Juan Enriquez: Will our kids be a different species?

203,105 views ใƒป 2012-06-04

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

00:00
Translator: Timothy Covell Reviewer: Morton Bast
0
0
7000
ืžืชืจื’ื: Yubal Masalker ืžื‘ืงืจ: Ido Dekkers
00:15
All right. So, like all good stories,
1
15695
1983
ื›ืžื• ื”ืจื‘ื” ืกื™ืคื•ืจื™ื ืžืขื ื™ื™ื ื™ื,
00:17
this starts a long, long time ago
2
17678
1934
ื’ื ืกื™ืคื•ืจ ื–ื” ืžืชื—ื™ืœ ืœืคื ื™ ื”ืจื‘ื” ื–ืžืŸ
00:19
when there was basically nothing.
3
19612
2149
ื›ืืฉืจ ื‘ื’ื“ื•ืœ ืœื ื”ื™ื” ื›ืœื•ื.
00:21
So here is a complete picture of the universe
4
21761
2400
ื”ื ื” ืชืžื•ื ื” ื›ื•ืœืœืช ืฉืœ ื”ื™ืงื•ื
00:24
about 14-odd billion years ago.
5
24161
3452
ืžืœืคื ื™ ื›-14 ืžื™ืœื™ืืจื“ ืฉื ื”.
00:27
All energy is concentrated into a single point of energy.
6
27613
3084
ื›ืœ ื”ืื ืจื’ื™ื” ืžืจื•ื›ื–ืช ื‘ื ืงื•ื“ืช ืื ืจื’ื™ื” ื‘ื•ื“ื“ืช.
00:30
For some reason it explodes,
7
30697
1584
ืžืกื™ื‘ื” ื›ืœืฉื”ื™ ื”ื™ื ืžืชืคื•ืฆืฆืช,
00:32
and you begin to get these things.
8
32281
2116
ื•ืžืชื—ื™ืœื™ื ืœื”ื™ื•ื•ืฆืจ ื“ื‘ืจื™ื ื›ืืœื”.
00:34
So you're now about 14 billion years into this.
9
34397
2866
ื›ื™ื•ื ืื ื—ื ื• ื›-14 ืžื™ืœื™ืืจื“ ืฉื ื” ื‘ืชื•ืš ื–ื”.
00:37
And these things expand and expand and expand
10
37263
1896
ื•ื“ื‘ืจื™ื ืืœื” ืžืชืคืฉื˜ื™ื ืขื•ื“ ื•ืขื•ื“ ื•ืขื•ื“ ืœืฆื•ืจืช
00:39
into these giant galaxies,
11
39159
1699
ื’ืœืงืกื™ื•ืช ืขื ืงื™ื•ืช ื”ืœืœื•,
00:40
and you get trillions of them.
12
40858
1319
ื•ื™ืฉ ืœื ื• ื˜ืจืœื™ื•ื ื™ื ื›ืžื•ื”ืŸ.
00:42
And within these galaxies
13
42177
2148
ื‘ืชื•ืš ื”ื’ืœืงืกื™ื•ืช ื”ืœืœื•
00:44
you get these enormous dust clouds.
14
44325
2119
ื™ืฉ ืขื ื ื™ ืื‘ืง ื›ื‘ื™ืจื™ื ืืœื”.
00:46
And I want you to pay particular attention
15
46444
1765
ืื‘ืงืฉื›ื ืœืฉื™ื ืœื‘ ื‘ืžื™ื•ื—ื“
00:48
to the three little prongs
16
48209
1450
ืœืฉืœื•ืฉืช ืฉื™ื ื™-ื”ืงื™ืœืฉื•ืŸ
00:49
in the center of this picture.
17
49659
1901
ืฉื‘ืžืจื›ื– ื”ืชืžื•ื ื”.
00:51
If you take a close-up of those,
18
51560
1415
ืื ืžืชืงืจื‘ื™ื ืืœื™ื”ืŸ,
00:52
they look like this.
19
52975
1653
ื”ืŸ ื ืจืื•ืช ื›ืš.
00:54
And what you're looking at is columns of dust
20
54628
2850
ื•ืžื” ืฉืจื•ืื™ื ื–ื” ืขืžื•ื“ื™ ืื‘ืง
00:57
where there's so much dust --
21
57478
2047
ื”ื™ื›ืŸ ืฉื™ืฉ ื›ืœ-ื›ืš ื”ืจื‘ื” ืื‘ืง --
00:59
by the way, the scale of this is a trillion vertical miles --
22
59525
4333
ื“ืจืš ืื’ื‘, ื”ืžื™ืžื“ื™ื ืฉืœ ื–ื” ืื ื›ื™ืช ื”ื ื›-1.5 ื˜ืจื™ืœื™ื•ืŸ ืง"ืž --
01:03
and what's happening is there's so much dust,
23
63858
2918
ื•ืžื” ืฉืงื•ืจื” ื”ื•ื ืฉื™ืฉ ื›ืœ-ื›ืš ื”ืจื‘ื” ืื‘ืง,
01:06
it comes together and it fuses
24
66776
1934
ืฉื”ื•ื ืžืชื›ื•ื•ืฅ ื•ืžืชืžื–ื’
01:08
and ignites a thermonuclear reaction.
25
68710
3459
ื•ื›ืš ืžืฆื™ืช ืชื’ื•ื‘ื” ืชืจืžื•-ื’ืจืขื™ื ื™ืช.
01:12
And so what you're watching
26
72169
842
ืœื›ืŸ ืžื” ืฉืื ื• ืจื•ืื™ื
01:13
is the birth of stars.
27
73011
1985
ื–ื” ื”ื•ืœื“ืชื ืฉืœ ื›ื•ื›ื‘ื™ื.
01:14
These are stars being born out of here.
28
74996
1657
ืืœื” ื”ื ื›ื•ื›ื‘ื™ื ืืฉืจ ื ื•ืœื“ื™ื ืฉื.
01:16
When enough stars come out,
29
76653
2468
ื›ืืฉืจ ื ื•ืฆืจื™ื ืžืกืคื™ืง ื›ื•ื›ื‘ื™ื,
01:19
they create a galaxy.
30
79121
1798
ื”ื ื™ื•ืฆืจื™ื ื’ืœืงืกื™ื”.
01:20
This one happens to be a particularly important galaxy,
31
80919
3434
ื–ื• ื‘ืžืงืจื” ื’ืœืงืกื™ื” ื—ืฉื•ื‘ื” ื‘ืžื™ื•ื—ื“,
01:24
because you are here.
32
84353
2216
ื›ื™ ืื ื—ื ื• ืขืœื™ื”.
01:26
(Laughter)
33
86569
1167
(ืฆื—ื•ืง)
01:27
And as you take a close-up of this galaxy,
34
87736
1651
ื›ื›ืœ ืฉืžืชืงืจื‘ื™ื ืœื’ืœืงืกื™ื” ื–ื•,
01:29
you find a relatively normal,
35
89387
2065
ืžื’ืœื™ื ื›ื•ื›ื‘ ืจื’ื™ืœ ื™ื—ืกื™ืช
01:31
not particularly interesting star.
36
91452
2368
ื•ืœื ืžืขื ื™ื™ืŸ ื‘ืžื™ื•ื—ื“.
01:33
By the way, you're now about two-thirds of the way into this story.
37
93820
4015
ื“ืจืš ืื’ื‘, ืื ื• ื›ืขืช ื‘ืฉื ื™-ืฉืœื™ืฉ ื”ื“ืจืš ืฉืœ ื”ืกื™ืคื•ืจ.
01:37
So this star doesn't even appear
38
97835
2182
ื›ื•ื›ื‘ ื–ื” ืื™ื ื• ืžื•ืคื™ืข
01:40
until about two-thirds of the way into this story.
39
100017
2951
ืขื“ ื›ืฉื ื™-ืฉืœื™ืฉ ืžื”ื“ืจืš ื‘ืกื™ืคื•ืจ.
01:42
And then what happens
40
102968
1078
ื•ืื– ืžื” ืฉืงื•ืจื” ื”ื•ื
01:44
is there's enough dust left over
41
104046
1406
ืฉื ื•ืชืจ ืžืกืคื™ืง ืื‘ืง ืฉืืจื™ืชื™
01:45
that it doesn't ignite into a star,
42
105452
1966
ืฉืœื ื ื™ืฆืช ืœื›ื“ื™ ื›ื•ื›ื‘,
01:47
it becomes a planet.
43
107418
2000
ืืœื ื”ื•ืคืš ืœื›ื•ื›ื‘-ืœื›ืช.
01:49
And this is about a little over four billion years ago.
44
109418
4825
ื–ื” ืงื•ืจื” ืœืคื ื™ ืงืฆืช ื™ื•ืชืจ 4 ืžื™ืœื™ืืจื“ ืฉื ื”.
01:54
And soon thereafter
45
114243
1433
ืžื™ื™ื“ ืœืื—ืจ-ืžื›ืŸ
01:55
there's enough material left over
46
115676
1917
ื ืฉืืจ ืžืกืคื™ืง ื—ื•ืžืจ
01:57
that you get a primordial soup,
47
117593
4563
ื•ืžืงื‘ืœื™ื ืžืจืง ื‘ืจืืฉื™ืชื™,
02:02
and that creates life.
48
122156
1764
ื•ื”ื•ื ื™ื•ืฆืจ ื—ื™ื™ื.
