Light seconds, light years, light centuries: How to measure extreme distances - Yuan-Sen Ting

我们如何测量宇宙中的距离?- Yuan-Sen Ting

3,416,296 views

2014-10-09 ・ TED-Ed


New videos

Light seconds, light years, light centuries: How to measure extreme distances - Yuan-Sen Ting

我们如何测量宇宙中的距离?- Yuan-Sen Ting

3,416,296 views ・ 2014-10-09

TED-Ed


请双击下面的英文字幕来播放视频。

翻译人员: Amaranta Heredia Jaén 校对人员: Qingqing Mao
00:07
Light is the fastest thing we know.
0
7166
2868
光是我们所知道的传播速度最快的物质。
00:10
It's so fast that we measure enormous distances
1
10034
3079
正因为光如此之快的传播速度, 我们就用光走过的时间,
00:13
by how long it takes for light to travel them.
2
13113
3208
来描述那些十分遥远的距离的。
00:16
In one year, light travels about 6,000,000,000,000 miles,
3
16321
4076
光在一年中传播的距离大概是六万亿英里,
00:20
a distance we call one light year.
4
20397
2518
我们称这个距离为一光年。
00:22
To give you an idea of just how far this is,
5
22915
2355
现在我们来举例说明一光年的距离究竟有多远。
00:25
the Moon, which took the Apollo astronauts four days to reach,
6
25270
3926
阿波罗宇航员用时四天登上了月球,
00:29
is only one light-second from Earth.
7
29196
3080
而光从月亮到地球只需要一秒钟。
00:32
Meanwhile, the nearest star beyond our own Sun is Proxima Centauri,
8
32276
4422
另外,比邻星——离太阳系最近的恒星,
离我们有4.24光年远。
00:36
4.24 light years away.
9
36698
3033
00:39
Our Milky Way is on the order of 100,000 light years across.
10
39731
4545
我们所在的银河系的直径大概是十万光年。
00:44
The nearest galaxy to our own, Andromeda,
11
44276
2606
离我们最近的星系,仙女座星系,
00:46
is about 2.5 million light years away
12
46882
2975
离我们有250万光年。
00:49
Space is mind-blowingly vast.
13
49857
2759
我们根本无法想象宇宙之大。
00:52
But wait, how do we know how far away stars and galaxies are?
14
52616
4343
但是,我们是如何知道恒星和星系的距离的呢?
00:56
After all, when we look at the sky, we have a flat, two-dimensional view.
15
56959
4275
每当我们抬头看天空, 我们所见的只是一个二维平面视图。
01:01
If you point you finger to one star, you can't tell how far the star is,
16
61234
4087
当你伸手指向某一颗星星时, 你无法得知这颗星星离你到底有多远。
01:05
so how do astrophysicists figure that out?
17
65321
3363
那么天体物理学家们如何得知距离呢?
01:08
For objects that are very close by,
18
68684
2231
对于离我们比较近的星体,
01:10
we can use a concept called trigonometric parallax.
19
70915
3861
我们只需要用三角视差来估算距离。
01:14
The idea is pretty simple.
20
74776
1774
这个理论很简单。
01:16
Let's do an experiment.
21
76550
1412
只需要做一个小实验就可以说明。
01:17
Stick out your thumb and close your left eye.
22
77962
3327
伸出你的大拇指,然后闭上你的左眼。
01:21
Now, open your left eye and close your right eye.
23
81289
3605
现在,闭上你的左眼,同时睁开你的右眼。
01:24
It will look like your thumb has moved,
24
84894
1988
你会发现你的大拇指好像移动了。
01:26
while more distant background objects have remained in place.
25
86882
4187
但是相对遥远的背景里的物体却没有动。
01:31
The same concept applies when we look at the stars,
26
91069
2821
这个理论同样适用于看恒星的时候。
01:33
but distant stars are much, much farther away than the length of your arm,
27
93890
4185
但是恒星离我们的距离相比于 我们胳膊的长度不知道长了多少倍,
01:38
and the Earth isn't very large,
28
98075
1851
而且相对来说,地球也不是很大的星体。
01:39
so even if you had different telescopes across the equator,
