How to read the genome and build a human being | Riccardo Sabatini

320,260 views ・ 2016-05-24

TED


μ•„λž˜ μ˜λ¬Έμžλ§‰μ„ λ”λΈ”ν΄λ¦­ν•˜μ‹œλ©΄ μ˜μƒμ΄ μž¬μƒλ©λ‹ˆλ‹€.

λ²ˆμ—­: Bill Kil κ²€ν† : Seon-Gyu Choi
00:12
For the next 16 minutes, I'm going to take you on a journey
0
12612
2762
μ•žμœΌλ‘œ 16λΆ„ λ™μ•ˆ μ €λŠ” μ—¬λŸ¬λΆ„κ»˜
00:15
that is probably the biggest dream of humanity:
1
15398
3086
인λ₯˜μ˜ κ°€μž₯ 큰 μ†Œμ›μ„ ν–₯ν•œ 여행을 λ³΄μ—¬λ“œλ¦¬κ² μŠ΅λ‹ˆλ‹€.
00:18
to understand the code of life.
2
18508
2015
생λͺ…μ˜ μ•”ν˜Έλ₯Ό μ΄ν•΄ν•˜λŠ” κ²ƒμž…λ‹ˆλ‹€.
00:21
So for me, everything started many, many years ago
3
21072
2743
λͺ¨λ“  κ²ƒμ˜ μ‹œμž‘μ€ μ•„μ£Ό μ•„μ£Ό μ˜€λž˜μ „
00:23
when I met the first 3D printer.
4
23839
2723
졜초의 3D ν”„λ¦°ν„°λ₯Ό λ³Έ κ²ƒμ΄μ—ˆμŠ΅λ‹ˆλ‹€.
00:26
The concept was fascinating.
5
26586
1674
제겐 이 μž₯μΉ˜κ°€ λ†€λΌμ› μŠ΅λ‹ˆλ‹€.
00:28
A 3D printer needs three elements:
6
28284
2022
3D ν”„λ¦°ν„°μ—” μ„Έ 가지가 ν•„μš”ν•©λ‹ˆλ‹€.
00:30
a bit of information, some raw material, some energy,
7
30330
4134
λŒ€μƒμ˜ 정보, 좜λ ₯을 μœ„ν•œ 재료, 그리고 μ—λ„ˆμ§€λ§Œ 있으면
00:34
and it can produce any object that was not there before.
8
34488
3334
μ΄μ „μ—λŠ” μ—†μ—ˆλ˜ 것을 λ§Œλ“€μ–΄ λ‚Ό 수 μžˆμŠ΅λ‹ˆλ‹€.
00:38
I was doing physics, I was coming back home
9
38517
2137
물리λ₯Ό κ³΅λΆ€ν•˜λ˜ μ €λŠ” μ§‘μœΌλ‘œ μ˜€λŠ” 길에
00:40
and I realized that I actually always knew a 3D printer.
10
40678
3438
제 주변에 3D ν”„λ¦°ν„°κ°€ μžˆμ—ˆλ‹€λŠ” 것을 κΉ¨λ‹¬μ•˜μŠ΅λ‹ˆλ‹€.
00:44
And everyone does.
11
44140
1336
λͺ¨λ‘ μ••λ‹ˆλ‹€.
00:45
It was my mom.
12
45500
1158
λ°”λ‘œ μ–΄λ¨Έλ‹ˆμž…λ‹ˆλ‹€.
00:46
(Laughter)
13
46682
1001
(μ›ƒμŒ)
00:47
My mom takes three elements:
14
47707
2414
μ–΄λ¨Έλ‹ˆλ„ μ„Έ 가지가 ν•„μš”ν•©λ‹ˆλ‹€.
00:50
a bit of information, which is between my father and my mom in this case,
15
50145
3973
λ¨Όμ € λŒ€μƒμ˜ μ •λ³΄λŠ” λΆ€λͺ¨λ‹˜μ΄ ν•¨κ»˜ μ£Όμ‹œκ³ 
00:54
raw elements and energy in the same media, that is food,
16
54142
4157
좜λ ₯ μž¬λ£Œμ™€ μ—λ„ˆμ§€λŠ” μŒμ‹μ—μ„œ λ‚˜μ˜€μ£ .
00:58
and after several months, produces me.
17
58323
2508
그리고 λͺ‡ 달을 거쳐 μ œκ°€ νƒœμ–΄λ‚©λ‹ˆλ‹€.
01:00
And I was not existent before.
18
60855
1812
μ €λŠ” μ΄μ „κΉŒμ§„ μ‘΄μž¬ν•˜μ§€ μ•Šμ•˜μ£ .
01:02
So apart from the shock of my mom discovering that she was a 3D printer,
19
62691
3762
제 μ–΄λ¨Έλ‹ˆκ°€ μ•Œκ³  λ³΄λ‹ˆ 3D ν”„λ¦°ν„°λΌλŠ” 좩격은 λ‘˜μ§Έ μΉ˜κ³ μš”.
01:06
I immediately got mesmerized by that piece,
20
66477
4738
μ €λŠ” μ„Έ 가지 μš”μ†Œ 쀑 첫 번째인
01:11
the first one, the information.
21
71239
1717
λŒ€μƒμ˜ 정보에 λ§€ν˜ΉλμŠ΅λ‹ˆλ‹€.
01:12
What amount of information does it take
22
72980
2251
μ‚¬λžŒ ν•œ λͺ…을 λ§Œλ“€λ €λ©΄
01:15
to build and assemble a human?
23
75255
1936
정보가 μ–Όλ§ˆλ‚˜ ν•„μš”ν• κΉŒμš”?
01:17
Is it much? Is it little?
24
77215
1574
많이? 적게?
01:18
How many thumb drives can you fill?
25
78813
2180
USB λ©”λͺ¨λ¦¬λ‘  λͺ‡ κ°œμΌκΉŒμš”?
01:21
Well, I was studying physics at the beginning
26
81017
2624
물리λ₯Ό μ „κ³΅ν•œ μ‚¬λžŒμœΌλ‘œμ„œ
01:23
and I took this approximation of a human as a gigantic Lego piece.
27
83665
5597
μ €λŠ” μ‚¬λžŒμ„ κ±°λŒ€ν•œ 레고 μž‘ν’ˆμ΄λΌκ³  κ°€μ •ν–ˆμŠ΅λ‹ˆλ‹€.
01:29
So, imagine that the building blocks are little atoms
28
89286
3785
μ—¬κΈ°μ„œ 블둝듀을 μž‘μ€ μ›μžλΌκ³  μƒκ°ν•˜μ„Έμš”.
01:33
and there is a hydrogen here, a carbon here, a nitrogen here.
29
93095
4653
μ—¬κΈ°μ—” μˆ˜μ†Œκ°€ 있고, νƒ„μ†Œκ°€ 있고, μ§ˆμ†Œλ„ 있겠죠.
01:37
So in the first approximation,
30
97772
1571
가정에 μ˜ν•˜λ©΄
01:39
if I can list the number of atoms that compose a human being,
31
99367
4343
μ œκ°€ μ‚¬λžŒμ„ κ΅¬μ„±ν•˜λŠ” μ›μžλ“€μ„ λ‚˜μ—΄ν•  수 μžˆλ‹€λ©΄
01:43
I can build it.
32
103734
1387
μ‚¬λžŒμ„ λ§Œλ“€ μˆ˜λ„ μžˆκ² μ§€μš”.
01:45
Now, you can run some numbers
33
105145
2029
μ—¬κΈ°μ„œ μ•½κ°„ 계산을 해보면
01:47
and that happens to be quite an astonishing number.
34
107198
3277
μ²œλ¬Έν•™μ μœΌλ‘œ 큰 μˆ˜κ°€ λ‚˜μ˜΅λ‹ˆλ‹€.