02:03
And life starts to expand and expand and expand,
49
123920
3881
ื”ื—ื™ื™ื ืžืชื—ื™ืœื™ื ืœื”ืชืคืฉื˜ ืขื•ื“ ื•ืขื•ื“ ื•ืขื•ื“,
02:07
until it goes kaput.
50
127801
1751
ืขื“ ืฉื”ื ื”ื•ืœื›ื™ื ืงืืคื•ื˜ (ืžื—ื•ืกืœื™ื).
02:09
(Laughter)
51
129552
3488
(ืฆื—ื•ืง)
02:13
Now the really strange thing
52
133040
1430
ื”ื“ื‘ืจ ื”ื‘ืืžืช ืžื•ื–ืจ
02:14
is life goes kaput, not once, not twice,
53
134470
2906
ืฉื”ื—ื™ื™ื ื”ื•ืœื›ื™ื ืงืืคื•ื˜ ืœื ืคืขื, ืœื ืคืขืžื™ื™ื,
02:17
but five times.
54
137376
2216
ืืœื 5 ืคืขืžื™ื.
02:19
So almost all life on Earth
55
139592
2102
ื›ืš ืฉื›ืžืขื˜ ื›ืœ ื”ื—ื™ื™ื ืขืœ ื›ื“ื•ืจ-ื”ืืจืฅ
02:21
is wiped out about five times.
56
141694
2464
ื ืžื—ื™ื ื›-5 ืคืขืžื™ื.
02:24
And as you're thinking about that,
57
144158
1552
ื‘ืขื•ื“ื ื• ืžืขื›ืœื™ื ื–ืืช,
02:25
what happens is you get more and more complexity,
58
145710
2432
ืžื” ืฉืงื•ืจื” ื”ื•ื ืฉืžืงื‘ืœื™ื ืžื•ืจื›ื‘ื•ืช ื”ื•ืœื›ืช ื•ื’ื•ื‘ืจืช,
02:28
more and more stuff
59
148142
1234
ื™ื•ืชืจ ื•ื™ื•ืชืจ ืžืจื›ื™ื‘ื™ื
02:29
to build new things with.
60
149376
4118
ืฉื‘ื•ื ื™ื ืื™ืชื ื“ื‘ืจื™ื ื—ื“ืฉื™ื.
02:33
And we don't appear
61
153494
1270
ืื ื—ื ื• ืœื ืžื•ืคื™ืขื™ื
02:34
until about 99.96 percent of the time into this story,
62
154764
5648
ืขื“ ื›-99.96 ืื—ื•ื– ืžื”ื–ืžืŸ ืœืชื•ืš ื”ืกื™ืคื•ืจ ื”ื–ื”,
02:40
just to put ourselves and our ancestors in perspective.
63
160412
3930
ืจืง ื›ื“ื™ ืœืงื‘ืœ ืคืจืกืคืงื˜ื™ื‘ื” ื ื›ื•ื ื” ืขืœื™ื ื• ื•ืขืœ ืื‘ื•ืชื™ื ื•.
02:44
So within that context, there's two theories of the case
64
164342
3459
ื‘ืื•ืชื• ื”ืงืฉืจ, ืงื™ื™ืžื•ืช ืฉืชื™ ืชืื•ืจื™ื•ืช ืœื’ื‘ื™ ื”ืฉืืœื”
02:47
as to why we're all here.
65
167801
1689
ืžื“ื•ืข ืื ื—ื ื• ื›ืืŸ.
02:49
The first theory of the case
66
169490
1589
ื”ืชืื•ืจื™ื” ื”ืจืืฉื•ื ื”,
02:51
is that's all she wrote.
67
171079
3409
ื–ื” ืžื” ืฉื”ื™ื ืื•ืžืจืช.
02:54
Under that theory,
68
174488
1359
ืœืคื™ ืื•ืชื” ืชืื•ืจื™ื”,
02:55
we are the be-all and end-all
69
175847
1836
ืื ื—ื ื• ื”ื ื”ืžื”ื•ืช ื•ื”ื™ืขื“ ื”ืกื•ืคื™
02:57
of all creation.
70
177683
1733
ืฉืœ ื›ืœ ื”ื™ืฆื™ืจื”.
02:59
And the reason for trillions of galaxies,
71
179416
2884
ื”ืกื™ื‘ื” ืœืงื™ื•ืžื ืฉืœ ื˜ืจื™ืœื™ื•ื ื™ ื”ื’ืœืงืกื™ื•ืช,
03:02
sextillions of planets,
72
182300
2013
ื•ืžื™ืœื™ืืจื“ื™-ื˜ืจื™ืœื™ื•ื ื™ ื”ื›ื•ื›ื‘ื™ื,
03:04
is to create something that looks like that
73
184313
4710
ื”ื™ื ื™ืฆื™ืจืช ืžืฉื”ื• ืฉื ืจืื” ื›ืš
03:09
and something that looks like that.
74
189023
3633
ื•ืžืฉื”ื• ืฉื ืจืื” ื›ืš.
03:12
And that's the purpose of the universe;
75
192656
1541
ื–ื”ื• ื™ืขื•ื“ื• ืฉืœ ื”ื™ืงื•ื;
03:14
and then it flat-lines,
76
194197
1284
ื•ืžื›ืืŸ ื–ื” ืจืง ื™ื•ืจื“,
03:15
it doesn't get any better.
77
195481
1311
ื–ื” ืœื ืžืฉืชืคืจ.
03:16
(Laughter)
78
196792
4480
(ืฆื—ื•ืง)
03:21
The only question you might want to ask yourself is,
79
201272
2819
ื”ืฉืืœื” ื”ื™ื—ื™ื“ื” ืฉืื•ืœื™ ื ืจืฆื” ืœืฉืื•ืœ ื”ื™ื
03:24
could that be just mildly arrogant?
80
204091
5235
ื”ืื ื–ื” ืœื ืงืฆืช ื™ื”ื™ืจ ืžื“ื™?
03:29
And if it is --
81
209326
1741
ื•ืื ื–ื” ื›ืŸ --
03:31
and particularly given the fact that we came very close to extinction.
82
211067
5382
ื‘ืžื™ื•ื—ื“ ืœืื•ืจ ื”ืขื•ื‘ื“ื” ืฉื”ื™ื™ื ื• ืงืจื•ื‘ื™ื ืžืื•ื“ ืœื”ื›ื—ื“ื” ืžื•ื—ืœื˜ืช.
03:36
There were only about 2,000 of our species left.
83
216449
3367
ื ื•ืชืจื• ืจืง ื›-2,000 ืžื‘ื ื™-ืžื™ื ื ื•.
03:39
A few more weeks without rain,
84
219816
2083
ืขื•ื“ ื›ืžื” ืฉื‘ื•ืขื•ืช ืœืœื ื’ืฉื,
03:41
we would have never seen any of these.
85
221899
3084
ื•ืžืขื•ืœื ืœื ื”ื™ื™ื ื• ืจื•ืื™ื ืืฃ ืื—ื“ ืžืืœื”.
03:44
(Laughter)
86
224983
6699
(ืฆื—ื•ืง)
03:51
(Applause)
87
231682
4634
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
03:56
So maybe you have to think about a second theory
88
236316
2966
ืื– ืื•ืœื™ ืขืœื™ื ื• ืœื—ืฉื•ื‘ ืขืœ ืชืื•ืจื™ื” ืฉื ื™ื”
03:59
if the first one isn't good enough.
89
239282
2917
ืื ื”ืจืืฉื•ื ื” ืื™ื ื” ื˜ื•ื‘ื” ืžืกืคื™ืง.
04:02
Second theory is: Could we upgrade?
90
242199
1784
ื”ืชืื•ืจื™ื” ื”ืฉื ื™ื”: ื”ืื ืื ื• ื™ื›ื•ืœื™ื ืœื”ืฉืชื“ืจื’?
04:03
(Laughter)
91
243983
2899
(ืฆื—ื•ืง)
04:06
Well, why would one ask a question like that?
92
246882
3234
ืœืžื” ืฉืžื™ืฉื”ื• ื™ืฉืืœ ืฉืืœื” ื›ื–ื•?
04:10
Because there have been at least 29 upgrades so far
93
250116
2465
ื›ื™ ื”ื™ื• ืขื“ ืขื›ืฉื™ื• ืœืคื—ื•ืช 29
04:12
of humanoids.
94
252581
2036
ืฉื™ื“ืจื•ื’ื™ื ืฉืœ ื“ืžื•ื™ื™-ืื“ื.
04:14
So it turns out that we have upgraded.
95
254617
2850
ืžืชื‘ืจืจ ืฉืื ื—ื ื• ื”ืฉืชื“ืจื’ื ื•.
04:17
We've upgraded time and again and again.
96
257467
1915
ื”ืฉืชื“ืจื’ื ื• ืฉื•ื‘ ื•ืฉื•ื‘.
04:19
And it turns out that we keep discovering upgrades.
97
259382
2916
ื•ืžืชื‘ืจืจ ืฉืžืžืฉื™ื›ื™ื ืœื”ืชื’ืœื•ืช ืขื•ื“ ืฉื™ื“ืจื•ื’ื™ื.
04:22
We found this one last year.
98
262298
2184
ืžืฆืื ื• ืืช ื–ื” ื‘ืฉื ื” ืฉืขื‘ืจื”.
04:24
We found another one last month.
99
264482
2617
ืžืฆืื ื• ืขื•ื“ ืื—ื“ ื‘ื—ื•ื“ืฉ ืฉืขื‘ืจ.
