How to read the genome and build a human being | Riccardo Sabatini

320,260 views ・ 2016-05-24

TED


Please double-click on the English subtitles below to play the video.

Prevodilac: Milenka Okuka Lektor: Mile Živković
00:12
For the next 16 minutes, I'm going to take you on a journey
0
12612
2762
U narednih 16 minuta ću da vas povedem na putovanje
00:15
that is probably the biggest dream of humanity:
1
15398
3086
koje je verovatno najveći san čovečanstva:
00:18
to understand the code of life.
2
18508
2015
razumevanje životnog koda.
00:21
So for me, everything started many, many years ago
3
21072
2743
Za mene je sve počelo pre mnogo, mnogo godina
00:23
when I met the first 3D printer.
4
23839
2723
kad sam saznao za prvi 3D štampač.
00:26
The concept was fascinating.
5
26586
1674
Sami koncept je bio fascinantan.
00:28
A 3D printer needs three elements:
6
28284
2022
3D štampaču su potrbna tri elementa:
00:30
a bit of information, some raw material, some energy,
7
30330
4134
delić informacije, nešto sirovine, malo energije
00:34
and it can produce any object that was not there before.
8
34488
3334
i može da proizvede bilo koji objekat koji prethodno nije postojao.
00:38
I was doing physics, I was coming back home
9
38517
2137
Bavio sam se fizikom, vraćao sam se kući
00:40
and I realized that I actually always knew a 3D printer.
10
40678
3438
i shvatio da mi je 3D štampač poznat oduvek.
00:44
And everyone does.
11
44140
1336
Svima jeste.
00:45
It was my mom.
12
45500
1158
Majka je 3D štampač.
00:46
(Laughter)
13
46682
1001
(Smeh)
00:47
My mom takes three elements:
14
47707
2414
Moja majka je uzela tri elementa:
00:50
a bit of information, which is between my father and my mom in this case,
15
50145
3973
delić informacije, koja je u ovom slučaju između mog oca i moje majke,
00:54
raw elements and energy in the same media, that is food,
16
54142
4157
sirovine i energiju u istom medijumu, to jest hrani,
00:58
and after several months, produces me.
17
58323
2508
i nakon nekoliko meseci, proizvela je mene.
01:00
And I was not existent before.
18
60855
1812
A ja pre toga nisam postojao.
01:02
So apart from the shock of my mom discovering that she was a 3D printer,
19
62691
3762
Pored zapanjenosti moje majke kad je saznala da je 3D štampač,
01:06
I immediately got mesmerized by that piece,
20
66477
4738
istog trena sam bio očaran tim delom,
01:11
the first one, the information.
21
71239
1717
prvim delom, informacijom.
01:12
What amount of information does it take
22
72980
2251
Koliko informacija je potrebno
01:15
to build and assemble a human?
23
75255
1936
da se sagradi i sastavi čovek?
01:17
Is it much? Is it little?
24
77215
1574
Da li je potrebno mnogo? Malo?
01:18
How many thumb drives can you fill?
25
78813
2180
Koliko fleš memorija biste mogli da ispunite?
01:21
Well, I was studying physics at the beginning
26
81017
2624
Pa, na početku sam studirao fiziku
01:23
and I took this approximation of a human as a gigantic Lego piece.
27
83665
5597
i pretpostavio sam da je čovek poput džinovske lego slagalice.
01:29
So, imagine that the building blocks are little atoms
28
89286
3785
Zamislite da su kockice sitni atomi
01:33
and there is a hydrogen here, a carbon here, a nitrogen here.
29
93095
4653
i vodonik je ovde, ugljenik ovde, azot ovde.
01:37
So in the first approximation,
30
97772
1571
Prema prvoj pretpostavci,
01:39
if I can list the number of atoms that compose a human being,
31
99367
4343
ako bih mogao da nabrojim atome od kojih se sastoji ljudsko biće,
01:43
I can build it.
32
103734
1387
mogao bih ga sagraditi.
01:45
Now, you can run some numbers
33
105145
2029
Sad, možete da proverite brojke
01:47
and that happens to be quite an astonishing number.
34
107198
3277
i to je izgleda prilično zapanjujući broj.
