Nancy Kanwisher: A neural portrait of the human mind

191,552 views ใƒป 2014-10-02

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

00:00
Translator: Joseph Geni Reviewer: Madeleine Aronson
0
0
7000
ืžืชืจื’ื: Boaz Hovav ืžื‘ืงืจ: Sigal Tifferet
00:12
Today I want to tell you
1
12604
1216
ื”ื™ื•ื ื‘ืจืฆื•ื ื™ ืœืกืคืจ ืœื›ื
00:13
about a project being carried out
2
13820
1803
ืขืœ ืžื™ื–ื ืฉืžื‘ื•ืฆืข
00:15
by scientists all over the world
3
15623
2687
ื‘ื™ื“ื™ ืžื“ืขื ื™ื ืžื›ืœ ืจื—ื‘ื™ ื”ืขื•ืœื
00:18
to paint a neural portrait of the human mind.
4
18310
3288
ืฉืžื˜ืจืชื• ืœืฆื™ื™ืจ ื“ื™ื•ืงืŸ ืขืฆื‘ื™ ืฉืœ ืžื•ื— ื”ืื“ื.
00:21
And the central idea of this work
5
21598
2172
ื•ื”ืจืขื™ื•ืŸ ื”ืžืจื›ื–ื™ ืฉืœ ื”ืขื‘ื•ื“ื” ื”ื–ื•
00:23
is that the human mind and brain
6
23770
1858
ื˜ื•ืขืŸ ืฉื”ืžื•ื— ื”ืื ื•ืฉื™
00:25
is not a single, general-purpose processor,
7
25628
2857
ืื™ื ื ื• ืžืขื‘ื“ ืจื‘-ืชื›ืœื™ืชื™ ืื—ื“,
00:28
but a collection of highly specialized components,
8
28485
3442
ืืœื ืื•ืกืฃ ืฉืœ ืจื›ื™ื‘ื™ื ืžืชืžื—ื™ื,
00:31
each solving a different specific problem,
9
31927
2983
ื›ืœ ืื—ื“ ืžื”ื ืคื•ืชืจ ื‘ืขื™ื” ืžืกื•ื™ืžืช,
00:34
and yet collectively making up
10
34910
2336
ื•ื™ื—ื“ ื”ื ื™ื•ืฆืจื™ื
00:37
who we are as human beings and thinkers.
11
37246
4356
ืืช ืžื™ ืฉืื ื—ื ื• ื›ื‘ื ื™ ืื“ื ื—ื•ืฉื‘ื™ื.
00:41
To give you a feel for this idea,
12
41602
1476
ื›ื“ื™ ืœื”ืžื—ื™ืฉ ืœื›ื ืืช ื”ืจืขื™ื•ืŸ ื”ื–ื”,
00:43
imagine the following scenario:
13
43078
2664
ื“ืžื™ื™ื ื• ืืช ื”ืชืจื—ื™ืฉ ื”ื‘ื:
00:45
You walk into your child's day care center.
14
45742
2196
ืืชื ื ื›ื ืกื™ื ืœื’ืŸ ื”ื™ืœื“ื™ื ืฉืœ ื‘ึดืชื›ื.
00:47
As usual, there's a dozen kids there
15
47938
2237
ื›ืจื’ื™ืœ, ื™ืฉ ืฉื ืขื•ื“ ืขืฉืจื” ื™ืœื“ื™ื
00:50
waiting to get picked up,
16
50175
1591
ืฉืžื—ื›ื™ื ืฉื™ื‘ื•ืื• ืœืงื—ืช ืื•ืชื,
00:51
but this time,
17
51766
1632
ืื‘ืœ ื”ืคืขื,
00:53
the children's faces look weirdly similar,
18
53398
2985
ืคื ื™ ื”ื™ืœื“ื™ื ื ืจืื™ื ื“ื•ืžื™ื ื‘ืื•ืคืŸ ืžื•ื–ืจ,
00:56
and you can't figure out which child is yours.
19
56383
2808
ื•ืืชื ืœื ืžืฆืœื™ื—ื™ื ืœื”ื‘ื™ืŸ ืžื™ ืžื”ื ื”ื™ื ื™ืœื“ืชื›ื.
00:59
Do you need new glasses?
20
59191
1749
ื”ืื ืืชื ื–ืงื•ืงื™ื ืœืžืฉืงืคื™ื™ื?
01:00
Are you losing your mind?
21
60940
1908
ื”ืื ื™ืฆืืชื ืžื“ืขืชื›ื?
01:02
You run through a quick mental checklist.
22
62848
2452
ืืชื ื‘ื•ื“ืงื™ื ืืช ืขืฆืžื›ื ื‘ื–ืจื™ื–ื•ืช.
01:05
No, you seem to be thinking clearly,
23
65300
1894
ืœื, ื ืจืื” ืฉืืชื ืขื“ื™ื™ืŸ ืฉืคื•ื™ื™ื,
01:07
and your vision is perfectly sharp.
24
67194
2391
ื•ื”ืจืื™ื™ื” ืฉืœื›ื ื—ื“ื” ื•ืžื“ื•ื™ืงืช.
01:09
And everything looks normal
25
69585
1789
ื•ื”ื›ืœ ื ืจืื” ืชืงื™ืŸ
01:11
except the children's faces.
26
71374
2162
ืคืจื˜ ืœืคื ื™ ื”ื™ืœื“ื™ื.
01:13
You can see the faces,
27
73536
1786
ืืชื ืจื•ืื™ื ืืช ื”ืคื ื™ื,
01:15
but they don't look distinctive,
28
75322
1708
ืื‘ืœ ืื™ืŸ ื‘ื™ื ื ื”ื‘ื“ืœื™ื,
01:17
and none of them looks familiar,
29
77030
1858
ื•ืืฃ ืื—ื“ ืžื”ื ืœื ื ืจืื” ืžื•ื›ืจ,
01:18
and it's only by spotting an orange hair ribbon
30
78888
2498
ื•ืจืง ื›ืืฉืจ ืืชื ืžื–ื”ื™ื ืืช ืกืจื˜ ื”ืฉืขืจ ื”ื›ืชื•ื
01:21
that you find your daughter.
31
81386
1896
ืืชื ืžื•ืฆืื™ื ืืช ื‘ืชื›ื.
01:23
This sudden loss of the ability to recognize faces
32
83282
3425
ืื•ื‘ื“ืŸ ืคืชืื•ืžื™ ืฉืœ ื”ื™ื›ื•ืœืช ืœื–ื”ื•ืช ืคื ื™ื
01:26
actually happens to people.
33
86707
1546
ืงื•ืจื” ื‘ืืžืช ืœืื ืฉื™ื.
01:28
It's called prosopagnosia,
34
88253
2054
ื”ืžืฆื‘ ืžื›ื•ื ื” ืคืจื•ืกื•ืคื’ื ื•ื–ื™ื”,
01:30
and it results from damage
35
90307
1181
ื•ื”ื•ื ื ื•ื‘ืข ืžื ื–ืง
01:31
to a particular part of the brain.
36
91488
2126
ืœื—ืœืง ืกืคืฆื™ืคื™ ื‘ืžื•ื—.
01:33
The striking thing about it
37
93614
1500
ื”ืžืžืฆื ื”ืžืคืชื™ืข ื‘ืžืฆื‘ ื”ื–ื”
01:35
is that only face recognition is impaired;
38
95114
2595
ื”ื•ื ืฉืจืง ื–ื™ื”ื•ื™ ื”ืคื ื™ื ื ืคื’ืข,
01:37
everything else is just fine.
39
97709
2439
ื›ืœ ืฉืืจ ืชืคืงื•ื“ื™ ื”ืžื•ื— ืคื•ืขืœื™ื ื›ืจื’ื™ืœ.
01:40
Prosopagnosia is one of many surprisingly specific
40
100148
3868
ืคืจื•ืกื•ืคื’ื ื•ื–ื™ื” ื”ื•ื ืื—ื“ ืžืžืกืคืจ ืจื‘ ืฉืœ ืžืฆื‘ื™ ืžื—ืœื” ืกืคืฆื™ืคื™ื™ื
01:44
mental deficits that can happen after brain damage.
41
104016
4535
ืฉื™ื›ื•ืœื™ื ืœื”ื•ืคื™ืข ืื—ืจื™ ืคื’ื™ืขื” ืžื•ื—ื™ืช.
01:48
These syndromes collectively
42
108551
1363
ื‘ืื•ืคืŸ ื›ืœืœื™ ืžืฆื‘ื™ื ืืœื•
01:49
have suggested for a long time
43
109914
2239
ื”ืฆื‘ื™ืขื• ืขืœ ื›ืš
01:52
that the mind is divvied up into distinct components,
44
112153
3768
ืฉื”ืžื•ื— ืžื—ื•ืœืง ืœืื–ื•ืจื™ื ื™ื—ื•ื“ื™ื™ื,
01:55
but the effort to discover those components
45
115921
2385
ืื‘ืœ ื”ื ื™ืกื™ื•ืŸ ืœื–ื”ื•ืช ืืช ืื•ืชื ื”ื—ืœืงื™ื
01:58
has jumped to warp speed
46
118306
1614
ืฆื‘ืจ ืžื”ื™ืจื•ืช ืขืฆื•ืžื”
01:59
with the invention of brain imaging technology,
47
119920
2582
ืขื ื”ืžืฆืืช ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ืœื”ื“ืžื™ื™ืช ื”ืžื•ื—,
02:02
especially MRI.
48
122502
3048
ื‘ืžื™ื•ื—ื“ ื˜ื›ื ื•ืœื•ื’ื™ื™ืช ื”- MRI (ืกื•ืจืง ืชื”ื•ื“ื” ืžื’ื ื˜ื™ืช).
02:05
So MRI enables you to see internal anatomy
49
125550
3240
MRI ืžืืคืฉืจ ืœื ื• ืœืจืื•ืช ืืช ื”ืžื‘ื ื” ื”ืคื ื™ืžื™
02:08
at high resolution,
50
128790
1586
ื‘ืจื–ื•ืœื•ืฆื™ื” ื’ื‘ื•ื”ื”,
02:10
so I'm going to show you in a second
51
130376
1430
ืืจืื” ืœื›ื ืžื™ื“
02:11
a set of MRI cross-sectional images
52
131806
3352
ืกื“ืจืช ืชืžื•ื ื•ืช ื—ืชืš ืฉืœ MRI
02:15
through a familiar object,
53
135158
1618
ืฉืœ ื—ืคืฅ ืžื•ื›ืจ
02:16
and we're going to fly through them
54
136776
875
ื•ืื ื—ื ื• ื ืขื‘ื•ืจ ืขืœื™ื”ื
02:17
and you're going to try to figure out what the object is.
55
137651
2473
ื•ืืชื ืชื ืกื• ืœื–ื”ื•ืช ืืช ื”ื—ืคืฅ ื”ืžื“ื•ื‘ืจ.
