How to read the genome and build a human being | Riccardo Sabatini

320,260 views ・ 2016-05-24

TED


请双击下面的英文字幕来播放视频。

翻译人员: Jingqi Gong 校对人员: Rachel Li
00:12
For the next 16 minutes, I'm going to take you on a journey
0
12612
2762
接下来的一刻钟,我要带大家踏上一段旅程
00:15
that is probably the biggest dream of humanity:
1
15398
3086
这大概是全人类的终极梦想——
00:18
to understand the code of life.
2
18508
2015
解读生命的密码!
00:21
So for me, everything started many, many years ago
3
21072
2743
我的经历开始于很多很多年以前,
00:23
when I met the first 3D printer.
4
23839
2723
那时我遇到了第一台3D打印机。
00:26
The concept was fascinating.
5
26586
1674
3D打印真是个非常赞的概念
00:28
A 3D printer needs three elements:
6
28284
2022
它需要三个要素:
00:30
a bit of information, some raw material, some energy,
7
30330
4134
少量的信息,一些原材料,再加上点能量
00:34
and it can produce any object that was not there before.
8
34488
3334
就能制造出以前从没存在过的任何东西。
当时我正在研究物理学
00:38
I was doing physics, I was coming back home
9
38517
2137
00:40
and I realized that I actually always knew a 3D printer.
10
40678
3438
有天我回到家,突然意识到我家里就有台3D打印机
而且每人家里都有一台
00:44
And everyone does.
11
44140
1336
00:45
It was my mom.
12
45500
1158
就是我妈妈。
00:46
(Laughter)
13
46682
1001
00:47
My mom takes three elements:
14
47707
2414
我妈妈用这三个要素:
00:50
a bit of information, which is between my father and my mom in this case,
15
50145
3973
少量的信息——
来自我爸和我妈的共同投入
00:54
raw elements and energy in the same media, that is food,
16
54142
4157
原材料和能量的共同来源——食物
00:58
and after several months, produces me.
17
58323
2508
历时几个月,制造出了我
01:00
And I was not existent before.
18
60855
1812
而我以前从来没有存在过!
01:02
So apart from the shock of my mom discovering that she was a 3D printer,
19
62691
3762
除了震惊的发现我妈其实是台3D打印机
01:06
I immediately got mesmerized by that piece,
20
66477
4738
我还立即被另一个部分吸引了
01:11
the first one, the information.
21
71239
1717
第一个要素,信息——
01:12
What amount of information does it take
22
72980
2251
到底需要多少信息
01:15
to build and assemble a human?
23
75255
1936
才能制造和组装一个人呢?
01:17
Is it much? Is it little?
24
77215
1574
是要很多?还是很少?
01:18
How many thumb drives can you fill?
25
78813
2180
要用多少个U盘去储存?
01:21
Well, I was studying physics at the beginning
26
81017
2624
我最开始是学物理的,
01:23
and I took this approximation of a human as a gigantic Lego piece.
27
83665
5597
我想如果把人看成是一个巨型的乐高玩具
01:29
So, imagine that the building blocks are little atoms
28
89286
3785
小的乐高模块就像是原子——
01:33
and there is a hydrogen here, a carbon here, a nitrogen here.
29
93095
4653
这里有氢原子,这边有碳原子,上面这有氮原子。
01:37
So in the first approximation,
30
97772
1571
按照最初的这个设定
01:39
if I can list the number of atoms that compose a human being,
31
99367
4343
如果能够列出组成人类的所有原子
01:43
I can build it.
32
103734
1387
应该就能组装出一个人。
01:45
Now, you can run some numbers
33
105145
2029
大致计算一下
01:47
and that happens to be quite an astonishing number.
34
107198
3277
得到的结果非常惊人。
01:50
So the number of atoms,
35
110499
2757
所需要的原子的总数,
01:53
the file that I will save in my thumb drive to assemble a little baby,
36
113280
4755
全部存到U盘里面——即便是组装一个小婴儿
01:58
will actually fill an entire Titanic of thumb drives --
37
118059
4667
用掉的U盘就能装满整个泰坦尼克号
02:02
multiplied 2,000 times.
38
122750
2718
再乘以2000倍...
02:05
This is the miracle of life.
39
125957
3401
这就是生命的奇迹。
02:09
Every time you see from now on a pregnant lady,
40
129382
2612
现在你再看到一个孕妇
02:12
she's assembling the biggest amount of information
41
132018
2856
她正在组装你能见到的最大量的信息
02:14
that you will ever encounter.
42
134898
1556
02:16
Forget big data, forget anything you heard of.