29
99926
3153
所以即使你在赤道两边用不同的望远镜观测同一颗星体,
01:43
you'd not see much of a shift in position.
30
103079
2823
你也很难看到这颗星体位置的移动。
01:45
Instead, we look at the change in the star's apparent location over six months,
31
105902
5328
为了解决这个问题, 我们改为观察六个月内星体位置的移动。
01:51
the halfway point of the Earth's yearlong orbit around the Sun.
32
111230
4408
这个时间刚好是地球绕太阳轨道旋转半周的时间。
01:55
When we measure the relative positions of the stars in summer,
33
115638
3171
我们在夏天观测恒星的相对位置,
01:58
and then again in winter, it's like looking with your other eye.
34
118809
4030
等到了冬天再观测时,就像我们在用另外一只眼睛看它。
02:02
Nearby stars seem to have moved against the background
35
122839
2601
离我们近的恒星似乎移动了位置。
02:05
of the more distant stars and galaxies.
36
125440
2887
而遥远距离的恒星和星系保持不动。
02:08
But this method only works for objects no more than a few thousand light years away.
37
128327
4763
但是此方法只适用于距离不超过几千光年的天体。
02:13
Beyond our own galaxy, the distances are so great
38
133090
2692
在我们的星系之外,其他的天体如此之远,
02:15
that the parallax is too small to detect with even our most sensitive instruments.
39
135782
5029
以至于视差太小了, 连最精密的仪器也无法测得。
02:20
So at this point we have to rely on a different method
40
140811
2908
所以,我们必须找到别的办法。
02:23
using indicators we call standard candles.
41
143719
3740
这个办法叫标准烛光法。
02:27
Standard candles are objects whose intrinsic brightness, or luminosity,
42
147459
4620
标准烛光是天文学中
已经知道光度的天体。
02:32
we know really well.
43
152079
2298
02:34
For example, if you know how bright your light bulb is,
44
154377
3057
打个比方,如果你知道你自家灯泡的亮度,
02:37
and you ask your friend to hold the light bulb and walk away from you,
45
157434
3375
然后你让别人拿着那只灯泡向远离你的方向走去。
02:40
you know that the amount of light you receive from your friend
46
160809
2927
你知道你看到的灯泡的亮度
02:43
will decrease by the distance squared.
47
163736
3417
是以他走的距离的平方在减弱的。
02:47
So by comparing the amount of light you receive
48
167153
2435
所以通过比较你看到的灯泡的亮度
02:49
to the intrinsic brightness of the light bulb,
49
169588
2344
和灯泡的原始亮度,
02:51
you can then tell how far away your friend is.
50
171932
3102
你可以计算出他距你有多远。
02:55
In astronomy, our light bulb turns out to be a special type of star
51
175034
3250
应用到天文学中, 你的灯泡就变成了一些特殊的天体
02:58
called a cepheid variable.
52
178284
2507
——造父变星。
03:00
These stars are internally unstable,
53
180791
2237
这些星星的内部不是很稳定,
03:03
like a constantly inflating and deflating balloon.
54
183028
3969
就像一只一会儿鼓起来一会儿扁下去的气球。
03:06
And because the expansion and contraction causes their brightness to vary,
55
186997
3692
它们的亮度随着膨胀和收缩而变化。
03:10
we can calculate their luminosity by measuring the period of this cycle,
56
190689
4525
我们可以通过它们膨胀收缩的周期来计算它们的亮度。
03:15
with more luminous stars changing more slowly.
57
195214
3945
越亮的星星,这个周期越长。
03:19
By comparing the light we observe from these stars
58
199159
2375
通过比较观测到的这些恒星的亮度
03:21
to the intrinsic brightness we've calculated this way,
59
201534
2916
和我们计算出来的它们原始的亮度,
03:24
we can tell how far away they are.
