living somewhere in a remote village in Africa.
455
1215538
2615
ื’ืจื™ื ื‘ืžืงื•ื ื›ืœืฉื”ื• ื‘ื›ืคืจ ืžืจื•ื—ืง ื‘ืืคืจื™ืงื”.
20:18
And if we could offer that person an education,
456
1218153
2656
ื•ืื ื ื•ื›ืœ ืœื”ืฆื™ืข ืœื”ื ื”ืฉื›ืœื”,
20:20
they would be able to come up with the next big idea
457
1220809
2356
ื”ื ื™ื•ื›ืœื• ืœื‘ื•ื ืขื ื”ืจืขื™ื•ืŸ ื”ื’ื“ื•ืœ ื”ื‘ื
20:23
and make the world a better place for all of us.
458
1223165
2404
ื•ืœื”ืคื•ืš ืืช ื”ืขื•ืœื ืœืžืงื•ื ื˜ื•ื‘ ื™ื•ืชืจ ืœื›ื•ืœื ื•.
20:25
Thank you very much.
459
1225569
1160
ืชื•ื“ื” ืจื‘ื”.
20:26
(Applause)
460
1226729
7583
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7