ื‘ื•ืื• ื ืชื—ื™ืœ
02:20
Here we go.
56
140124
2111
02:24
It's not that easy. It's an artichoke.
57
144241
1889
ื–ื” ืœื ืงืœ. ืžื“ื•ื‘ืจ ื‘ืืจื˜ื™ืฉื•ืง.
02:26
Okay, let's try another one,
58
146130
1630
ื‘ื•ืื• ื ื ืกื” ื—ืคืฅ ื ื•ืกืฃ,
02:27
starting from the bottom and going through the top.
59
147760
2596
ืžื”ื‘ืกื™ืก ื•ืขื“ ืœืงืฆื” ื”ืขืœื™ื•ืŸ.
02:32
Broccoli! It's a head of broccoli.
60
152812
1151
ื‘ืจื•ืงื•ืœื™! ื–ื” ืจืืฉ ื‘ืจื•ืงื•ืœื™.
02:33
Isn't it beautiful? I love that.
61
153963
1664
ื–ื” ืœื ืžื“ื”ื™ื? ืื ื™ ืžืชื” ืขืœ ื–ื”.
02:35
Okay, here's another one. It's a brain, of course.
62
155627
2757
ื•ื”ื ื” ืขื•ื“ ืื—ื“. ื–ื” ืžื•ื— ื›ืžื•ื‘ืŸ.
02:38
In fact, it's my brain.
63
158384
1586
ื‘ืขืฆื, ื–ื” ื”ืžื•ื— ืฉืœื™.
02:39
We're going through slices through my head like that.
64
159970
1733
ืื ื—ื ื• ืžื‘ื™ื˜ื™ื ื‘ื—ืชื›ื™ื ืฉืœ ื”ืจืืฉ ืฉืœื™.
02:41
That's my nose over on the right, and now
65
161703
1758
ื–ื” ื”ืืฃ ืฉืœื™ ืžื™ืžื™ืŸ, ื•ื›ืืŸ
02:43
we're going over here, right there.
66
163461
3409
ืื ื—ื ื• ื ืžืฆืื™ื ื›ืืŸ, ื‘ื“ื™ื•ืง ื›ืืŸ.
02:46
So this picture's nice, if I do say so myself,
67
166870
4601
ื”ืชืžื•ื ื•ืช ื™ืคื•ืช, ืื ื™ื•ืจืฉื” ืœื™ ืœื”ื—ืžื™ื ืœืขืฆืžื™,
02:51
but it shows only anatomy.
68
171471
1912
ืื‘ืœ ื”ืŸ ืžืจืื•ืช ืจืง ืืช ื”ืžื‘ื ื” ื”ืื ื˜ื•ืžื™.
02:53
The really cool advance with functional imaging
69
173383
2520
ื”ื™ืชืจื•ืŸ ื”ืžื“ื”ื™ื ืฉืœ ื”ื“ืžื™ื” ืชืคืงื•ื“ื™ืช
02:55
happened when scientists figured out how to make
70
175903
1572
ื”ืชื‘ืจืจ ื›ืฉืžื“ืขื ื™ื ืžืฆืื• ื“ืจืš
02:57
pictures that show not just anatomy but activity,
71
177475
3395
ืœื”ืจืื•ืช ืœื ืจืง ืžื‘ื ื”, ืืœื ื’ื ืคืขื™ืœื•ืช,
03:00
that is, where neurons are firing.
72
180870
2435
ื›ืœื•ืžืจ, ืื™ืœื• ืชืื™ ืขืฆื‘ ืคืขื™ืœื™ื.
03:03
So here's how this works.
73
183305
1516
ื•ื›ื›ื” ื–ื” ืขื•ื‘ื“.
03:04
Brains are like muscles.
74
184821
1117
ื”ืžื•ื— ื“ื•ืžื” ืœืฉืจื™ืจื™ื.
03:05
When they get active,
75
185938
1563
ื›ืืฉืจ ื”ืชืื™ื ืขื•ื‘ื“ื™ื,
03:07
they need increased blood flow to supply that activity,
76
187501
2974
ื”ื ื–ืงื•ืงื™ื ืœื–ืจื™ืžืช ื“ื ืžื•ื’ื‘ืจืช ืขื‘ื•ืจ ื”ืคืขื™ืœื•ืช,
03:10
and lucky for us, blood flow control to the brain is local,
77
190475
3568
ื•ืœืžื–ืœื ื•, ื”ืฉืœื™ื˜ื” ื‘ื–ืจื™ืžืช ื”ื“ื ืœืžื•ื— ื ืขืฉื™ืช ื‘ืจืžื” ื”ืžืงื•ืžื™ืช,
ื›ืš ืฉืื ืžืกืคืจ ืชืื™ ืขืฆื‘, ื ื’ื™ื“, ืืœื• ื›ืืŸ
03:14
so if a bunch of neurons, say, right there
78
194043
2162
03:16
get active and start firing,
79
196205
1500
ืžืชื—ื™ืœื™ื ืœืคืขื•ืœ ื•ืœืฉื“ืจ,
03:17
then blood flow increases just right there.
80
197705
2725
ื–ืจื™ืžืช ื”ื“ื ืชืขืœื” ื‘ื“ื™ื•ืง ื›ืืŸ.
03:20
So functional MRI picks up on that blood flow increase,
81
200430
3721
ื›ืš ืฉ- MRI ืชืคืงื•ื“ื™ ืžืกื•ื’ืœ ืœืงืœื•ื˜ ืืช ื”ืขืœื™ื™ื” ื‘ื–ืจื™ืžืช ื”ื“ื,
03:24
producing a higher MRI response
82
204151
2033
ื•ืœื”ืฆื™ื’ ืชื’ื•ื‘ืช MRI ืžื•ื’ื‘ืจืช
03:26
where neural activity goes up.
83
206184
2926
ื”ื™ื›ืŸ ืฉื™ืฉ ืคืขื™ืœื•ืช ืขืฆื‘ื™ืช ืžื•ื’ื‘ืจืช.
03:29
So to give you a concrete feel
84
209110
1700
ืขืœ ืžื ืช ืœื”ืžื—ื™ืฉ ืœื›ื
03:30
for how a functional MRI experiment goes
85
210810
2485
ื›ื™ืฆื“ ืžืชื‘ืฆืข ื ื™ืกื•ื™ ื‘- MRI ืชืคืงื•ื“ื™,
03:33
and what you can learn from it
86
213295
1439
ื•ืžื” ื ื™ืชืŸ ืœืœืžื•ื“ ืžืžื ื•,
03:34
and what you can't,
87
214734
1384
ื•ืžื” ืœื,
ืืกืคืจ ืœื›ื ืขืœ ืื—ื“ ื”ื ื™ืกื•ื™ื™ื ื”ืจืืฉื•ื ื™ื ืฉืขืจื›ืชื™.
03:36
let me describe one of the first studies I ever did.
88
216118
3442
03:39
We wanted to know if there was a special part of the brain for recognizing faces,
89
219560
4138
ืจืฆื™ื ื• ืœื“ืขืช ืื ื™ืฉ ืื–ื•ืจ ืžื™ื•ื—ื“ ื‘ืžื•ื— ืฉืžื–ื”ื” ืคื ื™ื,
03:43
and there was already reason to think there might be such a thing
90
223698
3072
ื•ื”ื™ื™ืชื” ืœื ื• ืกื™ื‘ื” ื˜ื•ื‘ื” ืœื—ืฉื•ื‘ ืฉื™ืฉ ืื–ื•ืจ ื›ื–ื” ื‘ืžื•ื—
03:46
based on this phenomenon of prosopagnosia
91
226770
1720
ื‘ื”ืชื‘ืกืก ืขืœ ืชื•ืคืขืช ื”ืคืจื•ืกื•ืคื’ื ื•ื–ื™ื”
03:48
that I described a moment ago,
92
228490
2123
ืฉืชื™ืืจืชื™ ื‘ืชื—ื™ืœืช ื”ื”ืจืฆืื”,
03:50
but nobody had ever seen that part of the brain
93
230613
2278
ืื‘ืœ ืื™ืฉ ืœื ืจืื” ืžืขื•ืœื ืืช ืื–ื•ืจ ื”ืžื•ื— ื”ื–ื”
03:52
in a normal person,
94
232891
1919
ื‘ืื“ื ื‘ืจื™ื,
03:54
so we set out to look for it.
95
234810
2056
ืื– ื”ื—ืœื˜ื ื• ืœื—ืคืฉ ืื•ืชื•.
03:56
So I was the first subject.
96
236866
1951
ืื ื™ ื”ื™ื™ืชื™ ื”ื ื‘ื“ืงืช ื”ืจืืฉื•ื ื”.
03:58
I went into the scanner, I lay on my back,
97
238817
2212
ื ื›ื ืกืชื™ ืœืกื•ืจืง, ืฉื›ื‘ืชื™ ืขืœ ื”ื’ื‘,
04:01
I held my head as still as I could
98
241029
2583
ื”ื—ื–ืงืชื™ ืืช ื”ืจืืฉ ื™ืฆื™ื‘ ื›ื›ืœ ืฉื™ื›ื•ืœืชื™
04:03
while staring at pictures of faces like these
99
243612
5017
ื‘ื–ืžืŸ ืฉื”ื‘ื˜ืชื™ ื‘ืชืžื•ื ื•ืช ืคื ื™ื ื›ืืœื•
04:08
and objects like these
100
248629
2131
ื•ื‘ื—ืคืฆื™ื ื›ืืœื•
04:10
and faces and objects for hours.
101
250760
5165
ื•ืคื ื™ื ื•ื—ืคืฆื™ื ื‘ืžืฉืš ืฉืขื•ืช.
04:15
So as somebody who has pretty close to the world record
102
255925
2772
ื•ื›ืžื™ืฉื”ื™ ืฉืžื—ื–ื™ืงื” ื›ืžืขื˜ ื‘ืฉื™ื ื”ืขื•ืœืžื™
04:18
of total number of hours spent inside an MRI scanner,
103
258697
3543
ื‘ืฉืขื•ืช ื”ืฉื›ื™ื‘ื” ื‘ืชื•ืš ืกื•ืจืง ื”- MRI,
04:22
I can tell you that one of the skills
104
262240
1432
ืื ื™ ื™ื›ื•ืœื” ืœื”ืขื™ื“ ืฉืื—ื“ ื”ื›ื™ืฉื•ืจื™ื,
04:23
that's really important for MRI research
105
263672
2663
ื”ื—ืฉื•ื‘ื™ื ืœืžื—ืงืจ ื‘- MRI
04:26
is bladder control.
106
266335
1778
ื”ื•ื ืฉืœื™ื˜ื” ื‘ืฉืœืคื•ื—ื™ืช ื”ืฉืชืŸ.
