A new way to study the brain's invisible secrets | Ed Boyden

147,597 views ใƒป 2016-08-29

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Sigal Tifferet ืžื‘ืงืจ: Roni Ravia
00:12
Hello, everybody.
0
12904
1405
ืฉืœื•ื ืœื›ื•ืœื.
00:14
I brought with me today a baby diaper.
1
14333
2643
ื”ื‘ืืชื™ ืื™ืชื™ ื”ื™ื•ื ื—ื™ืชื•ืœ.
00:18
You'll see why in a second.
2
18793
1722
ืชื™ื›ืฃ ืชืจืื• ืœืžื”.
00:20
Baby diapers have interesting properties.
3
20539
2010
ืœื—ื™ืชื•ืœื™ื ื™ืฉ ืชื›ื•ื ื” ืžืขื ื™ื™ื ืช.
00:22
They can swell enormously when you add water to them,
4
22573
2691
ื”ื ื™ื›ื•ืœื™ื ืœื”ืชืจื—ื‘ ืžืื•ื“ ื›ืฉืžื•ืกื™ืคื™ื ืœื”ื ืžื™ื,
00:25
an experiment done by millions of kids every day.
5
25288
2984
ื ื™ืกื•ื™ ืฉื ืขืจืš ืขืœ-ื™ื“ื™ ืžื™ืœื™ื•ื ื™ ื™ืœื“ื™ื ื‘ื›ืœ ื™ื•ื.
00:28
(Laughter)
6
28296
1150
(ืฆื—ื•ืง)
00:29
But the reason why
7
29470
1494
ืื‘ืœ ื”ืกื™ื‘ื” ืœื›ืš
00:30
is that they're designed in a very clever way.
8
30988
2190
ื”ื™ื ืฉื”ื ืžืชื•ื›ื ื ื™ื ื‘ื—ื•ื›ืžื” ืจื‘ื”.
00:33
They're made out of a thing called a swellable material.
9
33202
2635
ื”ื ืขืฉื•ื™ื™ื ืžื—ื•ืžืจ ืžืชื ืคื—.
00:35
It's a special kind of material that, when you add water,
10
35861
2737
ื–ื” ื—ื•ืžืจ ืžื™ื•ื—ื“ ืžืื•ื“ ืฉื›ืืฉืจ ืžื•ืกื™ืคื™ื ืœื• ืžื™ื,
00:38
it will swell up enormously,
11
38622
1430
ื”ื•ื ืžืชื ืคื— ื‘ืฆื•ืจื” ืžืฉืžืขื•ืชื™ืช,
00:40
maybe a thousand times in volume.
12
40076
2166
ืื•ืœื™ ืคื™ ืืœืฃ ืžื ืคื—ื• ื”ืžืงื•ืจื™.
00:42
And this is a very useful, industrial kind of polymer.
13
42266
3236
ื•ื–ื” ืคื•ืœื™ืžืจ ืชืขืฉื™ื™ืชื™ ืฉื™ืžื•ืฉื™ ืžืื•ื“.
00:45
But what we're trying to do in my group at MIT
14
45819
2526
ืื‘ืœ ืžื” ืฉื”ืฆื•ื•ืช ืฉืœื™ ื‘- MIT ืžื ืกื” ืœืขืฉื•ืช,
00:48
is to figure out if we can do something similar to the brain.
15
48369
3213
ื”ื•ื ืœื”ื‘ื™ืŸ ืื ืืคืฉืจ ืœื‘ืฆืข ื“ื‘ืจ ื“ื•ืžื” ืœืžื•ื—.
00:51
Can we make it bigger,
16
51606
1159
ื”ืื ืืคืฉืจ ืœื”ื’ื“ื™ืœ ืื•ืชื•,
00:52
big enough that you can peer inside
17
52789
1678
ื‘ืื•ืคืŸ ืฉื™ืืคืฉืจ ืœื ื• ืœื”ืฆื™ืฅ ืœืชื•ื›ื•
00:54
and see all the tiny building blocks, the biomolecules,
18
54481
2628
ื•ืœืจืื•ืช ืืช ื›ืœ ืื‘ื ื™ ื”ื‘ื ื™ื™ื” ื”ื–ืขื™ืจื•ืช, ื”ื‘ื™ื•-ืžื•ืœืงื•ืœื•ืช,
00:57
how they're organized in three dimensions,
19
57133
2151
ืื™ืš ื”ืŸ ืžืกื•ื“ืจื•ืช ื‘ืชืœืช-ืžื™ืžื“,
00:59
the structure, the ground truth structure of the brain, if you will?
20
59308
3485
ื”ืžื‘ื ื” ื”ื‘ืกื™ืกื™ ืฉืœ ื”ืžื•ื—,
01:02
If we could get that,
21
62817
1158
ืื ื ื•ื›ืœ ืœืขืฉื•ืช ื–ืืช,
01:03
maybe we could have a better understanding of how the brain is organized
22
63999
3509
ืื•ืœื™ ื ื•ื›ืœ ืœื”ื‘ื™ืŸ ื˜ื•ื‘ ื™ื•ืชืจ ืื™ืš ื”ืžื•ื— ืžืื•ืจื’ืŸ
01:07
to yield thoughts and emotions
23
67532
1659
ืœื™ื™ืฆื•ืจ ืžื—ืฉื‘ื•ืช ื•ืจื’ืฉื•ืช,
01:09
and actions and sensations.
24
69215
1719
ืคืขื•ืœื•ืช ื•ืชื—ื•ืฉื•ืช.
01:10
Maybe we could try to pinpoint the exact changes in the brain
25
70958
3415
ืื•ืœื™ ื ื•ื›ืœ ืœื–ื”ื•ืช ื‘ืžื“ื•ื™ื™ืง ืืช ื”ืฉื™ื ื•ื™ื™ื ื”ื—ืœื™ื ื‘ืžื•ื—
01:14
that result in diseases,
26
74397
1776
ื”ื’ื•ืจืžื™ื ืœื”ื™ื•ื•ืฆืจื•ืช ืžื—ืœื•ืช,
01:16
diseases like Alzheimer's and epilepsy and Parkinson's,
27
76197
3212
ื›ืžื• ืืœืฆื”ื™ื™ืžืจ, ืืคื™ืœืคืกื™ื” ื•ืคืจืงื™ื ืกื•ืŸ,
01:19
for which there are few treatments, much less cures,
28
79433
2578
ืขื‘ื•ืจืŸ ื™ืฉ ืžืขื˜ ืกื•ื’ื™ ื˜ื™ืคื•ืœ, ื•ืขื•ื“ ืคื—ื•ืช ืืžืฆืขื™ ืจื™ืคื•ื™,
01:22
and for which, very often, we don't know the cause or the origins
29
82035
3617
ื•ืฉืœืขื™ืชื™ื ืงืจื•ื‘ื•ืช ืžืื•ื“, ืื™ื ื ื• ื™ื•ื“ืขื™ื ืžื” ืžืงื•ืจืŸ
01:25
and what's really causing them to occur.
30
85676
2135
ื•ืžื” ื‘ืืžืช ื’ื•ืจื ืœื”ื™ื•ื•ืฆืจื•ืชืŸ.
01:28
Now, our group at MIT
31
88613
1740
ื•ื‘ื›ืŸ, ื”ืงื‘ื•ืฆื” ืฉืœื ื• ื‘- MIT
01:30
is trying to take a different point of view
32
90377
2686
ืžื ืกื” ืœื‘ื—ื•ืŸ ื–ื•ื•ื™ืช ืฉื•ื ื”
01:33
from the way neuroscience has been done over the last hundred years.
33
93087
3230
ืžื–ื• ื”ืžืงื•ื‘ืœืช ื‘ืชื—ื•ื ืžื“ืขื™ ื”ืžื•ื— ื‘ืžืื” ื”ืื—ืจื•ื ื”.
01:36
We're designers. We're inventors.
34
96341
1579
ืื ื—ื ื• ืžืขืฆื‘ื™ื. ืื ื—ื ื• ืžืžืฆื™ืื™ื.
01:37
We're trying to figure out how to build technologies
35
97944
2544
ืื ื—ื ื• ืžื ืกื™ื ืœื”ื‘ื™ืŸ ืื™ืš ืœื‘ื ื•ืช ื˜ื›ื ื•ืœื•ื’ื™ื•ืช
01:40
that let us look at and repair the brain.
36
100512
2456
ืฉื™ืืคืฉืจื• ืœื ื• ืœื‘ื—ื•ืŸ ื•ืœืชืงืŸ ืืช ื”ืžื•ื—.
01:42
And the reason is,
37
102992
1151
ื•ื”ืกื™ื‘ื” ื”ื™ื
01:44
the brain is incredibly, incredibly complicated.
38
104167
2801
ืฉื”ืžื•ื— ื”ื•ื ืžืื•ื“ ืžืื•ื“ ืžืกื•ื‘ืš.
01:47
So what we've learned over the first century of neuroscience
39
107484
2887
ืื– ืžื” ืฉืœืžื“ื ื• ื‘ืžืื” ื”ืจืืฉื•ื ื” ืฉืœ ื—ืงืจ ืžื“ืขื™ ื”ืžื•ื—
01:50
is that the brain is a very complicated network,
40
110395
2303
ื”ื•ื ืฉื”ืžื•ื— ื”ื•ื ืžืขืจื›ืช ืžืื•ื“ ืžืกื•ื‘ื›ืช,
01:52
made out of very specialized cells called neurons
41
112722
2480
ื”ืขืฉื•ื™ื” ืžืชืื™ื ื™ื™ื—ื•ื“ื™ื™ื ื”ื ืงืจืื™ื ื ื•ื™ืจื•ื ื™ื,
01:55
with very complex geometries,
42
115226
1667
ื‘ืขืœื™ ืฆื•ืจื•ืช ืžื•ืจื›ื‘ื•ืช.