43
136478
2950
不要谈大数据,不要谈以前听说过的数字
02:19
This is the biggest amount of information that exists.
44
139452
2881
这就是现存的,最最大量的信息。
02:22
(Applause)
45
142357
3833
(掌声)
但是......
02:26
But nature, fortunately, is much smarter than a young physicist,
46
146214
4644
好在大自然比一个年轻的物理学家要聪明多了。
02:30
and in four billion years, managed to pack this information
47
150882
3576
在四十亿年的进化过程中
这些信息被压缩在叫做DNA的小晶体当中。
02:34
in a small crystal we call DNA.
48
154482
2705
02:37
We met it for the first time in 1950 when Rosalind Franklin,
49
157605
4312
在1950年代我们第一次知道了DNA
那时一位杰出的女科学家Rosalind Franklin
02:41
an amazing scientist, a woman,
50
161941
1556
02:43
took a picture of it.
51
163521
1389
给DNA拍了张照
02:44
But it took us more than 40 years to finally poke inside a human cell,
52
164934
5188
但我们花了超过40年的时间,
才最终能够从人类细胞中提取这种晶体,
02:50
take out this crystal,
53
170146
1602
02:51
unroll it, and read it for the first time.
54
171772
3080
展开来,第一次去阅读它。
02:55
The code comes out to be a fairly simple alphabet,
55
175615
3241
这个遗传密码由简单的字母表组成,
02:58
four letters: A, T, C and G.
56
178880
3772
四个字母,A,T,C和G (碱基)。
03:02
And to build a human, you need three billion of them.
57
182676
3490
要组装一个人,需要30亿个字母。
03:06
Three billion.
58
186933
1179
30亿....30亿是多少?
03:08
How many are three billion?
59
188136
1579
03:09
It doesn't really make any sense as a number, right?
60
189739
2762
光这么说大家可能都没概念,
03:12
So I was thinking how I could explain myself better
61
192525
4085
我在想怎么表达才能让人更清楚,
03:16
about how big and enormous this code is.
62
196634
3050
这些遗传密码的数量到底有多庞大。
03:19
But there is -- I mean, I'm going to have some help,
63
199708
3054
所以...我需要点帮助...
03:22
and the best person to help me introduce the code
64
202786
3227
最合适来帮我介绍遗传密码的人,
03:26
is actually the first man to sequence it, Dr. Craig Venter.
65
206037
3522
就是第一位进行人类基因组测序的人,
Craig Venter 博士。
03:29
So welcome onstage, Dr. Craig Venter.
66
209583
3390
我们欢迎Craig Venter博士到台上来——
03:32
(Applause)
67
212997
6931
(掌声)
03:39
Not the man in the flesh,
68
219952
2256
不是他本人——
03:43
but for the first time in history,
69
223448
2345
但这是史上第一次,一个人的基因组
03:45
this is the genome of a specific human,
70
225817
3462
被一页一页,一个字母一个字母的打印在纸上——
03:49
printed page-by-page, letter-by-letter:
71
229303
3760
03:53
262,000 pages of information,
72
233087
3996
总共26万2千页,450千克,
03:57
450 kilograms, shipped from the United States to Canada
73
237107
4364
从美国运到加拿大
04:01
thanks to Bruno Bowden, Lulu.com, a start-up, did everything.
74
241495
4843
感谢Bruno Bowden还有 Lulu.com——
他们负责完成了这一切,一项壮举。
04:06
It was an amazing feat.
75
246362
1463
04:07
But this is the visual perception of what is the code of life.
76
247849
4297
这些就是生命密码给人最直观的视觉感受。
04:12
And now, for the first time, I can do something fun.
77
252170
2478
现在我可以来玩点有趣的——
04:14
I can actually poke inside it and read.
78
254672
2547
从这里面挑一段来读一读。
04:17
So let me take an interesting book ... like this one.
79
257243
4625
我来找一本有意思的...比如这一本...
04:25
I have an annotation; it's a fairly big book.
80
265077
2534
我放了书签在里面,这书太厚了...
04:27
So just to let you see what is the code of life.
81
267635
3727
给你们看一下,生命的密码长什么样子
04:32
Thousands and thousands and thousands
82
272566
3391
成百上千...成千上万...上百万的字母...
04:35
and millions of letters.
83
275981
2670
04:38
And they apparently make sense.
84
278675
2396
它们当然都有意义。
04:41
Let's get to a specific part.
85
281095
1757
让我来找一段特殊的
04:43
Let me read it to you:
86
283571
1362
读给你们听...
04:44
(Laughter)
87
284957
1021
04:46
"AAG, AAT, ATA."