04:27
And as you're thinking about this,
100
267099
2199
ื•ื›ื›ืœ ืฉื—ื•ืฉื‘ื™ื ืขืœ ื›ืš,
04:29
you might also ask the question:
101
269298
2103
ืื•ืœื™ ื ื™ืชืŸ ืœืฉืื•ืœ ืืช ื”ืฉืืœื”:
04:31
So why a single human species?
102
271401
3097
ืžื“ื•ืข ืจืง ืžื™ืŸ ื™ื—ื™ื“ ืฉืœ ืื“ื?
04:34
Wouldn't it be really odd
103
274498
1834
ื”ืื ื–ื” ืœื ื”ื™ื” ืžื•ื–ืจ
04:36
if you went to Africa and Asia and Antarctica
104
276332
3784
ืื ื”ื™ื™ื ื• ื”ื•ืœื›ื™ื ืœืืคืจื™ืงื” ื•ืืกื™ื” ื•ืื ื˜ืืจืงื˜ื™ืงื”
04:40
and found exactly the same bird --
105
280116
2619
ื•ืžื•ืฆืื™ื ื‘ื“ื™ื•ืง ืืช ืื•ืชื” ื”ืฆื™ืคื•ืจ --
04:42
particularly given that we co-existed at the same time
106
282735
3792
ื‘ืžื™ื•ื—ื“ ื‘ื”ืชื—ืฉื‘ ื‘ื›ืš ืฉื”ืชืงื™ื™ืžื ื• ื‘ื•-ื–ืžื ื™ืช
04:46
with at least eight other versions of humanoid
107
286527
2786
ืขื ืœืคื—ื•ืช 8 ื’ื™ืจืกืื•ืช ื ื•ืกืคื•ืช ืฉืœ
04:49
at the same time on this planet?
108
289313
2468
ื“ืžื•ื™ื™-ืื“ื ืขืœ ื›ื•ื›ื‘-ืœื›ืช ื–ื”?
04:51
So the normal state of affairs
109
291781
1879
ืœื›ืŸ, ืžืฆื‘ ื”ืขื ื™ื™ื ื™ื ื”ืจื’ื™ืœ
04:53
is not to have just a Homo sapiens;
110
293660
2510
ื”ื•ื ืฉืื™ืŸ ืจืง ืื“ื ืžืžื™ืŸ ืื—ื“;
04:56
the normal state of affairs
111
296170
1021
ื‘ืžืฆื‘ ื”ืขื ื™ื™ื ื™ื ื”ืจื’ื™ืœ
04:57
is to have various versions of humans walking around.
112
297191
3829
ืฆืจื™ื›ื•ืช ืœื”ื™ื•ืช ื’ื™ืจืกืื•ืช ืฉื•ื ื•ืช ืฉืœ ื‘ื ื™-ืื“ื ื”ืžืชื”ืœื›ื™ื ื›ืืŸ.
05:01
And if that is the normal state of affairs,
113
301020
2817
ื•ืื ื–ื”ื• ืžืฆื‘ ื”ืขื ื™ื™ื ื™ื ื”ืจื’ื™ืœ,
05:03
then you might ask yourself,
114
303837
2368
ืื– ืื•ืœื™ ื ืฉืืœ ืืช ืขืฆืžื ื•:
05:06
all right, so if we want to create something else,
115
306205
2065
ืื ืจื•ืฆื™ื ืœื™ืฆื•ืจ ืžืฉื”ื• ืฉื•ื ื”,
05:08
how big does a mutation have to be?
116
308270
2868
ื›ืžื” ื’ื“ื•ืœื” ืฆืจื™ื›ื” ืœื”ื™ื•ืช ื”ืžื•ื˜ืฆื™ื”?
05:11
Well Svante Paabo has the answer.
117
311138
2632
ืœืกื•ื•ืื ื˜ื” ืคืื‘ื• ื™ืฉ ืืช ื”ืชืฉื•ื‘ื”.
05:13
The difference between humans and Neanderthal
118
313770
2800
ื”ื”ื‘ื“ืœ ื‘ื™ืŸ ื‘ื ื™-ืื“ื ืœืื“ื ื ื™ืื ื“ืจื˜ืœื™
05:16
is 0.004 percent of gene code.
119
316570
3299
ื”ื•ื 0.004 ืื—ื•ื– ื‘ืงื•ื“ ื”ื’ื ื˜ื™.
05:19
That's how big the difference is
120
319869
1700
ื–ื”ื• ื’ื•ื“ืœ ื”ื”ื‘ื“ืœ
05:21
one species to another.
121
321569
2217
ื‘ื™ืŸ ืžื™ืŸ ืื—ื“ ืœืื—ืจ.
05:23
This explains most contemporary political debates.
122
323786
4400
ื–ื” ืžืกื‘ื™ืจ ืืช ืจื•ื‘ ื”ื•ื™ื›ื•ื—ื™ื ื”ืคื•ืœื™ื˜ื™ื™ื ืฉืœ ื™ืžื™ื ื•.
05:28
(Laughter)
123
328186
1935
(ืฆื—ื•ืง)
05:30
But as you're thinking about this,
124
330121
3211
ืื‘ืœ ื‘ืขื•ื“ื ื• ื—ื•ืฉื‘ื™ื ืขืœ ื–ื”,
05:33
one of the interesting things
125
333332
1358
ืื—ื“ ื”ื“ื‘ืจื™ื ื”ืžืขื ื™ื™ื ื™ื
05:34
is how small these mutations are and where they take place.
126
334690
3397
ื”ื•ื ืขื“ ื›ืžื” ืงื˜ื ื•ืช ื”ืžื•ื˜ืฆื™ื•ืช ื”ืœืœื• ื•ื”ื™ื›ืŸ ื”ืŸ ืžืชืจื—ืฉื•ืช.
05:38
Difference human/Neanderthal
127
338087
1333
ื”ื‘ื“ืœ ืื“ื/ื ื™ืื ื“ืจื˜ืœ
05:39
is sperm and testis,
128
339420
1733
ื”ื•ื ื‘ื–ืจืข ื•ืืฉื›ื™ื,
05:41
smell and skin.
129
341153
1368
ืจื™ื— ื•ืขื•ืจ.
05:42
And those are the specific genes
130
342521
1486
ืืœื” ื”ื ื”ื’ื ื™ื ื”ืžืกื•ื™ื™ืžื™ื
05:44
that differ from one to the other.
131
344007
2680
ื”ืฉื•ื ื™ื ืืœื” ืžืืœื”.
05:46
So very small changes can have a big impact.
132
346687
3101
ื›ืš ืฉืฉื™ื ื•ื™ื™ื ืžืื•ื“ ืงื˜ื ื™ื ื™ื›ื•ืœื™ื ืœื™ืฆื•ืจ ืืคืงื˜ ื’ื“ื•ืœ.
05:49
And as you're thinking about this,
133
349788
1632
ื•ื›ืฉื—ื•ืฉื‘ื™ื ืขืœ ื–ื”,
05:51
we're continuing to mutate.
134
351420
2516
ืื ื• ืžืžืฉื™ื›ื™ื ืœืขื‘ื•ืจ ืžื•ื˜ืฆื™ื”.
05:53
So about 10,000 years ago by the Black Sea,
135
353936
2901
ื›ืš ืฉืœืคื ื™ ื›-10,000 ืฉื ื”, ืœื™ื“ ื”ื™ื ื”ืฉื—ื•ืจ,
05:56
we had one mutation in one gene
136
356837
2060
ื”ื™ืชื” ืœื ื• ืžื•ื˜ืฆื™ื” ืื—ืช ื‘ื’ืŸ ืื—ื“
05:58
which led to blue eyes.
137
358897
2556
ืฉื”ื•ื‘ื™ืœื” ืœืขื™ื ื™ื™ื ื›ื—ื•ืœื•ืช.
06:01
And this is continuing and continuing and continuing.
138
361453
3884
ื–ื” ืžืžืฉื™ืš ืขื•ื“ ื•ืขื•ื“ ื•ืขื•ื“.
06:05
And as it continues,
139
365337
1434
ื•ื›ื›ืœ ืฉื–ื” ืžืžืฉื™ืš,
06:06
one of the things that's going to happen this year
140
366771
1765
ืื—ื“ ื”ื“ื‘ืจื™ื ืฉื”ื•ืœื›ื™ื ืœืงืจื•ืช ื”ืฉื ื”
06:08
is we're going to discover the first 10,000 human genomes,
141
368536
3333
ื”ื•ื ืฉืื ื• ืขื•ืžื“ื™ื ืœื’ืœื•ืช ืืช 10,000 ื”ื’ื ื™ื ื”ืื ื•ืฉื™ื™ื ื”ืจืืฉื•ื ื™ื,
06:11
because it's gotten cheap enough to do the gene sequencing.
142
371869
3269
ื”ื™ื•ืช ื•ื–ื” ื”ืคืš ืœื–ื•ืœ ืœืจืฆืฃ ืืช ื”ื’ื ื™ื.
06:15
And when we find these,
143
375138
1588
ื•ื›ืฉื ืžืฆื ืื•ืชื,
06:16
we may find differences.
144
376726
2494
ืื ื• ืขืฉื•ื™ื™ื ืœืžืฆื•ื ื”ื‘ื“ืœื™ื.
06:19
And by the way, this is not a debate that we're ready for,
145
379220
3076
ื•ื“ืจืš-ืื’ื‘, ืื ื• ืœื ืžื•ื›ื ื™ื ืœื•ื™ื›ื•ื— ื–ื”,
06:22
because we have really misused the science in this.
