請雙擊下方英文字幕播放視頻。
00:00
Translator: Timothy Covell
Reviewer: Morton Bast
0
0
7000
譯者: Zheng Song
審譯者: Ren Wan
00:15
All right. So, like all good stories,
1
15695
1983
好吧,就像那些童話故事一樣,
00:17
this starts a long, long time ago
2
17678
1934
這個故事要從很久很久以前講起,
00:19
when there was basically nothing.
3
19612
2149
當時宇宙基本上是一片空白
00:21
So here is a complete picture of the universe
4
21761
2400
這張圖片展現的就是
00:24
about 14-odd billion years ago.
5
24161
3452
140多億年前的整個宇宙
00:27
All energy is concentrated into a single point of energy.
6
27613
3084
所有的能量都集中在一個能量點
00:30
For some reason it explodes,
7
30697
1584
由於某種原因它爆炸了
00:32
and you begin to get these things.
8
32281
2116
宇宙裏開始出現這些東西
00:34
So you're now about 14 billion years into this.
9
34397
2866
它們已經存在了140多億年
00:37
And these things expand and expand and expand
10
37263
1896
而且在不斷地擴大、擴大、擴大
00:39
into these giant galaxies,
11
39159
1699
形成了這些巨大的星系
00:40
and you get trillions of them.
12
40858
1319
數量達到幾萬億
00:42
And within these galaxies
13
42177
2148
在這些星系裏
00:44
you get these enormous dust clouds.
14
44325
2119
出現大量的塵埃雲
00:46
And I want you to pay particular attention
15
46444
1765
請大家注意看
00:48
to the three little prongs
16
48209
1450
圖片中心的
00:49
in the center of this picture.
17
49659
1901
這三個小突起
00:51
If you take a close-up of those,
18
51560
1415
如果給它們來個特寫的話
00:52
they look like this.
19
52975
1653
它們看上去就是這個樣子
00:54
And what you're looking at is columns of dust
20
54628
2850
大家所看到的是塵埃柱
00:57
where there's so much dust --
21
57478
2047
其中滿是塵埃
00:59
by the way, the scale of this is a trillion vertical miles --
22
59525
4333
順便提一句,它的規模有一萬億英里
01:03
and what's happening is there's so much dust,
23
63858
2918
這些大量的塵埃
01:06
it comes together and it fuses
24
66776
1934
相互聚集,熔合
01:08
and ignites a thermonuclear reaction.
25
68710
3459
引發了熱核反應
01:12
And so what you're watching
26
72169
842
現在大家所看到的
01:13
is the birth of stars.
27
73011
1985
便是恒星的誕生
01:14
These are stars being born out of here.
28
74996
1657
恒星就是在這裏產生的
01:16
When enough stars come out,
29
76653
2468
當恒星的數量足夠多時
01:19
they create a galaxy.
30
79121
1798
它們形成了一個星系
01:20
This one happens to be a particularly important galaxy,
31
80919
3434
而這個星系恰巧是至關重要的
01:24
because you are here.
32
84353
2216
因為我們大家就生活在這裏
01:26
(Laughter)
33
86569
1167
(笑聲)
01:27
And as you take a close-up of this galaxy,
34
87736
1651
仔細觀察這個星系
01:29
you find a relatively normal,
35
89387
2065
我們會發現一個比較平凡
01:31
not particularly interesting star.
36
91452
2368
並不引人注目的恒星
01:33
By the way, you're now about two-thirds of the way into this story.
37
93820
4015
順便提一句,這個故事已經講了三分之二了
01:37
So this star doesn't even appear
38
97835
2182
而這顆恒星
01:40
until about two-thirds of the way into this story.
39
100017
2951
卻直到現在才出現
01:42
And then what happens
40
102968
1078
現在的情況是
01:44
is there's enough dust left over
41
104046
1406
由於剩餘的塵埃
01:45
that it doesn't ignite into a star,
42
105452
1966
不足以引發熱核反應形成恒星
01:47
it becomes a planet.
43
107418
2000
於是它成為了行星
01:49
And this is about a little over four billion years ago.
44
109418
4825
這大約發生在40億年前
01:54
And soon thereafter
45
114243
1433
不久之後
01:55
there's enough material left over
46
115676
1917
由於擁有足夠的剩餘原料
01:57
that you get a primordial soup,
47
117593
4563
便有了一鍋「原湯」
02:02
and that creates life.