01:56
and electrical currents will flow through these complexly shaped neurons.
43
116917
4237
ื•ื–ืจืžื™ื ื—ืฉืžืœื™ื™ื ื–ื•ืจืžื™ื ื“ืจืš ื”ื ื•ื™ืจื•ื ื™ื ื”ืžื•ืจื›ื‘ื™ื ื”ืœืœื•.
02:01
Furthermore, neurons are connected in networks.
44
121653
2784
ื™ืชืจื” ืžื›ืš, ื”ื ื•ื™ืจื•ื ื™ื ืžื—ื•ื‘ืจื™ื ื‘ืจืฉืชื•ืช.
02:04
They're connected by little junctions called synapses that exchange chemicals
45
124461
3835
ื”ื ืžื—ื•ื‘ืจื™ื ื–ื” ืœื–ื” ื‘ืฆืžืชื™ื ืงื˜ื ื™ื ื”ื ืงืจืื™ื ืกื™ื ืคืกื•ืช,
ื“ืจื›ื ืžื•ื—ืœืคื™ื ื›ื™ืžื™ืงืœื™ื ื”ืžืืคืฉืจื™ื ืœื ื•ื™ืจื•ื ื™ื ืœืฉื•ื—ื— ื‘ื™ื ื”ื.
02:08
and allow the neurons to talk to each other.
46
128320
2218
02:10
The density of the brain is incredible.
47
130562
1940
ืฆืคื™ืคื•ืช ื”ืžื•ื— ื”ื™ื ืžื“ื”ื™ืžื”.
02:12
In a cubic millimeter of your brain,
48
132526
2307
ื‘ืžื™ืœื™ืžื˜ืจ ืžืขื•ืงื‘ ื‘ืžื•ื—ื›ื
02:14
there are about 100,000 of these neurons
49
134857
2457
ื™ืฉ ื‘ืขืจืš 100,000 ื ื•ื™ืจื•ื ื™ื ื›ืืœื”
02:17
and maybe a billion of those connections.
50
137338
2517
ื•ืื•ืœื™ ืžื™ืœื™ืืจื“ ื—ื™ื‘ื•ืจื™ื ื›ืืœื”.
02:20
But it's worse.
51
140887
1382
ืื‘ืœ ื–ื” ื’ืจื•ืข ืžื›ืš.
02:22
So, if you could zoom in to a neuron,
52
142293
2305
ืื ื”ื™ื™ืชื ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ื–ื•ื ืขืœ ื ื•ื™ืจื•ืŸ,
02:24
and, of course, this is just our artist's rendition of it.
53
144622
2750
ื•ื–ื• ื›ืžื•ื‘ืŸ ืจืง ื”ื“ืžื™ื”,
02:27
What you would see are thousands and thousands of kinds of biomolecules,
54
147396
4207
ื”ื™ื™ืชื ืจื•ืื™ื ืืœืคื™ ืกื•ื’ื™ ื‘ื™ื•-ืžื•ืœืงื•ืœื•ืช,
02:31
little nanoscale machines organized in complex, 3D patterns,
55
151627
4400
ืžื›ื•ื ื•ืช ื ื ื• ื–ืขื™ืจื•ืช ื”ืžืื•ืจื’ื ื•ืช ื‘ื“ืคื•ืกื™ ืชืœืช-ืžื™ืžื“ ืžื•ืจื›ื‘ื™ื,
02:36
and together they mediate those electrical pulses,
56
156051
2628
ืืฉืจ ื™ื—ื“ ืžืชื•ื•ื›ื•ืช ืืช ื”ื–ืจืžื™ื ื”ื—ืฉืžืœื™ื™ื ื”ืœืœื•,
02:38
those chemical exchanges that allow neurons to work together
57
158703
3937
ื”ืฉื™ื ื•ื™ื™ื ื”ื›ื™ืžื™ื™ื ื”ืžืืคืฉืจื™ื ืœื ื•ื™ืจื•ื ื™ื ืœืคืขื•ืœ ื™ื—ื“
02:42
to generate things like thoughts and feelings and so forth.
58
162664
3669
ื›ื“ื™ ืœื™ื™ืฆืจ ื“ื‘ืจื™ื ื›ืžื• ืžื—ืฉื‘ื•ืช, ืจื’ืฉื•ืช ื•ืขื•ื“.
02:46
Now, we don't know how the neurons in the brain are organized
59
166357
3764
ืื–, ืื™ื ื ื• ื™ื•ื“ืขื™ื ื›ื™ืฆื“ ืžืื•ืจื’ื ื™ื ื”ื ื•ื™ืจื•ื ื™ื ื‘ืžื•ื—
02:50
to form networks,
60
170145
1174
ืœื™ืฆื™ืจืช ืจืฉืชื•ืช,
02:51
and we don't know how the biomolecules are organized
61
171343
2500
ื•ื›ื™ืฆื“ ืžืื•ืจื’ื ื•ืช ื”ื‘ื™ื•-ืžื•ืœืงื•ืœื•ืช
02:53
within neurons
62
173867
1174
ื‘ืชื•ืš ื”ื ื•ื™ืจื•ื ื™ื
02:55
to form these complex, organized machines.
63
175065
2405
ืœื™ืฆื™ืจืช ื”ืžื›ื•ื ื•ืช ื”ืžืื•ืจื’ื ื•ืช ื•ื”ืžื•ืจื›ื‘ื•ืช ื”ืœืœื•.
02:57
If we really want to understand this,
64
177918
1820
ืื ืื ื—ื ื• ื‘ืืžืช ืจื•ืฆื™ื ืœื”ื‘ื™ืŸ ื–ืืช,
02:59
we're going to need new technologies.
65
179762
1817
ื™ื™ื“ืจืฉื• ืœื ื• ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ื—ื“ืฉื•ืช.
03:01
But if we could get such maps,
66
181603
1784
ืื‘ืœ ืื ื”ื™ื™ื ื• ื™ื›ื•ืœื™ื ืœื”ืฉื™ื’ ืžืคื•ืช ื›ืืœื”,
03:03
if we could look at the organization of molecules and neurons
67
183411
2943
ืื ื”ื™ื™ื ื• ื™ื›ื•ืœื™ื ืœืจืื•ืช ืืช ื”ืืจื’ื•ืŸ ืฉืœ ืžื•ืœืงื•ืœื•ืช ื•ื ื•ื™ืจื•ื ื™ื,
03:06
and neurons and networks,
68
186378
1566
ืฉืœ ื ื•ื™ืจื•ื ื™ื ื•ืจืฉืชื•ืช,
03:07
maybe we could really understand how the brain conducts information
69
187968
3437
ืื•ืœื™ ื”ื™ื™ื ื• ื™ื›ื•ืœื™ื ืœื”ื‘ื™ืŸ ืžืžืฉ ืื™ืš ื”ืžื•ื— ืžืขื‘ื™ืจ ืžื™ื“ืข
03:11
from sensory regions,
70
191429
1167
ืžื”ืื™ื–ื•ืจื™ื ื”ืชื—ื•ืฉืชื™ื™ื,
03:12
mixes it with emotion and feeling,
71
192620
1736
ืžืขืจื‘ื‘ ืื•ืชื• ืขื ืจื’ืฉื•ืช ื•ืชื—ื•ืฉื•ืช,
03:14
and generates our decisions and actions.
72
194380
2394
ื•ืžื™ื™ืฆืจ ืืช ื”ื”ื—ืœื˜ื•ืช ื•ื”ืคืขื•ืœื•ืช ืฉืœื ื•.
03:17
Maybe we could pinpoint the exact set of molecular changes that occur
73
197131
3789
ืื•ืœื™ ื”ื™ื™ื ื• ื™ื›ื•ืœื™ื ืœื”ืฆื‘ื™ืข ื‘ืžื“ื•ื™ืง ืขืœ ื”ืฉื™ื ื•ื™ื™ื ื”ืžื•ืœืงื•ืœืจื™ื™ื ื”ืžืชืจื—ืฉื™ื
03:20
in a brain disorder.
74
200944
1202
ื‘ื–ืžืŸ ื”ืคืจืขื” ืžื•ื—ื™ืช.
03:22
And once we know how those molecules have changed,
75
202170
2822
ื•ื›ืฉื ื“ืข ืื™ืš ื”ืžื•ืœืงื•ืœื•ืช ื”ืฉืชื ื•,
03:25
whether they've increased in number or changed in pattern,
76
205016
2780
ืื ื”ืŸ ื’ื“ืœื• ื‘ืžืกืคืจืŸ ืื• ืฉื™ื ื• ืืช ื“ืคื•ืกืŸ,
03:27
we could use those as targets for new drugs,
77
207820
2939
ื ื•ื›ืœ ืœื”ืฉืชืžืฉ ื‘ื–ื” ื›ืžื˜ืจื” ืœืชืจื•ืคื•ืช ื—ื“ืฉื•ืช,
03:30
for new ways of delivering energy into the brain
78
210783
2271
ืœื’ื™ืœื•ื™ ื“ืจื›ื™ื ืฉื•ื ื•ืช ืœื”ืขื‘ืจืช ืื ืจื’ื™ื” ืœืชื•ืš ื”ืžื•ื—,
03:33
in order to repair the brain computations that are afflicted
79
213078
3880
ืขืœ ืžื ืช ืœืชืงืŸ ืืช ื”ื—ื™ืฉื•ื‘ื™ื ื”ืžื•ื—ื™ื™ื ืฉื ืคื’ืขื•
03:36
in patients who suffer from brain disorders.