01:50
So the number of atoms,
35
110499
2757
μ•„κΈ° ν•œ λͺ…을 λ§Œλ“€κΈ° μœ„ν•΄
01:53
the file that I will save in my thumb drive to assemble a little baby,
36
113280
4755
ν•„μš”ν•œ μ›μžμ˜ 수λ₯Ό USB λ“œλΌμ΄λΈŒμ— μ €μž₯ν•˜λ©΄
01:58
will actually fill an entire Titanic of thumb drives --
37
118059
4667
λ“œλΌμ΄λΈŒλ“€λ‘œ 타이타닉 ν•œ 척을 μ±„μš°κ³ 
02:02
multiplied 2,000 times.
38
122750
2718
2,000척을 더 μ±„μšΈ 수 μžˆμŠ΅λ‹ˆλ‹€.
02:05
This is the miracle of life.
39
125957
3401
이것이 생λͺ…μ˜ μ‹ λΉ„μž…λ‹ˆλ‹€.
02:09
Every time you see from now on a pregnant lady,
40
129382
2612
μ—¬λŸ¬λΆ„λ“€μ€ μ•žμœΌλ‘œ μž„μ‚°λΆ€λ₯Ό λ³Ό λ•Œλ§ˆλ‹€
02:12
she's assembling the biggest amount of information
41
132018
2856
μš°λ¦¬κ°€ 평생 λ³Ό μ΅œλŒ€μ˜ 정보λ₯Ό κ·Έλ…€κ°€ μ²˜λ¦¬ν•˜λŠ” 것을
02:14
that you will ever encounter.
42
134898
1556
보게 λ˜λŠ” κ²ƒμž…λ‹ˆλ‹€.
02:16
Forget big data, forget anything you heard of.
43
136478
2950
λΉ…λ°μ΄ν„°λ‚˜ λ‹€λ₯Έ 것듀은 λͺ¨λ‘ μžŠμœΌμ„Έμš”.
02:19
This is the biggest amount of information that exists.
44
139452
2881
이것은 μ‘΄μž¬ν•˜λŠ” κ°€μž₯ λ§Žμ€ μ–‘μ˜ μ •λ³΄μž…λ‹ˆλ‹€.
02:22
(Applause)
45
142357
3833
(λ°•μˆ˜)
02:26
But nature, fortunately, is much smarter than a young physicist,
46
146214
4644
λ‹€ν–‰νžˆ μžμ—°μ€ μ € 같은 λ¬Όλ¦¬ν•™μžλ³΄λ‹¨ 훨씬 ν˜„λͺ…ν•΄μ„œ
02:30
and in four billion years, managed to pack this information
47
150882
3576
40μ–΅ λ…„μ˜ μ‹œκ°„μ„ λ“€μ—¬ 이 정보듀을
02:34
in a small crystal we call DNA.
48
154482
2705
DNA라 λΆˆλ¦¬λŠ” μž‘μ€ κ²°μ •μœΌλ‘œ μ••μΆ•ν–ˆμŠ΅λ‹ˆλ‹€.
02:37
We met it for the first time in 1950 when Rosalind Franklin,
49
157605
4312
처음으둜 DNAκ°€ μ•Œλ €μ§„ 것은 1950λ…„ λ†€λΌμš΄ κ³Όν•™μžμ΄μž
02:41
an amazing scientist, a woman,
50
161941
1556
μ—¬μ„±μ΄μ—ˆλ˜ 둜잘린 ν”„λž­ν΄λ¦°μ΄
02:43
took a picture of it.
51
163521
1389
사진을 μ°μ–΄μ„œμ˜€μŠ΅λ‹ˆλ‹€.
02:44
But it took us more than 40 years to finally poke inside a human cell,
52
164934
5188
ν•˜μ§€λ§Œ μ΄λ‘œλΆ€ν„° 40년이 λ„˜λŠ” μ‹œκ°„μ΄ μ§€λ‚˜μ„œμ•Ό μš°λ¦¬λŠ” 인체 μ„Έν¬μ—μ„œ
02:50
take out this crystal,
53
170146
1602
이 결정을 λΆ„λ¦¬ν•˜κ³ 
02:51
unroll it, and read it for the first time.
54
171772
3080
λΆ„μ„ν•˜μ—¬ λ‚΄μš©μ„ 읽을 수 μžˆμ—ˆμŠ΅λ‹ˆλ‹€.
02:55
The code comes out to be a fairly simple alphabet,
55
175615
3241
μ•”ν˜ΈλŠ” κ°„λ‹¨ν•˜κ²Œ μ•ŒνŒŒλ²³ 4개둜 μ΄λ£¨μ–΄μ‘ŒμŠ΅λ‹ˆλ‹€.
02:58
four letters: A, T, C and G.
56
178880
3772
A, T, C, Gλ‘œμš”.
03:02
And to build a human, you need three billion of them.
57
182676
3490
μ‚¬λžŒμ„ λ§Œλ“€κΈ° μœ„ν•΄μ„œλŠ” μ•ŒνŒŒλ²³μ΄ 30μ–΅ 개 ν•„μš”ν•©λ‹ˆλ‹€.
03:06
Three billion.
58
186933
1179
30μ–΅μž…λ‹ˆλ‹€.
03:08
How many are three billion?
59
188136
1579
λŠλ‚Œμ΄ μ˜€μ‹œλ‚˜μš”?
03:09
It doesn't really make any sense as a number, right?
60
189739
2762
숫자둜 λ§ν•˜λ‹ˆ λŠλ‚Œμ΄ μ•ˆ μ˜€μ‹œμ£ ?
03:12
So I was thinking how I could explain myself better
61
192525
4085
κ·Έλž˜μ„œ μ €λŠ” μ–΄λ–»κ²Œ ν•˜λ©΄
03:16
about how big and enormous this code is.
62
196634
3050
이 μ•”ν˜Έμ˜ κ±°λŒ€ν•¨, λ°©λŒ€ν•¨μ„ 이해할지 κ³ λ―Όν•΄λ³΄μ•˜μŠ΅λ‹ˆλ‹€.
03:19
But there is -- I mean, I'm going to have some help,
63
199708
3054
도움을 λ°›μœΌλ©΄ 방법이 있긴 ν•©λ‹ˆλ‹€.
03:22
and the best person to help me introduce the code
64
202786
3227
그리고 이에 κ°€μž₯ μ μ ˆν•œ 뢄은
03:26
is actually the first man to sequence it, Dr. Craig Venter.
65
206037
3522
졜초둜 DNA μˆœμ„œλ₯Ό λ°ν˜€λ‚Έ 크레이그 λ²€ν„° λ°•μ‚¬λ‹˜μ΄μ‹­λ‹ˆλ‹€.
03:29
So welcome onstage, Dr. Craig Venter.
66
209583
3390
μ˜¬λΌμ˜€μ„Έμš”, 크레이그 λ²€ν„° λ°•μ‚¬λ‹˜!
03:32
(Applause)
67
212997
6931
(λ°•μˆ˜)
03:39
Not the man in the flesh,
68
219952
2256
본인이 μ˜€μ‹œμ§„ μ•Šμ•˜μ§€λ§Œ
03:43
but for the first time in history,
69
223448
2345
인λ₯˜ 역사 졜초둜
03:45
this is the genome of a specific human,
70
225817
3462
ν•œ νŠΉμ •μΈμ˜ μœ μ „μž 전체λ₯Ό
03:49
printed page-by-page, letter-by-letter:
71
229303
3760
νŽ˜μ΄μ§€λ§ˆλ‹€ μ•ŒνŒŒλ²³μœΌλ‘œ μ±„μ›Œμ„œ μΈμ‡„ν•œ μ±…μž…λ‹ˆλ‹€.