48
122156
1764
生命便從這裏起源
02:03
And life starts to expand and expand and expand,
49
123920
3881
而且不斷地擴大、擴大、再擴大
02:07
until it goes kaput.
50
127801
1751
直到它塵歸塵,土歸土
02:09
(Laughter)
51
129552
3488
(笑聲)
02:13
Now the really strange thing
52
133040
1430
有件事情非常的奇怪
02:14
is life goes kaput, not once, not twice,
53
134470
2906
生命滅絕了不止一次、兩次
02:17
but five times.
54
137376
2216
而是五次
02:19
So almost all life on Earth
55
139592
2102
幾乎地球上的所有生命
02:21
is wiped out about five times.
56
141694
2464
都被消滅了五次
02:24
And as you're thinking about that,
57
144158
1552
正如大家所想的一樣
02:25
what happens is you get more and more complexity,
58
145710
2432
新生命變得越來越複雜
02:28
more and more stuff
59
148142
1234
越來越多的材質
02:29
to build new things with.
60
149376
4118
包含在裏面
02:33
And we don't appear
61
153494
1270
而我們人類
02:34
until about 99.96 percent of the time into this story,
62
154764
5648
直到這個故事的99.96%才出現
02:40
just to put ourselves and our ancestors in perspective.
63
160412
3930
以便我們正確看待自己和我們的祖先
02:44
So within that context, there's two theories of the case
64
164342
3459
在這個背景下有兩種理論
02:47
as to why we're all here.
65
167801
1689
來解釋人類為什麼存在
02:49
The first theory of the case
66
169490
1589
第一種理論
02:51
is that's all she wrote.
67
171079
3409
這都是她寫下來的
02:54
Under that theory,
68
174488
1359
按照這種理論
02:55
we are the be-all and end-all
69
175847
1836
人類是造物主
02:57
of all creation.
70
177683
1733
最重要的創造
02:59
And the reason for trillions of galaxies,
71
179416
2884
所以數萬億的星系
03:02
sextillions of planets,
72
182300
2013
以及數量眾多的行星存在的原因
03:04
is to create something that looks like that
73
184313
4710
是為了創造這樣…
03:09
and something that looks like that.
74
189023
3633
和那樣的生命體
03:12
And that's the purpose of the universe;
75
192656
1541
這就是宇宙存在的目的
03:14
and then it flat-lines,
76
194197
1284
然後它就開始走平穩路線
03:15
it doesn't get any better.
77
195481
1311
沒有再進一步提高水準
03:16
(Laughter)
78
196792
4480
(笑聲)
03:21
The only question you might want to ask yourself is,
79
201272
2819
大家可能想問自己
03:24
could that be just mildly arrogant?
80
204091
5235
這樣的解釋是不是有些妄自尊大呢?
03:29
And if it is --
81
209326
1741
如果是這樣的話
03:31
and particularly given the fact that we came very close to extinction.
82
211067
5382
特別是鑒於人類曾經接近滅絕的事實
03:36
There were only about 2,000 of our species left.
83
216449
3367
當時只剩下大約二千人
03:39
A few more weeks without rain,
84
219816
2083
要是再有幾個星期不下雨
03:41
we would have never seen any of these.
85
221899
3084
我們就再也見不到這些名人了
03:44
(Laughter)
86
224983
6699
(笑聲)
03:51
(Applause)
87
231682
4634
(掌聲)
03:56
So maybe you have to think about a second theory
88
236316
2966
因此我們也許不得不考慮另一種理論
03:59
if the first one isn't good enough.
89
239282
2917
如果第一種解釋不通的話
04:02
Second theory is: Could we upgrade?
90
242199
1784
第二種理論是:我們能不能「升級」?
04:03
(Laughter)
91
243983
2899
(笑聲)
04:06
Well, why would one ask a question like that?
92
246882
3234
怎麼會有人問出這樣的問題呢?
04:10
Because there have been at least 29 upgrades so far
93
250116
2465
因為目前為止一經發現
04:12
of humanoids.
94
252581
2036
人類已至少「升級」了29次
04:14
So it turns out that we have upgraded.
95
254617
2850
結果表明我們確實「升級」了
04:17
We've upgraded time and again and again.
96
257467
1915
人類一次一次地「升級」
04:19
And it turns out that we keep discovering upgrades.