88
286002
4006
"AAG, AAT, ATA"
04:50
To you it sounds like mute letters,
89
290965
2067
你们可能觉得像是听天书,
04:53
but this sequence gives the color of the eyes to Craig.
90
293056
4041
但这段序列决定了Craig眼睛的颜色。
04:57
I'll show you another part of the book.
91
297633
1932
在看看另外一段...
04:59
This is actually a little more complicated.
92
299589
2094
这一段稍微复杂一些...
05:02
Chromosome 14, book 132:
93
302983
2647
第14号染色体,书本编号132...
05:05
(Laughter)
94
305654
2090
(笑声)
05:07
As you might expect.
95
307768
1277
你们想象到了哦...
05:09
(Laughter)
96
309069
3466
(笑声)
05:14
"ATT, CTT, GATT."
97
314857
4507
"ATT, CTT, GATT"
05:20
This human is lucky,
98
320329
1687
这个人很幸运,
05:22
because if you miss just two letters in this position --
99
322040
4517
因为如果他在这个位点上少了2个字母,
05:26
two letters of our three billion --
100
326581
1877
30亿中的2个...
05:28
he will be condemned to a terrible disease:
101
328482
2019
他就会患上一种非常可怕的疾病——
05:30
cystic fibrosis.
102
330525
1440
囊肿性纤维化(cystic fibrosis)
05:31
We have no cure for it, we don't know how to solve it,
103
331989
3413
目前没有治疗的方法,这是绝症,
05:35
and it's just two letters of difference from what we are.
104
335426
3755
仅仅是2个字母的区别。
05:39
A wonderful book, a mighty book,
105
339585
2705
这是一部鸿篇巨著,
05:43
a mighty book that helped me understand
106
343115
1998
它帮助我理解,也能让你们看到
05:45
and show you something quite remarkable.
107
345137
2753
一件更加另人叹为观止的事。
05:48
Every one of you -- what makes me, me and you, you --
108
348480
4435
我们中的每一个人,
是什么让我成为我,让你成为你...
05:52
is just about five million of these,
109
352939
2954
大概只占这其中的500万...
05:55
half a book.
110
355917
1228
只有半本书...
05:58
For the rest,
111
358015
1663
所有剩下的,我们完全一模一样。
05:59
we are all absolutely identical.
112
359702
2562
06:03
Five hundred pages is the miracle of life that you are.
113
363008
4018
500页,涵盖了你的生命奇迹;
06:07
The rest, we all share it.
114
367050
2531
余下的,我们全都一样。
06:09
So think about that again when we think that we are different.
115
369605
2909
讨论人与人差异的时候反思一下,
06:12
This is the amount that we share.
116
372538
2221
我们有这么多共通的东西。
06:15
So now that I have your attention,
117
375441
3429
现在我已经引起了你们的兴趣,
06:18
the next question is:
118
378894
1359
下一步就是:
06:20
How do I read it?
119
380277
1151
怎么去读取这些信息?
06:21
How do I make sense out of it?
120
381452
1509
怎么理解和运用它们?
06:23
Well, for however good you can be at assembling Swedish furniture,
121
383409
4240
不管你在组装宜家家居上有多在行...
06:27
this instruction manual is nothing you can crack in your life.
122
387673
3563
这么长的说明书...基本是不可能完成的任务
06:31
(Laughter)
123
391260
1603
06:32
And so, in 2014, two famous TEDsters,
124
392887
3112
2014年,两位著名的TED参加者
06:36
Peter Diamandis and Craig Venter himself,
125
396023
2540
Peter Diamandis 和 Craig Venter
06:38
decided to assemble a new company.
126
398587
1927
决定成立一个新公司
06:40
Human Longevity was born,
127
400538
1412
人类长寿公司(Human Longevity, Inc.)诞生了。
06:41
with one mission:
128
401974
1370
唯一的任务——
06:43
trying everything we can try
129
403368
1861
竭尽全力,穷尽其学的研究这些书目
06:45
and learning everything we can learn from these books,
130
405253
2759
06:48
with one target --
131
408036
1705
只为达到一个目的:
06:50
making real the dream of personalized medicine,
132
410862
2801
让个人化医疗成为现实。
06:53
understanding what things should be done to have better health
133
413687
3767
怎么做才能提高人类健康水平
06:57
and what are the secrets in these books.
134
417478
2283
了解这些书目背后的秘密。
07:00
An amazing team, 40 data scientists and many, many more people,
135
420329
4250
一个强大的团队,拥有40位数据分析人员
还有很多其他的人力支持
07:04
a pleasure to work with.