03:53
262,000 pages of information,
72
233087
3996
μž₯μˆ˜λŠ” 262,000μž₯에, λ¬΄κ²ŒλŠ” 450kgμž…λ‹ˆλ‹€.
03:57
450 kilograms, shipped from the United States to Canada
73
237107
4364
λ―Έκ΅­μ—μ„œ μΊλ‚˜λ‹€κΉŒμ§€ μš΄λ°˜ν•˜λŠ” λ°μ—λŠ”
04:01
thanks to Bruno Bowden, Lulu.com, a start-up, did everything.
74
241495
4843
신진 κΈ°μ—… Lulu.com의 λΈŒλ£¨λ…Έ 보우덴 λ‹˜μ΄ κ³ μƒν•΄μ£Όμ…¨μŠ΅λ‹ˆλ‹€.
04:06
It was an amazing feat.
75
246362
1463
큰 도움을 λ°›μ•˜μŠ΅λ‹ˆλ‹€.
04:07
But this is the visual perception of what is the code of life.
76
247849
4297
이것이 λ°”λ‘œ 생λͺ…μ˜ μ•”ν˜Έλ₯Ό μ‹œκ°μ μœΌλ‘œ λ‚˜νƒ€λ‚Έ κ²ƒμž…λ‹ˆλ‹€.
04:12
And now, for the first time, I can do something fun.
77
252170
2478
이제 μ €λŠ” 역사 졜초둜 놀이λ₯Ό ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
04:14
I can actually poke inside it and read.
78
254672
2547
κΊΌλ‚΄μ„œ 아무 λΆ€λΆ„μ΄λ‚˜ μ½μ–΄λ³΄λŠ” κ±°μ£ .
04:17
So let me take an interesting book ... like this one.
79
257243
4625
μ—¬κΈ° 이 책은 μ œκ°€ μ’‹μ•„ν•˜λŠ” μ±…μž…λ‹ˆλ‹€.
04:25
I have an annotation; it's a fairly big book.
80
265077
2534
μ›Œλ‚™μ— 책이 λ°©λŒ€ν•΄μ„œ 주석도 μ’€ λ‹¬μ•˜μŠ΅λ‹ˆλ‹€.
04:27
So just to let you see what is the code of life.
81
267635
3727
생λͺ…μ˜ μ•”ν˜Έλ₯Ό 살짝 λ³΄μ—¬λ“œλ¦¬μ£ .
04:32
Thousands and thousands and thousands
82
272566
3391
λ§Žκ³ λ„ λ§Žκ³ λ„ λ§Žμ€
04:35
and millions of letters.
83
275981
2670
산더미 같은 κΈ€μžλ“€μž…λ‹ˆλ‹€.
04:38
And they apparently make sense.
84
278675
2396
그리고 λͺ¨λ“  뢀뢄은 μ˜λ―Έκ°€ μžˆμ–΄μš”.
04:41
Let's get to a specific part.
85
281095
1757
이 뢀뢄을 ν•œ 번 λ΄…μ‹œλ‹€.
04:43
Let me read it to you:
86
283571
1362
μ œκ°€ μ½μ–΄λ“œλ¦΄κ²Œμš”.
04:44
(Laughter)
87
284957
1021
(μ›ƒμŒ)
04:46
"AAG, AAT, ATA."
88
286002
4006
"AAG, AAT, ATA."
04:50
To you it sounds like mute letters,
89
290965
2067
κ·Έλƒ₯ κΈ€μžμ˜ λ°°μ—΄λ‘œ λ“€λ¦¬μ‹œκ² μ§€λ§Œ
04:53
but this sequence gives the color of the eyes to Craig.
90
293056
4041
이 뢀뢄은 크레이그의 λˆˆμ— 색깔을 λΆ€μ—¬ν•©λ‹ˆλ‹€.
04:57
I'll show you another part of the book.
91
297633
1932
λ‹€λ₯Έ 뢀뢄도 λ³΄μ—¬λ“œλ¦¬μ§€μš”.
04:59
This is actually a little more complicated.
92
299589
2094
이 κ΅¬μ ˆμ€ 쑰금 더 λ³΅μž‘ν•©λ‹ˆλ‹€.
05:02
Chromosome 14, book 132:
93
302983
2647
132ꢌ, 염색체 14의 λ‚΄μš©μž…λ‹ˆλ‹€.
05:05
(Laughter)
94
305654
2090
(μ›ƒμŒ)
05:07
As you might expect.
95
307768
1277
μ˜ˆμƒν•˜μ‹  뢄도 κ³„μ‹œκ² μ£ .
05:09
(Laughter)
96
309069
3466
(μ›ƒμŒ)
05:14
"ATT, CTT, GATT."
97
314857
4507
"ATT, CTT, GATT."
05:20
This human is lucky,
98
320329
1687
이 μ‚¬λžŒμ€ 운이 μ’‹μŠ΅λ‹ˆλ‹€.
05:22
because if you miss just two letters in this position --
99
322040
4517
μ™œλƒλ©΄ 이 λΆ€λΆ„μ—μ„œ 두 자만 빠지면
05:26
two letters of our three billion --
100
326581
1877
30μ–΅ μžμ—μ„œ 두 자만 빠져도
05:28
he will be condemned to a terrible disease:
101
328482
2019
낭포성 μ„¬μœ μ¦μ΄λž€ λ”μ°ν•œ μ§ˆλ³‘μ— 걸리기 λ•Œλ¬Έμž…λ‹ˆλ‹€.
05:30
cystic fibrosis.
102
330525
1440
05:31
We have no cure for it, we don't know how to solve it,
103
331989
3413
μΉ˜λ£Œλ²•λ„ μ—†κ³  해결법도 λͺ¨λ¦…λ‹ˆλ‹€.
05:35
and it's just two letters of difference from what we are.
104
335426
3755
λͺ¨λ‘ 두 자의 차이만으둜 μƒκΈ°λŠ” μΌμž…λ‹ˆλ‹€.
05:39
A wonderful book, a mighty book,
105
339585
2705
맀혹적이고, κ°•λ ¬ν•œ μ±…μ΄μ§€μš”.
05:43
a mighty book that helped me understand
106
343115
1998
μ œκ°€ 생λͺ…을 μ΄ν•΄ν•˜λŠ” 것을 돕고
05:45
and show you something quite remarkable.
107
345137
2753
μ—¬λŸ¬λΆ„κ»˜ μ•Œλ €λ“œλ¦¬κ²Œ ν•΄μ€€ μ±…μž…λ‹ˆλ‹€.
05:48
Every one of you -- what makes me, me and you, you --
108
348480
4435
우리 λͺ¨λ‘λ₯Ό μ €λŠ” μ €λ‘œ, μ—¬λŸ¬λΆ„μ€ μ—¬λŸ¬λΆ„μœΌλ‘œ λ§Œλ“œλŠ” 뢀뢄은
05:52
is just about five million of these,
109
352939
2954
500만 κΈ€μžλ‘œ ν•œκΆŒμ˜ 절반 μ •λ„μž…λ‹ˆλ‹€.
05:55
half a book.
110
355917
1228
05:58
For the rest,
111
358015
1663
μ±…μ˜ λ‚˜λ¨Έμ§€ 뢀뢄은 μ •ν™•νžˆ κ°™μŠ΅λ‹ˆλ‹€.
05:59
we are all absolutely identical.
112
359702
2562
06:03
Five hundred pages is the miracle of life that you are.
113
363008
4018
μ—¬λŸ¬λΆ„μ„ λ§Œλ“œλŠ” 기적은 단 500νŽ˜μ΄μ§€ μ•ˆμ—μ„œ λ²Œμ–΄μ§‘λ‹ˆλ‹€.
06:07
The rest, we all share it.
114
367050
2531
λ‚˜λ¨Έμ§€λŠ” λ˜‘κ°™μ΄ μΌμΉ˜ν•©λ‹ˆλ‹€.