80
216982
2299
ื‘ื—ื•ืœื™ื ื”ืกื•ื‘ืœื™ื ืžื”ืคืจืขื•ืช ืžื•ื—ื™ื•ืช.
03:39
We've all seen lots of different technologies over the last century
81
219793
3243
ื›ื•ืœื ื• ืจืื™ื ื• ื”ืจื‘ื” ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ืฉื•ื ื•ืช ื‘ืžืื” ื”ืื—ืจื•ื ื”
03:43
to try to confront this.
82
223060
1166
ื”ืžื ืกื•ืช ืœืืคืฉืจ ืœื ื• ืžื‘ื˜ ืฉื›ื–ื”
03:44
I think we've all seen brain scans
83
224250
1880
ืœื“ืขืชื™ ื›ื•ืœื ื• ืจืื™ื ื• ืกืจื™ืงื•ืช ืžื•ื—ื™ื•ืช
03:46
taken using MRI machines.
84
226154
2034
ืฉื ืขืฉื• ื‘ืขื–ืจืช ืžื›ืฉื™ืจื™ MRI.
03:48
These, of course, have the great power that they are noninvasive,
85
228212
3347
ื™ืชืจื•ื ืŸ, ื›ืžื•ื‘ืŸ, ื”ื•ื ืฉื”ืŸ ืื™ื ืŸ ืคื•ืœืฉื ื™ื•ืช,
03:51
they can be used on living human subjects.
86
231583
2355
ื ื™ืชืŸ ืœื‘ืฆืขืŸ ืขืœ ื‘ื ื™ ืื“ื ื—ื™ื™ื.
03:54
But also, they're spatially crude.
87
234407
2231
ื™ื—ื“ ืขื ื–ืืช, ื”ืŸ ื’ืกื•ืช ืžื‘ื—ื™ื ื” ืžืจื—ื‘ื™ืช.
03:56
Each of these blobs that you see, or voxels, as they're called,
88
236662
2990
ื›ืœ ื›ืชื ื›ื–ื”, ืฉื ืงืจื ื•ื•ืงืกืœ,
03:59
can contain millions and millions of neurons.
89
239676
2689
ื™ื›ื•ืœ ืœื”ื›ื™ืœ ืžื™ืœื•ื ื™ ืžื™ืœื™ื•ื ื™ื ืฉืœ ื ื•ื™ืจื•ื ื™ื.
04:02
So it's not at the level of resolution
90
242389
1850
ืื– ืจืžืช ื”ืจื–ื•ืœื•ืฆื™ื” ื”ื–ื•
04:04
where it can pinpoint the molecular changes that occur
91
244263
2538
ืœื ื™ื›ื•ืœื” ืœื”ืจืื•ืช ื‘ืžื“ื•ื™ื™ืง ืื™ืœื• ืฉื™ื ื•ื™ื™ื ืžื•ืœืงื•ืœืจื™ื™ื ื”ืชืจื—ืฉื•
04:06
or the changes in the wiring of these networks
92
246825
2286
ืื• ืื™ืœื• ืฉื™ื ื•ื™ื™ื ื—ืœื• ื‘ื—ื™ื•ื•ื˜ ื”ืจืฉืชื•ืช
04:09
that contributes to our ability to be conscious and powerful beings.
93
249135
3946
ืฉืชื•ืจืžื•ืช ืœื”ื™ื•ืชื ื• ื™ืฆื•ืจื™ื ืžื•ื“ืขื™ื ื•ืขื•ืฆืžืชื™ื™ื.
04:13
At the other extreme, you have microscopes.
94
253797
3181
ื‘ืงืฆื” ื”ืื—ืจ ื™ืฉื ื ืžื™ืงืจื•ืกืงื•ืคื™ื.
04:17
Microscopes, of course, will use light to look at little tiny things.
95
257002
3295
ืžื™ืงืจื•ืกืงื•ืคื™ื, ื›ืžื•ื‘ืŸ, ืžืฉืชืžืฉื™ื ื‘ืื•ืจ ื›ื“ื™ ืœื”ืชื‘ื•ื ืŸ ื‘ื“ื‘ืจื™ื ื–ืขื™ืจื™ื,
04:20
For centuries, they've been used to look at things like bacteria.
96
260321
3075
ื•ื‘ืžืฉืš ืžืื•ืช ื”ืฉืชืžืฉื• ื‘ื”ื ื›ื“ื™ ืœื‘ื—ื•ืŸ ื“ื‘ืจื™ื ื›ืžื• ื—ื™ื™ื“ืงื™ื.
04:23
For neuroscience,
97
263420
1151
ื‘ืžื“ืขื™ ื”ืžื•ื—,
04:24
microscopes are actually how neurons were discovered in the first place,
98
264595
3412
ื”ืžื™ืงืจื•ืกืงื•ืคื™ื ืืคืฉืจื• ืœืžืขืฉื” ืœื’ืœื•ืช ืืช ื”ื ื•ื™ืจื•ื ื™ื,
04:28
about 130 years ago.
99
268031
1292
ืœืคื ื™ ื›-130 ืฉื ื”.
04:29
But light is fundamentally limited.
100
269347
2318
ืื‘ืœ ืœืื•ืจ ื™ืฉ ืžื’ื‘ืœื” ื‘ืกื™ืกื™ืช.
04:31
You can't see individual molecules with a regular old microscope.
101
271689
3298
ืื™ ืืคืฉืจ ืœืจืื•ืช ืžื•ืœืงื•ืœื•ืช ื‘ื•ื“ื“ื•ืช ืขื ืžื™ืงืจื•ืกืงื•ืค ื™ืฉืŸ ื•ืจื’ื™ืœ.
04:35
You can't look at these tiny connections.
102
275011
2152
ืœื ื ื™ืชืŸ ืœื‘ื—ื•ืŸ ืืช ื”ื—ื™ื‘ื•ืจื™ื ื”ื–ืขื™ืจื™ื ื”ืืœื”.
04:37
So if we want to make our ability to see the brain more powerful,
103
277187
3942
ืื– ืื ืื ื—ื ื• ืจื•ืฆื™ื ืœื”ืขืฆื™ื ืืช ื™ื›ื•ืœืชื ื• ืœื‘ื—ื•ืŸ ืืช ื”ืžื•ื—,
04:41
to get down to the ground truth structure,
104
281153
2168
ืœืืคืฉืจ ืืช ื–ื™ื”ื•ื™ ื”ืืžืช ื”ื‘ืกื™ืกื™ืช ื”ืžื‘ื ื™ืช,
04:43
we're going to need to have even better technologies.
105
283345
3280
ื ื–ื“ืงืง ืœื˜ื›ื ื•ืœื•ื’ื™ื•ืช ื˜ื•ื‘ื•ืช ืขื•ื“ ื™ื•ืชืจ.
04:47
My group, a couple years ago, started thinking:
106
287611
2224
ื”ืงื‘ื•ืฆื” ืฉืœื™ ื”ื—ืœื” ืœื—ืฉื•ื‘ ืœืคื ื™ ื›ืžื” ืฉื ื™ื:
04:49
Why don't we do the opposite?
107
289859
1412
ืœืžื” ืฉืœื ื ืขืฉื” ืืช ื”ื”ื™ืคืš?
04:51
If it's so darn complicated to zoom in to the brain,
108
291295
2461
ืื ื›ืœ-ื›ืš ืงืฉื” ืœืขืฉื•ืช ื–ื•ื ืขืœ ื”ืžื•ื—,
04:53
why can't we make the brain bigger?
109
293780
1943
ืœืžื” ืฉืœื ื ื’ื“ื™ืœ ืื•ืชื•?
04:56
It initially started
110
296166
1155
ื–ื” ื”ืชื—ื™ืœ ืขื ืฉื ื™ ืชืœืžื™ื“ื™ MA ื‘ืงื‘ื•ืฆื” ืฉืœื™, ืคืื™ ืฆ'ืืŸ ื•ืคื•ืœ ื˜ื™ืœื‘ืจื’.
04:57
with two grad students in my group, Fei Chen and Paul Tillberg.
111
297345
2996
05:00
Now many others in my group are helping with this process.
112
300365
2720
ืขื›ืฉื™ื• ืจื‘ื™ื ืื—ืจื™ื ื‘ืงื‘ื•ืฆื” ื”ืฆื˜ืจืคื• ืœืชื”ืœื™ืš.
ื”ื—ืœื˜ื ื• ืœื ืกื•ืช ืœื‘ื“ื•ืง ืื ืืคืฉืจ ืœืงื—ืช ืคื•ืœื™ืžืจื™ื,
05:03
We decided to try to figure out if we could take polymers,
113
303109
2762
05:05
like the stuff in the baby diaper,
114
305895
1629
ื›ืžื• ื”ื—ื•ืžืจ ืฉื‘ืชื•ืš ื”ื—ื™ืชื•ืœื™ื,
05:07
and install it physically within the brain.