97
259382
2916
而且我們還在不斷地發現新的「升級」的證據
04:22
We found this one last year.
98
262298
2184
這是去年發現的
04:24
We found another one last month.
99
264482
2617
我們上個月還發現了一個
04:27
And as you're thinking about this,
100
267099
2199
現在大家都在思考這個理論
04:29
you might also ask the question:
101
269298
2103
可能會產生這個疑問
04:31
So why a single human species?
102
271401
3097
為什麼僅僅是人類呢?
04:34
Wouldn't it be really odd
103
274498
1834
如果我們在非洲、亞洲、南極洲
04:36
if you went to Africa and Asia and Antarctica
104
276332
3784
發現同一種鳥類
04:40
and found exactly the same bird --
105
280116
2619
會不會是件很稀奇的事情?
04:42
particularly given that we co-existed at the same time
106
282735
3792
特別是考慮到我們曾經
04:46
with at least eight other versions of humanoid
107
286527
2786
和至少其他八類人種
04:49
at the same time on this planet?
108
289313
2468
在這個星球上共同存在過
04:51
So the normal state of affairs
109
291781
1879
智人是唯一存在的人種這種說法
04:53
is not to have just a Homo sapiens;
110
293660
2510
不是自然界的普遍法則
04:56
the normal state of affairs
111
296170
1021
自然界的普遍法則是
04:57
is to have various versions of humans walking around.
112
297191
3829
各種不同種類的人
05:01
And if that is the normal state of affairs,
113
301020
2817
如果自然界的法則是這樣
05:03
then you might ask yourself,
114
303837
2368
那麼你可能要問自己
05:06
all right, so if we want to create something else,
115
306205
2065
如果我們想創造出其他的人種
05:08
how big does a mutation have to be?
116
308270
2868
要產生多大的變異才可以?
05:11
Well Svante Paabo has the answer.
117
311138
2632
Svante Paabo 給出了答案
05:13
The difference between humans and Neanderthal
118
313770
2800
人類和尼安德塔人(遠古的人種)
05:16
is 0.004 percent of gene code.
119
316570
3299
基因上只有0.004%的差別
05:19
That's how big the difference is
120
319869
1700
一個人種和另一個人種
05:21
one species to another.
121
321569
2217
就是這麼一點差別
05:23
This explains most contemporary political debates.
122
323786
4400
這就解釋了現在多數的政治糾紛
05:28
(Laughter)
123
328186
1935
(笑聲)
05:30
But as you're thinking about this,
124
330121
3211
大家仔細想一想
05:33
one of the interesting things
125
333332
1358
一件非常有意思的事情
05:34
is how small these mutations are and where they take place.
126
334690
3397
這些變異有多麼微妙?又是在哪發生的?
05:38
Difference human/Neanderthal
127
338087
1333
人類和尼安德塔人的不同在於
05:39
is sperm and testis,
128
339420
1733
精子與睪丸
05:41
smell and skin.
129
341153
1368
氣味與皮膚
05:42
And those are the specific genes
130
342521
1486
這些特殊的基因
05:44
that differ from one to the other.
131
344007
2680
產生了人與人的區別
05:46
So very small changes can have a big impact.
132
346687
3101
因此一點小小的變化就能產生很大的影響
05:49
And as you're thinking about this,
133
349788
1632
大家想想
05:51
we're continuing to mutate.
134
351420
2516
我們一直在變異
05:53
So about 10,000 years ago by the Black Sea,
135
353936
2901
在大約一萬年前的黑海
05:56
we had one mutation in one gene
136
356837
2060
人類的一個基因產生了變異
05:58
which led to blue eyes.
137
358897
2556
因此出現了藍色的眼睛
06:01
And this is continuing and continuing and continuing.
138
361453
3884
這樣的變異一直持續著、持續著
06:05
And as it continues,
139
365337
1434
與此同時
06:06
one of the things that's going to happen this year
140
366771
1765
一件大事將在今年發生
06:08
is we're going to discover the first 10,000 human genomes,
141
368536
3333
我們將發現前一萬個人類基因組
06:11
because it's gotten cheap enough to do the gene sequencing.
142
371869
3269
這得益於基因序列研究已經不那麼昂貴了
06:15
And when we find these,
143
375138
1588
當我們發現這些基因之後
06:16
we may find differences.