04:28
(Laughter)
107
268113
1802
(ืฆื—ื•ืง)
04:29
When I got out of the scanner,
108
269915
1537
ื›ืฉื™ืฆืืชื™ ืžื”ืกื•ืจืง,
04:31
I did a quick analysis of the data,
109
271452
2316
ืขื‘ืจืชื™ ื‘ื–ืจื™ื–ื•ืช ืขืœ ื”ื ืชื•ื ื™ื,
04:33
looking for any parts of my brain
110
273768
1503
ื•ื—ื™ืคืฉืชื™ ืืช ื”ืื–ื•ืจื™ื ื‘ืžื•ื—
04:35
that produced a higher response when I was looking at faces
111
275271
2806
ืฉื”ื’ื™ื‘ื• ื—ื–ืง ื™ื•ืชืจ ื›ืฉื”ื‘ื˜ืชื™ ื‘ืคื ื™ื
04:38
than when I was looking at objects,
112
278077
1870
ื‘ื”ืฉื•ื•ืื” ืœื—ืคืฆื™ื,
04:39
and here's what I saw.
113
279947
2171
ื•ื–ื” ืžื” ืฉืจืื™ืชื™.
04:42
Now this image looks just awful by today's standards,
114
282118
3656
ืชืžื•ื ื•ืช ื”ืกื•ืจืง ื”ืืœื• ื ืจืื•ืช ืžืžืฉ ื’ืจื•ืข ื‘ื”ืฉื•ื•ืื” ืœืชืžื•ื ื•ืช ืฉืžื•ืคืงื•ืช ื›ื™ื•ื,
04:45
but at the time I thought it was beautiful.
115
285774
2808
ืื‘ืœ ื‘ื–ืžื ื• ื—ืฉื‘ืชื™ ืฉื”ืŸ ื ืคืœืื•ืช.
04:48
What it shows is that region right there,
116
288582
1950
ื”ืŸ ืžืจืื•ืช ืืช ื”ืื–ื•ืจ ืฉื,
04:50
that little blob,
117
290532
1283
ืืช ื”ื’ื•ืฉ ื”ืงื˜ืŸ ื”ื–ื”,
04:51
it's about the size of an olive
118
291815
1747
ื‘ืขืจืš ื‘ื’ื•ื“ืœ ืฉืœ ื–ื™ืช
04:53
and it's on the bottom surface of my brain
119
293562
2156
ืฉื ืžืฆื ื‘ื—ืœืง ื”ืชื—ืชื•ืŸ ืฉืœ ื”ืžื•ื— ืฉืœื™
04:55
about an inch straight in from right there.
120
295718
3206
ื‘ืขืจืš 3 ืก"ืž ืคื ื™ืžื” ืžื›ืืŸ.
04:58
And what that part of my brain is doing
121
298924
2790
ื•ืžื” ืฉื”ื—ืœืง ื”ื–ื” ื‘ืžื•ื— ืฉืœื™ ืขื•ืฉื”
05:01
is producing a higher MRI response,
122
301714
2920
ื”ื•ื ืœื”ืจืื•ืช ืชื’ื•ื‘ื” ื—ื–ืงื” ื™ื•ืชืจ ื‘- MRI,
05:04
that is, higher neural activity,
123
304634
1748
ื›ืœื•ืžืจ ืคืขื™ืœื•ืช ืขืฆื‘ื™ืช ื—ื–ืงื” ื™ื•ืชืจ,
05:06
when I was looking at faces
124
306382
1482
ื›ืฉื”ื‘ื˜ืชื™ ื‘ืคื ื™ื
05:07
than when I was looking at objects.
125
307864
2266
ื‘ื”ืฉื•ื•ืื” ืœื”ืกืชื›ืœื•ืช ื‘ืขืฆืžื™ื.
05:10
So that's pretty cool,
126
310130
1360
ื–ื” ืžืžืฉ ืžื“ื”ื™ื,
05:11
but how do we know this isn't a fluke?
127
311490
2318
ืื‘ืœ ืื™ืš ื ื“ืข ืฉืœื ืžื“ื•ื‘ืจ ื‘ืžืžืฆื ืžืงืจื™?
05:13
Well, the easiest way
128
313808
1420
ื•ื‘ื›ืŸ, ื”ื“ืจืš ื”ืงืœื”
05:15
is to just do the experiment again.
129
315228
2114
ื”ื™ื ืœื—ื–ื•ืจ ืขืœ ื”ื ื™ืกื•ื™ ืฉื•ื‘.
05:17
So I got back in the scanner,
130
317342
1639
ืื– ื ื›ื ืกืชื™ ืฉื•ื‘ ืœืกื•ืจืง,
05:18
I looked at more faces and I looked at more objects
131
318981
2431
ื•ื”ื‘ื˜ืชื™ ื‘ืขื•ื“ ืคื ื™ื ื•ืขื•ื“ ื—ืคืฆื™ื
05:21
and I got a similar blob,
132
321412
2189
ื•ื”ืชื•ืฆืื” ื”ืจืืชื” ื›ืชื ื“ื•ืžื”,
05:23
and then I did it again
133
323601
1895
ื•ืื– ืขืฉื™ืชื™ ื–ืืช ืฉื•ื‘
05:25
and I did it again
134
325496
1855
ื•ืฉื•ื‘
05:27
and again and again,
135
327351
3072
ื•ืฉื•ื‘ ื•ืฉื•ื‘,
05:30
and around about then
136
330423
1047
ื•ื‘ืขืจืš ืื–
05:31
I decided to believe it was for real.
137
331470
2941
ื”ืชื—ืœืชื™ ืœื”ืืžื™ืŸ ืฉื”ืžืžืฆื ืืžื™ืชื™.
05:34
But still, maybe this is something weird about my brain
138
334411
3753
ื•ืขื“ื™ื™ืŸ, ืื•ืœื™ ืžื“ื•ื‘ืจ ื‘ืžืฉื”ื• ืฉื™ื™ื—ื•ื“ื™ ืจืง ืœืžื•ื— ืฉืœื™
05:38
and no one else has one of these things in there,
139
338164
2462
ื•ืœืืฃ ืื—ื“ ืื—ืจ ืื™ืŸ ืžืฉื”ื• ื“ื•ืžื” ื‘ืžื•ื—,
05:40
so to find out, we scanned a bunch of other people
140
340626
2455
ืื– ืกืจืงื ื• ืžื•ื—ื•ืช ืฉืœ ืื ืฉื™ื ื ื•ืกืคื™ื
05:43
and found that pretty much everyone
141
343081
2446
ื•ืžืฆืื ื• ืฉื›ืžืขื˜ ืœื›ื•ืœื
05:45
has that little face-processing region
142
345527
2006
ื™ืฉ ืืช ืื•ืชื• ืื–ื•ืจ ืฉืžื–ื”ื” ืคื ื™ื
05:47
in a similar neighborhood of the brain.
143
347533
2893
ื‘ืžื™ืงื•ื ื“ื•ืžื” ื‘ืžื•ื—.
05:50
So the next question was,
144
350426
1888
ื•ื”ืฉืืœื” ื”ื‘ืื” ืฉืขืœืชื” ื”ื™ื™ืชื”,
05:52
what does this thing really do?
145
352314
1474
ืžื” ื‘ื“ื™ื•ืง ืขื•ืฉื” ื”ืื–ื•ืจ ื”ื–ื”?
05:53
Is it really specialized just for face recognition?
146
353788
3932
ื”ืื ื”ื•ื ืžืชืžื—ื” ืจืง ื‘ื–ื™ื”ื•ื™ ืคื ื™ื?
05:57
Well, maybe not, right?
147
357720
1240
ืื•ืœื™ ืœื?
05:58
Maybe it responds not only to faces
148
358960
1802
ืื•ืœื™ ื”ื•ื ืžื’ื™ื‘ ืœื ืจืง ืœืคื ื™ื
06:00
but to any body part.
149
360762
2109
ืืœื ื’ื ืœื—ืœืงื™ ื’ื•ืฃ ืื—ืจื™ื.
06:02
Maybe it responds to anything human
150
362871
2369
ืื•ืœื™ ื”ื•ื ืžื’ื™ื‘ ืœื›ืœ ื“ื‘ืจ ืื ื•ืฉื™
06:05
or anything alive
151
365240
1780
ืื• ื›ืœ ื“ื‘ืจ ื—ื™
06:07
or anything round.
152
367020
1656
ืื• ื›ืœ ื“ื‘ืจ ืขื’ื•ืœ.
06:08
The only way to be really sure that that region
153
368676
2154
ื”ื“ืจืš ื”ื™ื—ื™ื“ื” ืœื“ืขืช ื‘ื•ื•ื“ืื•ืช ืฉื”ืื–ื•ืจ ื”ื–ื”
06:10
is specialized for face recognition
154
370830
2417
ืžืชืžื—ื” ื‘ื–ื™ื”ื•ื™ ืคื ื™ื
06:13
is to rule out all of those hypotheses.
155
373247
2643
ื”ื™ื ืœื‘ื“ื•ืง ื•ืœืฉืœื•ืœ ืืช ื›ืœ ื”ืืคืฉืจื•ื™ื•ืช ื”ืื—ืจื•ืช.
06:15
So we spent much of the next couple of years
156
375890
2830
ื•ื‘ืžื”ืœืš ืจื•ื‘ ื”ืฉื ืชื™ื™ื ื”ื‘ืื•ืช
06:18
scanning subjects while they looked at lots
157
378720
1647
ืกืจืงื ื• ืžืชื ื“ื‘ื™ื ื‘ื–ืžืŸ ืฉื”ื ื”ื‘ื™ื˜ื•
06:20
of different kinds of images,
158
380367
1606
ื‘ืžื’ื•ื•ืŸ ืจื—ื‘ ืฉืœ ืชืžื•ื ื•ืช,
06:21
and we showed that that part of the brain
159
381973
1957
ื•ื”ืจืื™ื ื• ืฉืื•ืชื• ื—ืœืง ืฉืœ ื”ืžื•ื—
06:23
responds strongly when you look at
160
383930
1950
ืžื’ื™ื‘ ื‘ืขืฆืžื” ื—ื–ืงื” ื›ืฉืžื‘ื™ื˜ื™ื
06:25
any images that are faces of any kind,
161
385880
3453
ื‘ื›ืœ ืชืžื•ื ื” ืฉืœ ืคื ื™ื ืžื›ืœ ืกื•ื’,
06:29
and it responds much less strongly
162
389333
1913
ื•ืžื’ื™ื‘ ื—ืœืฉ ื‘ื”ืจื‘ื”
06:31
to any image you show that isn't a face,
163
391246
3149
ืœืชืžื•ื ื•ืช ืฉืื™ื ืŸ ืคื ื™ื,
06:34
like some of these.
164
394395
1305
ื›ืžื• ืืœื•.