01:50
So the number of atoms,
35
110499
2757
Pa je broj atoma,
01:53
the file that I will save in my thumb drive to assemble a little baby,
36
113280
4755
dokument koji bih sačuvao na fleš memoriji da bih sastavio bebicu,
01:58
will actually fill an entire Titanic of thumb drives --
37
118059
4667
zapravo bi ispunio čitav Titanik fleš memorijama -
02:02
multiplied 2,000 times.
38
122750
2718
pomnoženo 2000 puta.
02:05
This is the miracle of life.
39
125957
3401
Ovo je čudo života.
02:09
Every time you see from now on a pregnant lady,
40
129382
2612
Od sad, svaki put kad ugledate trudnicu,
02:12
she's assembling the biggest amount of information
41
132018
2856
ona sklapa najveću količinu informacija
02:14
that you will ever encounter.
42
134898
1556
na koju ćete ikad naići.
02:16
Forget big data, forget anything you heard of.
43
136478
2950
Zaboravite velike podatke, zaboravite bilo šta što ste čuli.
02:19
This is the biggest amount of information that exists.
44
139452
2881
Ovo je najveća količina informacija koja postoji.
02:22
(Applause)
45
142357
3833
(Aplauz)
02:26
But nature, fortunately, is much smarter than a young physicist,
46
146214
4644
Ali priroda je srećom daleko pametnija od mladog fizičara
02:30
and in four billion years, managed to pack this information
47
150882
3576
i za četiri milijarde godina je uspela da upakuje ove informacije
02:34
in a small crystal we call DNA.
48
154482
2705
u maleni kristal koji nazivamo DNK.
02:37
We met it for the first time in 1950 when Rosalind Franklin,
49
157605
4312
Prvi put smo saznali za njega 1950. kada ga je Rozalind Frenklin,
02:41
an amazing scientist, a woman,
50
161941
1556
neverovatna naučnica,
02:43
took a picture of it.
51
163521
1389
fotografisala.
02:44
But it took us more than 40 years to finally poke inside a human cell,
52
164934
5188
Ali trebalo nam je preko 40 godina da konačno prodremo unutar ljudske ćelije,
02:50
take out this crystal,
53
170146
1602
izvadimo kristal,
02:51
unroll it, and read it for the first time.
54
171772
3080
odmotamo ga i prvi put ga pročitamo.
02:55
The code comes out to be a fairly simple alphabet,
55
175615
3241
Ispostavilo se da je kôd prilično jednostavna abeceda,
02:58
four letters: A, T, C and G.
56
178880
3772
četiri slova: A, T, C i G.
03:02
And to build a human, you need three billion of them.
57
182676
3490
A da biste sagradili čoveka, potrebno vam je tri milijarde njih.
03:06
Three billion.
58
186933
1179
Tri milijarde.
03:08
How many are three billion?
59
188136
1579
Koliko je tri milijarde?
03:09
It doesn't really make any sense as a number, right?
60
189739
2762
Sami broj zaista nema nikakvog smisla, zar ne?
03:12
So I was thinking how I could explain myself better
61
192525
4085
Pa sam razmišljao kako da bolje objasnim
03:16
about how big and enormous this code is.
62
196634
3050
koliko je velik i ogroman ovaj kod.
03:19
But there is -- I mean, I'm going to have some help,
63
199708
3054
Ali evo ga - mislim, imaću malu pomoć,
03:22
and the best person to help me introduce the code
64
202786
3227
a najbolja osoba da mi pomogne da predstavim kôd
03:26
is actually the first man to sequence it, Dr. Craig Venter.
65
206037
3522
je zapravo prvi čovek koji ga je sekvencirao, dr Kreg Venter.
03:29
So welcome onstage, Dr. Craig Venter.
66
209583
3390
Zato, dobro došao na scenu, dr Kreg Venter.
03:32
(Applause)
67
212997
6931
(Aplauz)
03:39
Not the man in the flesh,
68
219952
2256
Ne čovek glavom i bradom,
03:43
but for the first time in history,
69
223448
2345
već prvi put u istoriji,
03:45
this is the genome of a specific human,
70
225817
3462
ovo je genom određenog čoveka,
03:49
printed page-by-page, letter-by-letter:
71
229303
3760
odštampan stranicu po stranicu, slovo po slovo:
03:53
262,000 pages of information,
72
233087
3996
262.000 stranica informacija,
03:57
450 kilograms, shipped from the United States to Canada
73
237107
4364
450 kilograma, isporučen iz SAD-a u Kanadu,
04:01
thanks to Bruno Bowden, Lulu.com, a start-up, did everything.