144
376726
2494
我們會找到一些不同以往的理論
06:19
And by the way, this is not a debate that we're ready for,
145
379220
3076
順便說一句,我們沒有準備好爭論這個問題
06:22
because we have really misused the science in this.
146
382296
3376
因為我們在這個問題上誤用了科學
06:25
In the 1920s, we thought there were major differences between people.
147
385672
3683
在1920年代,我們曾認為不同人之間的基因有很大差別
06:29
That was partly based on Francis Galton's work.
148
389355
3798
這是部分基於法蘭西斯•高爾頓的研究
06:33
He was Darwin's cousin.
149
393153
2136
他是達爾文的表弟
06:35
But the U.S., the Carnegie Institute,
150
395289
2315
在美國,卡內基研究所
06:37
Stanford, American Neurological Association
151
397604
2582
史丹佛,美國神經病學協會
06:40
took this really far.
152
400186
1868
把這種研究進一步深入
06:42
That got exported and was really misused.
153
402054
3599
進而傳播到其他地方被錯誤地使用
06:45
In fact, it led to some absolutely horrendous
154
405653
2685
事實上它對人類平等待遇
06:48
treatment of human beings.
155
408338
2013
造成了非常可怕的後果
06:50
So since the 1940s, we've been saying there are no differences,
156
410351
2594
所以自1940年代,我們一直在說我們沒有差別
06:52
we're all identical.
157
412945
1320
大家都是一樣的
06:54
We're going to know at year end if that is true.
158
414265
3277
今年年底我們將知道這是不是真的
06:57
And as we think about that,
159
417542
1732
現在大家想想
06:59
we're actually beginning to find things
160
419274
1518
事實上,我們開始發現一些東西
07:00
like, do you have an ACE gene?
161
420792
3466
比如,你有ACE基因嗎?
07:04
Why would that matter?
162
424258
1978
它有什麼重要的呢?
07:06
Because nobody's ever climbed an 8,000-meter peak without oxygen
163
426236
4038
因為沒有一個不帶氧氣能爬上8000米高的山峰的人
07:10
that doesn't have an ACE gene.
164
430274
2750
是不攜帶ACE基因的
07:13
And if you want to get more specific,
165
433024
1869
如果你想瞭解得更具體
07:14
how about a 577R genotype?
166
434893
3015
來看看577R基因型怎麼樣?
07:17
Well it turns out that every male Olympic power athelete ever tested
167
437908
4700
結果表明每個接受檢測的奧運男運動員
07:22
carries at least one of these variants.
168
442608
3250
都攜帶這種基因型的至少一種變體
07:25
If that is true,
169
445858
1654
如果這是真的
07:27
it leads to some very complicated questions
170
447512
2158
那麼就有一些很複雜的問題
07:29
for the London Olympics.
171
449670
1801
留給倫敦奧運會
07:31
Three options:
172
451471
1519
三個問題
07:32
Do you want the Olympics to be a showcase
173
452990
2832
我們希望奧運會成為
07:35
for really hardworking mutants?
174
455822
2700
刻苦訓練的、擁有突變基因的運動員展示的舞臺嗎?
07:38
(Laughter)
175
458522
1733
(笑聲)
07:40
Option number two:
176
460255
2735
第二
07:42
Why don't we play it like golf or sailing?
177
462990
3398
為什麼我們不像高爾夫球或者帆船運動那樣比賽呢?
07:46
Because you have one and you don't have one,
178
466388
2474
因為你有這個基因、而你沒有
07:48
I'll give you a tenth of a second head start.
179
468862
3995
我會讓你搶佔十分之一秒的優勢
07:52
Version number three:
180
472857
1071
第三
07:53
Because this is a naturally occurring gene
181
473928
2069
因為這是自然形成的基因
07:55
and you've got it and you didn't pick the right parents,
182
475997
2782
你有幸的到了這個基因、而你卻投錯了胎
07:58
you get the right to upgrade.
183
478779
3949
所以你可以晉級
08:02
Three different options.
184
482728
1751
三種不同的選擇
08:04
If these differences are the difference
185
484479
1622
如果這些差別就是
08:06
between an Olympic medal and a non-Olympic medal.
186
486101
3378
奧運獎牌和非奧運獎牌的差別
08:09
And it turns out that as we discover these things,
187
489479
2834
就像我們所發現的一樣
08:12
we human beings really like to change
188
492313
3335
人類非常願意改變
08:15
how we look, how we act,
189
495648
1694
自己的容貌、 行為方式
08:17
what our bodies do.