06:09
So think about that again when we think that we are different.
115
369605
2909
κ·ΈλŸ¬λ‹ˆ μ„œλ‘œκ°€ λ‹€λ₯΄λ‹€λŠ” 생각이 λ“€ λ•Œ λ– μ˜¬λ¦¬μ‹­μ‹œμ˜€.
06:12
This is the amount that we share.
116
372538
2221
μš°λ¦¬λŠ” μ΄λ§ŒνΌμ΄λ‚˜ κ°™μŠ΅λ‹ˆλ‹€.
06:15
So now that I have your attention,
117
375441
3429
ν₯λ―Έκ°€ 생긴 뢄이 λ§Žμ•„μ§„ 것 κ°™κ΅°μš”.
06:18
the next question is:
118
378894
1359
λ‹€μŒ λ¬Έμ œλŠ” 이 책을 μ–΄λ–»κ²Œ μ½λŠλƒμž…λ‹ˆλ‹€.
06:20
How do I read it?
119
380277
1151
06:21
How do I make sense out of it?
120
381452
1509
μ–΄λ–»κ²Œ 이해해야 ν• κΉŒμš”?
06:23
Well, for however good you can be at assembling Swedish furniture,
121
383409
4240
μ—¬λŸ¬λΆ„μ΄ μŠ€μ›¨λ΄μ‚° 가ꡬλ₯Ό μ–Όλ§ˆλ‚˜ 잘 μ‘°λ¦½ν•˜λŠ”μ§€μ™€ 상관없이
06:27
this instruction manual is nothing you can crack in your life.
122
387673
3563
이것은 일생을 바쳐도 ν’€ 수 없을 κ²λ‹ˆλ‹€.
06:31
(Laughter)
123
391260
1603
(μ›ƒμŒ)
06:32
And so, in 2014, two famous TEDsters,
124
392887
3112
κ·Έλž˜μ„œ 2014λ…„ 유λͺ…ν•œ TED κ°•μ—°μžμ΄μ‹ 
06:36
Peter Diamandis and Craig Venter himself,
125
396023
2540
ν”Όν„° λ‹€μ΄μ•„λ§¨λ””μŠ€μ™€ 크레이그 λ²€ν„°λŠ”
06:38
decided to assemble a new company.
126
398587
1927
νšŒμ‚¬λ₯Ό μ„€λ¦½ν•˜κΈ°λ‘œ ν–ˆμŠ΅λ‹ˆλ‹€.
06:40
Human Longevity was born,
127
400538
1412
β€˜Human Longevityβ€™λŠ” ν•œ λͺ©μ  λ§Œμ„ μœ„ν•΄ μƒκ²ΌμŠ΅λ‹ˆλ‹€.
06:41
with one mission:
128
401974
1370
06:43
trying everything we can try
129
403368
1861
ν•„μš”ν•œ λͺ¨λ“  μˆ˜λ‹¨μ„ μ΄μš©ν•˜μ—¬
06:45
and learning everything we can learn from these books,
130
405253
2759
이 μ±…μ—μ„œ κ°€λŠ₯ν•œ ν•œ λͺ¨λ“  것을 λ°°μš°λŠ” κ²ƒμž…λ‹ˆλ‹€.
06:48
with one target --
131
408036
1705
λ§žμΆ€ν˜• μ˜μ•½μ˜ ν˜„μ‹€ν™”λž€ ν•œ λͺ©μ μ„ μœ„ν•΄μ„œμš”.
06:50
making real the dream of personalized medicine,
132
410862
2801
06:53
understanding what things should be done to have better health
133
413687
3767
이λ₯Ό μœ„ν•΄ 인λ₯˜μ˜ 건강을 μœ„ν•œ 과제λ₯Ό μ°Ύκ³ 
06:57
and what are the secrets in these books.
134
417478
2283
책에 μˆ¨κ²¨μ§„ 비밀을 μ°ΎλŠ” κ²ƒμž…λ‹ˆλ‹€.
07:00
An amazing team, 40 data scientists and many, many more people,
135
420329
4250
저희 νŒ€μ€ 40λͺ…μ˜ 데이터 κ³Όν•™μžμ™€ 더 λ§Žμ€ μ‚¬λžŒμœΌλ‘œ μ΄λ£¨μ–΄μ‘ŒμŠ΅λ‹ˆλ‹€.
07:04
a pleasure to work with.
136
424603
1350
λͺ¨λ‘ 쑴경슀러운 뢄듀이죠.
07:05
The concept is actually very simple.
137
425977
2253
μ €ν¬μ˜ 접근법은 사싀 ꡉμž₯히 κ°„λ‹¨ν•©λ‹ˆλ‹€.
07:08
We're going to use a technology called machine learning.
138
428254
3158
μ €ν¬λŠ” 기계 ν•™μŠ΅μ΄λΌλŠ” κΈ°μˆ μ„ μ‚¬μš©ν•©λ‹ˆλ‹€.
07:11
On one side, we have genomes -- thousands of them.
139
431436
4539
λ¨Όμ € μœ μ „μžλ₯Ό 수천 개 μ±„μ·¨ν•˜κ³ 
07:15
On the other side, we collected the biggest database of human beings:
140
435999
3997
λ™μ‹œμ— 인간에 κ΄€ν•œ λͺ¨λ“  정보λ₯Ό μ‘°μ‚¬ν•©λ‹ˆλ‹€.
07:20
phenotypes, 3D scan, NMR -- everything you can think of.
141
440020
4296
ν‘œν˜„ν˜•, 3D μŠ€μΊ”, NMR을 ν¬ν•¨ν•œ λͺ¨λ“  κ²ƒμ„μš”.
07:24
Inside there, on these two opposite sides,
142
444340
2899
이 두 개 사이에 μœ μ „μžλ₯Ό 읽기 μœ„ν•œ 비밀이 있겠죠.
07:27
there is the secret of translation.
143
447263
2442
07:29
And in the middle, we build a machine.
144
449729
2472
그리고 이 λ‹¨κ³„μ—μ„œ 기계가 μ‚¬μš©λ©λ‹ˆλ‹€.
07:32
We build a machine and we train a machine --
145
452801
2385
기계λ₯Ό λ§Œλ“€κ³ , ν›ˆλ ¨ν•©λ‹ˆλ‹€.
07:35
well, not exactly one machine, many, many machines --
146
455210
3210
ν•œ κ°œκ°€ μ•„λ‹Œ μ—„μ²­λ‚œ 수의 기계듀을
07:38
to try to understand and translate the genome in a phenotype.
147
458444
4544
μœ μ „μžμ˜ λ‚΄μš©μœΌλ‘œλΆ€ν„° ν‘œν˜„ν˜•μ„ 찾도둝 ν›ˆλ ¨ν•©λ‹ˆλ‹€.
07:43
What are those letters, and what do they do?
148
463362
3340
각 DNA μ•ŒνŒŒλ²³μ€ 무엇이고 μ–΄λ–€ 역할을 ν•˜λŠ”μ§€ μ‘°μ‚¬ν•˜λ„λ‘ 말이죠.
07:46
It's an approach that can be used for everything,
149
466726
2747
기계 ν•™μŠ΅μ€ λͺ¨λ“  λΆ„μ•Όμ—μ„œ μ‚¬μš©λ˜μ§€λ§Œ,
07:49
but using it in genomics is particularly complicated.
150
469497
2993
μœ μ „μ²΄ν•™μ—μ„œ μ‚¬μš©ν•˜λŠ” 것은 특히 μ–΄λ ΅μŠ΅λ‹ˆλ‹€.
07:52
Little by little we grew and we wanted to build different challenges.
151
472514
3276
μ‘°κΈˆμ”© μ„±κ³Όλ₯Ό λ‚΄λ©΄μ„œ μ €ν¬λŠ” κ³Όμ œλ“€μ„ ν™•μž₯ν•΄κ°”μŠ΅λ‹ˆλ‹€.