146
382296
3376
ื‘ื’ืœืœ ืฉื ื™ืฆืœื ื• ืœืจืขื” ืืช ื”ืžื“ืข ื‘ื ื•ืฉื ื–ื”.
06:25
In the 1920s, we thought there were major differences between people.
147
385672
3683
ื‘ืฉื ื•ืช ื”-20 ืฉืœ ื”ืžืื” ื”-20, ื—ืฉื‘ื ื• ืฉื™ืฉ ืฉื™ื ื•ื™ื™ื ืžื”ื•ืชื™ื™ื ื‘ื™ืŸ ืื ืฉื™ื.
06:29
That was partly based on Francis Galton's work.
148
389355
3798
ื–ื” ื”ืชื‘ืกืก ื‘ื—ืœืงื• ืขืœ ืขื‘ื•ื“ืชื• ืฉืœ ืคืจื ืกื™ืก ื’ืœื˜ื•ืŸ.
06:33
He was Darwin's cousin.
149
393153
2136
ื”ื•ื ื”ื™ื” ื‘ืŸ-ื“ื•ื“ื• ืฉืœ ื“ืืจื•ื•ื™ืŸ.
06:35
But the U.S., the Carnegie Institute,
150
395289
2315
ืื‘ืœ ืืจื”"ื‘, ืžื›ื•ืŸ ืงืืจื ื’'ื™,
06:37
Stanford, American Neurological Association
151
397604
2582
ืกื˜ื ืคื•ืจื“, ื”ืื™ื’ื•ื“ ื”ืืžืจื™ืงืื™ ืœื ื•ื™ืจื•ืœื•ื’ื™ื”
06:40
took this really far.
152
400186
1868
ืœืงื—ื• ืืช ื–ื” ืžืžืฉ ืจื—ื•ืง.
06:42
That got exported and was really misused.
153
402054
3599
ื–ื” ื™ืฆื ื”ื—ื•ืฆื” ื•ื ื•ืฆืœ ื‘ืืžืช ืœืจืขื”.
06:45
In fact, it led to some absolutely horrendous
154
405653
2685
ืœืžืขืฉื”, ื–ื” ื”ื•ื‘ื™ืœ ืœืžืงืจื™ื ืœื’ืžืจื™
06:48
treatment of human beings.
155
408338
2013
ื ื•ืจืื™ื™ื ืฉืœ ื˜ื™ืคื•ืœ ื‘ืื ืฉื™ื.
06:50
So since the 1940s, we've been saying there are no differences,
156
410351
2594
ืœื›ืŸ ืžืฉื ื•ืช ื”-40 ืื ื• ืื•ืžืจื™ื ืฉืื™ืŸ ื”ื‘ื“ืœื™ื,
06:52
we're all identical.
157
412945
1320
ืฉื›ื•ืœื ื• ื–ื”ื™ื.
06:54
We're going to know at year end if that is true.
158
414265
3277
ื‘ืกื•ืฃ ื”ืฉื ื” ื ื“ืข ืื ื–ื” ื ื›ื•ืŸ.
06:57
And as we think about that,
159
417542
1732
ื•ื›ื›ืœ ืฉื—ื•ืฉื‘ื™ื ืขืœ ื–ื”,
06:59
we're actually beginning to find things
160
419274
1518
ืื ื• ืžืชื—ื™ืœื™ื ืœืžืฆื•ื ื“ื‘ืจื™ื
07:00
like, do you have an ACE gene?
161
420792
3466
ื›ืžื•, ื”ืื ื™ืฉ ืœืš ื’ืŸ ACE?
07:04
Why would that matter?
162
424258
1978
ืžื“ื•ืข ื–ื” ื—ืฉื•ื‘?
07:06
Because nobody's ever climbed an 8,000-meter peak without oxygen
163
426236
4038
ืžื›ื™ื•ื•ืŸ ืฉืืฃ ืื—ื“ ืขื•ื“ ืœื ื˜ื™ืคืก ืœื’ื•ื‘ื” 8,000 ืžื˜ืจ
07:10
that doesn't have an ACE gene.
164
430274
2750
ืœืœื ื—ืžืฆืŸ ื•ืฉืื™ืŸ ืœื• ื’ืŸ ACE.
07:13
And if you want to get more specific,
165
433024
1869
ืื ืจื•ืฆื™ื ืœื“ื™ื™ืง ื™ื•ืชืจ,
07:14
how about a 577R genotype?
166
434893
3015
ืžื” ืœื’ื‘ื™ ื”ืžื‘ื ื” ื”ื’ื ื˜ื™ 577R?
07:17
Well it turns out that every male Olympic power athelete ever tested
167
437908
4700
ืžืชื‘ืจืจ ืฉื›ืœ ืืชืœื˜ ืื•ืœื™ืžืคื™ ื–ื›ืจ ืคืขื™ืœ ืฉื ื‘ื“ืง ืื™-ืคืขื
07:22
carries at least one of these variants.
168
442608
3250
ื ื•ืฉื ืœืคื—ื•ืช ืื—ืช ืžื”ื’ื™ืจืกืื•ืช ืฉืœื•.
07:25
If that is true,
169
445858
1654
ืื ื–ื” ื ื›ื•ืŸ,
07:27
it leads to some very complicated questions
170
447512
2158
ื–ื” ืžื•ื‘ื™ืœ ืœื›ืžื” ืฉืืœื•ืช ืžืื•ื“ ืžืกื•ื‘ื›ื•ืช
07:29
for the London Olympics.
171
449670
1801
ืœืงืจืืช ืื•ืœื™ืžืคื™ืื“ืช ืœื•ื ื“ื•ืŸ.
07:31
Three options:
172
451471
1519
ืฉืœื•ืฉ ืื•ืคืฆื™ื•ืช:
07:32
Do you want the Olympics to be a showcase
173
452990
2832
ื”ืื ืจื•ืฆื™ื ืฉื”ืื•ืœื™ืžืคื™ืื“ื” ืชื”ื™ื” ื—ืœื•ืŸ ืจืื•ื•ื”
07:35
for really hardworking mutants?
174
455822
2700
ืœืžื•ื˜ืื ื˜ื™ื ืฉืžืื•ื“ ืžืชืืžืฆื™ื?
07:38
(Laughter)
175
458522
1733
(ืฆื—ื•ืง)
07:40
Option number two:
176
460255
2735
ืื•ืคืฆื™ื” ืฉื ื™ื”:
07:42
Why don't we play it like golf or sailing?
177
462990
3398
ืœืžื” ืฉืœื ื ืฉื—ืง ื›ืžื• ื‘ื’ื•ืœืฃ ืื• ืฉื™ื•ื˜?
07:46
Because you have one and you don't have one,
178
466388
2474
ื‘ื’ืœืœ ืฉืœืš ื™ืฉ ื•ืœืš ืื™ืŸ,
07:48
I'll give you a tenth of a second head start.
179
468862
3995
ืืชืŸ ืœืš ืคื•ืจ ืฉืœ ืขืฉื™ืจื™ืช ื”ืฉื ื™ื”.
07:52
Version number three:
180
472857
1071
ืื•ืคืฆื™ื” ืฉืœื•ืฉ:
07:53
Because this is a naturally occurring gene
181
473928
2069
ืžื›ื™ื•ื•ืŸ ืฉื’ืŸ ื–ื” ืžืชืงื‘ืœ ื‘ื˜ื‘ืขื™ื•ืช
07:55
and you've got it and you didn't pick the right parents,
182
475997
2782
ื•ื™ืฉ ืœืš ืื•ืชื• ื•ืืชื” ืœื ื‘ื—ืจืช ืืช ื”ื”ื•ืจื™ื ื”ื ื›ื•ื ื™ื,
07:58
you get the right to upgrade.
183
478779
3949
ืขื•ืžื“ืช ืœืš ื”ื–ื›ื•ืช ืœื”ืฉืชื“ืจื’.
08:02
Three different options.
184
482728
1751
ืฉืœื•ืฉ ืื•ืคืฆื™ื•ืช ืฉื•ื ื•ืช.
08:04
If these differences are the difference
185
484479
1622
ื”ืื ื”ื‘ื“ืœื™ื ืืœื” ื”ื•ื ื”ื”ื‘ื“ืœ
08:06
between an Olympic medal and a non-Olympic medal.
186
486101
3378
ื‘ื™ืŸ ืœื–ื›ื•ืช ื‘ืžื“ืœื™ื” ืื•ืœื™ืžืคื™ืช ืื• ืžื“ืœื™ื” ืœื-ืื•ืœื™ืžืคื™ืช?
08:09
And it turns out that as we discover these things,
187
489479
2834
ื›ื›ืœ ืฉืื ื• ืžื’ืœื™ื ื™ื•ืชืจ ื‘ืขื ื™ื™ืŸ ื–ื”,
08:12
we human beings really like to change
188
492313
3335
ืžืชื‘ืจืจ ืฉืื ื• ื‘ื ื™-ื”ืื“ื ืื•ื”ื‘ื™ื ืœืฉื ื•ืช
08:15
how we look, how we act,
189
495648
1694
ืืช ืžืจืื ื•, ื”ืชื ื”ื’ื•ืชื ื•,
08:17
what our bodies do.
190
497342
1594
ืชื™ืคืงื•ื“ ื’ื•ืคื ื•.