190
497342
1594
以及身體狀況
08:18
And we had about 10.2 million plastic surgeries in the United States,
191
498936
4374
在美國有過大約1020萬例整形外科手術
08:23
except that with the technologies that are coming online today,
192
503310
3317
除了那些即將上線的新技術
08:26
today's corrections, deletions,
193
506627
2701
現如今修復、去除
08:29
augmentations and enhancements
194
509328
1919
豐胸、美容
08:31
are going to seem like child's play.
195
511247
2913
看起來如同兒戲一般
08:34
You already saw the work by Tony Atala on TED,
196
514160
3701
我們在TED上看過 Tony Atala 的研究
08:37
but this ability to start filling
197
517861
3567
這種填充東西的技術
08:41
things like inkjet cartridges with cells
198
521428
2933
就像是裝滿細胞的噴墨水匣一樣
08:44
are allowing us to print skin, organs
199
524361
4674
讓我們能隨心所欲的 “列印” 皮膚、器官
08:49
and a whole series of other body parts.
200
529035
2750
以及一系列身體部位
08:51
And as these technologies go forward,
201
531785
1884
隨著這些技術的進步
08:53
you keep seeing this, you keep seeing this, you keep seeing things --
202
533669
3784
我們會不斷看到這個,我們會不斷看到這個,我們會不斷看到新東西
08:57
2000, human genome sequence --
203
537453
2774
2000年,人類基因組序列
09:00
and it seems like nothing's happening,
204
540227
3782
事情就好像是直到該發生的時候
09:04
until it does.
205
544009
3112
才會發生
09:07
And we may just be in some of these weeks.
206
547121
3524
我們也許就處在發生重大變革的這幾個星期內
09:10
And as you're thinking about
207
550645
1599
我們知道
09:12
these two guys sequencing a human genome in 2000
208
552244
3451
這兩位在2000年研究人類基因序列
09:15
and the Public Project sequencing the human genome in 2000,
209
555695
3553
還有2000年的人類基因序列公開專案
09:19
then you don't hear a lot,
210
559248
3164
然後就沒有太多這方面的消息了
09:22
until you hear about an experiment last year in China,
211
562412
3984
直到大家聽說在中國的一次實驗
09:26
where they take skin cells from this mouse,
212
566396
4017
他們從老鼠身上取出皮膚細胞
09:30
put four chemicals on it,
213
570413
1733
在上面注入四種化學藥劑
09:32
turn those skin cells into stem cells,
214
572146
3566
把皮膚細胞轉變成幹細胞
09:35
let the stem cells grow
215
575712
1465
讓這些幹細胞生長
09:37
and create a full copy of that mouse.
216
577177
3087
然後完全“複製”了那只老鼠
09:40
That's a big deal.
217
580264
3247
這是很了不起的
09:43
Because in essence
218
583511
1016
因為從本質上講
09:44
what it means is you can take a cell,
219
584527
2148
這就意味著我們可以拿一個
09:46
which is a pluripotent stem cell,
220
586675
2286
多能幹細胞
09:48
which is like a skier at the top of a mountain,
221
588961
2684
它們就像山頂上的滑雪者
09:51
and those two skiers become two pluripotent stem cells,
222
591645
3817
兩個滑雪者就是兩個多功能幹細胞
09:55
four, eight, 16,
223
595462
1782
分裂成四個、八個、十六個
09:57
and then it gets so crowded
224
597244
1668
然後就變得越來越擁擠
09:58
after 16 divisions
225
598912
1800
十六次分裂之後
10:00
that those cells have to differentiate.
226
600712
2502
這些細胞不得不變異
10:03
So they go down one side of the mountain,
227
603214
1433
所以他們從山的一面走下來
10:04
they go down another.
228
604647
1233
他們從另一面走下來
10:05
And as they pick that,
229
605880
1534
當他們選擇了這條路
10:07
these become bone,
230
607414
2250
就變成了骨骼
10:09
and then they pick another road and these become platelets,
231
609664
2932
那些選擇另一條路的變成了血小板
10:12
and these become macrophages,
232
612596
2117
這些變成了巨噬細胞
10:14
and these become T cells.