07:55
We started from the beginning, from common traits.
152
475814
2732
λ¨Όμ € μΈκ°„μ˜ 일반적 νŠΉμ§•λΆ€ν„° ν•΄λ…ν–ˆμŠ΅λ‹ˆλ‹€.
07:58
Common traits are comfortable because they are common,
153
478570
2603
일반적 νŠΉμ§•μ€ λͺ¨λ‘κ°€ 가진 νŠΉμ§•μ΄μ–΄μ„œ
08:01
everyone has them.
154
481197
1184
닀루기 νŽΈν•΄μ„œμ΄μ£ .
08:02
So we started to ask our questions:
155
482405
2494
κ³Όμ œλ“€μ€ λ‹€μŒκ³Ό κ°™μ•˜μŠ΅λ‹ˆλ‹€.
08:04
Can we predict height?
156
484923
1380
ν‚€λ₯Ό μ˜ˆμΈ‘ν•  수 μžˆμ„κΉŒ?
08:06
Can we read the books and predict your height?
157
486985
2177
이 μ±…μ—μ„œ μ‚¬λžŒμ˜ ν‚€λ₯Ό μ•Œ 수 μžˆμ„κΉŒ?
08:09
Well, we actually can,
158
489186
1151
정말 κ°€λŠ₯ν•œ μΌμ΄λ”κ΅°μš”.
08:10
with five centimeters of precision.
159
490361
1793
5cm μ˜€μ°¨λ‘œμš”.
08:12
BMI is fairly connected to your lifestyle,
160
492178
3135
μ²΄μ§ˆλŸ‰μ§€μˆ˜λŠ” μƒν™œμŠ΅κ΄€μ— μ’Œμš°λ©λ‹ˆλ‹€λ§Œ
08:15
but we still can, we get in the ballpark, eight kilograms of precision.
161
495337
3864
μ—¬μ „νžˆ 8kg 였차둜 μ–ΌμΆ” λ§žλ”κ΅°μš”.
08:19
Can we predict eye color?
162
499225
1231
눈 색깔도 μ•ŒκΉŒμš”?
08:20
Yeah, we can.
163
500480
1158
κ°€λŠ₯ν•©λ‹ˆλ‹€. 80%λ‘œμš”.
08:21
Eighty percent accuracy.
164
501662
1324
08:23
Can we predict skin color?
165
503466
1858
ν”ΌλΆ€ μƒ‰κΉ”μ€μš”?
08:25
Yeah we can, 80 percent accuracy.
166
505348
2441
μ—­μ‹œ 80%둜 κ°€λŠ₯ν•©λ‹ˆλ‹€.
08:27
Can we predict age?
167
507813
1340
λ‚˜μ΄λ„ λ κΉŒμš”?
08:30
We can, because apparently, the code changes during your life.
168
510121
3739
κ·ΈλŸΌμš”. 세월이 μ§€λ‚˜λ©΄μ„œ μ•”ν˜Έκ°€ λ°”λ€Œκ±°λ“ μš”.
08:33
It gets shorter, you lose pieces, it gets insertions.
169
513884
3282
짧아지고, λ‚΄μš©μ΄ 빠지고, 듀어가기도 ν•˜μ§€μš”.
08:37
We read the signals, and we make a model.
170
517190
2555
이런 징후λ₯Ό μ°Ύμ•„μ„œ λͺ¨λΈν™”ν•˜λ©΄ κ°€λŠ₯ν•©λ‹ˆλ‹€.
08:40
Now, an interesting challenge:
171
520438
1475
이제 μž¬λ°ŒλŠ” λ‚΄μš©μ΄ λ‚˜μ˜΅λ‹ˆλ‹€.
08:41
Can we predict a human face?
172
521937
1729
μ‚¬λžŒμ˜ 얼꡴을 μ•Œ 수 μžˆμ„κΉŒμš”?
08:45
It's a little complicated,
173
525014
1278
이 κ³Όμ œκ°€ μ–΄λ €μš΄ μ΄μœ λŠ”
08:46
because a human face is scattered among millions of these letters.
174
526316
3191
얼꡴을 μ΄λ£¨λŠ” 뢀뢄이 μ±… 곳곳에 퍼져있기 λ•Œλ¬Έμž…λ‹ˆλ‹€.
08:49
And a human face is not a very well-defined object.
175
529531
2629
μ–Όκ΅΄μ΄λž€ κ°œλ… μžμ²΄κ°€ λͺ…ν™•ν•˜μ§€ μ•ŠκΈ°λ„ ν•˜κ³ μš”.
08:52
So, we had to build an entire tier of it
176
532184
2051
κ·Έλž˜μ„œ λ¨Όμ € 얼꡴을 μ •μ˜ν•΄μ„œ
08:54
to learn and teach a machine what a face is,
177
534259
2710
기계에 κ°€λ₯΄μΉ˜κ³ 
08:56
and embed and compress it.
178
536993
2037
μ½”λ”©, μ••μΆ•ν•˜λŠ” 일을 λͺ¨λ‘ ν•΄μ•Ό ν–ˆμŠ΅λ‹ˆλ‹€.
08:59
And if you're comfortable with machine learning,
179
539054
2248
기계 ν•™μŠ΅μ„ 잘 μ•„μ‹œλŠ” λΆ„μ΄μ‹œλ©΄
09:01
you understand what the challenge is here.
180
541326
2284
이 과정이 μ–Όλ§ˆλ‚˜ νž˜λ“€μ§€ μ•„μ‹€ κ²λ‹ˆλ‹€.
09:04
Now, after 15 years -- 15 years after we read the first sequence --
181
544108
5991
그리고 인λ₯˜κ°€ DNA 배열을 μ•Œμ•„λ‚Έ 지 15년이 μ§€λ‚˜μ„œ
09:10
this October, we started to see some signals.
182
550123
2902
μ˜¬ν•΄ 10μ›”λΆ€ν„° μ‹€λ§ˆλ¦¬κ°€ 보이기 μ‹œμž‘ν–ˆμŠ΅λ‹ˆλ‹€.
09:13
And it was a very emotional moment.
183
553049
2455
μ•„μ£Ό 감동적인 μˆœκ°„μ΄μ—ˆμŠ΅λ‹ˆλ‹€.
09:15
What you see here is a subject coming in our lab.
184
555528
3745
이 얼꡴은 우리 연ꡬ원 ν•œ λͺ…μ˜ μ–Όκ΅΄μž…λ‹ˆλ‹€.
09:19
This is a face for us.
185
559619
1928
κΈ°κ³„λ‘œ μ˜ˆμΈ‘ν•΄μ•Ό ν•  얼꡴이죠.
09:21
So we take the real face of a subject, we reduce the complexity,
186
561571
3631
μ‹€μ œ 사진을 찍고 λ‹¨μˆœν™” 과정을 쑰금 κ±°μ³€μŠ΅λ‹ˆλ‹€.
09:25
because not everything is in your face --
187
565226
1970
얼꡴에 μžˆλŠ” λ§Žμ€ νŠΉμ§•, 흠, λΉ„λŒ€μΉ­ ꡬ쑰가
09:27
lots of features and defects and asymmetries come from your life.
188
567220
3786
생후에 생긴 것이기 λ•Œλ¬Έμ΄μ£ .
09:31
We symmetrize the face, and we run our algorithm.
189
571030
3469
얼꡴을 λŒ€μΉ­ ꡬ쑰둜 νŽΈμ§‘ν•œ ν›„ μ•Œκ³ λ¦¬μ¦˜μ„ μ‹€ν–‰ν•©λ‹ˆλ‹€.
09:35
The results that I show you right now,
190
575245
1898
μ§€κΈˆ λ³΄μ—¬λ“œλ¦¬λŠ” μ΄λ―Έμ§€λŠ”
09:37
this is the prediction we have from the blood.