74
241495
4843
zahvaljujući Brunu Boudenu, Lulu.com, startap, su sve odradili.
04:06
It was an amazing feat.
75
246362
1463
Bio je to fantastičan podvig.
04:07
But this is the visual perception of what is the code of life.
76
247849
4297
Ali ovo je vizuelni doživljaj toga šta je životni kôd.
04:12
And now, for the first time, I can do something fun.
77
252170
2478
A sada, prvi put, mogu da uradim nešto zabavno.
04:14
I can actually poke inside it and read.
78
254672
2547
Mogu zapravo da zavirim unutra i da ga čitam.
04:17
So let me take an interesting book ... like this one.
79
257243
4625
Dozvolite mi da uzmem zanimljivu knjigu... poput ove.
04:25
I have an annotation; it's a fairly big book.
80
265077
2534
Imam zabelešku; prilično je obimna knjiga.
04:27
So just to let you see what is the code of life.
81
267635
3727
Prosto da vidite šta je životni kôd.
04:32
Thousands and thousands and thousands
82
272566
3391
Hiljade i hiljade i hiljade
04:35
and millions of letters.
83
275981
2670
i milioni slova.
04:38
And they apparently make sense.
84
278675
2396
I očigledno da imaju smisla.
04:41
Let's get to a specific part.
85
281095
1757
Pođimo do specifičnog dela.
04:43
Let me read it to you:
86
283571
1362
Dozvolite da vam pročitam:
04:44
(Laughter)
87
284957
1021
(Smeh)
04:46
"AAG, AAT, ATA."
88
286002
4006
"AAG, AAT, ATA."
04:50
To you it sounds like mute letters,
89
290965
2067
Vama ovo zvuči kao prazna slova,
04:53
but this sequence gives the color of the eyes to Craig.
90
293056
4041
ali ovaj redosled odaje Kregovu boju očiju.
04:57
I'll show you another part of the book.
91
297633
1932
Pokazaću vam još jedan deo iz knjige.
04:59
This is actually a little more complicated.
92
299589
2094
Ovo je zapravo nešto komplikovanije.
05:02
Chromosome 14, book 132:
93
302983
2647
Hromozom 14, knjiga 132 -
05:05
(Laughter)
94
305654
2090
(Smeh)
05:07
As you might expect.
95
307768
1277
kao što pretpostavljate -
05:09
(Laughter)
96
309069
3466
(Smeh)
05:14
"ATT, CTT, GATT."
97
314857
4507
"ATT, CTT, GATT."
05:20
This human is lucky,
98
320329
1687
Ovaj čovek ima sreće
05:22
because if you miss just two letters in this position --
99
322040
4517
jer ako ispustite samo dva slova u ovom redosledu -
05:26
two letters of our three billion --
100
326581
1877
dva slova od tri milijarde -
05:28
he will be condemned to a terrible disease:
101
328482
2019
biće osuđen na užasnu bolest:
05:30
cystic fibrosis.
102
330525
1440
cističnu fibrozu.
05:31
We have no cure for it, we don't know how to solve it,
103
331989
3413
Za nju ne postoji lek, ne znamo kako da je izlečimo,
05:35
and it's just two letters of difference from what we are.
104
335426
3755
a samo dva slova su različita nego kod nas ostalih.
05:39
A wonderful book, a mighty book,
105
339585
2705
Čarobna knjiga, moćna knjiga,
05:43
a mighty book that helped me understand
106
343115
1998
moćna knjiga koja mi je pomogla da shvatim
05:45
and show you something quite remarkable.
107
345137
2753
i da vam pokažem nešto izvanredno.
05:48
Every one of you -- what makes me, me and you, you --
108
348480
4435
Svako od vas - ono zbog čega sam ja ja, a vi ste vi -
05:52
is just about five million of these,
109
352939
2954
je samo oko pet miliona ovih slova,
05:55
half a book.
110
355917
1228
polovina knjige.
05:58
For the rest,
111
358015
1663
Što se tiče ostalog,
05:59
we are all absolutely identical.
112
359702
2562
apsolutno smo identični.
06:03
Five hundred pages is the miracle of life that you are.
113
363008
4018
Pet stotina stranica je čudo života koje predstavljate vi.