233
614713
1267
這些變成了T細胞
10:15
But it's really hard, once you ski down,
234
615980
1952
可是一旦你滑下去
10:17
to get back up.
235
617932
1523
就很難再回頭了
10:19
Unless, of course, if you have a ski lift.
236
619455
5412
當然啦,除非你有滑雪纜車
10:24
And what those four chemicals do
237
624867
2449
那四種化學藥劑的作用
10:27
is they take any cell
238
627316
2069
就是載著細胞
10:29
and take it way back up the mountain
239
629385
1932
回到山頂上
10:31
so it can become any body part.
240
631317
2033
讓它們具有變成身體任何部分的能力
10:33
And as you think of that,
241
633350
1728
正如大家所想的
10:35
what it means is potentially
242
635078
1980
這就意味著
10:37
you can rebuild a full copy
243
637058
2175
我們很有可能
10:39
of any organism
244
639233
1867
只用一個細胞
10:41
out of any one of its cells.
245
641100
2586
複製任何器官
10:43
That turns out to be a big deal
246
643686
2531
這是一個重大突破
10:46
because now you can take, not just mouse cells,
247
646217
2566
因為現在不僅是老鼠細胞
10:48
but you can human skin cells
248
648783
2318
我們可以把人類的皮膚細胞
10:51
and turn them into human stem cells.
249
651101
3650
變成幹細胞
10:54
And then what they did in October
250
654751
3198
就在10月份
10:57
is they took skin cells, turned them into stem cells
251
657949
3400
他們把皮膚細胞變成了幹細胞
11:01
and began to turn them into liver cells.
252
661349
3673
然後開始把它們變成肝臟細胞
11:05
So in theory,
253
665022
1044
所以理論上講
11:06
you could grow any organ from any one of your cells.
254
666066
5184
我們的任何一個細胞可以被培養成任何一個器官
11:11
Here's a second experiment:
255
671250
1718
這是第二個實驗
11:12
If you could photocopy your body,
256
672968
3133
如果我們能給身體做個影印件
11:16
maybe you also want to take your mind.
257
676101
3052
或許也想給思想做一個
11:19
And one of the things you saw at TED
258
679153
1565
大約一年半之前
11:20
about a year and a half ago
259
680718
1250
大家在TED
11:21
was this guy.
260
681968
1435
見過這個傢伙
11:23
And he gave a wonderful technical talk.
261
683403
2600
他做了很精彩的技術演講
11:26
He's a professor at MIT.
262
686003
1599
他是MIT的教授
11:27
But in essence what he said
263
687602
1916
但本質上,他說的是
11:29
is you can take retroviruses,
264
689518
1700
利用逆轉錄病毒
11:31
which get inside brain cells of mice.
265
691218
2800
讓它們進入老鼠的腦細胞
11:34
You can tag them with proteins
266
694018
2440
並用蛋白質標記它們
11:36
that light up when you light them.
267
696458
2094
這種蛋白質在被照亮時會發光
11:38
And you can map the exact pathways
268
698552
3716
當老鼠看到、感覺到、觸摸到東西
11:42
when a mouse sees, feels, touches,
269
702268
3483
回憶、戀愛的時候
11:45
remembers, loves.
270
705751
2183
我們能夠準確描繪出腦部活動路徑
11:47
And then you can take a fiber optic cable
271
707934
2373
我們可以用光纖電纜
11:50
and light up some of the same things.
272
710307
3819
點亮這些相同的東西
11:54
And by the way, as you do this,
273
714126
1832
我們在做這件事情的時候
11:55
you can image it in two colors,
274
715958
2017
可以把它們製成兩種顏色
11:57
which means you can download this information
275
717975
2399
這意味著我們可以把這些資訊
12:00
as binary code directly into a computer.
276
720374
4740
像二進位碼一樣下載到電腦上
12:05
So what's the bottom line on that?
277
725114
2473
這件事情本質上是什麼呢?
12:07
Well it's not completely inconceivable
278
727587
2200
不難想像
12:09
that someday you'll be able to download your own memories,
279
729787
4495
也許有一天我們可以把自己的記憶
12:14
maybe into a new body.
280
734282
2387
下載到一個新的軀體裏
12:16
And maybe you can upload other people's memories as well.
281
736669
5085
或許也可以把別人的記憶載入到自己身上
12:21
And this might have just one or two
282
741754
2514
估計這只會引起一兩個
12:24
small ethical, political, moral implications.