06:35
So have we finally nailed the case
165
395700
2239
ืื– ื”ืื ื”ืฆืœื—ื ื• ืœืงื‘ื•ืข ื‘ื•ื•ื“ืื•ืช
06:37
that this region is necessary for face recognition?
166
397939
3240
ืฉื”ืื–ื•ืจ ื”ื–ื” ื ื—ื•ืฅ ืœื–ื™ื”ื•ื™ ืคื ื™ื?
06:41
No, we haven't.
167
401179
1323
ืœื, ืขื“ื™ื™ืŸ ืœื.
06:42
Brain imaging can never tell you
168
402502
1951
ื”ื“ืžื™ื” ืžื•ื—ื™ืช ืœื ืžืกื•ื’ืœืช ืœื”ื•ื›ื™ื—
06:44
if a region is necessary for anything.
169
404453
2440
ืื ืื–ื•ืจ ื ื—ื•ืฅ ืœืžืฉื”ื•.
06:46
All you can do with brain imaging
170
406893
1440
ื›ืœ ืžื” ืฉื”ื“ืžื™ื™ืช ื”ืžื•ื— ืขื•ืฉื”
06:48
is watch regions turn on and off
171
408333
2048
ื”ื™ื ืœื”ืจืื•ืช ืื–ื•ืจ ื ื“ืœืง ื•ื›ื‘ื”
06:50
as people think different thoughts.
172
410381
1968
ื›ืฉืื ืฉื™ื ื—ื•ืฉื‘ื™ื ืขืœ ื“ื‘ืจื™ื ืฉื•ื ื™ื.
06:52
To tell if a part of the brain is necessary for a mental function,
173
412349
3611
ืขืœ ืžื ืช ืœื”ื•ื›ื™ื— ืฉื—ืœืง ื‘ืžื•ื— ื ื—ื•ืฅ ืœืคืขื™ืœื•ืช ืžื•ื—ื™ืช ื›ืœืฉื”ื™,
06:55
you need to mess with it and see what happens,
174
415960
2509
ื—ื™ื™ื‘ื™ื ืœื”ืชืขืกืง ืืชื• ื•ืœืจืื•ืช ืžื” ืงื•ืจื”,
06:58
and normally we don't get to do that.
175
418469
2275
ื•ื‘ื“"ื› ืœื ื ื•ืชื ื™ื ืœื ื• ืœืขืฉื•ืช ืืช ื–ื”.
07:00
But an amazing opportunity came about
176
420744
2584
ืื‘ืœ ืื– ื”ื™ื” ืœื ื• ืžื–ืœ
07:03
very recently when a couple of colleagues of mine
177
423328
2464
ื›ืืฉืจ ืฉื ื™ ืขืžื™ืชื™ื ืฉืœื™
07:05
tested this man who has epilepsy
178
425792
3071
ื‘ื“ืงื• ื—ื•ืœื” ืืคื™ืœืคืกื™ื”
07:08
and who is shown here in his hospital bed
179
428863
2682
ืฉืžื•ืฆื’ ื›ืืŸ ื‘ืžื™ื˜ืช ื‘ื™ืช ื”ื—ื•ืœื™ื
07:11
where he's just had electrodes placed
180
431545
1367
ืžื—ืœื™ื ืžื ื™ืชื•ื— ื”ืฉืชืœืช ืืœืงื˜ืจื•ื“ื•ืช
07:12
on the surface of his brain
181
432912
2071
ืขืœ ื’ื‘ื™ ื”ืžื•ื— ืฉืœื•
07:14
to identify the source of his seizures.
182
434983
2554
ื‘ืžื˜ืจื” ืœื–ื”ื•ืช ืืช ืžืงื•ืจ ื”ืืคื™ืœืคืกื™ื” ืฉืœื•.
07:17
So it turned out by total chance
183
437537
2533
ื•ืžืชื‘ืจืจ ืฉื‘ืžืงืจื”
07:20
that two of the electrodes
184
440070
1949
2 ืžื”ืืœืงื˜ืจื•ื“ื•ืช
07:22
happened to be right on top of his face area.
185
442019
3223
ืžื•ืงืžื• ื‘ื“ื™ื•ืง ืžืขืœ ืื–ื•ืจ ื–ื™ื”ื•ื™ ื”ืคื ื™ื ืฉืœื•.
07:25
So with the patient's consent,
186
445242
2329
ื•ืื—ืจื™ ืฉืงื™ื‘ืœื ื• ืžืžื ื• ืื™ืฉื•ืจ
07:27
the doctors asked him what happened
187
447571
2587
ื”ืจื•ืคืื™ื ืฉืืœื• ืื•ืชื• ืžื” ืงื•ืจื”
07:30
when they electrically stimulated that part of his brain.
188
450158
4166
ื›ืืฉืจ ื”ื•ื ืžืงื‘ืœ ื’ื™ืจื•ื™ ื—ืฉืžืœื™ ืœืื•ืชื• ืื–ื•ืจ ื‘ืžื•ื—.
07:34
Now, the patient doesn't know
189
454324
1654
ื—ืฉื•ื‘ ืœื”ื‘ื™ืŸ, ื”ื—ื•ืœื” ืœื ืžื•ื“ืข
07:35
where those electrodes are,
190
455978
1384
ืœืžื™ืงื•ื ื”ืืœืงื˜ืจื•ื“ื•ืช,
07:37
and he's never heard of the face area.
191
457362
2212
ื•ื”ื•ื ืžืขื•ืœื ืœื ืฉืžืข ืขืœ ืื–ื•ืจ ื–ื™ื”ื•ื™ ื”ืคื ื™ื.
07:39
So let's watch what happens.
192
459574
1991
ืื– ื‘ื•ืื• ื ืจืื” ืžื” ืงื•ืจื”.
07:41
It's going to start with a control condition
193
461565
1969
ื”ืกืจื˜ื•ืŸ ืžืชื—ื™ืœ ื‘ืžืฆื‘ ื‘ื™ืงื•ืจืช
07:43
that will say "Sham" nearly invisibly
194
463534
2407
ื•ื™ื”ื™ื” ื›ืชื•ื‘ Sham ื‘ื›ืชื‘ ื‘ื”ื™ืจ
07:45
in red in the lower left,
195
465941
1710
ื•ืื“ื•ื ื‘ืคื™ื ื” ื”ืฉืžืืœื™ืช,
07:47
when no current is delivered,
196
467651
2282
ื›ืืฉืจ ืœื ืžื•ืขื‘ืจ ื–ืจื,
07:49
and you'll hear the neurologist speaking to the patient first. So let's watch.
197
469933
3815
ื•ืชืฉืžืขื• ืืช ื”ื ื•ื™ืจื•ืœื•ื’ ืžื“ื‘ืจ ืขื ื”ื—ื•ืœื”. ื‘ื•ืื• ื ืจืื”.
07:53
(Video) Neurologist: Okay, just look at my face
198
473748
2081
ื ื•ื™ืจื•ืœื•ื’: ืชื‘ื™ื˜ ื‘ืคื ื™ื ืฉืœื™
07:55
and tell me what happens when I do this.
199
475829
3285
ื•ืชื’ื™ื“ ืœื™ ืžื” ืงื•ืจื” ื›ืฉืื ื™ ืขื•ืฉื” ื›ืš.
07:59
All right?
200
479114
934
ื‘ืกื“ืจ?
08:00
Patient: Okay.
201
480048
2823
ื—ื•ืœื”: ื‘ืกื“ืจ.
08:02
Neurologist: One, two, three.
202
482871
4320
ื ื•ื™ืจื•ืœื•ื’: ืื—ืช, ืฉืชื™ื™ื, ืฉืœื•ืฉ.
08:07
Patient: Nothing. Neurologist: Nothing? Okay.
203
487191
3015
ื—ื•ืœื”: ื›ืœื•ื. ื ื•ื™ืจื•ืœื•ื’: ื›ืœื•ื? ื‘ืกื“ืจ.
08:10
I'm going to do it one more time.
204
490206
2407
ื‘ื•ื ื ืขืฉื” ื–ืืช ืฉื•ื‘.
08:12
Look at my face.
205
492613
3194
ืชื‘ื™ื˜ ื‘ืคื ื™ื ืฉืœื™.
08:15
One, two, three.
206
495807
4500
ืื—ืช, ืฉืชื™ื™ื, ืฉืœื•ืฉ.
08:20
Patient: You just turned into somebody else.
207
500307
2824
ื—ื•ืœื”: ื”ืจื’ืข ื”ืคื›ืช ืœืžื™ืฉื”ื• ืื—ืจ.
08:23
Your face metamorphosed.
208
503131
2137
ื”ืคื ื™ื ืฉืœืš ื”ืฉืชื ื•.
08:25
Your nose got saggy, it went to the left.
209
505268
3011
ื”ืืฃ ืฉืœืš ืฉืงืข, ื”ื•ื ืกื˜ื” ืฉืžืืœื”.
08:28
You almost looked like somebody I'd seen before,
210
508279
3536
ืืชื” ื“ื•ืžื” ืœืžื™ืฉื”ื• ืฉืจืื™ืชื™ ืคืขื,
08:31
but somebody different.
211
511815
2634
ืžื™ืฉื”ื• ืื—ืจ.
08:34
That was a trip.
212
514449
2072
ืื™ื–ื” ื˜ืจื™ืค.
08:36
(Laughter)
213
516521
3132
(ืฆื—ื•ืง)
08:39
Nancy Kanwisher: So this experiment โ€”
214
519653
1615
ื ื ืกื™ ืงื ื•ื™ืฉืจ: ืื– ื”ื ื™ืกื•ื™ ื”ื–ื” -
08:41
(Applause) โ€”
215
521268
4223
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื) -
08:45
this experiment finally nails the case
216
525491
2682
ื”ื ื™ืกื•ื™ ื”ื–ื” ืžื•ื›ื™ื— ื‘ืื•ืคืŸ ืžื•ื—ืœื˜ ืืช ื”ืชืื•ืจื™ื”
08:48
that this region of the brain is not only
217
528173
1825
ืฉื”ืื–ื•ืจ ื”ื–ื” ื‘ืžื•ื— ืœื ืจืง
08:49
selectively responsive to faces
218
529998
2137
ืžื’ื™ื‘ ืกืœืงื˜ื™ื‘ื™ืช ืœืคื ื™ื
ืืœื ื’ื ืžืจืื” ืงืฉืจ ืกื™ื‘ืชื™ ืœื–ื™ื”ื•ื™ ื”ืคื ื™ื.
08:52
but causally involved in face perception.