06:07
The rest, we all share it.
114
367050
2531
Ostalo svi mi delimo.
06:09
So think about that again when we think that we are different.
115
369605
2909
Zato se setite toga kad pomislite kako smo svi različiti.
06:12
This is the amount that we share.
116
372538
2221
Ovo je suma koju svi delimo.
06:15
So now that I have your attention,
117
375441
3429
Pa, sad kad imam vašu pažnju,
06:18
the next question is:
118
378894
1359
sledeće pitanje je:
06:20
How do I read it?
119
380277
1151
kako da to pročitam?
06:21
How do I make sense out of it?
120
381452
1509
Kako da pronađem smisao u tome?
06:23
Well, for however good you can be at assembling Swedish furniture,
121
383409
4240
Pa, koliko god ste dobri u sastavljanju švedskog nameštaja,
06:27
this instruction manual is nothing you can crack in your life.
122
387673
3563
ovo uputstvo za upotrebu je nešto što nećete shvatiti dok ste živi.
06:31
(Laughter)
123
391260
1603
(Smeh)
06:32
And so, in 2014, two famous TEDsters,
124
392887
3112
Pa su 2014, dva čuvena Tedovca,
06:36
Peter Diamandis and Craig Venter himself,
125
396023
2540
Piter Dijamandis i Kreg Venter lično,
06:38
decided to assemble a new company.
126
398587
1927
odlučili da osnuju novu firmu.
06:40
Human Longevity was born,
127
400538
1412
Rođen je Hjuman Londževiti,
06:41
with one mission:
128
401974
1370
sa samo jednom misijom:
06:43
trying everything we can try
129
403368
1861
da pokušamo sve što možemo
06:45
and learning everything we can learn from these books,
130
405253
2759
i da naučimo sve što možemo da naučimo iz ovih knjiga,
06:48
with one target --
131
408036
1705
s jednim ciljem -
06:50
making real the dream of personalized medicine,
132
410862
2801
da ostvarimo san personalizovane medicine,
06:53
understanding what things should be done to have better health
133
413687
3767
da razumemo šta treba da se uradi kako bismo bili zdraviji
06:57
and what are the secrets in these books.
134
417478
2283
i koje tajne kriju ove knjige.
07:00
An amazing team, 40 data scientists and many, many more people,
135
420329
4250
Fantastična ekipa, 40 naučnika za podatke i još mnogo, mnogo ljudi,
07:04
a pleasure to work with.
136
424603
1350
s kojima je užitak raditi.
07:05
The concept is actually very simple.
137
425977
2253
Koncept je zapravo veoma jednostavan.
07:08
We're going to use a technology called machine learning.
138
428254
3158
Koristićemo tehnologiju koja se zove mašinsko učenje.
07:11
On one side, we have genomes -- thousands of them.
139
431436
4539
S jedne strane, imamo genome - hiljade njih.
07:15
On the other side, we collected the biggest database of human beings:
140
435999
3997
S druge strane, sakupili smo najveću bazu podataka o ljudskim bićima:
07:20
phenotypes, 3D scan, NMR -- everything you can think of.
141
440020
4296
fenotipe, 3D snimke, nuklearnu magnetnu rezonancu, sve što vam pada na pamet.
07:24
Inside there, on these two opposite sides,
142
444340
2899
Unutar toga, na ovim oprečnim stranama,
07:27
there is the secret of translation.
143
447263
2442
nalazi se tajna prevodilaštva.
07:29
And in the middle, we build a machine.
144
449729
2472
A u sredini smo sagradili mašinu.
07:32
We build a machine and we train a machine --
145
452801
2385
Sagradili smo mašinu i obučili smo mašinu -
07:35
well, not exactly one machine, many, many machines --
146
455210
3210
pa, zapravo ne baš jednu mašinu, mnogo, mnogo mašina -
07:38
to try to understand and translate the genome in a phenotype.
147
458444
4544
da pokašaju da razumeju i prevedu genom u fenotipu.
07:43
What are those letters, and what do they do?
148
463362
3340
Šta su ta slova i koja je njihova svrha?
07:46
It's an approach that can be used for everything,
149
466726
2747
To je pristup koji može da se koristi svuda,
07:49
but using it in genomics is particularly complicated.
150
469497
2993
ali njegova upotreba u genetici je naročito komplikovana.