08:18
And we had about 10.2 million plastic surgeries in the United States,
191
498936
4374
ื”ื™ื• ืœื ื• ื›-10.2 ืžื™ืœื™ื•ืŸ ื ื™ืชื•ื—ื™ื ืคืœืกื˜ื™ื™ื ื‘ืืจื”"ื‘,
08:23
except that with the technologies that are coming online today,
192
503310
3317
ืืœื ืฉืขื ื”ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ื”ื ื›ื ืกื•ืช ืœื–ื™ืจื” ืขื›ืฉื™ื•,
08:26
today's corrections, deletions,
193
506627
2701
ื”ืชื™ืงื•ื ื™ื, ื”ืžื—ื™ืงื•ืช, ื”ืชื•ืกืคื•ืช
08:29
augmentations and enhancements
194
509328
1919
ื•ื”ืฉื™ืคื•ืจื™ื ืฉืœ ื”ื™ื•ื
08:31
are going to seem like child's play.
195
511247
2913
ื™ื™ืจืื• ื›ืžืฉื—ืง ื™ืœื“ื™ื.
08:34
You already saw the work by Tony Atala on TED,
196
514160
3701
ื›ื‘ืจ ืจืื™ื ื• ืืช ื”ืขื‘ื•ื“ื” ืฉืœ ื˜ื•ื ื™ ืื˜ืืœื” ื‘-TED,
08:37
but this ability to start filling
197
517861
3567
ืื‘ืœ ื”ื™ื›ื•ืœืช ื”ื–ื• ืฉืœ ืœืžืœื ืื‘ื™ื–ืจื™ื
08:41
things like inkjet cartridges with cells
198
521428
2933
ื›ืžื• ืžื—ืกื ื™ื•ืช ื“ื™ื• ื‘ืชืื™ ื’ื•ืฃ,
08:44
are allowing us to print skin, organs
199
524361
4674
ืžืืคืฉืจืช ืœื ื• ืœื”ื“ืคื™ืก ืขื•ืจ, ืื™ื‘ืจื™ื
08:49
and a whole series of other body parts.
200
529035
2750
ื•ืื•ืกืฃ ืฉืœื ื—ืœืงื™ ื’ื•ืฃ ืื—ืจื™ื.
08:51
And as these technologies go forward,
201
531785
1884
ื›ื›ืœ ืฉื”ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ื”ืœืœื• ืžืชืงื“ืžื•ืช,
08:53
you keep seeing this, you keep seeing this, you keep seeing things --
202
533669
3784
ื ืžืฉื™ืš ืœืจืื•ืช ืืช ื–ื”, ื•ืืช ื–ื”, ื•ื“ื‘ืจื™ื ืื—ืจื™ื --
08:57
2000, human genome sequence --
203
537453
2774
ืฉื ื•ืช ื”-2000, ืจืฆืฃ ื”ื’ื ื•ื ื”ืื ื•ืฉื™ --
09:00
and it seems like nothing's happening,
204
540227
3782
ื ืจืื” ื›ืื™ืœื• ื›ืœื•ื ืœื ืงื•ืจื”,
09:04
until it does.
205
544009
3112
ืขื“ ืฉืงื•ืจื” ืžืฉื”ื•.
09:07
And we may just be in some of these weeks.
206
547121
3524
ืื ื• ืขืฉื•ื™ื™ื ืœื”ื™ืžืฆื ืžืžืฉ ื‘ืชื•ืš ืื•ืชื ื”ืฉื‘ื•ืขื•ืช ื”ืืœื”.
09:10
And as you're thinking about
207
550645
1599
ื•ื‘ืขื•ื“ื ื• ื—ื•ืฉื‘ื™ื ืขืœ
09:12
these two guys sequencing a human genome in 2000
208
552244
3451
ืฉื ื™ ืื ืฉื™ื ื”ืืœื” ื”ืžื’ืœื™ื ืืช ืจืฆืฃ ื”ื’ื ื•ื ื”ืื ื•ืฉื™
09:15
and the Public Project sequencing the human genome in 2000,
209
555695
3553
ื•ื”ืžื™ื–ื ื”ืฆื™ื‘ื•ืจื™ ืœื’ื™ืœื•ื™ ืจืฆืฃ ื”ื’ื ื•ื ื”ืื ื•ืฉื™,
09:19
then you don't hear a lot,
210
559248
3164
ืœื ืฉื•ืžืขื™ื ืขืœ ื–ื” ืžืžืฉ ื”ืจื‘ื”,
09:22
until you hear about an experiment last year in China,
211
562412
3984
ืขื“ ืฉืฉื•ืžืขื™ื ืขืœ ื ื™ืกื•ื™ ื‘ืกื™ืŸ ืฉื ื” ืฉืขื‘ืจื”,
09:26
where they take skin cells from this mouse,
212
566396
4017
ื‘ื• ื ื˜ืœื• ืชืื™ ืขื•ืจ ืฉืœ ืขื›ื‘ืจ ื–ื”,
09:30
put four chemicals on it,
213
570413
1733
ืฉืžื• ืขืœื™ื”ื 4 ื›ื™ืžื™ืงืœื™ื,
09:32
turn those skin cells into stem cells,
214
572146
3566
ื•ื”ืคื›ื• ืื•ืชื ืœืชืื™ ื’ื–ืข,
09:35
let the stem cells grow
215
575712
1465
ืื™ืคืฉืจื• ืœื”ื ืœื’ื“ื•ืœ
09:37
and create a full copy of that mouse.
216
577177
3087
ื•ื™ืฆืจื• ื”ืขืชืง ืžื“ื•ื™ื™ืง ืฉืœ ืื•ืชื• ืขื›ื‘ืจ.
09:40
That's a big deal.
217
580264
3247
ื–ื” ื›ื‘ืจ ืกื™ืคื•ืจ ืจืฆื™ื ื™.
09:43
Because in essence
218
583511
1016
ื›ื™ ื‘ืขื™ืงืจื•ืŸ,
09:44
what it means is you can take a cell,
219
584527
2148
ืžื” ืฉื–ื” ืื•ืžืจ ื”ื•ื ืฉื ื™ืชืŸ ืœืงื—ืช ืชื,
09:46
which is a pluripotent stem cell,
220
586675
2286
ืชื ื’ื–ืข ื‘ืขืœ ืืคืฉืจื•ื™ื•ืช ื”ืชืคืชื—ื•ืช ืžืจื•ื‘ื•ืช,
09:48
which is like a skier at the top of a mountain,
221
588961
2684
ืฉื–ื” ื›ืžื• ื’ื•ืœืฉ ื‘ืจืืฉ ื”ืจ,
09:51
and those two skiers become two pluripotent stem cells,
222
591645
3817
ื•ืื•ืชื ืฉื ื™ ื’ื•ืœืฉื™ื ื”ื•ืคื›ื™ื ืœืฉื ื™ ืชืื™ ื’ื–ืข ื›ืืœื”,
09:55
four, eight, 16,
223
595462
1782
ืืจื‘ืขื”, ืฉืžื•ื ื”, 16,
09:57
and then it gets so crowded
224
597244
1668
ื•ืื– ื–ื” ื ื”ื™ื” ืฆืคื•ืฃ
09:58
after 16 divisions
225
598912
1800
ื•ืœืื—ืจ 16 ื—ืœื•ืงื•ืช
10:00
that those cells have to differentiate.
226
600712
2502
ืขืœ ืื•ืชื ื”ืชืื™ื ืœื”ื™ืคืจื“.
10:03
So they go down one side of the mountain,
227
603214
1433
ืœื›ืŸ ื”ื ื™ื•ืจื“ื™ื ืœืžื˜ื” ืžืฆื“ ืื—ื“ ืฉืœ ื”ื”ืจ,
10:04
they go down another.
228
604647
1233
ืืœื” ื™ื•ืจื“ื™ื ืžื”ืฆื“ ื”ืื—ืจ.
10:05
And as they pick that,
229
605880
1534
ื›ื›ืœ ืฉื”ื ืžืชืงื“ืžื™ื ื‘ืžืกืœื•ืœ,
10:07
these become bone,
230
607414
2250
ืืœื” ื”ื•ืคื›ื™ื ืœืขืฆื,
10:09
and then they pick another road and these become platelets,
231
609664
2932
ื•ืืœื” ืฉื‘ื—ืจื• ื‘ืžืกืœื•ืœ ืื—ืจ ื”ื•ืคื›ื™ื ืœื˜ืกื™ื•ืช ื“ื,
10:12
and these become macrophages,
232
612596
2117
ื•ืืœื” ืœืชืื™ ืžืงืจื•ืคืื’,
10:14
and these become T cells.
233
614713
1267
ื•ืืœื” ืœืชืื™ T.
10:15
But it's really hard, once you ski down,
234
615980
1952
ืื‘ืœ ื‘ืจื’ืข ืฉื”ื ื’ืœืฉื• ืœืžื˜ื”, ื–ื” ืžืื•ื“ ืงืฉื”
10:17
to get back up.
235
617932
1523
ืœื—ื–ื•ืจ ืœืžืขืœื”.
10:19
Unless, of course, if you have a ski lift.
236
619455
5412
ืืœื ืื ื™ืฉ ืžืขืœื™ืช ืœื’ื•ืœืฉื™ื.
10:24
And what those four chemicals do
237
624867
2449
ื•ืžื” ืฉืื•ืชื 4 ื›ื™ืžื™ืงืœื™ื ืขื•ืฉื™ื
10:27
is they take any cell
238
627316
2069
ื–ื” ืฉื”ื ืœื•ืงื—ื™ื ื›ืœ ืชื
10:29
and take it way back up the mountain
239
629385
1932
ื•ืžื—ื–ื™ืจื™ื ืื•ืชื• ื‘ื—ื–ืจื” ืœืจืืฉ ื”ื”ืจ
10:31
so it can become any body part.