219
532135
3045
08:55
So I went through all of these details
220
535180
2130
ืื– ืขื‘ืจืชื™ ืขืœ ื›ืœ ื”ื ืชื•ื ื™ื
08:57
about the face region to show you what it takes
221
537310
2464
ืขืœ ืื–ื•ืจ ื–ื™ื”ื•ื™ ื”ืคื ื™ื ืฉืžืจืื™ื ืืช ื›ืœ ื”ืžื™ื“ืข
08:59
to really establish that a part of the brain
222
539774
2339
ื”ื“ืจื•ืฉ ืขืœ ืžื ืช ืœื”ื•ื›ื™ื— ืฉื—ืœืง ื–ื” ื‘ืžื•ื—
09:02
is selectively involved in a specific mental process.
223
542113
3128
ืžืขื•ืจื‘ ื‘ืื•ืคืŸ ื™ื™ืขื•ื“ื™ ื‘ืชื”ืœื™ืš ืžื•ื—ื™ ืžืกื•ื™ื.
09:05
Next, I'll go through much more quickly
224
545241
2159
ื‘ื”ืžืฉืš, ืื ื™ ืืขื‘ื•ืจ ื‘ืžื”ื™ืจื•ืช
09:07
some of the other specialized regions of the brain
225
547400
2660
ืขืœ ื”ืื–ื•ืจื™ื ื”ืžืชืžื—ื™ื ื”ื ื•ืกืคื™ื ื‘ืžื•ื—
09:10
that we and others have found.
226
550060
2100
ืฉืื ื—ื ื• ื•ืื—ืจื™ื ื’ื™ืœื™ื ื•.
09:12
So to do this, I've spent a lot of time
227
552160
2114
ืขืœ ืžื ืช ืœืขืฉื•ืช ื–ืืช, ื‘ื™ืœื™ืชื™ ื–ืžืŸ ืจื‘
09:14
in the scanner over the last month
228
554274
1867
ื‘ืชื•ืš ื”ืกื•ืจืง ื‘ื—ื•ื“ืฉ ื”ืื—ืจื•ืŸ
09:16
so I can show you these things in my brain.
229
556141
2261
ื›ื“ื™ ืœื”ืจืื•ืช ืœื›ื ืืช ื”ืื–ื•ืจื™ื ื”ืœืœื• ื‘ืžื•ื— ืฉืœื™.
09:18
So let's get started. Here's my right hemisphere.
230
558402
3233
ื‘ื•ืื• ื ืชื—ื™ืœ. ื–ื”ื• ืฆื“ ื”ืžื•ื— ื”ื™ืžื ื™ ืฉืœื™.
09:21
So we're oriented like that. You're looking at my head this way.
231
561635
2662
ื‘ื•ืื• ื ื‘ื™ืŸ ืืช ื”ื›ื™ื•ื•ื ื™ื. ืืชื ืžื‘ื™ื˜ื™ื ื‘ืจืืฉื™ ืžื”ื›ื™ื•ื•ืŸ ื”ื–ื”.
09:24
Imagine taking the skull off
232
564297
1093
ื“ืžื™ื™ื ื• ืฉื”ืกืจื ื• ืืช ื”ื’ื•ืœื’ื•ืœืช
09:25
and looking at the surface of the brain like that.
233
565390
2268
ื•ืื ื• ืžื‘ื™ื˜ื™ื ื‘ืคื ื™ ื”ืฉื˜ื— ืฉืœ ื”ืžื•ื— ื›ืš.
09:27
Okay, now as you can see,
234
567658
1758
ืขื›ืฉื™ื• ืชื•ื›ืœื• ืœืจืื•ืช,
09:29
the surface of the brain is all folded up.
235
569416
1503
ืฉืคื ื™ ื”ืฉื˜ื— ืฉืœ ื”ืžื•ื— ืžืงื•ืคืœื™ื.
09:30
So that's not good. Stuff could be hidden in there.
236
570919
1721
ื•ื–ื” ืœื ื˜ื•ื‘. ื“ื‘ืจื™ื ื™ื›ื•ืœื™ื ืœื”ืชื—ื‘ื ืฉื.
09:32
We want to see the whole thing,
237
572640
1434
ืื ื—ื ื• ืจื•ืฆื™ื ืœืจืื•ืช ื”ื›ืœ,
09:34
so let's inflate it so we can see the whole thing.
238
574074
3312
ืื– ื‘ื•ืื• ื ื ืคื— ืืช ื”ืžื•ื— ื›ื“ื™ ืœืจืื•ืช ืืช ื›ื•ืœื•.
09:37
Next, let's find that face area I've been talking about
239
577386
2829
ืขื›ืฉื™ื•, ื‘ื•ืื• ื ืžืฆื ืืช ืื–ื•ืจ ื–ื™ื”ื•ื™ ื”ืคื ื™ื ืขืœื™ื• ื“ื™ื‘ืจืชื™ ืขื“ ืขื›ืฉื™ื•
09:40
that responds to images like these.
240
580215
2227
ื”ืื–ื•ืจ ืฉืžื’ื™ื‘ ืœืชืžื•ื ื•ืช ื›ืืœื•.
09:42
To see that, let's turn the brain around
241
582442
1519
ื›ื“ื™ ืœืจืื•ืช ืื•ืชื•, ื‘ื•ืื• ื ืกื•ื‘ื‘ ืืช ื”ืžื•ื—
09:43
and look on the inside surface on the bottom,
242
583961
2019
ื•ื ื‘ื™ื˜ ืขืœ ื”ืฉื˜ื— ื”ืคื ื™ืžื™ ื‘ืชื—ืชื™ืช,
09:45
and there it is, that's my face area.
243
585980
2305
ื•ื”ื ื” ื”ื•ื, ื–ื”ื• ืื–ื•ืจ ื–ื™ื”ื•ื™ ื”ืคื ื™ื ืฉืœื™.
09:48
Just to the right of that is another region
244
588285
2707
ื•ืžืžืฉ ืœื™ืžื™ื ื•, ื™ืฉ ืื–ื•ืจ ื ื•ืกืฃ
09:50
that is shown in purple
245
590992
1638
ืฉืžื•ืฆื’ ื‘ืกื’ื•ืœ
09:52
that responds when you process color information,
246
592630
3072
ืฉืžื’ื™ื‘ ื‘ืขืช ืขื™ื‘ื•ื“ ืฉืœ ืฆื‘ืขื™ื,
09:55
and near those regions are other regions
247
595702
2691
ื•ืœื™ื“ื ื™ืฉ ืื–ื•ืจื™ื ื ื•ืกืคื™ื
09:58
that are involved in perceiving places,
248
598393
2363
ืฉืžืขื•ืจื‘ื™ื ื‘ืชืคื™ืกืช ืžืงื•ืžื•ืช,
10:00
like right now, I'm seeing this layout of space around me
249
600756
2838
ื›ืžื• ืขื›ืฉื™ื•, ืื ื™ ืจื•ืื” ืืช ืกื™ื“ื•ืจ ื”ื“ื‘ืจื™ื ื‘ืžืจื—ื‘ ืกื‘ื™ื‘ื™
10:03
and these regions in green right there
250
603594
1752
ื•ื”ืื–ื•ืจื™ื ื”ืฆื‘ื•ืขื™ื ื‘ื™ืจื•ืง
10:05
are really active.
251
605346
1274
ืคืขื™ืœื™ื ืžืื“.
10:06
There's another one out on the outside surface again
252
606620
2370
ื™ืฉ ืขื•ื“ ืื–ื•ืจ ืขืœ ื’ื‘ื™ ื”ืฉื˜ื— ื”ื—ื™ืฆื•ื ื™
10:08
where there's a couple more face regions as well.
253
608990
2805
ื™ืฉ ืฉื ืขื•ื“ ืฉื ื™ ืื–ื•ืจื™ื ื”ืฉื•ืชืคื™ื ื‘ื–ื™ื”ื•ื™ ืคื ื™ื.
10:11
Also in this vicinity
254
611795
2345
ื•ื‘ืื•ืชื• ืื–ื•ืจ
10:14
is a region that's selectively involved
255
614140
1645
ื™ืฉ ืื–ื•ืจ ืฉืžืขื•ืจื‘
10:15
in processing visual motion,
256
615785
1936
ื‘ืขื™ื‘ื•ื“ ืฉืœ ืจืื™ื™ืช ืชื ื•ืขื”,
10:17
like these moving dots here,
257
617721
1504
ื›ืžื• ื”ื ืงื•ื“ื•ืช ื”ื ืขื•ืช ื”ืœืœื•,
10:19
and that's in yellow at the bottom of the brain,
258
619225
2689
ื–ื” ื”ืื–ื•ืจ ื”ืฆื”ื•ื‘ ื‘ืชื—ืชื™ืช ื”ืžื•ื—,
10:21
and near that is a region that responds
259
621914
3168
ื•ืœื™ื“ื• ื ืžืฆื ื”ืื–ื•ืจ ืฉืžื’ื™ื‘
10:25
when you look at images of bodies and body parts
260
625082
2897
ื›ืฉืžืกืชื›ืœื™ื ืขืœ ืชืžื•ื ื•ืช ื’ื•ืฃ ื•ื—ืœืงื™ ื’ื•ืฃ
10:27
like these, and that region is shown in lime green
261
627979
2745
ื›ืืœื”, ื”ืื–ื•ืจ ืžื•ืฆื’ ื‘ื™ืจื•ืง ื‘ื”ื™ืจ
10:30
at the bottom of the brain.
262
630724
2003
ื‘ืชื—ืชื™ืช ื”ืžื•ื—.
10:32
Now all these regions I've shown you so far
263
632727
2632
ื›ืœ ื”ืื–ื•ืจื™ื ืฉื”ืฆื’ืชื™ ืขื“ ื›ื”
10:35
are involved in specific aspects of visual perception.
264
635359
4432
ืžืขื•ืจื‘ื™ื ื‘ื”ื™ื‘ื˜ื™ื ืฉื•ื ื™ื ืฉืœ ืชืคื™ืกืช ื”ืจืื™ื™ื”.
10:39
Do we also have specialized brain regions
265
639791
2148
ื”ืื ื™ืฉ ืœื ื• ื’ื ืื–ื•ืจื™ื ืกืคืฆื™ืคื™ื™ื ื‘ืžื•ื—
10:41
for other senses, like hearing?
266
641939
2813
ืœื—ื•ืฉื™ื ื”ืื—ืจื™ื, ื›ืžื• ืฉืžื™ืขื”?
10:44
Yes, we do. So if we turn the brain around a little bit,
267
644752
3037
ื›ืŸ, ื‘ื•ื•ื“ืื™. ืื ื ืกื•ื‘ื‘ ืืช ื”ืžื•ื— ืžืขื˜,
10:47
here's a region in dark blue
268
647789
2401
ื”ื ื” ืื–ื•ืจ ื›ื—ื•ืœ ื›ื”ื”
10:50
that we reported just a couple of months ago,
269
650190
2346
ืขืœื™ื• ื“ื™ื•ื•ื—ื ื• ืœืคื ื™ ื—ื•ื“ืฉื™ื™ื,
10:52
and this region responds strongly
270
652536
1634
ื•ื”ืื–ื•ืจ ื”ื–ื” ืžื’ื™ื‘ ื‘ืื•ืคืŸ ื—ื–ืง
10:54
when you hear sounds with pitch, like these.