115
307548
2006
ื•ืœื”ืชืงื™ืŸ ืื•ืชื ืคื™ื–ื™ืช ื‘ืชื•ืš ื”ืžื•ื—.
05:09
If we could do it just right, and you add water,
116
309578
2241
ืื ื ื™ืชืŸ ืœืขืฉื•ืช ื–ืืช ื ื›ื•ืŸ, ื•ืื– ืœื”ื•ืกื™ืฃ ืžื™ื,
05:11
you can potentially blow the brain up
117
311843
1835
ืืคืฉืจ ื‘ืขืงืจื•ืŸ ืœื ืคื— ืืช ื”ืžื•ื—
05:13
to where you could distinguish those tiny biomolecules from each other.
118
313702
3377
ืœืจืžื” ื‘ื” ื ื™ืชืŸ ื™ื”ื™ื” ืœื”ื‘ื—ื™ืŸ ื‘ื™ืŸ ื”ื‘ื™ื•-ืžื•ืœืงื•ืœื•ืช ื”ื–ืขื™ืจื•ืช.
05:17
You would see those connections and get maps of the brain.
119
317103
2870
ืชื•ื›ืœื• ืœืจืื•ืช ืืช ื”ื—ื™ื‘ื•ืจื™ื ื”ืืœื”, ื•ืœืงื‘ืœ ืžืคื•ืช ืฉืœ ื”ืžื•ื—.
05:19
This could potentially be quite dramatic.
120
319997
1988
ื‘ืคื•ื˜ื ืฆื™ืืœ, ื–ื” ื™ื›ื•ืœ ืœื”ื™ื•ืช ื“ื™ ื“ืจืžืชื™.
05:22
We brought a little demo here.
121
322009
3008
ื”ื‘ืื ื• ืœื›ืืŸ ื”ื“ื’ืžื” ืงื˜ื ื”.
05:25
We got some purified baby diaper material.
122
325538
2575
ื”ืฉื’ื ื• ื—ื•ืžืจ ื—ื™ืชื•ืœื™ื ื˜ื”ื•ืจ.
05:28
It's much easier just to buy it off the Internet
123
328137
2274
ื”ืจื‘ื” ื™ื•ืชืจ ืงืœ ืœืงื ื•ืช ืืช ื–ื” ื‘ืื™ื ื˜ืจื ื˜
05:30
than to extract the few grains that actually occur in these diapers.
124
330435
3475
ืžืืฉืจ ืœื”ื•ืฆื™ื ืืช ื”ื’ืจื’ืจื™ื ื”ื‘ื•ื“ื“ื™ื ื”ื ืžืฆืื™ื ื‘ืชื•ืš ื”ื—ื™ืชื•ืœื™ื.
05:33
I'm going to put just one teaspoon here
125
333934
2225
ืื ื™ ืืฉื™ื ื›ืืŸ ืจืง ื›ืคื™ืช ืื—ืช
05:36
of this purified polymer.
126
336706
1794
ืžื”ืคื•ืœื™ืžืจ ื”ื˜ื”ื•ืจ ื”ื–ื”.
05:39
And here we have some water.
127
339270
2152
ื•ื›ืืŸ ื™ืฉ ืงืฆืช ืžื™ื.
05:41
What we're going to do
128
341446
1162
ืžื” ืฉื ืขืฉื”
05:42
is see if this teaspoon of the baby diaper material
129
342632
3011
ื”ื•ื ืœืจืื•ืช ืื ื ืคื— ื›ืคื™ืช ืžื—ื•ืžืจ ื”ื—ื™ืชื•ืœื™ื ื”ื–ื”
05:45
can increase in size.
130
345667
1709
ื™ื›ื•ืœ ืœื’ื“ื•ืœ ื‘ืžื™ืžื“ื™ื•.
05:48
You're going to see it increase in volume by about a thousandfold
131
348687
3696
ื•ืžื™ื“ ืชืจืื• ืฉื”ื•ื ื’ื“ืœ ื‘ืขืจืš ืคื™ ืืœืฃ ืžื ืคื—ื• ื”ืžืงื•ืจื™
05:52
before your very eyes.
132
352407
1286
ืžืžืฉ ืžื•ืœ ืขื™ื ื™ื›ื.
06:01
I could pour much more of this in there,
133
361597
1972
ื”ื™ื™ืชื™ ื™ื›ื•ืœ ืœืฉืคื•ืš ืœื›ืืŸ ื”ืจื‘ื” ื™ื•ืชืจ ืžื–ื”,
06:03
but I think you've got the idea
134
363593
1558
ืื‘ืœ ืื ื™ ื—ื•ืฉื‘ ืฉื”ื‘ื ืชื ืืช ื”ืจืขื™ื•ืŸ
06:05
that this is a very, very interesting molecule,
135
365175
2502
ืฉื–ื• ืžื•ืœืงื•ืœื” ืžืื•ื“, ืžืื•ื“ ืžืขื ื™ื™ื ืช,
06:07
and if can use it in the right way,
136
367701
1912
ื•ืื ื ืฉืชืžืฉ ื‘ื” ื‘ื“ืจืš ื ื›ื•ื ื”,
06:09
we might be able to really zoom in on the brain
137
369637
2321
ืื•ืœื™ ื ื•ื›ืœ ืžืžืฉ ืœืขืฉื•ืช ื–ื•ื ืขืœ ื”ืžื•ื—
06:11
in a way that you can't do with past technologies.
138
371982
2594
ื‘ื“ืจืš ืฉืœื ื”ืชืืคืฉืจื” ื‘ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ืงื•ื“ืžื•ืช.
06:15
OK. So a little bit of chemistry now.
139
375227
2054
ืื•ืงื™ื™. ื‘ื•ืื• ื ื“ื‘ืจ ืงืฆืช ืขืœ ื›ื™ืžื™ื”.
06:17
What's going on in the baby diaper polymer?
140
377305
2442
ืžื” ืงื•ืจื” ื‘ืชื•ืš ื”ืคื•ืœื™ืžืจ ืฉืœ ื”ื—ื™ืชื•ืœ?
06:19
If you could zoom in,
141
379771
1676
ืื ื”ื™ื™ืชื ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ื–ื•ื,
06:21
it might look something like what you see on the screen.
142
381471
2673
ื–ื” ืื•ืœื™ ื”ื™ื” ื ืจืื” ื›ืžื• ืžื” ืฉืืชื ืจื•ืื™ื ืขืœ ื”ืžืกืš.
06:24
Polymers are chains of atoms arranged in long, thin lines.
143
384168
4492
ืคื•ืœื™ืžืจื™ื ื”ื ืฉืจืฉืจืื•ืช ืื˜ื•ืžื™ื ื”ืžืกื•ื“ืจื•ืช ื‘ืงื•ื•ื™ื ืืจื•ื›ื™ื ื•ื“ืงื™ื.
06:28
The chains are very tiny,
144
388684
1367
ื”ืฉืจืฉืจืื•ืช ื–ืขื™ืจื•ืช ืžืื•ื“,
06:30
about the width of a biomolecule,
145
390075
1864
ื‘ืขืจืš ื‘ืจื•ื—ื‘ ืฉืœ ื‘ื™ื•-ืžื•ืœืงื•ืœื”,
06:31
and these polymers are really dense.
146
391963
1747
ื•ื”ืคื•ืœื™ืžืจื™ื ื”ืืœื” ืžืื•ื“ ืฆืคื•ืคื™ื.
06:33
They're separated by distances
147
393734
1500
ื”ืžืจื—ืง ื‘ื™ื ื”ื ื”ื•ื ื‘ืขืจืš ื‘ื’ื•ื“ืœ ืฉืœ ื‘ื™ื•-ืžื•ืœืงื•ืœื”.
06:35
that are around the size of a biomolecule.
148
395258
2252
06:37
This is very good
149
397534
1165
ื–ื” ืžืฆื•ื™ืŸ,
06:38
because we could potentially move everything apart in the brain.
150
398723
3041
ื›ื™ ื‘ืคื•ื˜ื ืฆื™ืืœ ื ื™ืชืŸ ืœื”ืคืจื™ื“ ื›ืœ ื“ื‘ืจ ื‘ืžื•ื—.
06:41
If we add water, what will happen is,
151
401788
1848
ืื ื ื•ืกื™ืฃ ืžื™ื, ืžื” ืฉื™ืงืจื” ื”ื•ื
06:43
this swellable material is going to absorb the water,
152
403660
2515
ืฉื”ื—ื•ืžืจ ื”ืžืชื ืคื— ื™ืกืคื•ื’ ืืช ื”ืžื™ื,
06:46
the polymer chains will move apart from each other,
153
406199
2400
ืฉืจืฉืจืื•ืช ื”ืคื•ืœื™ืžืจ ื™ืชืจื—ืงื• ื–ื• ืžื–ื•,
06:48
and the entire material is going to become bigger.
154
408623
2634
ื•ื›ืœ ื”ื—ื•ืžืจ ื™ื”ืคื•ืš ืœื’ื“ื•ืœ ื™ื•ืชืจ.