240
631317
2033
ื›ืš ืฉื”ื•ื ื™ื›ื•ืœ ืœื”ืคื•ืš ืœื›ืœ ื—ืœืง ืฉืœ ื”ื’ื•ืฃ.
10:33
And as you think of that,
241
633350
1728
ืื ื—ื•ืฉื‘ื™ื ืขืœ ื–ื”,
10:35
what it means is potentially
242
635078
1980
ืคื™ืจื•ืฉ ื”ื“ื‘ืจ ืฉืคื•ื˜ื ืฆื™ืืœื™ืช
10:37
you can rebuild a full copy
243
637058
2175
ื ื™ืชืŸ ืœื‘ื ื•ืช ื”ืขืชืง ืžื“ื•ื™ื™ืง
10:39
of any organism
244
639233
1867
ืฉืœ ื›ืœ ื™ืฆื•ืจ ื—ื™
10:41
out of any one of its cells.
245
641100
2586
ืžื›ืœ ืื—ื“ ืžื”ืชืื™ื ืฉืœื•.
10:43
That turns out to be a big deal
246
643686
2531
ื–ื” ืžืชื‘ืจืจ ื›ืขืกืง ืจืฆื™ื ื™
10:46
because now you can take, not just mouse cells,
247
646217
2566
ื›ื™ ื ื™ืชืŸ ืœืงื—ืช, ืœื ืจืง ืชืื™ ืขื›ื‘ืจ,
10:48
but you can human skin cells
248
648783
2318
ืืœื ืœืงื—ืช ืชืื™ ืขื•ืจ ืฉืœ ืื“ื
10:51
and turn them into human stem cells.
249
651101
3650
ื•ืœื”ืคื›ื ืœืชืื™ ื’ื–ืข ืื ื•ืฉื™ื™ื.
10:54
And then what they did in October
250
654751
3198
ืžื” ืฉื”ื ืขืฉื• ื‘ืื•ืงื˜ื•ื‘ืจ
10:57
is they took skin cells, turned them into stem cells
251
657949
3400
ื–ื” ื”ื ืœืงื—ื• ืชืื™ ืขื•ืจ, ื”ืคื›ื• ืื•ืชื ืœืชืื™ ื’ื–ืข
11:01
and began to turn them into liver cells.
252
661349
3673
ื•ื”ืชื—ื™ืœื• ืœื”ืคื•ืš ืื•ืชื ืœืชืื™ ื›ื‘ื“.
11:05
So in theory,
253
665022
1044
ื›ืš ืฉื‘ืชืื•ืจื™ื”,
11:06
you could grow any organ from any one of your cells.
254
666066
5184
ื ื™ืชืŸ ืœื’ื“ืœ ื›ืœ ืื™ื‘ืจ ืžื›ืœ ืื—ื“ ืžื”ืชืื™ื ืฉืœื ื•.
11:11
Here's a second experiment:
255
671250
1718
ื”ื ื” ื ื™ืกื•ื™ ืฉื ื™:
11:12
If you could photocopy your body,
256
672968
3133
ืื ื ื™ืชืŸ ื”ื™ื” ืœื”ืขืชื™ืง ืืช ื’ื•ืคื ื• ื‘ืžื›ื•ื ืช ืฆื™ืœื•ื,
11:16
maybe you also want to take your mind.
257
676101
3052
ืื•ืœื™ ืืคืฉืจ ื’ื ืœืขืฉื•ืช ื–ืืช ืœื ืคืฉ.
11:19
And one of the things you saw at TED
258
679153
1565
ืื—ื“ ื”ื“ื‘ืจื™ื ืฉืจืื™ื ื• ื‘-TED
11:20
about a year and a half ago
259
680718
1250
ืœืคื ื™ ื›ืฉื ื” ื•ื—ืฆื™
11:21
was this guy.
260
681968
1435
ื”ื™ื” ืื“ื ื–ื”.
11:23
And he gave a wonderful technical talk.
261
683403
2600
ื”ื•ื ื ืชืŸ ื”ืจืฆืื” ื˜ื›ื ื™ืช ื ืคืœืื”.
11:26
He's a professor at MIT.
262
686003
1599
ื”ื•ื ืคืจื•ืคืกื•ืจ ื‘-MIT.
11:27
But in essence what he said
263
687602
1916
ืื‘ืœ ื‘ืขื™ืงืจื•ืŸ ืžื” ืฉื”ื•ื ืืžืจ
11:29
is you can take retroviruses,
264
689518
1700
ืฉื ื™ืชืŸ ืœืงื—ืช ื ื’ื™ืคื™-ืจื˜ืจื•,
11:31
which get inside brain cells of mice.
265
691218
2800
ื”ื ื›ื ืกื™ื ืœืชื•ืš ืชืื™ ืžื•ื— ืฉืœ ืขื›ื‘ืจื™ื.
11:34
You can tag them with proteins
266
694018
2440
ื ื™ืชืŸ ืœืกืžื ื ืขื ืคืจื•ื˜ืื™ื ื™ื
11:36
that light up when you light them.
267
696458
2094
ืืฉืจ ื–ื•ื”ืจื™ื ื›ืืฉืจ ืžืื™ืจื™ื ืขืœื™ื”ื.
11:38
And you can map the exact pathways
268
698552
3716
ื›ืš ื ื™ืชืŸ ืœืžืคื•ืช ืืช ื”ืžืกืœื•ืœื™ื ื”ืžื“ื•ื™ื™ืงื™ื
11:42
when a mouse sees, feels, touches,
269
702268
3483
ื›ืืฉืจ ื”ืขื›ื‘ืจ ืจื•ืื”, ื—ืฉ, ื ื•ื’ืข,
11:45
remembers, loves.
270
705751
2183
ื–ื•ื›ืจ, ืื•ื”ื‘.
11:47
And then you can take a fiber optic cable
271
707934
2373
ื•ืื– ื ื™ืชืŸ ืœื™ื˜ื•ืœ ื›ื‘ืœ ืกื™ื‘-ืื•ืคื˜ื™
11:50
and light up some of the same things.
272
710307
3819
ื•ืœื”ืื™ืจ ืขืœ ื›ืžื” ืžื”ื“ื‘ืจื™ื ื”ื "ืœ.
11:54
And by the way, as you do this,
273
714126
1832
ื›ืืฉืจ ืขื•ืฉื™ื ื–ืืช,
11:55
you can image it in two colors,
274
715958
2017
ื ื™ืชืŸ ืœืขืฉื•ืช ื”ื“ืžื™ื” ื‘ืฉื ื™ ืฆื‘ืขื™ื,
11:57
which means you can download this information
275
717975
2399
ืฉื–ื” ืื•ืžืจ ื ื™ืชืŸ ืœื”ื•ืจื™ื“
12:00
as binary code directly into a computer.
276
720374
4740
ืžื™ื“ืข ื–ื” ื‘ืชื•ืจ ืงื•ื“ ื‘ื™ื ืืจื™ ืœืชื•ืš ืžื—ืฉื‘.
12:05
So what's the bottom line on that?
277
725114
2473
ืื– ืžื”ื™ ื”ืฉื•ืจื” ื”ืชื—ืชื•ื ื” ืฉืœ ื–ื”?
12:07
Well it's not completely inconceivable
278
727587
2200
ื–ื” ืœื ืœื’ืžืจื™ ื”ื–ื•ื™ ืœื—ืฉื•ื‘
12:09
that someday you'll be able to download your own memories,
279
729787
4495
ืฉื™ื•ื ืื—ื“ ื ื”ื™ื” ืžืกื•ื’ืœื™ื ืœื”ื•ืจื™ื“ ืœืžื—ืฉื‘ ืืช ื”ื–ื›ืจื•ื ื•ืช ืฉืœื ื•,
12:14
maybe into a new body.
280
734282
2387
ืื•ืœื™ ื’ื ืœืชื•ืš ื’ื•ืฃ ื—ื“ืฉ.
12:16
And maybe you can upload other people's memories as well.
281
736669
5085
ืื•ืœื™ ื ื™ืชืŸ ืœื˜ืขื•ืŸ ื’ื ื–ื™ื›ืจื•ื ื•ืช ืฉืœ ืื ืฉื™ื ืื—ืจื™ื.
12:21
And this might have just one or two
282
741754
2514
ื•ืœื–ื” ืชื”ื™ื” ืื•ืœื™ ื”ืฉืœื›ื” ืื—ืช ืงื˜ื ื”,
12:24
small ethical, political, moral implications.
283
744268
3520
ืื• ืฉืชื™ื™ื, ื”ื ื•ื’ืขืช ืœืืชื™ืงื”, ืคื•ืœื™ื˜ื™ืงื” ื•ืžื•ืกืจ.
12:27
(Laughter)
284
747788
1531
(ืฆื—ื•ืง)
12:29
Just a thought.
285
749319
2991
ืžื™ืŸ ืžื—ืฉื‘ื” ืฉื›ื–ื•.
12:32
Here's the kind of questions
286
752310
1528
ื–ื•ื”ื™ ื“ื•ื’ืžื ืœืฉืืœื•ืช
12:33
that are becoming interesting questions
287
753838
1980
ืฉืžืชื—ื™ืœื•ืช ืœืขื ื™ื™ืŸ
12:35
for philosophers, for governing people,
288
755818
2484
ืคื™ืœื•ืกื•ืคื™ื, ืื ืฉื™ ืฉืœื˜ื•ืŸ,
12:38
for economists, for scientists.