191
577167
3372
ν˜ˆμ•‘μ—μ„œ 얼꡴을 μ˜ˆμƒν•œ κ²°κ³Όμž…λ‹ˆλ‹€.
09:41
(Applause)
192
581596
1524
(λ°•μˆ˜)
09:43
Wait a second.
193
583144
1435
μž μ‹œλ§Œμš”.
09:44
In these seconds, your eyes are watching, left and right, left and right,
194
584603
4692
μ—¬λŸ¬λΆ„λ“€μ€ μ§€κΈˆ 두 이미지λ₯Ό 쒌우둜 λ²ˆκ°ˆμ•„ λ³΄λ©΄μ„œ
09:49
and your brain wants those pictures to be identical.
195
589319
3930
μ†μœΌλ‘œ 두 사진이 λ‹Ήμ—°νžˆ 같을 것이라 μ—¬κΈΈ 수 μžˆμŠ΅λ‹ˆλ‹€.
09:53
So I ask you to do another exercise, to be honest.
196
593273
2446
μ €λŠ” μ—¬λŸ¬λΆ„μ΄ μ •μ§ν•˜κ²Œ λ³΄μ‹œκΈΈ λ°”λžλ‹ˆλ‹€.
09:55
Please search for the differences,
197
595743
2287
차이점듀을 μ°Ύμ•„λ³΄μ‹œκΈ° λ°”λžλ‹ˆλ‹€.
09:58
which are many.
198
598054
1361
09:59
The biggest amount of signal comes from gender,
199
599439
2603
λΉ„μŠ·ν•œμ§€λ₯Ό νŒλ‹¨ν•˜λŠ” 기쀀은 성별,
10:02
then there is age, BMI, the ethnicity component of a human.
200
602066
5201
λ‚˜μ΄, μ²΄μ§ˆλŸ‰μ§€μˆ˜, λ―Όμ‘±μ„±μœΌλ‘œ 크게 λ‚˜λ‰˜κ² μ£ .
10:07
And scaling up over that signal is much more complicated.
201
607291
3711
κ·Έ μ‚¬μ΄μ—μ„œ μ€‘μš”λ„λ₯Ό λ”°μ§€λŠ” 것은 더 λ³΅μž‘ν•  κ²ƒμž…λ‹ˆλ‹€.
10:11
But what you see here, even in the differences,
202
611026
3250
ν•˜μ§€λ§Œ 차이듀을 생각해도 κ²°κ³Όλ₯Ό λ³΄μ‹œλ©΄
10:14
lets you understand that we are in the right ballpark,
203
614300
3595
저희가 λͺ©ν‘œλ‘œ μ œλŒ€λ‘œ κ°€κ³  있고
10:17
that we are getting closer.
204
617919
1348
근접해감을 μ•„μ‹€ κ²λ‹ˆλ‹€.
10:19
And it's already giving you some emotions.
205
619291
2349
감동을 ν•˜μ‹  뢄도 계싀 κ²ƒμž…λ‹ˆλ‹€.
10:21
This is another subject that comes in place,
206
621664
2703
λ‹€λ₯Έ μ‹€ν—˜λŒ€μƒμ˜ 사진과 μ˜ˆμƒκ²°κ³Όμž…λ‹ˆλ‹€.
10:24
and this is a prediction.
207
624391
1409
10:25
A little smaller face, we didn't get the complete cranial structure,
208
625824
4596
얼꡴이 μ’€ μž‘κ²Œ λ‚˜μ™”κ³  두상이 μ™„μ „ν•˜μ§€λŠ” μ•Šμ§€λ§Œ
10:30
but still, it's in the ballpark.
209
630444
2651
μ—¬μ „νžˆ λŒ€μ²΄λ‘œ κ°™μŠ΅λ‹ˆλ‹€.
10:33
This is a subject that comes in our lab,
210
633634
2224
λ‹€λ₯Έ μ—°κ΅¬μ›μ˜ 사진과 μ˜ˆμƒκ²°κ³Όμž…λ‹ˆλ‹€.
10:35
and this is the prediction.
211
635882
1443
10:38
So these people have never been seen in the training of the machine.
212
638056
4676
μ €ν¬λŠ” 기계λ₯Ό ν›ˆλ ¨ν•˜λ©΄μ„œ 이 얼꡴듀을 보여주지 μ•Šμ•˜μŠ΅λ‹ˆλ‹€.
10:42
These are the so-called "held-out" set.
213
642756
2837
μ΄λ ‡κ²Œ ν…ŒμŠ€νŠΈμ™€ ν›ˆλ ¨μ΄ λΆ„λ¦¬λœ 것을 β€œν—¬λ“œ 아웃”이라 ν•©λ‹ˆλ‹€.
10:45
But these are people that you will probably never believe.
214
645617
3740
ν•˜μ§€λ§Œ λͺ¨λ₯΄λŠ” μ‚¬λžŒλ“€μ˜ μ–Όκ΅΄λ§Œ λ΄μ„œλŠ” 믿음이 μ•ˆ κ°€μ‹œκ² μ£ .
10:49
We're publishing everything in a scientific publication,
215
649381
2676
μ €ν¬λŠ” 저널에 관련정보λ₯Ό λͺ¨λ‘ κΈ°κ³ ν•˜κ³  μžˆμœΌλ‹ˆ
10:52
you can read it.
216
652081
1151
읽어보싀 수 μžˆμŠ΅λ‹ˆλ‹€.
10:53
But since we are onstage, Chris challenged me.
217
653256
2344
κ·Έλž˜μ„œ ν¬λ¦¬μŠ€κ°€ 제게 μ œμ•ˆμ„ ν•˜λ”κ΅°μš”.
10:55
I probably exposed myself and tried to predict
218
655624
3626
κ°•μ—°μ—μ„œ μ—¬λŸ¬λΆ„μ΄ μ•„λŠ” μ‚¬λžŒμ˜ 뢄석 κ²°κ³Όλ₯Ό λΉ„κ΅ν•΄λ³΄λΌκ³ μš”.
10:59
someone that you might recognize.
219
659274
2831
11:02
So, in this vial of blood -- and believe me, you have no idea
220
662470
4425
자, μ—¬κΈ° ν˜ˆμ•‘ ν•œ 병이 있고
μ§€κΈˆ μ—¬λŸ¬λΆ„μ€ 이게 λˆ„κ΅¬ 것인지 μ „ν˜€ λͺ¨λ₯΄μ‹­λ‹ˆλ‹€.
11:06
what we had to do to have this blood now, here --
221
666919
2880
11:09
in this vial of blood is the amount of biological information
222
669823
3901
이 ν•œ λ³‘μ—λŠ” 저희가 μœ μ „μž 뢄석을
11:13
that we need to do a full genome sequence.
223
673748
2277
μ™„λ²½ν•˜κ²Œ ν•  수 μžˆλŠ” μ–‘μ˜ 생물학적 정보가 μžˆμŠ΅λ‹ˆλ‹€.
11:16
We just need this amount.
224
676049
2070
이 양이면 μΆ©λΆ„ν•©λ‹ˆλ‹€.
11:18
We ran this sequence, and I'm going to do it with you.
225
678528
3205
뢄석 κ²°κ³Όλ₯Ό μ—¬λŸ¬λΆ„κ»˜ λ³΄μ—¬λ“œλ¦¬κ² μŠ΅λ‹ˆλ‹€.
11:21
And we start to layer up all the understanding we have.
226
681757
3979
결과듀을 ν•˜λ‚˜μ”© μ‚΄νŽ΄λ΄…μ‹œλ‹€.
11:25
In the vial of blood, we predicted he's a male.