06:51
And because these chains are so tiny
155
411615
1814
ื•ืžืฉื•ื ืฉื”ืฉืจืฉืจืื•ืช ื”ืœืœื• ื›ื” ื–ืขื™ืจื•ืช
06:53
and spaced by biomolecular distances,
156
413453
2205
ื•ืžื•ืคืจื“ื•ืช ื‘ืžืจื•ื•ื—ื™ื ืฉืœ ื‘ื™ื•-ืžื•ืœืงื•ืœื”,
06:55
we could potentially blow up the brain
157
415682
2039
ื‘ืคื•ื ื˜ืฆื™ืืœ ื ื•ื›ืœ ืœื ืคื— ืืช ื”ืžื•ื—
06:57
and make it big enough to see.
158
417745
1633
ื•ืœื”ืคื•ืš ืื•ืชื• ืœื’ื“ื•ืœ ื“ื™ื• ื›ื“ื™ ืœืืคืฉืจ ื”ืชื‘ื•ื ื ื•ืช.
07:00
Here's the mystery, then:
159
420020
1240
ืื– ื”ื ื” ื”ืชืขืœื•ืžื”:
07:01
How do we actually make these polymer chains inside the brain
160
421284
3610
ืื™ืš ืื ื—ื ื• ืžื—ื“ื™ืจื™ื ืืช ืฉืจืฉืจืื•ืช ื”ืคื•ืœื™ืžืจ ืœืžื•ื—,
07:04
so we can move all the biomolecules apart?
161
424918
2239
ื›ืš ืฉื™ืคืจื™ื“ื• ื‘ื™ืŸ ื›ืœ ื”ื‘ื™ื•-ืžื•ืœืงื•ืœื•ืช?
07:07
If we could do that,
162
427181
1151
ืื ื”ื™ื™ื ื• ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ื–ืืช,
07:08
maybe we could get ground truth maps of the brain.
163
428356
2397
ืื•ืœื™ ื”ื™ื™ื ื• ื™ื›ื•ืœื™ื ืœื”ื’ื™ืข ืœืžืคื•ืช ืืžื™ืชื™ื•ืช ืฉืœ ื”ืžื•ื—.
07:10
We could look at the wiring.
164
430777
1389
ื”ื™ื™ื ื• ื™ื›ื•ืœื™ื ืœื”ืกืชื›ืœ ืขืœ ื”ื—ื™ื•ื•ื˜ื™ื.
07:12
We can peer inside and see the molecules within.
165
432190
3157
ื”ื™ื™ื ื• ื™ื›ื•ืœื™ื ืœื”ื‘ื™ื˜ ืคื ื™ืžื” ื•ืœืจืื•ืช ืืช ื”ืžื•ืœื•ืงื•ืœื•ืช.
07:15
To explain this, we made some animations
166
435925
2481
ื›ื“ื™ ืœื”ืกื‘ื™ืจ ื–ืืช, ื™ืฆืจื ื• ื›ืžื” ื”ื“ืžื™ื•ืช
07:18
where we actually look at, in these artist renderings,
167
438430
2603
ื‘ื”ืŸ ืื ื—ื ื• ืžืžืฉ ืจื•ืื™ื, ื‘ื“ืจืš ืืžื ื•ืชื™ืช,
07:21
what biomolecules might look like and how we might separate them.
168
441057
3541
ืื™ืš ืขืฉื•ื™ื•ืช ืœื”ื™ืจืื•ืช ื‘ื™ื•-ืžื•ืœืงื•ืœื•ืช, ื•ืื™ืš ื ื™ืชืŸ ืœื”ืคืจื™ื“ ืื•ืชืŸ.
07:24
Step one: what we'd have to do, first of all,
169
444622
2549
ืฉืœื‘ ืจืืฉื•ืŸ: ืžื” ืฉืฆืจื™ืš ืœืขืฉื•ืช, ืงื•ื“ื ื›ืœ,
07:27
is attach every biomolecule, shown in brown here,
170
447195
3389
ื–ื” ืœื—ื‘ืจ ื›ืœ ื‘ื™ื•-ืžื•ืœืงื•ืœื”, ืฉืจื•ืื™ื ื›ืืŸ ื‘ื—ื•ื,
07:30
to a little anchor, a little handle.
171
450608
2159
ืœืขื•ื’ืŸ ืงื˜ืŸ, ื™ื“ื™ืช ืงื˜ื ื”.
07:32
We need to pull the molecules of the brain apart from each other,
172
452791
3095
ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื ืชืง ืืช ื”ืžื•ืœืงื•ืœื•ืช ืฉืœ ื”ืžื•ื— ื–ื• ืžื–ื•,
07:35
and to do that, we need to have a little handle
173
455910
2326
ื•ื›ื“ื™ ืœืขืฉื•ืช ื–ืืช, ืื ื—ื ื• ืฆืจื™ื›ื™ื ื™ื“ื™ืช ืงื˜ื ื”
07:38
that allows those polymers to bind to them
174
458260
2285
ืฉืชืืคืฉืจ ืœืคื•ืœื™ืžืจื™ื ื”ืœืœื• ืœื”ื™ืงืฉืจ ืืœื™ื”ืŸ
07:40
and to exert their force.
175
460569
1542
ื•ืœื”ืคืขื™ืœ ืืช ื›ื•ื—ื.
07:43
Now, if you just take baby diaper polymer and dump it on the brain,
176
463278
3161
ืื‘ืœ ืื ืกืชื ืชืงื—ื• ืคื•ืœื™ืžืจ ืฉืœ ื—ื™ืชื•ืœ ื•ืชื–ืจืงื• ืื•ืชื• ืขืœ ื”ืžื•ื—,
07:46
obviously, it's going to sit there on top.
177
466463
2037
ื”ื•ื ื›ืžื•ื‘ืŸ ื™ืฉืืจ ืฉื ืœืžืขืœื”.
07:48
So we need to find a way to make the polymers inside.
178
468524
2528
ืื– ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœืžืฆื•ื ื“ืจืš ืœื”ื›ื ื™ืก ืืช ื”ืคื•ืœื™ืžืจื™ื ืคื ื™ืžื”.
07:51
And this is where we're really lucky.
179
471076
1788
ื•ื›ืืŸ ื™ืฉ ืœื ื• ื”ืจื‘ื” ืžื–ืœ.
07:52
It turns out, you can get the building blocks,
180
472888
2188
ืžืกืชื‘ืจ ืฉืืคืฉืจ ืœืงื—ืช ืืช ืื‘ื ื™ ื”ื‘ื ื™ื™ืŸ,
07:55
monomers, as they're called,
181
475100
1372
ืžื•ื ื•ืžืจื™ื, ื›ืคื™ ืฉืงื•ืจืื™ื ืœื”ื,
07:56
and if you let them go into the brain
182
476496
1784
ื•ืื ื ื›ื ื™ืก ืื•ืชื ืœืชื•ืš ื”ืžื•ื—
07:58
and then trigger the chemical reactions,
183
478304
2036
ื•ื ืคืขื™ืœ ืืช ื”ืชื’ื•ื‘ื•ืช ื”ื›ื™ืžื™ื•ืช,
08:00
you can get them to form those long chains,
184
480364
2702
ืืคืฉืจ ืœื’ืจื•ื ืœื”ื ืœื™ืฆื•ืจ ืืช ื”ืฉืจืฉืจืื•ืช ื”ืืจื•ื›ื•ืช ื”ืœืœื•,
08:03
right there inside the brain tissue.
185
483090
1798
ืžืžืฉ ื‘ืชื•ืš ืจืงืžืช ื”ืžื•ื—.
08:05
They're going to wind their way around biomolecules
186
485325
2397
ื”ื ื™ืคืชืœื• ืืช ื“ืจื›ื ืกื‘ื™ื‘ ื‘ื™ื•-ืžื•ืœืงื•ืœื•ืช
08:07
and between biomolecules,
187
487746
1221
ื•ื‘ื™ืŸ ื‘ื™ื•-ืžื•ืœืงื•ืœื•ืช,
08:08
forming those complex webs
188
488991
1625
ื•ื™ื™ืฆืจื• ืืช ื”ืจืฉืชื•ืช ื”ืžื•ืจื›ื‘ื•ืช ื”ืœืœื•
08:10
that will allow you, eventually, to pull apart the molecules
189
490640
2862
ืฉื™ืืคืฉืจื• ืœื ื•, ื‘ืกื•ืฃ ืฉืœ ื“ื‘ืจ, ืœืžืฉื•ืš ื•ืœื”ืคืจื™ื“ ื‘ื™ืŸ ื”ืžื•ืœืงื•ืœื•ืช.
08:13
from each other.
190
493526
1175
08:14
And every time one of those little handles is around,
191
494725
3054
ื•ื‘ื›ืœ ืคืขื ืฉืื—ืช ื”ื™ื“ื™ื•ืช ื”ืœืœื• ื ืžืฆืืช ื‘ืื™ื–ื•ืจ,
08:17
the polymer will bind to the handle, and that's exactly what we need
192
497803
3350
ื”ืคื•ืœื™ืžืจ ื™ืชื—ื‘ืจ ืœื™ื“ื™ืช, ื•ื–ื” ื‘ื“ื™ื•ืง ืžื” ืฉืื ื—ื ื• ืฆืจื™ื›ื™ื
08:21
in order to pull the molecules apart from each other.
193
501177
2531
ื›ื“ื™ ืœื”ืคืจื™ื“ ื‘ื™ืŸ ื”ืžื•ืœืงื•ืœื•ืช.
08:23
All right, the moment of truth.
194
503732
1693
ืื•ืงื™ื™, ืจื’ืข ื”ืืžืช.