60
204450
2486
我们就可以知道它们距离我们有多远。
03:26
Unfortunately, this is still not the end of the story.
61
206936
3309
可惜,这个方法也有它的局限性。
03:30
We can only observe individual stars up to about 40,000,000 light years away,
62
210245
4551
用这个方法,我们只能测量到距离我们 不超过四千万光年的独立的恒星。
03:34
after which they become too blurry to resolve.
63
214796
3097
超过这个距离的恒星会变得太模糊而无法分辨。
03:37
But luckily we have another type of standard candle:
64
217893
3192
不过幸运的是,我们还有另一种标准烛光。
03:41
the famous type 1a supernova.
65
221085
3380
著名的Ia型超新星。
03:44
Supernovae, giant stellar explosions are one of the ways that stars die.
66
224465
5282
超新星爆发,也就是巨型恒星爆炸, 是恒星死亡的方式之一。
03:49
These explosions are so bright,
67
229747
1833
这些爆炸是非常亮的。
03:51
that they outshine the galaxies where they occur.
68
231580
2932
它发生的时候可以照亮整个星系。
03:54
So even when we can't see individual stars in a galaxy,
69
234512
3189
所以即使我们无法分辨星系中独立的恒星,
03:57
we can still see supernovae when they happen.
70
237701
3142
我们还是可以看到超新星爆发。
04:00
And type 1a supernovae turn out to be usable as standard candles
71
240843
4168
Ia型超新星被证明是可用的标准烛光。
04:05
because intrinsically bright ones fade slower than fainter ones.
72
245011
3627
本征亮度较亮的超新星, 其亮度衰减的速率较慢。
04:08
Through our understanding of this relationship
73
248638
2287
凭借我们对超新星的
04:10
between brightness and decline rate,
74
250925
2218
亮度和衰减速率的关系的了解,
04:13
we can use these supernovae to probe distances
75
253143
2419
我们可以用这些超新星来测量
04:15
up to several billions of light years away.
76
255562
3177
离我们几十亿光年远的天体。
04:18
But why is it important to see such distant objects anyway?
77
258739
4809
可是我们为什么要观测这么遥远的天体呢?
04:23
Well, remember how fast light travels.
78
263548
3114
回答这个问题要回到光的传播速度上。
04:26
For example, the light emitted by the Sun will take eight minutes to reach us,
79
266662
3959
光从太阳传播到地球,需要八分钟,
04:30
which means that the light we see now is a picture of the Sun eight minutes ago.
80
270621
5947
这就意味着,我们看到的太阳 是八分钟前太阳的样子。
04:36
When you look at the Big Dipper,
81
276568
1630
当我们看北斗星时,
04:38
you're seeing what it looked like 80 years ago.
82
278198
3548
我们看到的是北斗星80年前的样子。
04:41
And those smudgy galaxies?
83
281746
1688
那些朦胧的星系呢?
04:43
They're millions of light years away.
84
283434
2247
它们距离我们数百万光年。
04:45
It has taken millions of years for that light to reach us.
85
285681
3707
来自它们的光需要传播数百万年才能到达地球。
04:49
So the universe itself is in some sense an inbuilt time machine.
86
289388
5288
所以我们的宇宙从某种程度上来说 是一个内置时光机。
04:54
The further we can look back, the younger the universe we are probing.
87
294676
4572
我们看得越远,我们越接近宇宙刚开始的样子。
04:59
Astrophysicists try to read the history of the universe,
88
299248
3049
天体物理学家们试图研究宇宙的历史
05:02
and understand how and where we come from.
89
302297
3758
来解答我们如何而来以及我们从哪里来。
05:06
The universe is constantly sending us information in the form of light.
90
306055
4815
宇宙不断地以光的形式给我们发送信息,
05:10
All that remains if for us to decode it.
91
310870
2875
剩下的就等我们来解读。
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7