07:52
Little by little we grew and we wanted to build different challenges.
151
472514
3276
Malo po malo smo rasli i želeli smo da napravimo nove izazove.
07:55
We started from the beginning, from common traits.
152
475814
2732
Počeli smo ispočetka, od zajedničkih osobina.
07:58
Common traits are comfortable because they are common,
153
478570
2603
Zajedničke osobine su prijatne jer su zajedničke,
08:01
everyone has them.
154
481197
1184
svako ih ima.
08:02
So we started to ask our questions:
155
482405
2494
Pa smo počeli da postavljamo naša pitanja:
08:04
Can we predict height?
156
484923
1380
možemo li predvideti visinu?
08:06
Can we read the books and predict your height?
157
486985
2177
Možemo li čitanjem ovih knjiga predvideti visinu?
08:09
Well, we actually can,
158
489186
1151
Pa, zapravo možemo,
08:10
with five centimeters of precision.
159
490361
1793
preciznošću od pet centimetara.
08:12
BMI is fairly connected to your lifestyle,
160
492178
3135
Indeks telesne mase je usko povezan s vašim načinom života,
08:15
but we still can, we get in the ballpark, eight kilograms of precision.
161
495337
3864
ali i dalje možemo, možemo da pogodimo preciznošću od osam kilograma.
08:19
Can we predict eye color?
162
499225
1231
Možemo li predvideti boju očiju?
08:20
Yeah, we can.
163
500480
1158
Da, možemo.
08:21
Eighty percent accuracy.
164
501662
1324
Preciznošću od 80 procenata.
08:23
Can we predict skin color?
165
503466
1858
Možemo li predvideti boju kože?
08:25
Yeah we can, 80 percent accuracy.
166
505348
2441
Da, možemo, s 80 procenata tačnosti.
08:27
Can we predict age?
167
507813
1340
Možemo li predvideti starost?
08:30
We can, because apparently, the code changes during your life.
168
510121
3739
Možemo jer se očigledno kôd menja tokom vašeg života.
08:33
It gets shorter, you lose pieces, it gets insertions.
169
513884
3282
Postaje kraći, gubite delove, dodaju se umeci.
08:37
We read the signals, and we make a model.
170
517190
2555
Čitamo signale i pravimo model.
08:40
Now, an interesting challenge:
171
520438
1475
Sad, zanimljiv izazov:
08:41
Can we predict a human face?
172
521937
1729
možemo li predvideti ljudsko lice?
08:45
It's a little complicated,
173
525014
1278
Malo je komplikovano
08:46
because a human face is scattered among millions of these letters.
174
526316
3191
jer je ljudsko lice rasuto među milionima ovih slova.
08:49
And a human face is not a very well-defined object.
175
529531
2629
A ljudsko lice nije naročito dobro definisan objekat.
08:52
So, we had to build an entire tier of it
176
532184
2051
Pa smo morali da napravimo čitav niz njih
08:54
to learn and teach a machine what a face is,
177
534259
2710
kako bismo naučili i obrazovali mašinu da zna šta je lice,
08:56
and embed and compress it.
178
536993
2037
i da ga ugradi i sažme.
08:59
And if you're comfortable with machine learning,
179
539054
2248
A ako vam je poznato mašinsko učenje,
09:01
you understand what the challenge is here.
180
541326
2284
razumećete o kakvom se izazovu ovde radi.
09:04
Now, after 15 years -- 15 years after we read the first sequence --
181
544108
5991
Sad, nakon 15 godina - 15 godina nakon što smo pročitali prvi isečak -
09:10
this October, we started to see some signals.
182
550123
2902
ovog oktobra, počeli smo da zapažamo neke signale.
09:13
And it was a very emotional moment.
183
553049
2455
I bio je to izuzetno emotivan trenutak.
09:15
What you see here is a subject coming in our lab.
184
555528
3745
Ovde vidite subjekta koji je došao u našu laboratoriju.
09:19
This is a face for us.
185
559619
1928
Ovo je lice za nas.
09:21
So we take the real face of a subject, we reduce the complexity,
186
561571
3631
Uzimamo pravo lice subjekta, svedemo složenost
09:25
because not everything is in your face --
187
565226
1970
jer nije sve u vašem licu -
09:27
lots of features and defects and asymmetries come from your life.