271
654170
3429
ื›ืืฉืจ ืฉื•ืžืขื™ื ืงื•ืœื•ืช ื‘ื’ื•ื‘ื” ืžืฉืชื ื”, ื›ืžื• ืืœื”.
10:57
(Sirens)
272
657599
2143
(ืกื™ืจื ื•ืช)
10:59
(Cello music)
273
659742
2081
(ืฆืœื™ืœื™ ืฆ'ืœื•)
11:01
(Doorbell)
274
661823
1917
(ืคืขืžื•ืŸ ื“ืœืช)
11:03
In contrast, that same region does not respond strongly
275
663740
3608
ืžืฆื“ ืฉื ื™, ื”ืื–ื•ืจ ื”ื–ื” ื›ืžืขื˜ ื•ืœื ืžื’ื™ื‘
11:07
when you hear perfectly familiar sounds
276
667348
1562
ื›ืืฉืจ ืื ื• ืฉื•ืžืขื™ื ืงื•ืœื•ืช ืžื•ื›ืจื™ื
11:08
that don't have a clear pitch, like these.
277
668910
2362
ื‘ืœื™ ืฉื™ื ื•ื™ ื‘ื’ื•ื‘ื” ื”ืฆืœื™ืœ, ื›ืืœื”.
11:11
(Chomping)
278
671272
2469
(ื’ืจื™ืกื”)
11:13
(Drum roll)
279
673741
2200
(ืชื•ืคื™ื)
11:15
(Toilet flushing)
280
675941
2767
(ืฉื˜ื™ืคืช ืืกืœื”)
11:18
Okay. Next to the pitch region
281
678708
2498
ื•ืœื™ื“ ืื–ื•ืจ ื’ื•ื‘ื” ื”ืฆืœื™ืœ
11:21
is another set of regions that are selectively responsive
282
681206
2474
ืงื™ื™ืžื™ื ืžืกืคืจ ืื–ื•ืจื™ื ืฉืžื’ื™ื‘ื™ื ื‘ืื•ืคืŸ ื™ื™ืขื•ื“ื™
11:23
when you hear the sounds of speech.
283
683680
2765
ืœืฆืœื™ืœื™ื ืฉืœ ื“ื™ื‘ื•ืจ.
11:26
Okay, now let's look at these same regions.
284
686445
1840
ื‘ื•ืื• ื ื‘ื™ื˜ ื‘ื”ื.
11:28
In my left hemisphere, there's a similar arrangement โ€”
285
688285
2468
ื‘ืฆื“ ื”ืฉืžืืœื™ ืฉืœ ืžื•ื—ื™, ืงื™ื™ื ืกื™ื“ื•ืจ ื“ื•ืžื” -
11:30
not identical, but similar โ€”
286
690753
1473
ืœื ื–ื”ื”, ืื‘ืœ ื“ื•ืžื” -
11:32
and most of the same regions are in here,
287
692226
2209
ื•ืจื•ื‘ ื”ืื–ื•ืจื™ื ื”ื“ื•ืžื™ื ืžืžื•ืงืžื™ื ื›ืืŸ,
11:34
albeit sometimes different in size.
288
694435
2002
ืœืžืจื•ืช ื”ื‘ื“ืœื™ื ืžืกื•ื™ืžื™ื ื‘ื’ื•ื“ืœ.
11:36
Now, everything I've shown you so far
289
696437
2014
ื›ืœ ืžื” ืฉื”ืจืื™ืชื™ ืœื›ื ืขื“ ื›ื”
11:38
are regions that are involved in different aspects of perception,
290
698451
3026
ื”ื ืื–ื•ืจื™ื ื”ืžืขื•ืจื‘ื™ื ื‘ืกื•ื’ื™ื ืฉื•ื ื™ื ืฉืœ ื—ื™ืฉื”:
11:41
vision and hearing.
291
701477
1833
ืจืื™ื” ื•ืฉืžื™ืขื”.
11:43
Do we also have specialized brain regions
292
703310
1660
ื”ืื ื™ืฉ ื’ื ืื–ื•ืจื™ื ืžืชืžื—ื™ื ื‘ืžื•ื—
11:44
for really fancy, complicated mental processes?
293
704970
3435
ืขื‘ื•ืจ ืชื”ืœื™ื›ื™ื ืžื•ืจื›ื‘ื™ื ืฉืžื‘ืฆืข ื”ืžื•ื—?
11:48
Yes, we do.
294
708405
1429
ื›ืŸ, ื‘ื•ื“ืื™.
11:49
So here in pink are my language regions.
295
709834
3389
ื›ืืŸ ื‘ื•ืจื•ื“ ื ืžืฆืื™ื ืื–ื•ืจื™ ื”ืฉืคื” ืฉืœื™.
11:53
So it's been known for a very long time
296
713223
1428
ื–ื• ืขื•ื‘ื“ื” ืฉื™ื“ื•ืขื” ื›ื‘ืจ ื”ืจื‘ื” ืฉื ื™ื
11:54
that that general vicinity of the brain
297
714651
2035
ืฉื”ืื–ื•ืจ ื”ื–ื” ื‘ืžื•ื—
11:56
is involved in processing language,
298
716686
2193
ืžืขื•ืจื‘ ื‘ืขื™ื‘ื•ื“ ื”ืฉืคื”,
11:58
but we showed very recently
299
718879
1732
ืื‘ืœ ื”ืจืื™ื ื• ืœืื—ืจื•ื ื”
12:00
that these pink regions
300
720611
1710
ืฉื”ืื–ื•ืจื™ื ื”ื•ืจื•ื“ื™ื
12:02
respond extremely selectively.
301
722321
2205
ืžื’ื™ื‘ื™ื ื‘ืฆื•ืจื” ืžืื“ ืกืœืงื˜ื™ื‘ื™ืช.
12:04
They respond when you understand the meaning of a sentence,
302
724526
2812
ื”ื ืžื’ื™ื‘ื™ื ื›ืฉืืชื ืžื‘ื™ื ื™ื ืืช ืžืฉืžืขื•ืช ื”ืžืฉืคื˜,
12:07
but not when you do other complex mental things,
303
727338
2838
ืื‘ืœ ืœื ืžื’ื™ื‘ื™ื ื›ืฉืืชื ืขื•ืฉื™ื ืคืขื™ืœื•ืช ืžื•ื—ื™ืช ืžื•ืจื›ื‘ืช ืื—ืจืช,
12:10
like mental arithmetic
304
730176
2179
ื›ืžื• ื—ื™ืฉื•ื‘ื™ื
12:12
or holding information in memory
305
732355
2396
ืื• ืฉื™ื ื•ืŸ ืžื™ื“ืข
12:14
or appreciating the complex structure
306
734751
2655
ืื• ืžืขืงื‘ ืื—ืจื™ ื”ืžื‘ื ื™ื ื”ืžื•ืจื›ื‘ื™ื
12:17
in a piece of music.
307
737406
2284
ื‘ื™ืฆื™ืจื” ืžื•ื–ื™ืงืœื™ืช.
12:21
The most amazing region that's been found yet
308
741664
2889
ื”ืื–ื•ืจ ื”ืžื“ื”ื™ื ื‘ื™ื•ืชืจ ืฉื’ื™ืœื™ืชื™ ืขื“ ื›ื”
12:24
is this one right here in turquoise.
309
744553
3307
ื”ื•ื ื”ืื–ื•ืจ ื”ืฆื‘ื•ืข ื‘ื˜ื•ืจืงื™ื–.
12:27
This region responds
310
747860
2190
ื–ื” ืื–ื•ืจ ืฉืžื’ื™ื‘
12:30
when you think about what another person is thinking.
311
750050
4268
ื›ืืฉืจ ืืชื ื—ื•ืฉื‘ื™ื ืขืœ ืžื” ืฉืžื™ืฉื”ื• ืื—ืจ ื—ื•ืฉื‘.
12:34
So that may seem crazy,
312
754318
1644
ื–ื” ื ืฉืžืข ืžื•ืคืจืš,
12:35
but actually, we humans do this all the time.
313
755962
3868
ืื‘ืœ ืœืžืขืฉื”, ื‘ื ื™ ืื“ื ืขื•ืฉื™ื ืืช ื›ืœ ื”ื–ืžืŸ.
12:39
You're doing this when you realize
314
759830
2193
ืืชื ืขื•ืฉื™ื ื–ืืช ื›ืฉืืชื ืžื‘ื™ื ื™ื
12:42
that your partner is going to be worried
315
762023
1631
ืฉื‘ืŸ ื–ื•ื’ื›ื ืขืœื•ืœ ืœื“ืื•ื’
12:43
if you don't call home to say you're running late.
316
763654
2507
ืื ืœื ืชืชืงืฉืจื• ืœืขื“ื›ืŸ ืฉืืชื ืžืื—ืจื™ื.
12:46
I'm doing this with that region of my brain right now
317
766161
3469
ืื ื™ ืขื•ืฉื” ื–ืืช ืขื ืื–ื•ืจ ื”ืžื•ื— ืฉืœื™ ื›ืจื’ืข
12:49
when I realize that you guys
318
769630
2281
ื›ืืฉืจ ืื ื™ ืžื‘ื™ื ื” ืฉืืชื
12:51
are probably now wondering about
319
771911
1598
ื‘ื•ื•ื“ืื™ ืฉื•ืืœื™ื ืืช ืขืฆืžื›ื ืขื›ืฉื™ื•
12:53
all that gray, uncharted territory in the brain,
320
773509
2547
ืžื” ืงื•ืจื” ื‘ืื–ื•ืจ ื”ืืคื•ืจ, ื”ืื–ื•ืจ ื”ืœื ืžืžื•ืคื” ื‘ืžื•ื—,
12:56
and what's up with that?
321
776056
1964
ืžื” ืงื•ืจื” ืฉื?
12:58
Well, I'm wondering about that too,
322
778020
1685
ื’ื ืื ื™ ืฉื•ืืœืช ืืช ืื•ืชื” ืฉืืœื”,
12:59
and we're running a bunch of experiments in my lab right now
323
779705
2395
ื•ืื ื—ื ื• ืžื ื”ืœื™ื ื›ื™ื•ื ืžืกืคืจ ื ื™ืกื•ื™ื™ื ื‘ืžืขื‘ื“ื” ืฉืœื™
13:02
to try to find a number of other
324
782100
2013
ืขืœ ืžื ืช ืœื ืกื•ืช ื•ืœื–ื”ื•ืช
13:04
possible specializations in the brain
325
784113
2032
ืžืกืคืจ ื”ืชืžื—ื•ื™ื•ืช ืืคืฉืจื™ื•ืช ืฉืœ ื”ืžื•ื—
13:06
for other very specific mental functions.