283
744268
3520
小小的政治上、道德上的問題
12:27
(Laughter)
284
747788
1531
(笑聲)
12:29
Just a thought.
285
749319
2991
隨便想想而已
12:32
Here's the kind of questions
286
752310
1528
有一些問題
12:33
that are becoming interesting questions
287
753838
1980
正在逐漸引起
12:35
for philosophers, for governing people,
288
755818
2484
哲學家、管理者
12:38
for economists, for scientists.
289
758302
3366
經濟學家、科學家的興趣
12:41
Because these technologies are moving really quickly.
290
761668
3284
因為這些技術傳播的非常快
12:44
And as you think about it,
291
764952
1500
大家意猶未盡
12:46
let me close with an example of the brain.
292
766452
3082
讓我舉個關於大腦的例子來結束今天的演講
12:49
The first place where you would expect
293
769534
1683
如果我們最先期待
12:51
to see enormous evolutionary pressure today,
294
771217
3051
看到一個器官的顯著進化
12:54
both because of the inputs,
295
774268
2265
不僅因為
12:56
which are becoming massive,
296
776533
1552
在這方面越來越多的研究投入
12:58
and because of the plasticity of the organ,
297
778085
1782
而且由於其具有可塑性
12:59
is the brain.
298
779867
2534
那麼這個器官就是大腦
13:02
Do we have any evidence that that is happening?
299
782401
3318
有證據證明這種進化正在發生嗎?
13:05
Well let's take a look at something like autism incidence per thousand.
300
785719
4731
讓我們來看看每千人中自閉症發生概率
13:10
Here's what it looks like in 2000.
301
790450
2502
這是2000年的狀況
13:12
Here's what it looks like in 2002,
302
792952
2082
這是2002年的狀況
13:15
2006, 2008.
303
795034
4618
2006,2008
13:19
Here's the increase in less than a decade.
304
799652
4082
這是不到10年的時間裏所增加的數量
13:23
And we still don't know why this is happening.
305
803734
4417
我們直到現在也不知道為什麼是這樣
13:28
What we do know is, potentially,
306
808151
2485
我們所知道的是,
13:30
the brain is reacting in
307
810636
2032
大腦潛在的以一種
13:32
a hyperactive, hyper-plastic way,
308
812668
2134
極度活躍的方式在反應
13:34
and creating individuals that are like this.
309
814802
2950
並創造出同樣活躍的個體
13:37
And this is only one of the conditions that's out there.
310
817752
2757
這僅僅是其中存在的一種情況
13:40
You've also got people with who are extraordinarily smart,
311
820509
3540
我們還見過非常聰明的人
13:44
people who can remember everything they've seen in their lives,
312
824049
2397
過目不忘的人
13:46
people who've got synesthesia,
313
826446
1385
能產生牽連感覺的人
13:47
people who've got schizophrenia.
314
827831
1331
精神分裂的人
13:49
You've got all kinds of stuff going on out there,
315
829162
2534
我們見過各種各樣的情況
13:51
and we still don't understand
316
831696
1218
但現在依舊不明白
13:52
how and why this is happening.
317
832914
2233
為什麼這一切發會生,是又如何發生的
13:55
But one question you might want to ask is,
318
835147
2682
大家可能要問
13:57
are we seeing a rapid evolution of the brain
319
837829
2628
大腦是在高速進化嗎?
14:00
and of how we process data?
320
840457
1825
我們是怎樣處理資料的?
14:02
Because when you think of how much data's coming into our brains,
321
842282
3063
當涉及到有多少資料進入大腦時
14:05
we're trying to take in as much data in a day
322
845345
3484
我們現在一天內要接收的資訊
14:08
as people used to take in in a lifetime.
323
848829
2551
相當於過去人們一輩子所接收到的資訊
14:11
And as you're thinking about this,
324
851380
2632
現在大家考慮一下這個問題
14:14
there's four theories as to why this might be going on,
325
854012
2342
這裏有四種理論來解釋這種現象
14:16
plus a whole series of others.
326
856354
1327
以及一系列其他的理論
14:17
I don't have a good answer.
327
857681
1649
我給不出一個漂亮的答案
14:19
There really needs to be more research on this.
328
859330
3616
在這方面確實還需要更多的研究
14:22
One option is the fast food fetish.