227
685760
3350
ν˜ˆμ•‘μ—μ„œ λŒ€μƒμ΄ 남성일 것이라 μ˜ˆμƒν–ˆμŠ΅λ‹ˆλ‹€.
11:29
And the subject is a male.
228
689134
1364
λ§žμ•„μš”. 남성이죠.
11:30
We predict that he's a meter and 76 cm.
229
690996
2438
ν‚€λ₯Ό 1m 76cm라 μ˜ˆμƒν–ˆλ„€μš”.
11:33
The subject is a meter and 77 cm.
230
693458
2392
μ‹€μ œ λŒ€μƒμ€ 1m 77cmμ—μš”.
11:35
So, we predicted that he's 76; the subject is 82.
231
695874
4110
μ˜ˆμƒμ€ 76kgμ΄μ—ˆκ³  μ‹€μ œλŠ” 82kgμ—μš”.
11:40
We predict his age, 38.
232
700701
2632
λ‚˜μ΄λŠ” 38μ„Έλ‘œ λ‚˜μ™”κ΅°μš”.
11:43
The subject is 35.
233
703357
1904
사싀은 35μ„Έμ£ .
11:45
We predict his eye color.
234
705851
2124
눈의 색깔 μ˜ˆμƒ κ²°κ³Όμž…λ‹ˆλ‹€.
11:48
Too dark.
235
708824
1211
μ’€ μ–΄λ‘‘λ„€μš”.
11:50
We predict his skin color.
236
710059
1555
μ˜ˆμƒν•œ ν”ΌλΆ€μƒ‰μž…λ‹ˆλ‹€.
11:52
We are almost there.
237
712026
1410
거의 κ·Όμ ‘ν–ˆλ„€μš”.
11:53
That's his face.
238
713899
1373
μ˜ˆμƒν•œ μ–Όκ΅΄μž…λ‹ˆλ‹€.
11:57
Now, the reveal moment:
239
717172
3269
이제 정닡을 κ³΅κ°œν•©λ‹ˆλ‹€.
12:00
the subject is this person.
240
720465
1770
λŒ€μƒμ€ 이 μ‚¬λžŒμ΄μ—ˆμŠ΅λ‹ˆλ‹€.
12:02
(Laughter)
241
722259
1935
(μ›ƒμŒ)
12:04
And I did it intentionally.
242
724218
2058
μ €λ₯Ό νƒν•œ 건 μ˜λ„μ μ΄μ—ˆμŠ΅λ‹ˆλ‹€.
12:06
I am a very particular and peculiar ethnicity.
243
726300
3692
λ¨Όμ € μ €λŠ” 맀우 νŠΉλ³„ν•œ 민쑱에 μ†ν•΄μžˆμŠ΅λ‹ˆλ‹€.
12:10
Southern European, Italians -- they never fit in models.
244
730016
2950
λ‚¨μœ λŸ½, μ΄νƒˆλ¦¬μ•„μΈμ€ λͺ¨λΈμ— 잘 λ§žμ§€ μ•ŠμŠ΅λ‹ˆλ‹€.
12:12
And it's particular -- that ethnicity is a complex corner case for our model.
245
732990
5130
λ‚¨μœ λŸ½μΈμ€ 저희 λͺ¨λΈμ˜ λ‚œμ  쀑 ν•˜λ‚˜μž…λ‹ˆλ‹€.
12:18
But there is another point.
246
738144
1509
λ‹€λ₯Έ μ΄μœ λ„ μžˆμŠ΅λ‹ˆλ‹€.
12:19
So, one of the things that we use a lot to recognize people
247
739677
3477
사싀 저희가 μ‚¬λžŒμ„ μ•Œμ•„λ³Ό λ•ŒλŠ”
12:23
will never be written in the genome.
248
743178
1722
μœ μ „μžμ˜ 배열을 κ³ λ €ν•˜μ§„ μ•Šμ£ .
12:24
It's our free will, it's how I look.
249
744924
2317
λ°”λ‘œ λ³΄μ΄λŠ” κ·ΈλŒ€λ‘œ νŒλ‹¨ν•˜μ£ .
12:27
Not my haircut in this case, but my beard cut.
250
747265
3229
제 κ²½μš°μ—” 제 νŠΉμ΄ν•œ μˆ˜μ—Όμ— μ§‘μ€‘ν•˜κ²Œ 되죠.
12:30
So I'm going to show you, I'm going to, in this case, transfer it --
251
750518
3553
κ·Έλž˜μ„œ 쑰금 이미지λ₯Ό νŽΈμ§‘ν•΄μ„œ λ³΄μ—¬λ“œλ¦¬κ² μŠ΅λ‹ˆλ‹€.
12:34
and this is nothing more than Photoshop, no modeling --
252
754095
2765
별건 μ•„λ‹ˆκ³  ν¬ν† μƒ΅μœΌλ‘œ μž‘μ—…ν•΄μ„œ
12:36
the beard on the subject.
253
756884
1713
μˆ˜μ—Όμ„ ν•©μ„±ν•œ κ²λ‹ˆλ‹€.
12:38
And immediately, we get much, much better in the feeling.
254
758621
3472
ν•œμˆœκ°„μ— 훨씬 더 λΉ„μŠ·ν•˜κ²Œ λ³€ν–ˆμ£ .
12:42
So, why do we do this?
255
762955
2709
μ €ν¬λŠ” μ™œ 이런 일을 ν• κΉŒμš”?
12:47
We certainly don't do it for predicting height
256
767938
5140
ν˜ˆμ•‘μœΌλ‘œλΆ€ν„° ν‚€λ₯Ό μ˜ˆμΈ‘ν•˜κ±°λ‚˜
12:53
or taking a beautiful picture out of your blood.
257
773102
2372
λ†€λΌμš΄ 사진을 λ§Œλ“€κΈ° μœ„ν•΄μ„  μ•„λ‹™λ‹ˆλ‹€.
12:56
We do it because the same technology and the same approach,
258
776390
4018
κ·Έ μ΄μœ λŠ” 이 κ³Όμ •κ³Ό 같은 기술과 접근법을 가지고
13:00
the machine learning of this code,
259
780432
2520
같은 기계 ν•™μŠ΅ μ½”λ“œλ‘œ
13:02
is helping us to understand how we work,
260
782976
3137
μ–΄λ–»κ²Œ μš°λ¦¬κ°€ μž‘λ™ν•˜λŠ”μ§€
13:06
how your body works,
261
786137
1486
μ–΄λ–»κ²Œ λͺΈμ΄ μž‘λ™ν•˜κ³ 
13:07
how your body ages,
262
787647
1665
μ–΄λ–»κ²Œ λ‚˜μ΄κ°€ λ“€κ³ 
13:09
how disease generates in your body,
263
789336
2769
μ–΄λ–»κ²Œ 병이 λ“€κ³ 
13:12
how your cancer grows and develops,
264
792129
2972
μ–΄λ–»κ²Œ 암이 퍼지고
13:15
how drugs work
265
795125
1783
약이 μ–΄λ–»κ²Œ λͺΈμ— μž‘μš©ν•˜λŠ”μ§€ μ•Œ 수 있기 λ•Œλ¬Έμž…λ‹ˆλ‹€.
13:16
and if they work on your body.
266
796932
2314
13:19
This is a huge challenge.
267
799713
1667
이건 λͺΉμ‹œ μ–΄λ €μš΄ κ³Όμ œμž…λ‹ˆλ‹€.
13:21
This is a challenge that we share
268
801894
1638
이 κ³Όμ œλŠ” 세계 μ „μ—­μ—μ„œ
13:23
with thousands of other researchers around the world.
269
803556
2579
수천 λͺ…이 ν•¨κ»˜ 닡을 μ°Ύκ³  μžˆμŠ΅λ‹ˆλ‹€.
13:26
It's called personalized medicine.
270
806159
2222
λ§žμΆ€ν˜• μ˜μ•½μ΄λΌλŠ” κ³Όμ œμž…λ‹ˆλ‹€.