188
567220
3786
mnoge crte i nedostaci i asimetrija potiču iz vašeg života.
09:31
We symmetrize the face, and we run our algorithm.
189
571030
3469
Ujednačavamo simetriju lica i provlačimo ga kroz naš algoritam.
09:35
The results that I show you right now,
190
575245
1898
Rezultati koje vam upravo pokazujem,
09:37
this is the prediction we have from the blood.
191
577167
3372
ova predviđanja dobijamo iz krvi.
09:41
(Applause)
192
581596
1524
(Aplauz)
09:43
Wait a second.
193
583144
1435
Sačekajte sekund.
09:44
In these seconds, your eyes are watching, left and right, left and right,
194
584603
4692
U ovim trenucima, vaše oči posmatraju levo i desno, levo i desno,
09:49
and your brain wants those pictures to be identical.
195
589319
3930
a vaš mozak želi da te slike budu identične.
09:53
So I ask you to do another exercise, to be honest.
196
593273
2446
Zato tražim od vas drugu vežbu, da budete iskreni.
09:55
Please search for the differences,
197
595743
2287
Molim vas da tražite razlike,
09:58
which are many.
198
598054
1361
ima ih mnogo.
09:59
The biggest amount of signal comes from gender,
199
599439
2603
Najveća količina signala dolazi od roda,
10:02
then there is age, BMI, the ethnicity component of a human.
200
602066
5201
potom je tu uzrast, indeks telesne mase, čovekova etnička komponenta.
10:07
And scaling up over that signal is much more complicated.
201
607291
3711
A prenošenje tog signala na veće razmere je daleko komplikovanije.
10:11
But what you see here, even in the differences,
202
611026
3250
Ali ono što vidite ovde, čak i uz razlike,
10:14
lets you understand that we are in the right ballpark,
203
614300
3595
dozvoljava vam da shvatite da su naše pretpostavke tačne,
10:17
that we are getting closer.
204
617919
1348
da smo sve bliži.
10:19
And it's already giving you some emotions.
205
619291
2349
I već imate neki utisak.
10:21
This is another subject that comes in place,
206
621664
2703
Ovo je još jedan subjekat koji se poklopio,
10:24
and this is a prediction.
207
624391
1409
a ovo je predviđanje.
10:25
A little smaller face, we didn't get the complete cranial structure,
208
625824
4596
Nešto sitnije lice, nismo pogodili u potpunosti strukturu lobanje,
10:30
but still, it's in the ballpark.
209
630444
2651
ali ipak, približno je.
10:33
This is a subject that comes in our lab,
210
633634
2224
Ovo je subjekat koji je došao u našu laboratoriju,
10:35
and this is the prediction.
211
635882
1443
a ovo je predviđanje.
10:38
So these people have never been seen in the training of the machine.
212
638056
4676
Dakle, mašina tokom obuke nikad nije videla ove ljude.
10:42
These are the so-called "held-out" set.
213
642756
2837
Ovo je takozvani "izostavljeni" skup.
10:45
But these are people that you will probably never believe.
214
645617
3740
Ali ovo su verovatno za vas neuverljivi ljudi.
10:49
We're publishing everything in a scientific publication,
215
649381
2676
Sve objavljujemo u naučnim časopisima,
10:52
you can read it.
216
652081
1151
možete to da čitate.
10:53
But since we are onstage, Chris challenged me.
217
653256
2344
Ali kako smo na sceni, Kris me je izazvao.
10:55
I probably exposed myself and tried to predict
218
655624
3626
Verovatno sam se izložio i pokušao sam da predvidim
10:59
someone that you might recognize.
219
659274
2831
nekoga koga biste možda prepoznali.
11:02
So, in this vial of blood -- and believe me, you have no idea
220
662470
4425
Dakle, u ovoj epruveti krvi - i verujte mi, nemate pojma
11:06
what we had to do to have this blood now, here --
221
666919
2880
šta smo morali da da uradimo da bismo doneli krv ovde -
11:09
in this vial of blood is the amount of biological information
222
669823
3901
u ovoj epruveti krvi je količina bioloških informacija
11:13
that we need to do a full genome sequence.
223
673748
2277
koja nam je potrebna da sekvenciramo čitav genom.
11:16
We just need this amount.
224
676049
2070
Svega ovoliko nam je dovoljno.
11:18
We ran this sequence, and I'm going to do it with you.