329
862946
2235
一個選擇是速食迷戀
14:25
There's beginning to be some evidence
330
865181
2449
開始有證據表明
14:27
that obesity and diet
331
867630
2251
肥胖和飲食
14:29
have something to do
332
869881
1631
與基因改造
14:31
with gene modifications,
333
871512
1768
有關
14:33
which may or may not have an impact
334
873280
2350
但不能確定
14:35
on how the brain of an infant works.
335
875630
3517
它對嬰兒大腦運作的影響
14:39
A second option is the sexy geek option.
336
879147
3955
第二個選擇是“性感的書呆子”
14:43
These conditions are highly rare.
337
883102
4243
這種情況確實很少見
14:47
(Laughter)
338
887345
3038
(笑聲)
14:50
(Applause)
339
890383
5300
(掌聲)
14:55
But what's beginning to happen
340
895683
1633
現在的情況是
14:57
is because these geeks are all getting together,
341
897316
2534
這些書呆子們聚在一起
14:59
because they are highly qualified for computer programming
342
899850
2897
他們有很高的電腦編程技能
15:02
and it is highly remunerated,
343
902747
2318
酬勞很高
15:05
as well as other very detail-oriented tasks,
344
905065
3150
還有從事其他注重細節的工作
15:08
that they are concentrating geographically
345
908215
2449
他們集中到一起
15:10
and finding like-minded mates.
346
910664
2967
尋找志同道合的人
15:13
So this is the assortative mating hypothesis
347
913631
3568
所以這就是選擇性交配假設
15:17
of these genes reinforcing one another
348
917199
2700
這些基因在體系中
15:19
in these structures.
349
919899
2117
互相增援
15:22
The third, is this too much information?
350
922016
2950
第三,資訊是不是太多了?
15:24
We're trying to process so much stuff
351
924966
1497
我們的大腦試圖處理太多的資訊
15:26
that some people get synesthetic
352
926463
2352
以至於有些人產生了牽連感覺
15:28
and just have huge pipes that remember everything.
353
928815
2600
他們擁有巨大的管道來記住所有事情
15:31
Other people get hyper-sensitive to the amount of information.
354
931415
2669
有一些人對大量資訊過分敏感
15:34
Other people react with various psychological conditions
355
934084
3982
有一些人對資訊做出反應時
15:38
or reactions to this information.
356
938066
1632
伴隨著各種各樣心理上的狀況和反應
15:39
Or maybe it's chemicals.
357
939698
2702
也許是化學反應
15:42
But when you see an increase
358
942400
1765
如果發現
15:44
of that order of magnitude in a condition,
359
944165
2351
某種情況的數量大幅度提升
15:46
either you're not measuring it right
360
946516
1565
不是測量不準確
15:48
or there's something going on very quickly,
361
948081
2518
就是有什麼事情正在迅速發展
15:50
and it may be evolution in real time.
362
950599
4032
說不定就是在進化
15:54
Here's the bottom line.
363
954631
2503
歸根結底
15:57
What I think we are doing
364
957134
2181
我認為作為一個物種
15:59
is we're transitioning as a species.
365
959315
1716
我們正在轉化
16:01
And I didn't think this when Steve Gullans and I started writing together.
366
961031
5484
當Steve Gullans和我一起寫作的時候我並不這樣認為
16:06
I think we're transitioning into Homo evolutis
367
966515
2451
我覺得我們正在向演化人轉化
16:08
that, for better or worse,
368
968966
1399
無論是好是壞
16:10
is not just a hominid that's conscious of his or her environment,
369
970365
4182
這都不僅僅是一個只對周圍環境有意識的人種
16:14
it's a hominid that's beginning to directly and deliberately
370
974547
3219
而是一个直接的、有意的
16:17
control the evolution of its own species,
371
977766
3198
想要控制
16:20
of bacteria, of plants, of animals.
372
980964
3834
自己的种族、細菌、植物、乃至動物进化的人种
16:24
And I think that's such an order of magnitude change
373
984798
2835
我認為,如果我們的孫輩或重孫輩
16:27
that your grandkids or your great-grandkids
374
987633
3103
與我們是完全不同的物種
16:30
may be a species very different from you.
375
990736
3045
將是一個翻天覆地的改變
16:33
Thank you very much.
376
993781
1586
謝謝大家
16:35
(Applause)
377
995367
5331
(掌聲)
New videos
關於本網站
本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。