08:25
We have to treat this specimen
195
505449
2148
ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื˜ืคืœ ื‘ื“ื’ื™ืžื” ื”ื–ื•
08:27
with a chemical to kind of loosen up all the molecules from each other,
196
507621
3446
ืขื ื›ื™ืžื™ืงืœ ืฉื™ืจืคื” ืืช ื”ืงืฉืจื™ื ื‘ื™ืŸ ื”ืžื•ืœืงื•ืœื•ืช,
08:31
and then, when we add water,
197
511091
1836
ื•ืื–, ื›ืฉื ื•ืกื™ืฃ ืžื™ื,
08:32
that swellable material is going to start absorbing the water,
198
512951
2953
ื”ื—ื•ืžืจ ื”ืžืชื ืคื— ื™ืชื—ื™ืœ ืœืกืคื•ื’ ืืช ื”ืžื™ื,
08:35
the polymer chains will move apart,
199
515928
1703
ืฉืจืฉืจืื•ืช ื”ืคื•ืœื™ืžืจ ื™ืชื—ื™ืœื• ืœื”ื™ืคืจื“,
08:37
but now, the biomolecules will come along for the ride.
200
517655
2722
ืื‘ืœ ืขื›ืฉื™ื• ื”ื‘ื™ื•-ืžื•ืœืงื•ืœื•ืช ื™ืชืคืกื• ื˜ืจืžืค,
08:40
And much like drawing a picture on a balloon,
201
520401
2164
ื•ื‘ืื•ืคืŸ ื“ื•ืžื” ืœืฆื™ื•ืจ ืขืœ ื’ื‘ื™ ื‘ืœื•ืŸ,
08:42
and then you blow up the balloon,
202
522589
1587
ืื—ืจื™ ืฉืžื ืคื—ื™ื ืืช ื”ื‘ืœื•ืŸ,
08:44
the image is the same,
203
524200
1290
ื”ืชืžื•ื ื” ื ืจืื™ืช ืื•ืชื• ื”ื“ื‘ืจ,
08:45
but the ink particles have moved away from each other.
204
525514
2548
ืื‘ืœ ื—ืœืงื™ืงื™ ื”ื“ื™ื• ื”ืชืจื—ืงื• ื–ื” ืžื–ื”.
08:48
And that's what we've been able to do now, but in three dimensions.
205
528086
3467
ื•ื–ื” ืžื” ืฉืื ื• ืžืกื•ื’ืœื™ื ื›ืขืช ืœืขืฉื•ืช, ืื‘ืœ ื‘ืชืœืช-ืžื™ืžื“.
08:51
There's one last trick.
206
531577
1999
ื™ืฉ ืขื•ื“ ื˜ืจื™ืง ืื—ื“ ืื—ืจื•ืŸ.
08:53
As you can see here,
207
533600
1218
ื›ืคื™ ืฉื ื™ืชืŸ ืœืจืื•ืช ื›ืืŸ,
08:54
we've color-coded all the biomolecules brown.
208
534842
2109
ืฆื‘ืขื ื• ืืช ื›ืœ ื”ื‘ื™ื•-ืžื•ืœืงื•ืœื•ืช ื‘ื—ื•ื.
08:56
That's because they all kind of look the same.
209
536975
2170
ื›ื™ ื”ืŸ ื ืจืื•ืช ื“ื™ ื“ื•ืžื”.
08:59
Biomolecules are made out of the same atoms,
210
539169
2105
ื‘ื™ื•-ืžื•ืœืงื•ืœื•ืช ื‘ื ื•ื™ื•ืช ืžืื•ืชื ืื˜ื•ืžื™ื,
09:01
but just in different orders.
211
541298
2240
ืจืง ื‘ืกื“ืจ ืฉื•ื ื”.
09:03
So we need one last thing
212
543562
1500
ืื– ืฆืจื™ืš ืขื•ื“ ื“ื‘ืจ ืื—ื“
09:05
in order to make them visible.
213
545086
1695
ื›ื“ื™ ืฉื ื™ืชืŸ ื™ื”ื™ื” ืœื”ื‘ื—ื™ืŸ ื‘ื™ื ื”ืŸ.
09:06
We have to bring in little tags,
214
546805
1579
ืฆืจื™ืš ืœื”ื›ื ื™ืก ืชื’ื™ื•ืช ืงื˜ื ื•ืช,
09:08
with glowing dyes that will distinguish them.
215
548408
3019
ืขื ืฆื‘ืขื™ื ื–ื•ื”ืจื™ื ืฉื™ื‘ื—ื™ื ื• ื‘ื™ื ื™ื”ืŸ.
09:11
So one kind of biomolecule might get a blue color.
216
551451
2673
ืื– ื‘ื™ื•-ืžื•ืœืงื•ืœื” ืื—ืช ื™ื›ื•ืœื” ืœื”ื™ืฆื‘ืข ื‘ื›ื—ื•ืœ,
09:14
Another kind of biomolecule might get a red color.
217
554148
2351
ื‘ื™ื•-ืžื•ืœืงื•ืœื” ืื—ืจืช ื™ื›ื•ืœื” ืœื”ื™ืฆื‘ืข ื‘ืื“ื•ื,
09:16
And so forth.
218
556523
1276
ื•ื›ืŸ ื”ืœืื”.
09:17
And that's the final step.
219
557823
1552
ื•ื–ื” ื”ืฆืขื“ ื”ืื—ืจื•ืŸ.
09:19
Now we can look at something like a brain
220
559399
2278
ืขื›ืฉื™ื•, ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ืกืชื›ืœ ืขืœ ืžืฉื”ื• ื›ืžื• ืžื•ื—
09:21
and look at the individual molecules,
221
561701
1796
ื•ืœืจืื•ืช ืืช ื”ืžื•ืœืงื•ืœื•ืช ื”ื‘ื•ื“ื“ื•ืช,
09:23
because we've moved them far apart enough from each other
222
563521
2707
ื›ื™ ื”ืจื—ืงื ื• ืื•ืชืŸ ืžืกืคื™ืง ื–ื• ืžื–ื•
09:26
that we can tell them apart.
223
566252
1698
ื›ื“ื™ ืœื”ื‘ื—ื™ืŸ ื‘ื™ื ื”ืŸ.
09:27
So the hope here is that we can make the invisible visible.
224
567974
2834
ืื– ืื ื• ืžืงื•ื•ื™ื ืฉื ื•ื›ืœ ืœื”ืคื•ืš ืืช ื”ื‘ืœืชื™ ื ืจืื” ืœื ืจืื”.
09:30
We can turn things that might seem small and obscure
225
570832
2566
ืฉื ื•ื›ืœ ืœืงื—ืช ื“ื‘ืจื™ื ืฉื ืจืื™ื ืงื˜ื ื™ื ื•ืžืขื•ืจืคืœื™ื,
09:33
and blow them up
226
573422
1151
ืœื ืคื— ื•ืœื”ื’ื“ื™ืœ ืื•ืชื
09:34
until they're like constellations of information about life.
227
574597
3177
ืขื“ ืฉื™ื”ืคื›ื• ืœืžืขืจืš ืžื™ื“ืข ืขืœ ื”ื—ื™ื™ื.
09:37
Here's an actual video of what it might look like.
228
577798
2375
ื”ื ื” ืกืจื˜ื•ืŸ ืืžื™ืชื™ ืฉืœ ืื™ืš ื–ื” ื™ื›ื•ืœ ืœื”ื™ืจืื•ืช.
09:40
We have here a little brain in a dish --
229
580197
2371
ื™ืฉ ืœื ื• ื›ืืŸ ืžื•ื— ืงื˜ืŸ ื‘ืฆืœื—ืช --
09:42
a little piece of a brain, actually.
230
582592
1747
ื—ืชื™ื›ืช ืžื•ื—, ื‘ืขืฆื.
09:44
We've infused the polymer in,
231
584363
1596
ื”ื—ื“ืจื ื• ืœืชื•ื›ื• ืืช ื”ืคื•ืœื™ืžืจ,
09:45
and now we're adding water.
232
585983
1467
ื•ืขื›ืฉื™ื• ืื ื—ื ื• ืžื•ืกื™ืคื™ื ืžื™ื.
09:47
What you'll see is that, right before your eyes --
233
587474
2358
ืžื” ืฉืชืจืื• ื”ื•ื ืื™ืš ืžืžืฉ ืžื•ืœ ืขื™ื ื™ื›ื --
09:49
this video is sped up about sixtyfold --
234
589856
1923
ื”ืกืจื˜ื•ืŸ ื”ื•ืืฅ ื‘ืžื”ื™ืจื•ืช ืฉืœ ืคื™ 60 ืžื”ืžืฆื™ืื•ืช --
09:51
this little piece of brain tissue is going to grow.
235
591803
2725
ืคื™ืกืช ืจืงืžืช ื”ืžื•ื— ื”ืงื˜ื ื” ืชื’ื“ืœ.
09:54
It can increase by a hundredfold or even more in volume.
236
594552
3180
ื”ื™ื ื™ื›ื•ืœื” ืœื’ื“ื•ืœ ื‘ื ืคื—ื” ืคื™ 100 ืื• ื™ื•ืชืจ.
09:57
And the cool part is, because those polymers are so tiny,
237
597756
2949
ื•ื”ื—ืœืง ื”ื™ืคื” ื”ื•ื ืฉืžืฉื•ื ืฉื”ืคื•ืœื™ืžืจื™ื ื”ืืœื” ื›ื” ื–ืขื™ืจื™ื,
10:00
we're separating biomolecules evenly from each other.