326
786145
3368
ืฉืœ ืคืขื™ืœื•ื™ื•ืช ืžื•ื— ืฉื•ื ื•ืช.
13:09
But importantly, I don't think we have
327
789513
2621
ืื‘ืœ ื—ืฉื•ื‘ ืฉืชื‘ื™ื ื•, ืื ื™ ืœื ื—ื•ืฉื‘ืช ืฉื™ืฉ
13:12
specializations in the brain
328
792134
1564
ื”ืชืžื—ื•ืช ืฉืœ ื”ืžื•ื—
13:13
for every important mental function,
329
793698
2746
ืœื›ืœ ืคืขื™ืœื•ืช ืžื•ื—ื™ืช ื—ืฉื•ื‘ื”,
13:16
even mental functions that may be critical for survival.
330
796444
3409
ืืคื™ืœื• ืœื ืœืคืขื•ืœื•ืช ื”ื—ื™ื•ื ื™ื•ืช ืœื”ื™ืฉืจื“ื•ืช.
13:19
In fact, a few years ago,
331
799853
2102
ืœืžืขืฉื”, ืœืคื ื™ ืžืกืคืจ ืฉื ื™ื,
13:21
there was a scientist in my lab
332
801955
1117
ื”ื™ื” ืžื“ืขืŸ ื‘ืžืขื‘ื“ื” ืฉืœื™
13:23
who became quite convinced
333
803072
1409
ืฉื”ื™ื” ืžืฉื•ื›ื ืข
13:24
that he'd found a brain region
334
804481
1749
ืฉื”ื•ื ืžืฆื ืืช ืื–ื•ืจ ื”ืžื•ื—
13:26
for detecting food,
335
806230
1912
ืฉืžื–ื”ื” ืžื–ื•ืŸ,
13:28
and it responded really strongly in the scanner
336
808142
1918
ื•ื”ืื–ื•ืจ ื”ื’ื™ื‘ ื‘ืขืฆืžื” ืจื‘ื” ื‘ืกื•ืจืง
13:30
when people looked at images like this.
337
810060
2728
ื›ืืฉืจ ื ื‘ื“ืงื™ื ื”ื‘ื™ื˜ื• ื‘ืชืžื•ื ื•ืช ื›ืืœื•.
13:32
And further, he found a similar response
338
812788
2912
ืžืขื‘ืจ ืœื›ืš, ื”ื•ื ืžืฆื ืชื’ื•ื‘ื” ื“ื•ืžื”
13:35
in more or less the same location
339
815700
1939
ื‘ืื•ืชื• ืื–ื•ืจ
13:37
in 10 out of 12 subjects.
340
817639
2001
ื‘-10 ืžืชื•ืš 12 ื ื‘ื“ืงื™ื.
13:39
So he was pretty stoked,
341
819640
2294
ื›ืš ืฉื”ื•ื ื”ื™ื” ืžืฉื•ื›ื ืข ืœื’ืžืจื™
13:41
and he was running around the lab
342
821934
1260
ื•ื”ื•ื ื”ืกืชื•ื‘ื‘ ื‘ืžืขื‘ื“ื”
13:43
telling everyone that he was going to go on "Oprah"
343
823194
2002
ื•ืกื™ืคืจ ืœื›ื•ืœื ืฉื”ื•ื ื™ื•ืคื™ืข ื‘ืชื›ื ื™ืช ืฉืœ ืื•ืคืจื”
13:45
with his big discovery.
344
825196
2018
ืฉื ื™ืฆื™ื’ ืืช ื”ืชื’ืœื™ืช ืฉืœื•.
13:47
But then he devised the critical test:
345
827214
3022
ืื‘ืœ ืื– ื”ื•ื ืชื›ื ืŸ ืืช ื”ื ื™ืกื•ื™ ื”ื—ืฉื•ื‘ ื‘ื™ื•ืชืจ:
13:50
He showed subjects images of food like this
346
830236
3183
ื”ื•ื ื”ืจืื” ืœื ื‘ื“ืงื™ื ืชืžื•ื ื•ืช ืฉืœ ืžื–ื•ืŸ ื›ืžื• ืืœื”
13:53
and compared them to images with very similar
347
833419
2741
ื•ื”ืฉื•ื•ื” ืื•ืชืŸ ืœืชืžื•ื ื•ืช ื“ื•ืžื•ืช
13:56
color and shape, but that weren't food, like these.
348
836160
3810
ืžื‘ื—ื™ื ืช ืฆื‘ืข ื•ืฆื•ืจื”, ืื‘ืœ ืœื ืฉืœ ืžื–ื•ืŸ, ื›ืžื• ืืœื•.
13:59
And his region responded the same
349
839970
2131
ื•ื”ืื–ื•ืจ ื‘ืžื•ื— ื”ื’ื™ื‘ ื‘ืื•ืคืŸ ื“ื•ืžื”
14:02
to both sets of images.
350
842101
1949
ืœืฉื ื™ ืกื•ื’ื™ ื”ืชืžื•ื ื•ืช.
14:04
So it wasn't a food area,
351
844050
1327
ื›ืš ืฉืœื ืžื“ื•ื‘ืจ ื‘ืื–ื•ืจ ื”ืžื–ื•ืŸ,
14:05
it was just a region that liked colors and shapes.
352
845377
2771
ื–ื” ืกืชื ืื–ื•ืจ ืฉืื•ื”ื‘ ืฆื‘ืขื™ื ื•ืฆื•ืจื•ืช.
14:08
So much for "Oprah."
353
848148
2561
ื”ืœื›ื” ื”ื”ื•ืคืขื” ืืฆืœ ืื•ืคืจื”.
14:12
But then the question, of course, is,
354
852483
2225
ืื‘ืœ ืื– ืขื•ืœื” ื”ืฉืืœื”,
14:14
how do we process all this other stuff
355
854708
2126
ืื™ืš ืื ื—ื ื• ืžืขื‘ื“ื™ื ืืช ื›ืœ ืกื•ื’ื™ ื”ืžื™ื“ืข
14:16
that we don't have specialized brain regions for?
356
856834
2970
ืฉืื™ืŸ ืขื‘ื•ืจื• ืื–ื•ืจ ืžืชืžื—ื” ื‘ืžื•ื—?
14:19
Well, I think the answer is that in addition
357
859804
1811
ื ืจืื” ืœื™ ืฉื”ืชืฉื•ื‘ื” ื˜ืžื•ื ื” ื‘ื›ืš ืฉื‘ื ื•ืกืฃ
14:21
to these highly specialized components that I've been describing,
358
861615
3554
ืœืื–ื•ืจื™ื ื”ืžืชืžื—ื™ื ืื•ืชื ืชื™ืืจืชื™,
14:25
we also have a lot of very general- purpose machinery in our heads
359
865169
3679
ื™ืฉ ืœื ื• ื”ืžื•ืŸ ืื–ื•ืจื™ื ื‘ืžื•ื— ืœืขื™ื‘ื•ื“ ื›ืœืœื™,
14:28
that enables us to tackle
360
868848
1494
ืฉืžืืคืฉืจื™ื ืœื ื• ืœื”ืชืžื•ื“ื“
14:30
whatever problem comes along.
361
870342
2106
ืขื ื›ืœ ื‘ืขื™ื” ื‘ื” ื ื™ืชืงืœ.
14:32
In fact, we've shown recently that
362
872448
2055
ืœืžืขืฉื”, ื”ื•ื›ื—ื ื• ืœืื—ืจื•ื ื”
14:34
these regions here in white
363
874503
2068
ืฉื”ืื–ื•ืจื™ื ื”ืžืกื•ืžื ื™ื ื›ืืŸ ื‘ืœื‘ืŸ
14:36
respond whenever you do any difficult mental task
364
876571
3411
ืžื’ื™ื‘ื™ื ื‘ื‘ื™ืฆื•ืข ื›ืœ ื‘ืขื™ื™ืช ื—ืฉื™ื‘ื” ืงืฉื”.
14:39
at all โ€”
365
879982
1101
14:41
well, of the seven that we've tested.
366
881083
3571
ืœืคื—ื•ืช ืžื‘ื™ืŸ 7 ื”ื‘ืขื™ื•ืช ืฉื‘ื“ืงื ื•.
14:44
So each of the brain regions that I've described
367
884654
2169
ื›ืš ืฉื›ืœ ืื–ื•ืจื™ ื”ืžื•ื— ืื•ืชื ืชื™ืืจืชื™
14:46
to you today
368
886823
1306
ื‘ืžื”ืœืš ื”ื”ืจืฆืื” ื”ื™ื•ื
14:48
is present in approximately the same location
369
888129
2767
ื ืžืฆืื™ื ื‘ืขืจืš ื‘ืื•ืชื ืžืงื•ืžื•ืช
14:50
in every normal subject.
370
890896
1742
ื‘ื›ืœ ื ื‘ื“ืง ื ื•ืจืžืœื™.
14:52
I could take any of you,
371
892638
1623
ื™ื›ื•ืœืชื™ ืœืงื—ืช ื›ืœ ืื—ื“ ืžื›ื,
14:54
pop you in the scanner,
372
894261
1226
ืœื”ื›ื ื™ืก ืืชื›ื ืœืกื•ืจืง,
14:55
and find each of those regions in your brain,
373
895487
2285
ื•ืœืืชืจ ืืช ื”ืื–ื•ืจื™ื ื”ืœืœื• ื‘ืžื•ื— ืฉืœื›ื,
14:57
and it would look a lot like my brain,
374
897772
1905
ื•ื”ื ื™ื™ืจืื• ืžืื•ื“ ื‘ื“ื•ืžื” ืœืžื•ื— ืฉืœื™,
14:59
although the regions would be slightly different
375
899677
2070
ืœืžืจื•ืช ืฉื™ื”ื™ื• ื”ื‘ื“ืœื™ื ืงื˜ื ื™ื
15:01
in their exact location and in their size.
376
901747
3564
ื‘ืžื™ืงื•ื ื”ืžื“ื•ื™ืง ื•ื‘ื’ื•ื“ืœ ืฉืœื”ื.
15:05
What's important to me about this work
377
905311
2365
ืžื” ืฉื—ืฉื•ื‘ ื‘ืžื—ืงืจ ื”ื–ื”
15:07
is not the particular locations of these brain regions,
378
907676
2969
ื”ื•ื ืœื ื”ืžื™ืงื•ื ื”ืžื“ื•ื™ืง ืฉืœ ืื–ื•ืจื™ ื”ืžื•ื—,
15:10
but the simple fact that we have
379
910645
2587
ืืœื ื”ืขื•ื‘ื“ื” ื”ืคืฉื•ื˜ื” ืฉื™ืฉ ืœื ื•
15:13
selective, specific components of mind and brain
380
913232
2568
ื—ืœืงื™ื ืกืœืงื˜ื™ื‘ื™ื™ื, ืกืคืฆื™ืคื™ื™ื ื‘ืžื•ื—.