136
424603
1350
和他们一起工作十分愉快。
07:05
The concept is actually very simple.
137
425977
2253
实际上工作流程不很复杂
07:08
We're going to use a technology called machine learning.
138
428254
3158
我们用一种叫做机器学习的方法。
07:11
On one side, we have genomes -- thousands of them.
139
431436
4539
一方面,我们有几千个基因组;
07:15
On the other side, we collected the biggest database of human beings:
140
435999
3997
另一边我们建立一个超大的人类信息数据库:
07:20
phenotypes, 3D scan, NMR -- everything you can think of.
141
440020
4296
性状,3D扫描,核磁共振,所有能想到的
07:24
Inside there, on these two opposite sides,
142
444340
2899
在这两个端点之间,
07:27
there is the secret of translation.
143
447263
2442
有神秘的翻译在进行。
07:29
And in the middle, we build a machine.
144
449729
2472
我们在中间建了一个机器,
07:32
We build a machine and we train a machine --
145
452801
2385
建好之后训练这台机器——
07:35
well, not exactly one machine, many, many machines --
146
455210
3210
实际上不只一台机器,而是很多台...
07:38
to try to understand and translate the genome in a phenotype.
147
458444
4544
试图去理解基因组并把它翻译成性状。
07:43
What are those letters, and what do they do?
148
463362
3340
有哪些字母——它们控制什么性状——
07:46
It's an approach that can be used for everything,
149
466726
2747
这是普适的方法,可以用在所有问题上,
07:49
but using it in genomics is particularly complicated.
150
469497
2993
但用在基因组学上异常的复杂。
07:52
Little by little we grew and we wanted to build different challenges.
151
472514
3276
一点一点有了进展,我们再尝试更有挑战性的东西
07:55
We started from the beginning, from common traits.
152
475814
2732
最开始我们从常见的特征下手,
07:58
Common traits are comfortable because they are common,
153
478570
2603
常见特征最容易因为它们太常见了,
08:01
everyone has them.
154
481197
1184
每个人都有。
08:02
So we started to ask our questions:
155
482405
2494
我们开始提出如下问题:
08:04
Can we predict height?
156
484923
1380
能预测身高吗?
08:06
Can we read the books and predict your height?
157
486985
2177
能不能根据这些信息预测身高?
08:09
Well, we actually can,
158
489186
1151
可以,在5厘米的误差范围以内。
08:10
with five centimeters of precision.
159
490361
1793
08:12
BMI is fairly connected to your lifestyle,
160
492178
3135
BMI 主要跟生活习惯有关,
08:15
but we still can, we get in the ballpark, eight kilograms of precision.
161
495337
3864
但我们仍然能预测得差不多,8千克上下的误差。
08:19
Can we predict eye color?
162
499225
1231
眼睛的颜色能不能预测?
08:20
Yeah, we can.
163
500480
1158
可以,80%准确率。
08:21
Eighty percent accuracy.
164
501662
1324
08:23
Can we predict skin color?
165
503466
1858
皮肤颜色?
08:25
Yeah we can, 80 percent accuracy.
166
505348
2441
可以,80%准确。
08:27
Can we predict age?
167
507813
1340
年龄?
08:30
We can, because apparently, the code changes during your life.
168
510121
3739
可以,因为很明显基因随着年龄产生变化。
08:33
It gets shorter, you lose pieces, it gets insertions.
169
513884
3282
DNA 会变短,缺失一些片段,插入另外一些片段
08:37
We read the signals, and we make a model.
170
517190
2555
我们读取这些信号,然后建立模型。
08:40
Now, an interesting challenge:
171
520438
1475
现在来个有意思点的挑战:
08:41
Can we predict a human face?
172
521937
1729
我们能不能预测人的面孔?
08:45
It's a little complicated,
173
525014
1278
这个略有点复杂,
08:46
because a human face is scattered among millions of these letters.
174
526316
3191
因为有几百万个碱基都对人脸产生影响。
08:49
And a human face is not a very well-defined object.
175
529531
2629
而且人脸并不是一个构造十分精准的物体。
08:52
So, we had to build an entire tier of it
176
532184
2051
所以必须要建立一整个单独的模块,
08:54
to learn and teach a machine what a face is,
177
534259
2710
给机器去训练和学习人脸是什么,
08:56
and embed and compress it.
178
536993
2037
再把这个模块压缩整合进去。
08:59
And if you're comfortable with machine learning,
179
539054
2248
如果你对机器学习有点概念的话,
09:01
you understand what the challenge is here.