238
600729
2559
ืื ื—ื ื• ืžืฆืœื™ื—ื™ื ืœื”ืคืจื™ื“ ื‘ื™ืŸ ื”ื‘ื™ื•-ืžื•ืœืงื•ืœื•ืช ื‘ืื•ืคืŸ ืฉื•ื•ื”.
10:03
It's a smooth expansion.
239
603312
1658
ื–ื• ื”ืชืจื—ื‘ื•ืช ืื—ื™ื“ื”.
10:04
We're not losing the configuration of the information.
240
604994
2687
ืื ื—ื ื• ืœื ืžืื‘ื“ื™ื ืืช ื”ืชืฆื•ืจื” ืฉืœ ื”ืžื™ื“ืข.
10:07
We're just making it easier to see.
241
607705
2700
ืื ื—ื ื• ืจืง ืžืงืœื™ื ืขืœ ื”ืฆืคื™ื™ื”.
10:11
So now we can take actual brain circuitry --
242
611333
2176
ืื– ื ื™ืชืŸ ืœืงื—ืช ืžืขื’ืœื™ื ื—ืฉืžืœื™ื™ื ืžื•ื—ื™ื™ื ืืžื™ืชื™ื™ื --
10:13
here's a piece of the brain involved with, for example, memory --
243
613533
3134
ื”ื ื” ืคื™ืกืช ืžื•ื— ื”ืงืฉื•ืจื” ืœืžืฉืœ ื‘ื–ื™ื›ืจื•ืŸ --
10:16
and we can zoom in.
244
616691
1263
ื•ืœืขืฉื•ืช ืขืœื™ื” ื–ื•ื.
10:17
We can start to actually look at how circuits are configured.
245
617978
2890
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืžืžืฉ ืœืจืื•ืช ืื™ืš ื”ืžืขื’ืœื™ื ื‘ื ื•ื™ื™ื.
10:20
Maybe someday we could read out a memory.
246
620892
1968
ื™ื•ื ืื—ื“ ืื•ืœื™ ื ื•ื›ืœ ืœืงืจื•ื ื–ื™ื›ืจื•ืŸ.
10:22
Maybe we could actually look at how circuits are configured
247
622884
2779
ืื•ืœื™ ื ื•ื›ืœ ืžืžืฉ ืœืจืื•ืช ืื™ืš ื”ืžืขื’ืœื™ื ืคื•ืขืœื™ื,
10:25
to process emotions,
248
625687
1152
ืœืขื™ื‘ื•ื“ ืจื’ืฉื•ืช,
10:26
how the actual wiring of our brain is organized
249
626863
2922
ืื™ืš ืžืื•ืจื’ืŸ ื”ื—ื™ื•ื•ื˜ ื”ืžื•ื—ื™ ืฉืœื ื•
10:29
in order to make us who we are.
250
629809
2567
ืฉื”ื•ืคืš ืื•ืชื ื• ืœืžื™ ืฉืื ื—ื ื•.
10:32
And of course, we can pinpoint, hopefully,
251
632400
2047
ื•ื›ืžื•ื‘ืŸ, ื™ืฉ ืชืงื•ื” ืฉื ื•ื›ืœ ืœื–ื”ื•ืช ื‘ืžื“ื•ื™ื™ืง
10:34
the actual problems in the brain at a molecular level.
252
634471
3159
ื‘ืขื™ื•ืช ืืžื™ืชื™ื•ืช ื‘ืžื•ื—, ื‘ืจืžื” ื”ืžื•ืœืงื•ืœืจื™ืช.
10:37
What if we could actually look into cells in the brain
253
637654
2569
ืžื” ื”ื™ื” ืงื•ืจื” ืื™ืœื• ื™ื›ื•ืœื ื• ืœื”ืกืชื›ืœ ืขืœ ืชืื™ื ื‘ืชื•ืš ื”ืžื•ื—
10:40
and figure out, wow, here are the 17 molecules that have altered
254
640247
3083
ื•ืœื’ืœื•ืช -- ื•ื•ืื•! ื”ื ื” 17 ื”ืžื•ืœืงื•ืœื•ืช ืฉืขื‘ืจื• ืฉื™ื ื•ื™
10:43
in this brain tissue that has been undergoing epilepsy
255
643354
3455
ื‘ืจืงืžืช ื”ืžื•ื— ื”ื–ื• ืฉื—ื•ื•ื” ื”ืชืงืคื™ ืืคื™ืœืคืกื™ื”,
10:46
or changing in Parkinson's disease
256
646833
1650
ืื• ืฉื™ื ื•ื™ื™ื ืฉืงื•ืจื™ื ื‘ืžื—ืœืช ื”ืคืจืงื™ื ืกื•ืŸ,
10:48
or otherwise being altered?
257
648507
1517
ืื• ืฉื™ื ื•ื™ื™ื ืื—ืจื™ื.
10:50
If we get that systematic list of things that are going wrong,
258
650048
3043
ืื ื”ื™ื™ื ื• ื™ื›ื•ืœื™ื ืœื”ืฉื™ื’ ืจืฉื™ืžื” ืžืกื•ื“ืจืช ืฉืœ ื›ืœ ื”ื“ื‘ืจื™ื ืฉืžืฉืชื‘ืฉื™ื,
10:53
those become our therapeutic targets.
259
653115
2199
ื”ื ื”ื™ื• ื”ื•ืคื›ื™ื ืœืžื˜ืจื•ืช ื”ื˜ื™ืคื•ืœื™ื•ืช ืฉืœื ื•.
10:55
We can build drugs that bind those.
260
655338
1677
ื”ื™ื™ื ื• ื™ื›ื•ืœื™ื ืœื™ื™ืฆืจ ืชืจื•ืคื•ืช ืฉืžื•ื ืขื•ืช ืื•ืชื.
10:57
We can maybe aim energy at different parts of the brain
261
657039
2627
ื”ื™ื™ื ื• ื™ื›ื•ืœื™ื ืื•ืœื™ ืœื›ื•ื•ืŸ ืื ืจื’ื™ื” ืœื—ืœืงื™ื ืฉื•ื ื™ื ื‘ืžื•ื—,
10:59
in order to help people with Parkinson's or epilepsy
262
659690
2687
ืขืœ ืžื ืช ืœืกื™ื™ืข ืœืื ืฉื™ื ืขื ืคืจืงื™ื ืกื•ืŸ ืื• ืืคื™ืœืคืกื™ื”,
11:02
or other conditions that affect over a billion people
263
662401
2551
ืื• ื”ืคืจืขื•ืช ืื—ืจื•ืช ื”ืžืฉืคื™ืขื•ืช ืขืœ ืžืขืœ ืžื™ืœื™ืืจื“ ืื™ืฉ
11:04
around the world.
264
664976
1213
ื‘ืจื—ื‘ื™ ื”ืขื•ืœื.
11:07
Now, something interesting has been happening.
265
667246
2206
ื•ื‘ื›ืŸ, ืžืฉื”ื• ืžืขื ื™ื™ืŸ ืงื•ืจื”.
11:09
It turns out that throughout biomedicine,
266
669476
2705
ืžืชื‘ืจืจ ืฉื‘ื›ืœ ืชื—ื•ืžื™ ื”ื‘ื™ื•-ืจืคื•ืื”,
11:12
there are other problems that expansion might help with.
267
672205
2666
ื™ืฉื ืŸ ื‘ืขื™ื•ืช ื ื•ืกืคื•ืช ืฉื”ื”ื’ื“ืœื” ื™ื›ื•ืœื” ืœืกื™ื™ืข ื‘ืคืชืจื•ื ืŸ.
11:14
This is an actual biopsy from a human breast cancer patient.
268
674895
3234
ื–ื• ื‘ื™ื•ืคืกื™ื” ืืžื™ืชื™ืช ืžืคืฆื™ื™ื ื˜ื™ืช ืขื ืกืจื˜ืŸ ื”ืฉื“.
11:18
It turns out that if you look at cancers,
269
678505
2188
ืžืชื‘ืจืจ ืฉืื ืžืกืชื›ืœื™ื ืขืœ ืžื—ืœื•ืช ืกืจื˜ื ื™ื•ืช,
11:20
if you look at the immune system,
270
680717
1611
ืื ืžืกืชื›ืœื™ื ืขืœ ืžืขืจื›ืช ื”ื—ื™ืกื•ืŸ,
11:22
if you look at aging, if you look at development --
271
682352
2513
ืื ืžืกืชื›ืœื™ื ืขืœ ื”ื–ื“ืงื ื•ืช, ืื ืžืกืชื›ืœื™ื ืขืœ ื”ืชืคืชื—ื•ืช --
11:24
all these processes are involving large-scale biological systems.
272
684889
4497
ื›ืœ ื”ืชื”ืœื™ื›ื™ื ื”ืœืœื• ืžืขืจื‘ื™ื ืžืขืจื›ื•ืช ื‘ื™ื•ืœื•ื’ื™ื•ืช ื‘ืงื ื” ืžื™ื“ื” ื’ื“ื•ืœ.
11:29
But of course, the problems begin with those little nanoscale molecules,
273
689410
4024
ืื‘ืœ ื›ืžื•ื‘ืŸ ืฉื”ื‘ืขื™ื•ืช ืžืชื—ื™ืœื•ืช ื‘ืจืžื” ืฉืœ ื”ื ื ื•-ืžื•ืœืงื•ืœื•ืช,
11:33
the machines that make the cells and the organs in our body tick.