15:15
in the first place.
381
915800
1648
15:17
I mean, it could have been otherwise.
382
917448
2011
ื–ื” ื™ื›ื•ืœ ื”ื™ื” ืœื”ื™ื•ืช ืื—ืจืช.
15:19
The brain could have been a single,
383
919459
2441
ื”ืžื•ื— ื™ื›ื•ืœ ื”ื™ื” ืœืคืขื•ืœ ื›ื’ื•ืฃ ืื—ื“,
15:21
general-purpose processor,
384
921900
1495
ืžืขื‘ึตื“ ืจื‘-ืชื›ืœื™ืชื™,
15:23
more like a kitchen knife
385
923395
1472
ื™ื•ืชืจ ื“ื•ืžื” ืœืกื›ื™ืŸ ืžื˜ื‘ื— ืžืืฉืจ ืœืื•ืœืจ ืฉื•ื•ื™ืฆืจื™.
15:24
than a Swiss Army knife.
386
924867
1683
15:26
Instead, what brain imaging has delivered
387
926550
3111
ืื‘ืœ ืžื” ืฉื’ื™ืœื™ื ื• ื‘ื”ื“ืžื™ื•ืช ื”ืžื•ื—
15:29
is this rich and interesting picture of the human mind.
388
929661
3846
ื”ื™ื ืชืžื•ื ื” ืขืฉื™ืจื” ื•ืžืจืชืงืช ืฉืœ ื”ืžื•ื— ื”ืื ื•ืฉื™.
15:33
So we have this picture of very general-purpose
389
933507
2463
ื›ืš ืฉืื ื• ืžื“ืžื™ื™ื ื™ื ืืช ื”ืžื•ื— ื›ืžืขื‘ื“ ืจื‘-ืชื›ืœื™ืชื™
15:35
machinery in our heads
390
935970
1070
ืฉืžืฆื•ื™ ื‘ืจืืฉื ื•
15:37
in addition to this surprising array
391
937040
2357
ื‘ืชื•ืกืคืช ืœืžื’ื•ื•ืŸ ืžืคืชื™ืข
15:39
of very specialized components.
392
939397
3435
ืฉืœ ืจื›ื™ื‘ื™ื ืžืชืžื—ื™ื.
15:43
It's early days in this enterprise.
393
943712
2153
ื–ื•ื”ื™ ืจืง ืชื—ื™ืœืช ื”ืžื™ื–ื.
15:45
We've painted only the first brushstrokes
394
945865
2776
ืจืง ื”ื—ืœื ื• ืœืฆื‘ื•ืข ืืช ื”ืžืคื” ื”ืขืฆื‘ื™ืช
15:48
in our neural portrait of the human mind.
395
948641
2927
ืฉืœ ื”ืžื•ื— ื”ืื ื•ืฉื™.
15:51
The most fundamental questions remain unanswered.
396
951568
3082
ื”ืฉืืœื•ืช ื”ื™ืกื•ื“ื™ื•ืช ื‘ื™ื•ืชืจ ื˜ืจื ื ืขื ื•.
15:54
So for example, what does each of these regions do exactly?
397
954650
3800
ืœื“ื•ื’ืžื”, ืžื” ื‘ื“ื™ื•ืง ืขื•ืฉื” ื›ืœ ืื–ื•ืจ ื›ื–ื”?
15:58
Why do we need three face areas
398
958450
2142
ืžื“ื•ืข ื“ืจื•ืฉื™ื ืœื ื• 3 ืื–ื•ืจื™ ื–ื™ื”ื•ื™ ืคื ื™ื?
16:00
and three place areas,
399
960592
1465
ื•ืฉืœื•ืฉื” ืื–ื•ืจื™ื ืœืžื™ืงื•ื,
16:02
and what's the division of labor between them?
400
962057
2868
ื•ืžื” ื—ืœื•ืงืช ื”ืขื‘ื•ื“ื” ื‘ื™ื ื?
16:04
Second, how are all these things
401
964925
2693
ืฉื ื™ืช, ืื™ืš ื”ืื–ื•ืจื™ื ื”ืœืœื•
16:07
connected in the brain?
402
967618
1712
ืžื—ื•ื‘ืจื™ื ื‘ืžื•ื—?
16:09
With diffusion imaging,
403
969330
1587
ืขื ื”ื“ืžื™ื™ืช ื“ื™ืคื•ื–ื™ื”,
16:10
you can trace bundles of neurons
404
970917
2179
ื ื™ืชืŸ ืœืืชืจ ืงื‘ื•ืฆื•ืช ืชืื™ ืขืฆื‘
16:13
that connect to different parts of the brain,
405
973096
2575
ืฉืžื—ื‘ืจื•ืช ื—ืœืงื™ื ืฉื•ื ื™ื ื‘ืžื•ื—,
16:15
and with this method shown here,
406
975671
1631
ื•ื‘ืฉื™ื˜ื” ืฉืจื•ืื™ื ื›ืืŸ,
16:17
you can trace the connections of individual neurons in the brain,
407
977302
3697
ื ื™ืชืŸ ืœืืชืจ ื—ื™ื‘ื•ืจื™ื ืฉืœ ืชืื™ ืขืฆื‘ ื‘ื•ื“ื“ื™ื ื‘ืžื•ื—,
16:20
potentially someday giving us a wiring diagram
408
980999
2718
ื•ื™ื™ืชื›ืŸ ืฉื‘ืขืชื™ื“ ืชื”ื™ื” ืœื ื• 'ืžืคืช ื—ื™ื•ื•ื˜'
16:23
of the entire human brain.
409
983717
2066
ืฉืœ ื›ืœ ื”ืžื•ื— ื”ืื ื•ืฉื™.
16:25
Third, how does all of this
410
985783
2047
ืฉืœื™ืฉื™ืช, ืื™ืš ื ื‘ื ื™ืช
16:27
very systematic structure get built,
411
987830
3149
ื›ืœ ื”ืžืขืจื›ืช ื”ืžืกื•ื“ืจืช ื”ื–ื•,
16:30
both over development in childhood
412
990979
2956
ื’ื ื‘ืžื”ืœืš ื”ื”ืชืคืชื—ื•ืช ื‘ื™ืœื“ื•ืช
16:33
and over the evolution of our species?
413
993935
2812
ื•ื’ื ื‘ืžื”ืœืš ื”ืชืคืชื—ื•ืช ื”ืžื™ืŸ ื”ืื ื•ืฉื™?
16:36
To address questions like that,
414
996747
1900
ืขืœ ืžื ืช ืœืขื ื•ืช ืขืœ ืฉืืœื•ืช ื›ืืœื”,
16:38
scientists are now scanning
415
998647
1783
ืžื“ืขื ื™ื ืกื•ืจืงื™ื ื›ื™ื•ื
16:40
other species of animals,
416
1000430
2157
ืžื™ื ื™ื ืฉื•ื ื™ื ืฉืœ ื‘ืขืœื™ ื—ื™ื™ื,
16:42
and they're also scanning human infants.
417
1002587
5386
ื•ื’ื ืชื™ื ื•ืงื•ืช ืื ื•ืฉื™ื™ื.
16:48
Many people justify the high cost of neuroscience research
418
1008931
3651
ืื ืฉื™ื ืจื‘ื™ื ืžืฆื“ื™ืงื™ื ืืช ื”ื”ืฉืงืขื” ื”ืขืฆื•ืžื” ื‘ื—ืงืจ ื”ืžื•ื—
16:52
by pointing out that it may help us someday
419
1012582
2754
ื‘ืชืงื•ื•ื” ืฉื ื’ืœื” ื™ื•ื ืื—ื“
16:55
to treat brain disorders like Alzheimer's and autism.
420
1015336
3457
ื›ื™ืฆื“ ืœืจืคื ืžื—ืœื•ืช ืžื•ื— ื›ืžื• ืืœืฆื”ื™ื™ืžืจ ื•ืื•ื˜ื™ื–ื.
16:58
That's a hugely important goal,
421
1018793
1947
ืืœื• ืžื˜ืจื•ืช ื—ืฉื•ื‘ื•ืช ืœื”ื“ื”ื™ื,
17:00
and I'd be thrilled if any of my work contributed to it,
422
1020740
3221
ื•ืื”ื™ื” ืžืื•ืฉืจืช ืื ื”ืขื‘ื•ื“ื” ืฉืœื™ ืชืชืจื•ื ืœืžื˜ืจื” ื–ื•,
17:03
but fixing things that are broken in the world
423
1023961
2998
ืื‘ืœ ืชื™ืงื•ืŸ ื”ื“ื‘ืจื™ื ื”ืฉื‘ื•ืจื™ื ื‘ืขื•ืœื
17:06
is not the only thing that's worth doing.
424
1026959
2801
ืื™ื ื• ื”ืžื˜ืจื” ื”ื—ืฉื•ื‘ื” ื”ื™ื—ื™ื“ื”.
17:09
The effort to understand the human mind and brain
425
1029760
3228
ื”ืžืืžืฅ ืœื”ื‘ื™ืŸ ืืช ื”ืžื•ื— ื”ืื ื•ืฉื™
17:12
is worthwhile even if it never led to the treatment
426
1032988
2818
ื—ืฉื•ื‘ ื›ืฉืœืขืฆืžื•, ื’ื ืื ืœื ื ืžืฆื ื˜ื™ืคื•ืœ
17:15
of a single disease.
427
1035806
1677
ืœืืฃ ืžื—ืœื”.
17:17
What could be more thrilling
428
1037483
2037
ืžื” ื™ื›ื•ืœ ืœื”ื™ื•ืช ืžืจื’ืฉ ื™ื•ืชืจ
17:19
than to understand the fundamental mechanisms
429
1039520
3141
ืžืืฉืจ ืœื”ื‘ื™ืŸ ืืช ื”ืžื ื’ื ื•ื ื™ื ื”ื‘ืกื™ืกื™ื™ื
17:22
that underlie human experience,
430
1042661
2296
ื”ืžืฆื•ื™ื™ื ื‘ืœื‘ ื”ื—ื•ื•ื™ื” ื”ืื ื•ืฉื™ืช,
17:24
to understand, in essence, who we are?
431
1044957
2926
ืœื”ื‘ื™ืŸ, ื‘ืขืฆื, ืžื™ ืื ื—ื ื•?
17:27
This is, I think, the greatest scientific quest
432
1047883
3449
ื–ืืช, ืœื“ืขืชื™, ื”ืฉืืœื” ื”ืžื“ืขื™ืช ื”ื’ื“ื•ืœื” ื‘ื™ื•ืชืจ
17:31
of all time.
433
1051332
2713
ืฉืœ ื›ืœ ื”ื–ืžื ื™ื.
17:34
(Applause)
434
1054045
5470
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7