225
678528
3205
Odradili smo sekvenciranje, i uradiću to s vama.
11:21
And we start to layer up all the understanding we have.
226
681757
3979
I počeli smo da raslojavamo sve znanje koje imamo.
11:25
In the vial of blood, we predicted he's a male.
227
685760
3350
Iz ove epruvete krvi, predvideli smo da je muškarac u pitanju.
11:29
And the subject is a male.
228
689134
1364
Subjekat je muškarac.
11:30
We predict that he's a meter and 76 cm.
229
690996
2438
Predvideli smo da je visok metar i 76 cm.
11:33
The subject is a meter and 77 cm.
230
693458
2392
Subjekat je visok metar i 77 centimetara.
11:35
So, we predicted that he's 76; the subject is 82.
231
695874
4110
Dakle, predvideli smo da je '76. godište, zapravo je '82.
11:40
We predict his age, 38.
232
700701
2632
Predvideli smo da ima 38 godina.
11:43
The subject is 35.
233
703357
1904
Subjekat ima 35 godina.
11:45
We predict his eye color.
234
705851
2124
Predvideli mo njegovu boju očiju.
11:48
Too dark.
235
708824
1211
Suviše je tamna.
11:50
We predict his skin color.
236
710059
1555
Predvideli smo boju kože.
11:52
We are almost there.
237
712026
1410
Skoro da smo pogodili.
11:53
That's his face.
238
713899
1373
Ovo je njegovo lice.
11:57
Now, the reveal moment:
239
717172
3269
A sad, trenutak razotkrivanja:
12:00
the subject is this person.
240
720465
1770
subjekat je ova osoba.
12:02
(Laughter)
241
722259
1935
(Smeh)
12:04
And I did it intentionally.
242
724218
2058
Namerno sam to uradio.
12:06
I am a very particular and peculiar ethnicity.
243
726300
3692
Ja sam veoma karakterističan i karakterističnog sam porekla.
12:10
Southern European, Italians -- they never fit in models.
244
730016
2950
Južnoevropljani, Italijani - nikad se ne uklapaju u kalupe.
12:12
And it's particular -- that ethnicity is a complex corner case for our model.
245
732990
5130
A karakteristično je - da je narodnost kompleksan izuzetak za naš model.
12:18
But there is another point.
246
738144
1509
Ali ima tu još nešto.
12:19
So, one of the things that we use a lot to recognize people
247
739677
3477
Dakle, nešto što uveliko koristimo da bismo prepoznali ljude
12:23
will never be written in the genome.
248
743178
1722
nikada neće da bude upisano u genom.
12:24
It's our free will, it's how I look.
249
744924
2317
To je naša slobodna volja, naš izgled.
12:27
Not my haircut in this case, but my beard cut.
250
747265
3229
Ne moja frizura, u ovom slučaju, već moja brada.
12:30
So I'm going to show you, I'm going to, in this case, transfer it --
251
750518
3553
Pa ću da vam pokažem, u ovom slučaju ću da to prenesem -
12:34
and this is nothing more than Photoshop, no modeling --
252
754095
2765
a ovo nije ništa više od fotošopa, nije modelarstvo -
12:36
the beard on the subject.
253
756884
1713
brada na subjektu.
12:38
And immediately, we get much, much better in the feeling.
254
758621
3472
I momentalno imamo mnogo, mnogo bolji utisak.
12:42
So, why do we do this?
255
762955
2709
Dakle, zašto ovo radimo?
12:47
We certainly don't do it for predicting height
256
767938
5140
Sigurno to ne radimo da bismo predvideli visinu
12:53
or taking a beautiful picture out of your blood.
257
773102
2372
ili da bismo izradili lepu sliku iz vaše krvi.
12:56
We do it because the same technology and the same approach,
258
776390
4018
Radimo to jer ista ova tehnologija i isti pristup,
13:00
the machine learning of this code,
259
780432
2520
mašinsko učenje ovog koda,
13:02
is helping us to understand how we work,
260
782976
3137
pomaže nam da razumemo kako funkcionišemo,
13:06
how your body works,
261
786137
1486
kako vaše telo funkcioniše,
13:07
how your body ages,
262
787647
1665
kako vaše telo stari,
13:09
how disease generates in your body,
263
789336
2769
kako bolesti nastaju u vašem telu,
13:12
how your cancer grows and develops,
264
792129
2972
kako vaš rak raste i razvija se,
13:15
how drugs work
265
795125
1783
kako lekovi funkcionišu
13:16
and if they work on your body.