274
693458
3869
ืื•ืชืŸ ืžื›ื•ื ื•ืช ืฉื’ื•ืจืžื•ืช ืœืชืื™ื ื•ืœืื™ื‘ืจื™ื ื‘ื’ื•ืคื ื• ืœืคืขื•ืœ.
11:37
So what we're trying to do now is to figure out
275
697351
2222
ืื– ืžื” ืฉืื ื—ื ื• ืžื ืกื™ื ืœืขืฉื•ืช ื›ืขืช ื–ื” ืœื’ืœื•ืช
11:39
if we can actually use this technology to map the building blocks of life
276
699597
3466
ืื ืืคืฉืจ ืœื”ืฉืชืžืฉ ื‘ื˜ื›ื ื•ืœื•ื’ื™ื” ื”ื–ื• ื›ื“ื™ ืœืžืคื•ืช ืืช ืื‘ื ื™ ื”ื‘ื ื™ื™ืŸ ืฉืœ ื”ื—ื™ื™ื,
11:43
in a wide variety of diseases.
277
703087
1745
ื‘ืžื’ื•ื•ืŸ ืจื—ื‘ ืฉืœ ืžื—ืœื•ืช.
11:44
Can we actually pinpoint the molecular changes in a tumor
278
704856
2896
ื”ืื ื ื•ื›ืœ ืœื”ืฆื‘ื™ืข ื‘ืžื“ื•ื™ื™ืง ืขืœ ื”ืฉื™ื ื•ื™ื™ื ื”ืžื•ืœืงื•ืœืจื™ื™ื ื”ื—ืœื™ื ื‘ื’ื™ื“ื•ืœ,
11:47
so that we can actually go after it in a smart way
279
707776
2369
ื›ืš ืฉื ื•ื›ืœ ืœื”ื™ืœื—ื ื‘ื• ื‘ื“ืจืš ื—ื›ืžื”,
11:50
and deliver drugs that might wipe out exactly the cells that we want to?
280
710169
3944
ื•ืœื”ืžืฆื™ื ืชืจื•ืคื•ืช ืฉื™ื›ื•ืœื•ืช ืœื—ืกืœ ื‘ื“ื™ื•ืง ืืช ื”ืชืื™ื ื”ืจืฆื•ื™ื™ื?
11:54
You know, a lot of medicine is very high risk.
281
714137
2335
ืืชื ื™ื•ื“ืขื™ื, ื—ืœืง ื’ื“ื•ืœ ืžื”ืจืคื•ืื” ืžืกืชืžืš ืขืœ ืœืงื™ื—ืช ืกื™ื›ื•ื ื™ื
11:56
Sometimes, it's even guesswork.
282
716496
1782
ืœืคืขืžื™ื ื–ื” ืืคื™ืœื• ื‘ืจืžื” ืฉืœ ื ื™ื—ื•ืฉ.
11:58
My hope is we can actually turn what might be a high-risk moon shot
283
718626
3875
ืื ื™ ืžืงื•ื” ืฉื ื•ื›ืœ ืœื”ืคื•ืš ืžืฉื”ื• ื‘ืขืœ ืกื™ื›ื•ืŸ ื’ื‘ื•ื” ื›ืžื• ืฉื™ื’ื•ืจ ื—ืœืœื™ืช ืœื™ืจื—,
12:02
into something that's more reliable.
284
722525
1769
ืœื“ื‘ืจ ื™ื•ืชืจ ืžื”ื™ืžืŸ.
12:04
If you think about the original moon shot,
285
724318
2055
ืื ืชื—ืฉื‘ื• ืขืœ ื”ืฉื™ื’ื•ืจ ื”ืจืืฉื•ืŸ ืœื™ืจื—,
12:06
where they actually landed on the moon,
286
726397
1898
ื›ืฉื”ื ืžืžืฉ ื ื—ืชื• ืขืœ ื”ื™ืจื—,
12:08
it was based on solid science.
287
728319
1444
ื–ื” ื”ื™ื” ืžื‘ื•ืกืก ืขืœ ืžื“ืข ืื™ืชืŸ.
12:09
We understood gravity;
288
729787
1603
ื”ื‘ื ื• ืืช ื›ื•ื— ื”ื›ื‘ื™ื“ื”,
12:11
we understood aerodynamics.
289
731414
1341
ื”ื‘ื ื• ืืช ื”ืื•ื™ืจื•ื“ื™ื ืžื™ืงื”,
12:12
We knew how to build rockets.
290
732779
1395
ื™ื“ืขื ื• ืื™ืš ืœื‘ื ื•ืช ื˜ื™ืœื™ ืฉื™ื’ื•ืจ.
12:14
The science risk was under control.
291
734198
2468
ืจืžืช ื”ืกื™ื›ื•ืŸ ื‘ืžื“ืข ื”ื™ืชื” ืชื—ืช ืฉืœื™ื˜ื”.
12:16
It was still a great, great feat of engineering.
292
736690
2753
ืื‘ืœ ืขื“ื™ื™ืŸ ื–ื” ื”ื™ื” ื”ื™ืฉื’ ื”ื ื“ืกื™ ืื“ื™ืจ.
12:19
But in medicine, we don't necessarily have all the laws.
293
739467
2645
ืื‘ืœ ื‘ืจืคื•ืื”, ืื™ืŸ ืœื ื• ื‘ื”ื›ืจื— ืืช ื›ืœ ื”ื—ื•ืงื™ื.
12:22
Do we have all the laws that are analogous to gravity,
294
742136
3109
ื”ืื ื™ืฉ ื‘ื™ื“ื™ื ื• ืืช ื›ืœ ื”ื—ื•ืงื™ื ื”ืžืงื‘ื™ืœื™ื ืœื›ื•ื— ื”ื›ื‘ื™ื“ื”?
12:25
that are analogous to aerodynamics?
295
745269
2344
ื”ืžืงื‘ื™ืœื™ื ืœืื•ื™ืจื•ื“ื™ื ืžื™ืงื”?
12:27
I would argue that with technologies
296
747637
1730
ืื ื™ ื˜ื•ืขืŸ ืฉื‘ืขื–ืจืช ื”ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ืขืœื™ื”ืŸ ืื ื™ ืžื“ื‘ืจ ื”ื™ื•ื,
12:29
like the kinds I'm talking about today,
297
749391
1872
12:31
maybe we can actually derive those.
298
751287
1693
ืื•ืœื™ ื ื•ื›ืœ ืœื”ืกื™ืง ืื•ืชื.
12:33
We can map the patterns that occur in living systems,
299
753004
2857
ื ื•ื›ืœ ืœืžืคื•ืช ืืช ื”ื“ืคื•ืกื™ื ื”ืงื™ื™ืžื™ื ื‘ืžืขืจื›ื•ืช ื—ื™ื•ืช
12:35
and figure out how to overcome the diseases that plague us.
300
755885
4558
ื•ืœื”ื‘ื™ืŸ ืื™ืš ืœื’ื‘ื•ืจ ืขืœ ืžื—ืœื•ืช ื”ื˜ื•ืจื“ื•ืช ืื•ืชื ื•.
12:41
You know, my wife and I have two young kids,
301
761499
2079
ืืชื ื™ื•ื“ืขื™ื, ืœืืฉืชื™ ื•ืœื™ ื™ืฉ ืฉื ื™ ื™ืœื“ื™ื ืงื˜ื ื™ื,
12:43
and one of my hopes as a bioengineer is to make life better for them
302
763602
3234
ื•ืื—ืช ื”ืชืงื•ื•ืช ืฉืœื™ ื›ื‘ื™ื•-ืžื”ื ื“ืก ื”ื™ื ืœื™ืฆื•ืจ ืขื‘ื•ืจื ื—ื™ื™ื ื˜ื•ื‘ื™ื ื™ื•ืชืจ ืžืืœื” ืฉื™ืฉ ืœื ื• ื›ื™ื•ื.
12:46
than it currently is for us.
303
766860
1729
12:48
And my hope is, if we can turn biology and medicine
304
768613
3730
ื•ื”ืชืงื•ื•ื” ืฉืœื™ ื”ื™ื ืฉืื ื ื”ืคื•ืš ืืช ื”ื‘ื™ื•ืœื•ื’ื™ื” ื•ื”ืจืคื•ืื”
12:52
from these high-risk endeavors that are governed by chance and luck,
305
772367
4357
ืžื ื™ืกื™ื•ื ื•ืช ื‘ืกื™ื›ื•ืŸ ื’ื‘ื•ื”, ื”ื ืฉืœื˜ื™ื ืขืœ-ื™ื“ื™ ืžื–ืœ ื•ืžืงืจื™ื•ืช,
12:56
and make them things that we win by skill and hard work,
306
776748
3927
ืœื“ื‘ืจื™ื ืฉืžืฆืœื™ื—ื™ื ื‘ื”ื ื‘ื–ื›ื•ืช ื›ื™ืฉื•ืจื™ื ื•ืขื‘ื•ื“ื” ืงืฉื”,
13:00
then that would be a great advance.
307
780699
1898
ื–ืืช ืชื”ื™ื” ื”ืชืงื“ืžื•ืช ืื“ื™ืจื”.
13:02
Thank you very much.
308
782621
1206
ืชื•ื“ื” ืจื‘ื”.
13:03
(Applause)
309
783851
10383
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7