289
758302
3366
ื›ืœื›ืœื ื™ื, ืžื“ืขื ื™ื.
12:41
Because these technologies are moving really quickly.
290
761668
3284
ืžืื—ืจ ื•ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ื”ืœืœื• ืžืชืงื“ืžื•ืช ืžืื•ื“ ืžื”ืจ.
12:44
And as you think about it,
291
764952
1500
ื‘ืขื•ื“ื ื• ืžื”ืจื”ืจื™ื ื‘ื”ืŸ,
12:46
let me close with an example of the brain.
292
766452
3082
ืืกื™ื™ื ื‘ืจืฉื•ืชื›ื ืขื ื“ื•ื’ืžื ืฉืœ ื”ืžื•ื—.
12:49
The first place where you would expect
293
769534
1683
ื”ืžืงื•ื ื”ืจืืฉื•ืŸ ืฉื”ื™ื™ื ื• ืžืฆืคื™ื
12:51
to see enormous evolutionary pressure today,
294
771217
3051
ืœืจืื•ืช ื‘ื• ื”ื™ื•ื ืืช ื”ืœื—ืฅ ื”ืื‘ื•ืœื•ืฆื™ื•ื ื™ ื”ืื“ื™ืจ,
12:54
both because of the inputs,
295
774268
2265
ื”ืŸ ื‘ื’ืœืœ ื”ืชืฉื•ืžื•ืช,
12:56
which are becoming massive,
296
776533
1552
ื”ื ืขืฉื•ืช ืžืกื™ื‘ื™ื•ืช,
12:58
and because of the plasticity of the organ,
297
778085
1782
ื•ื”ืŸ ื‘ื’ืœืœ ื’ืžื™ืฉื•ืช ื”ืื™ื‘ืจ,
12:59
is the brain.
298
779867
2534
ื–ื” ื”ืžื•ื—.
13:02
Do we have any evidence that that is happening?
299
782401
3318
ื”ืื ื™ืฉ ืœื ื• ื”ื•ื›ื—ื” ืฉื–ื” ื‘ืืžืช ืงื•ืจื”?
13:05
Well let's take a look at something like autism incidence per thousand.
300
785719
4731
ื”ื‘ื” ื ืชื‘ื•ื ืŸ ื‘ืžืงืจื” ื›ืžื• ืžืกืคืจ ืžืงืจื™ ืื•ื˜ื™ื–ื ืœืืœืฃ.
13:10
Here's what it looks like in 2000.
301
790450
2502
ื›ืš ื–ื” ื ืจืื” ื‘ืฉื ืช 2000.
13:12
Here's what it looks like in 2002,
302
792952
2082
ื›ืš ื–ื” ื ืจืื” ื‘-2002,
13:15
2006, 2008.
303
795034
4618
2006, 2008.
13:19
Here's the increase in less than a decade.
304
799652
4082
ื–ื”ื• ื”ื’ื™ื“ื•ืœ ื‘ืคื—ื•ืช ืžืขืฉื•ืจ.
13:23
And we still don't know why this is happening.
305
803734
4417
ืื ื• ืขื“ื™ื™ืŸ ืœื ื™ื•ื“ืขื™ื ืžื“ื•ืข ื–ื” ืงื•ืจื”.
13:28
What we do know is, potentially,
306
808151
2485
ืžื” ืฉืื ื• ื›ืŸ ื™ื•ื“ืขื™ื, ื™ื›ื•ืœ ืœื”ื™ื•ืช,
13:30
the brain is reacting in
307
810636
2032
ืฉื”ืžื•ื— ืžื’ื™ื‘ ื‘ืื•ืคืŸ
13:32
a hyperactive, hyper-plastic way,
308
812668
2134
ื”ื™ืคืจ-ืืงื˜ื™ื‘ื™, ื”ื™ืคืจ-ืคืœืกื˜ื™,
13:34
and creating individuals that are like this.
309
814802
2950
ื•ื™ื•ืฆืจ ืื ืฉื™ื ื›ืืœื”.
13:37
And this is only one of the conditions that's out there.
310
817752
2757
ื–ื” ืจืง ืื—ื“ ื”ืžืฆื‘ื™ื ื”ืฉื•ืจืจื™ื ื‘ืžืฆื™ืื•ืช.
13:40
You've also got people with who are extraordinarily smart,
311
820509
3540
ื™ืฉ ื’ื ืื ืฉื™ื ื”ืคื™ืงื—ื™ื ื‘ืื•ืคืŸ ื‘ืœืชื™ ืจื’ื™ืœ,
13:44
people who can remember everything they've seen in their lives,
312
824049
2397
ืื ืฉื™ื ื”ืžืกื•ื’ืœื™ื ืœื–ื›ื•ืจ ื”ื›ืœ ืžืžื” ืฉื”ื ืจืื• ื‘ื—ื™ื™ื”ื,
13:46
people who've got synesthesia,
313
826446
1385
ืื ืฉื™ื ืฉื™ืฉ ืœื”ื ืกื™ื ืกืชื–ื™ื”,
13:47
people who've got schizophrenia.
314
827831
1331
ืื ืฉื™ื ืฉื™ืฉ ืœื”ื ืกื›ื™ื–ื•ืคืจื ื™ื”.
13:49
You've got all kinds of stuff going on out there,
315
829162
2534
ื™ืฉ ื›ืœ ืžื™ื ื™ ื“ื‘ืจื™ื ืฉืžืชืจื—ืฉื™ื ื”ื™ื•ื,
13:51
and we still don't understand
316
831696
1218
ื•ืื ื• ืขื“ื™ื™ืŸ ืœื ืžื‘ื™ื ื™ื
13:52
how and why this is happening.
317
832914
2233
ื›ื™ืฆื“ ื•ืžื“ื•ืข ื”ื ืงื•ืจื™ื.
13:55
But one question you might want to ask is,
318
835147
2682
ืื‘ืœ ืฉืืœื” ืื—ืช ืฉื ืจืฆื” ืœืฉืื•ืœ ื”ื™ื,
13:57
are we seeing a rapid evolution of the brain
319
837829
2628
ื”ืื ืื ื• ืขื“ื™ื ืœืื‘ื•ืœื•ืฆื™ื” ืžื•ืืฆืช ืฉืœ ื”ืžื•ื—
14:00
and of how we process data?
320
840457
1825
ื•ืฉืœ ื”ืื•ืคืŸ ื‘ื• ืื ื• ืžืขื‘ื“ื™ื ืžื™ื“ืข?
14:02
Because when you think of how much data's coming into our brains,
321
842282
3063
ื›ื™ ืื ื—ื•ืฉื‘ื™ื ืขืœ ื›ืžื•ืช ื”ืžื™ื“ืข ืฉื ื›ื ืกืช ืœืžื•ื—ื•ืชื™ื ื•,
14:05
we're trying to take in as much data in a day
322
845345
3484
ืื ื• ื‘ืขืฆื ืงื•ืœื˜ื™ื ื‘ื™ื•ื ืื—ื“ ืžื™ื“ืข ืฉืื ืฉื™ื
14:08
as people used to take in in a lifetime.
323
848829
2551
ืคืขื ืงืœื˜ื• ืœืื•ืจืš ื›ืœ ื—ื™ื™ื”ื.
14:11
And as you're thinking about this,
324
851380
2632
ื•ื‘ืขื•ื“ื ื• ื—ื•ืฉื‘ื™ื ืขืœ ื›ืš,
14:14
there's four theories as to why this might be going on,
325
854012
2342
ื™ืฉื ืŸ 4 ืชืื•ืจื™ื•ืช ืœื’ื‘ื™ ืžื“ื•ืข ื–ื” ืขืฉื•ื™ ืœืงืจื•ืช,
14:16
plus a whole series of others.
326
856354
1327
ื›ืžื• ืขื•ื“ ื“ื‘ืจื™ื ืจื‘ื™ื ื ื•ืกืคื™ื.
14:17
I don't have a good answer.
327
857681
1649
ืื™ืŸ ืœื™ ืชืฉื•ื‘ื” ื˜ื•ื‘ื”.
14:19
There really needs to be more research on this.
328
859330
3616
ื™ืฉ ืฆื•ืจืš ื‘ืžื—ืงืจื™ื ื ื•ืกืคื™ื ื‘ื ื•ืฉื ื–ื”.
14:22
One option is the fast food fetish.
329
862946
2235
ืืคืฉืจื•ืช ืื—ืช ื”ื™ื ื”ืชืžื›ืจื•ืช ืœืžื–ื•ืŸ ืžื”ื™ืจ.
14:25
There's beginning to be some evidence
330
865181
2449
ืžืชื—ื™ืœื•ืช ืœื”ืฆื˜ื‘ืจ ื”ื•ื›ื—ื•ืช
14:27
that obesity and diet
331
867630
2251
ืฉื”ืฉืžื ื” ื•ืชื–ื•ื ื”
14:29
have something to do
332
869881
1631
ืงืฉื•ืจื•ืช ืื™ื›ืฉื”ื•
14:31
with gene modifications,
333
871512
1768
ื‘ืฉื™ื ื•ื™ื™ ื’ื ื™ื,
14:33
which may or may not have an impact
334
873280
2350
ื“ื‘ืจ ื”ืขืฉื•ื™ ืœื”ืฉืคื™ืข ืื• ืฉืœื
14:35
on how the brain of an infant works.
335
875630
3517
ืขืœ ื›ื™ืฆื“ ื”ืžื•ื— ืฉืœ ืชื™ื ื•ืง ืคื•ืขืœ.