266
796932
2314
i da li deluju na vaše telo.
13:19
This is a huge challenge.
267
799713
1667
Ovo je ogorman izazov.
13:21
This is a challenge that we share
268
801894
1638
Ovo je zajednički izazov
13:23
with thousands of other researchers around the world.
269
803556
2579
nas i hiljada drugih istraživača širom sveta.
13:26
It's called personalized medicine.
270
806159
2222
Naziva se personalizovanom medicinom.
13:29
It's the ability to move from a statistical approach
271
809125
3460
To je mogućnost da se pomerimo sa statističkog pristupa,
13:32
where you're a dot in the ocean,
272
812609
2032
u kom ste tačkica u okeanu,
13:34
to a personalized approach,
273
814665
1813
do personalizovanog pristupa,
13:36
where we read all these books
274
816502
2185
gde čitamo sve ove knjige
13:38
and we get an understanding of exactly how you are.
275
818711
2864
i stičemo saznanje o tome tačno kako ste vi.
13:42
But it is a particularly complicated challenge,
276
822260
3362
Ali je naročito složen izazov
13:45
because of all these books, as of today,
277
825646
3998
jer od svih ovih knjiga, do danas,
13:49
we just know probably two percent:
278
829668
2642
znamo verovatno samo dva procenta:
13:53
four books of more than 175.
279
833027
3653
četiri knjige od preko 175.
13:58
And this is not the topic of my talk,
280
838021
3206
A ovo nije tema mog govora
14:02
because we will learn more.
281
842145
2598
jer ćemo saznati više.
14:05
There are the best minds in the world on this topic.
282
845378
2669
Najveći umovi na svetu se bave ovim pitanjem.
14:09
The prediction will get better,
283
849048
1834
Predviđanje će postati bolje,
14:10
the model will get more precise.
284
850906
2253
model će biti sve precizniji.
14:13
And the more we learn,
285
853183
1858
A što više naučimo,
14:15
the more we will be confronted with decisions
286
855065
4830
više ćemo biti suočeni s odlukama
14:19
that we never had to face before
287
859919
3021
s kojima se pre nismo morali suočavati
14:22
about life,
288
862964
1435
o životu,
14:24
about death,
289
864423
1674
o smrti,
14:26
about parenting.
290
866121
1603
o roditeljstvu.
14:32
So, we are touching the very inner detail on how life works.
291
872626
4746
Dakle, dodirujemo samu unutrašnju pojedinost kako život funkcioniše.
14:38
And it's a revolution that cannot be confined
292
878118
3158
A to je revolucija koja ne može da bude ograničena
14:41
in the domain of science or technology.
293
881300
2659
u domenu nauke ili tehnologije.
14:44
This must be a global conversation.
294
884960
2244
Ovo mora da bude globalna diskusija.
14:47
We must start to think of the future we're building as a humanity.
295
887798
5217
Moramo početi da razmišljamo o budućnosti koju kao čovečanstvo gradimo.
14:53
We need to interact with creatives, with artists, with philosophers,
296
893039
4064
Moramo da sarađujemo sa kreativcima, umetnicima, filozofima,
14:57
with politicians.
297
897127
1510
političarima.
14:58
Everyone is involved,
298
898661
1158
Svi su uključeni
14:59
because it's the future of our species.
299
899843
2825
jer se radi o budućnosti naše vrste.
15:03
Without fear, but with the understanding
300
903273
3968
Bez straha, ali uz razumevanje
15:07
that the decisions that we make in the next year
301
907265
3871
da će odluke koje donesemo naredne godine
15:11
will change the course of history forever.
302
911160
3789
zauvek da promene pravac istorije.
15:15
Thank you.
303
915732
1160
Havala vam.
15:16
(Applause)
304
916916
10159
(Aplauz)
About this website

This site will introduce you to YouTube videos that are useful for learning English. You will see English lessons taught by top-notch teachers from around the world. Double-click on the English subtitles displayed on each video page to play the video from there. The subtitles scroll in sync with the video playback. If you have any comments or requests, please contact us using this contact form.

https://forms.gle/WvT1wiN1qDtmnspy7