13:29
It's the ability to move from a statistical approach
271
809125
3460
이것은 μ˜μ•½μ˜ 톡계적인 μ ‘κ·Όμ—μ„œ, λ§ν•˜μžλ©΄
13:32
where you're a dot in the ocean,
272
812609
2032
μ—¬λŸ¬λΆ„ 각각은 μž‘μ€ 의미뿐인 λ°©λ²•μ—μ„œ
13:34
to a personalized approach,
273
814665
1813
κ°œκ°œμΈμ— 맞좘 μ ‘κ·ΌμœΌλ‘œ
13:36
where we read all these books
274
816502
2185
이 책에 쓰인 λ‚΄μš©μ„ ν† λŒ€λ‘œ
13:38
and we get an understanding of exactly how you are.
275
818711
2864
μš°λ¦¬κ°€ μ •ν™•νžˆ μ—¬λŸ¬λΆ„μ˜ μƒνƒœλ₯Ό μ΄ν•΄ν•˜λŠ” λŠ₯λ ₯인 κ²ƒμž…λ‹ˆλ‹€.
13:42
But it is a particularly complicated challenge,
276
822260
3362
이 과정은 맀우 λ³΅μž‘ν•©λ‹ˆλ‹€.
13:45
because of all these books, as of today,
277
825646
3998
μ‹€μ œλ‘œ λͺ¨λ“  μ±…μ—μ„œ μ˜€λŠ˜κΉŒμ§€ μš°λ¦¬κ°€ μ΄ν•΄ν•˜λŠ” 뢀뢄은
13:49
we just know probably two percent:
278
829668
2642
2%에 λΆˆκ³Όν•©λ‹ˆλ‹€.
13:53
four books of more than 175.
279
833027
3653
175ꢌ 쀑 4ꢌ λΆ„λŸ‰μ΄μ£ .
13:58
And this is not the topic of my talk,
280
838021
3206
μ΄λŠ” μ œκ°€ ν•˜κ³ μ‹Άμ€ μ΄μ•ΌκΈ°λŠ” μ•„λ‹ˆμ§€λ§Œ
14:02
because we will learn more.
281
842145
2598
μ•žμœΌλ‘œ μ—°κ΅¬ν•˜λ©΄μ„œ 더 μ•Œκ²Œ 될 κ²ƒμž…λ‹ˆλ‹€.
14:05
There are the best minds in the world on this topic.
282
845378
2669
세계 졜고의 석학듀이 μ—°κ΅¬ν•˜κ³  μžˆμŠ΅λ‹ˆλ‹€.
14:09
The prediction will get better,
283
849048
1834
μ˜ˆμƒμ€ 더 잘 맞고
14:10
the model will get more precise.
284
850906
2253
λͺ¨λΈμ€ 더 μ •ν™•ν•΄μ§ˆ κ²ƒμž…λ‹ˆλ‹€.
14:13
And the more we learn,
285
853183
1858
더 λ‹€μ–‘ν•œ 지식을 μŒ“μ„μˆ˜λ‘
14:15
the more we will be confronted with decisions
286
855065
4830
인λ₯˜λŠ” μ΄μ „κΉŒμ§€λŠ” 선택할 수 μ—†μ—ˆλ˜
14:19
that we never had to face before
287
859919
3021
μ‚Ά, 죽음, μœ‘μ•„μ— κ΄€ν•œ 선택을 ν•  수 있게 될 κ²ƒμž…λ‹ˆλ‹€.
14:22
about life,
288
862964
1435
14:24
about death,
289
864423
1674
14:26
about parenting.
290
866121
1603
μ €ν¬λŠ” 삢이 μž‘λ™ν•˜λŠ” μ›λ¦¬μ˜ 핡심에 λ‹€κ°€κ°€κ³  μžˆμŠ΅λ‹ˆλ‹€.
14:32
So, we are touching the very inner detail on how life works.
291
872626
4746
14:38
And it's a revolution that cannot be confined
292
878118
3158
μ΄λ ‡κ²Œ 큰 혁λͺ…을 μΌμœΌν‚¬ λ°œκ²¬μ„
14:41
in the domain of science or technology.
293
881300
2659
κ³Όν•™κΈ°μˆ μ˜ μ˜μ—­μ—λ§Œ 가두어선 μ•ˆ λ©λ‹ˆλ‹€.
14:44
This must be a global conversation.
294
884960
2244
μ „ μ˜μ—­μ˜ μ†Œν†΅μ΄ ν•„μš”ν•©λ‹ˆλ‹€.
14:47
We must start to think of the future we're building as a humanity.
295
887798
5217
μ €ν¬λŠ” ν•œ 인λ₯˜λ‘œμ„œ ν•¨κ»˜ λ§Œλ“€μ–΄κ°ˆ 미래λ₯Ό 생각해야 ν•©λ‹ˆλ‹€.
14:53
We need to interact with creatives, with artists, with philosophers,
296
893039
4064
μž‘κ°€, μ˜ˆμˆ κ°€, μ² ν•™κ°€, μ •μΉ˜μΈμ΄ ν˜‘λ ₯ν•΄μ•Ό ν•©λ‹ˆλ‹€.
14:57
with politicians.
297
897127
1510
14:58
Everyone is involved,
298
898661
1158
λͺ¨λ‘ ν•¨κ»˜μ—¬μ•Ό ν•©λ‹ˆλ‹€.
14:59
because it's the future of our species.
299
899843
2825
이것은 인λ₯˜μ˜ 미래이기 λ•Œλ¬Έμž…λ‹ˆλ‹€.
15:03
Without fear, but with the understanding
300
903273
3968
두렀움을 떨쳐내고
15:07
that the decisions that we make in the next year
301
907265
3871
μ•žμœΌλ‘œ μš°λ¦¬κ°€ 내릴 선택이
역사λ₯Ό μ˜μ›νžˆ λ°”κΏ€ κ²ƒμ΄λž€ μ±…μž„κ°μ„ 느끼고 λ‚˜μ•„κ°€μ•Ό ν•©λ‹ˆλ‹€.
15:11
will change the course of history forever.
302
911160
3789
15:15
Thank you.
303
915732
1160
κ°μ‚¬ν•©λ‹ˆλ‹€.
15:16
(Applause)
304
916916
10159
(λ°•μˆ˜)
이 μ›Ήμ‚¬μ΄νŠΈ 정보

이 μ‚¬μ΄νŠΈλŠ” μ˜μ–΄ ν•™μŠ΅μ— μœ μš©ν•œ YouTube λ™μ˜μƒμ„ μ†Œκ°œν•©λ‹ˆλ‹€. μ „ 세계 졜고의 μ„ μƒλ‹˜λ“€μ΄ κ°€λ₯΄μΉ˜λŠ” μ˜μ–΄ μˆ˜μ—…μ„ 보게 될 κ²ƒμž…λ‹ˆλ‹€. 각 λ™μ˜μƒ νŽ˜μ΄μ§€μ— ν‘œμ‹œλ˜λŠ” μ˜μ–΄ μžλ§‰μ„ 더블 ν΄λ¦­ν•˜λ©΄ κ·Έκ³³μ—μ„œ λ™μ˜μƒμ΄ μž¬μƒλ©λ‹ˆλ‹€. λΉ„λ””μ˜€ μž¬μƒμ— 맞좰 μžλ§‰μ΄ μŠ€ν¬λ‘€λ©λ‹ˆλ‹€. μ˜κ²¬μ΄λ‚˜ μš”μ²­μ΄ μžˆλŠ” 경우 이 문의 양식을 μ‚¬μš©ν•˜μ—¬ λ¬Έμ˜ν•˜μ‹­μ‹œμ˜€.

https://forms.gle/WvT1wiN1qDtmnspy7