14:39
A second option is the sexy geek option.
336
879147
3955
ืืคืฉืจื•ืช ืฉื ื™ื” ื”ื™ื ืฉืœ ื”ืžื›ื•ืจ-ืœืžื—ืฉื‘ ื”ืกืงืกื™.
14:43
These conditions are highly rare.
337
883102
4243
ืืœื” ืžืงืจื™ื ืžืื•ื“ ื ื“ื™ืจื™ื.
14:47
(Laughter)
338
887345
3038
(ืฆื—ื•ืง)
14:50
(Applause)
339
890383
5300
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
14:55
But what's beginning to happen
340
895683
1633
ืื‘ืœ ืžื” ืฉืžืชื—ื™ืœ ืœื”ืชืจื—ืฉ
14:57
is because these geeks are all getting together,
341
897316
2534
ื”ื•ื ืฉื‘ื’ืœืœ ืฉื”ื—ื ื•ื ื™ื ื”ืœืœื• ืžืชื›ื ืกื™ื ื‘ื™ื—ื“,
14:59
because they are highly qualified for computer programming
342
899850
2897
ื‘ื’ืœืœ ืฉื”ื ืžืื•ื“ ืžื™ื•ืžื ื™ื ื‘ืชื™ื›ื ื•ืช ืžื—ืฉื‘ื™ื
15:02
and it is highly remunerated,
343
902747
2318
ื•ื–ื” ืžืชื•ื’ืžืœ ื”ื™ื˜ื‘,
15:05
as well as other very detail-oriented tasks,
344
905065
3150
ื›ืžื• ืžืฉื™ืžื•ืช ืื—ืจื•ืช ื”ื“ื•ืจืฉื•ืช ื”ืชืžื—ื•ื™ื•ืช ืžืื•ื“ ืกืคืฆื™ืคื™ื•ืช,
15:08
that they are concentrating geographically
345
908215
2449
ื”ื ืžืชื—ื™ืœื™ื ืœื”ืชืืกืฃ ื’ื™ืื•ื’ืจืคื™ืช
15:10
and finding like-minded mates.
346
910664
2967
ื•ืžื•ืฆืื™ื ืขืžื™ืชื™ื ื‘ืขืœื™ ืื•ืคืŸ ื—ืฉื™ื‘ื” ื“ื•ืžื”.
15:13
So this is the assortative mating hypothesis
347
913631
3568
ืœื›ืŸ ื–ื•ื”ื™ ื”ื™ืคื•ืชื™ื–ื” ืขืœ ื—ื™ื‘ื•ืจ ื‘ื™ืŸ ืื ืฉื™ื ื‘ืขืœื™ ืชื›ื•ื ื•ืช ื“ื•ืžื•ืช
15:17
of these genes reinforcing one another
348
917199
2700
ื”ื’ื•ืจื ืœื—ื™ื–ื•ืง ื”ื“ื“ื™ ืฉืœ ื’ื ื™ื ื–ื”ื™ื
15:19
in these structures.
349
919899
2117
ื‘ืžื‘ื ื™ื ื—ื‘ืจืชื™ื™ื ืืœื”.
15:22
The third, is this too much information?
350
922016
2950
ื”ืืคืฉืจื•ืช ื”ืฉืœื™ืฉื™ืช, ื”ืื ื–ื”ื• ื’ื•ื“ืฉ ื™ืชืจ ืฉืœ ืžื™ื“ืข?
15:24
We're trying to process so much stuff
351
924966
1497
ืื ื• ืžื ืกื™ื ืœืขื‘ื“ ื›ืœ-ื›ืš ื”ืจื‘ื” ื—ื•ืžืจ
15:26
that some people get synesthetic
352
926463
2352
ืฉื—ืœืง ืžื”ืื ืฉื™ื ื”ื•ืคื›ื™ื ืœืกื™ื ืกืชื˜ื™ื™ื
15:28
and just have huge pipes that remember everything.
353
928815
2600
ื•ืื—ืจื™ื ืคืฉื•ื˜ ื™ื•ืฆืจื™ื ื‘ืชื•ื›ื ื—ืœืœื™ื ืขื ืงื™ื™ื ืฉื–ื•ื›ืจื™ื ื”ื›ืœ.
15:31
Other people get hyper-sensitive to the amount of information.
354
931415
2669
ืื ืฉื™ื ืื—ืจื™ื ื”ื•ืคื›ื™ื ืœื‘ืขืœื™ ืจื’ื™ืฉื•ืช-ื™ืชืจ ืœื›ืžื•ืช ื”ืžื™ื“ืข.
15:34
Other people react with various psychological conditions
355
934084
3982
ืื—ืจื™ื ืžื’ื™ื‘ื™ื ื‘ืื•ืคื ื™ื ืคืกื™ื›ื•ืœื•ื’ื™ื™ื ืฉื•ื ื™ื
15:38
or reactions to this information.
356
938066
1632
ืœืžื™ื“ืข ื–ื”.
15:39
Or maybe it's chemicals.
357
939698
2702
ืื• ืฉืื•ืœื™ ื–ื” ื”ื›ืœ ื›ื™ืžื™ืงืœื™ื.
15:42
But when you see an increase
358
942400
1765
ืื‘ืœ ื›ืืฉืจ ืจื•ืื™ื ื’ื™ื“ื•ืœ
15:44
of that order of magnitude in a condition,
359
944165
2351
ื‘ืกื“ืจ ื’ื•ื“ืœ ื›ื–ื” ื‘ืคืจืžื˜ืจ ื›ืœืฉื”ื•,
15:46
either you're not measuring it right
360
946516
1565
ืื– ืื• ืฉืื ื• ืœื ืžื•ื“ื“ื™ื ืื•ืชื• ื ื›ื•ืŸ
15:48
or there's something going on very quickly,
361
948081
2518
ืื• ืฉืื›ืŸ ืžืชืจื—ืฉ ืžืฉื”ื• ื‘ืžื”ื™ืจื•ืช ืจื‘ื”,
15:50
and it may be evolution in real time.
362
950599
4032
ื•ื–ื• ืขืฉื•ื™ื” ืœื”ื™ื•ืช ืื‘ื•ืœื•ืฆื™ื” ื‘ื–ืžืŸ ืืžืช.
15:54
Here's the bottom line.
363
954631
2503
ื”ื ื” ื”ืฉื•ืจื” ื”ืชื—ืชื•ื ื”.
15:57
What I think we are doing
364
957134
2181
ืื ื™ ืกื‘ื•ืจ ืฉืžื” ืฉืงื•ืจื” ืœื ื•
15:59
is we're transitioning as a species.
365
959315
1716
ื”ื•ื ืฉืื ื• ืžืฉืชื ื™ื ื‘ืชื•ืจ ืžื™ืŸ.
16:01
And I didn't think this when Steve Gullans and I started writing together.
366
961031
5484
ืœื ื—ืฉื‘ืชื™ ื›ื›ื” ื›ืืฉืจ ืกื˜ื™ื‘ ื’ื•ืœืื ืก ื•ืื ื•ื›ื™ ื”ืชื—ืœื ื• ืœื›ืชื•ื‘ ื‘ื™ื—ื“.
16:06
I think we're transitioning into Homo evolutis
367
966515
2451
ื›ืขืช ืื ื™ ื—ื•ืฉื‘ ืฉืื ื• ืžืฉืชื ื™ื ืœืื“ื-ืื‘ื•ืœื•ืฆื™ื•ื ื™
16:08
that, for better or worse,
368
968966
1399
ืฉื–ื”, ืœื˜ื•ื‘ ืื• ืœืจืข,
16:10
is not just a hominid that's conscious of his or her environment,
369
970365
4182
ืื™ื ื• ืจืง ื‘ืŸ-ืื ื•ืฉ ื”ืžื•ื“ืข ืืš ื•ืจืง ืœืกื‘ื™ื‘ืชื•,
16:14
it's a hominid that's beginning to directly and deliberately
370
974547
3219
ืืœื ื”ื•ื ืžืชื—ื™ืœ ื‘ืื•ืคืŸ ื™ืฉื™ืจ ื•ืžื›ื•ื•ืŸ
16:17
control the evolution of its own species,
371
977766
3198
ืœืฉืœื•ื˜ ื‘ืื‘ื•ืœื•ืฆื™ื” ืฉืœ ื‘ื ื™-ืžื™ื ื•,
16:20
of bacteria, of plants, of animals.
372
980964
3834
ืฉืœ ื—ื™ื™ื“ืงื™ื, ืฉืœ ืฆืžื—ื™ื, ืฉืœ ื—ื™ื•ืช.
16:24
And I think that's such an order of magnitude change
373
984798
2835
ื•ืื ื™ ืกื‘ื•ืจ ืฉื–ื”ื• ืฉื™ื ื•ื™ ื‘ืกื“ืจ-ื’ื•ื“ืœ ื›ื–ื”
16:27
that your grandkids or your great-grandkids
374
987633
3103
ืฉื ื›ื“ื™ื ื• ื•ื ื™ื ื™ื ื• ืขืฉื•ื™ื™ื ืœื”ื™ื•ืช
16:30
may be a species very different from you.
375
990736
3045
ืžื™ืŸ ืฉื”ื•ื ืฉื•ื ื” ืžืื•ื“ ืžืฉืœื ื•.
16:33
Thank you very much.
376
993781
1586
ืชื•ื“ื” ืจื‘ื” ืœื›ื.
16:35
(Applause)
377
995367
5331
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7