180
541326
2284
就能够想象这个挑战是有多大。
09:04
Now, after 15 years -- 15 years after we read the first sequence --
181
544108
5991
现在15年过去了——15年前我们读取第一条序列
09:10
this October, we started to see some signals.
182
550123
2902
——今年10月,我们总算有了些进展,
09:13
And it was a very emotional moment.
183
553049
2455
当时还是很激动人心的。
09:15
What you see here is a subject coming in our lab.
184
555528
3745
这是我们的一个测试对象,一张人的脸——
09:19
This is a face for us.
185
559619
1928
09:21
So we take the real face of a subject, we reduce the complexity,
186
561571
3631
我们要对测试对象的面孔进行简化,
09:25
because not everything is in your face --
187
565226
1970
因为并不是所有的特征都是面孔的一部分——
09:27
lots of features and defects and asymmetries come from your life.
188
567220
3786
很多特点、缺陷和不对称是生活的痕迹。
09:31
We symmetrize the face, and we run our algorithm.
189
571030
3469
把面孔调整对称之后,跟我们运算的结果比较。
09:35
The results that I show you right now,
190
575245
1898
现在给你们看,我们根据血液样本生成的预测。
09:37
this is the prediction we have from the blood.
191
577167
3372
09:41
(Applause)
192
581596
1524
(掌声)
09:43
Wait a second.
193
583144
1435
等一下——
09:44
In these seconds, your eyes are watching, left and right, left and right,
194
584603
4692
你们的眼睛正在左右两边交替看,
09:49
and your brain wants those pictures to be identical.
195
589319
3930
大脑希望两幅图是一模一样的。
09:53
So I ask you to do another exercise, to be honest.
196
593273
2446
我其实想请大家反过来,
09:55
Please search for the differences,
197
595743
2287
找找两幅图的不同点,
09:58
which are many.
198
598054
1361
其实非常多。
09:59
The biggest amount of signal comes from gender,
199
599439
2603
性别提供最多的信息,
10:02
then there is age, BMI, the ethnicity component of a human.
200
602066
5201
接下来是年龄,BMI(体质指数),种族;
10:07
And scaling up over that signal is much more complicated.
201
607291
3711
再考虑更多因素会变得更加复杂。
10:11
But what you see here, even in the differences,
202
611026
3250
但是这样的结果,即便有很多不同,
10:14
lets you understand that we are in the right ballpark,
203
614300
3595
表示我们已经接近了,
10:17
that we are getting closer.
204
617919
1348
正在逐渐靠得更近——而且这已经能够鼓舞人心了
10:19
And it's already giving you some emotions.
205
619291
2349
10:21
This is another subject that comes in place,
206
621664
2703
这是另外一个测试对象,
10:24
and this is a prediction.
207
624391
1409
这边是预测结果。
10:25
A little smaller face, we didn't get the complete cranial structure,
208
625824
4596
脸小了一点,完整的颅骨结构没预测到。
10:30
but still, it's in the ballpark.
209
630444
2651
但至少像那么回事。
10:33
This is a subject that comes in our lab,
210
633634
2224
这是又一个测试对象,
10:35
and this is the prediction.
211
635882
1443
这是预测结果。
10:38
So these people have never been seen in the training of the machine.
212
638056
4676
这些面孔在训练机器的时候是没有用过的,
10:42
These are the so-called "held-out" set.
213
642756
2837
就是所谓的随机测试组。
10:45
But these are people that you will probably never believe.
214
645617
3740
并且你们不认识这些人,可能说服力不太够。
10:49
We're publishing everything in a scientific publication,
215
649381
2676
我们在学术期刊上发表了这些结果,
10:52
you can read it.
216
652081
1151
你们可以去读一下。
10:53
But since we are onstage, Chris challenged me.
217
653256
2344
但既然我们在台上,Chris 给我出了个点子,
10:55
I probably exposed myself and tried to predict
218
655624
3626
我可以挑战一下,尝试预测一个你们都认识的人。
10:59
someone that you might recognize.
219
659274
2831
11:02
So, in this vial of blood -- and believe me, you have no idea
220
662470
4425
这里有管血液——你们很难想象
11:06
what we had to do to have this blood now, here --
221
666919
2880
我们为了带一管血液到这里花了多少工夫...
11:09
in this vial of blood is the amount of biological information
222
669823
3901
这支试管里的血液足够完成一次全基因组测序
11:13
that we need to do a full genome sequence.
223
673748
2277
11:16
We just need this amount.
224
676049
2070
只需要这么多。
11:18
We ran this sequence, and I'm going to do it with you.
225
678528
3205
完成了测序,下面我们一条条来看——
11:21
And we start to layer up all the understanding we have.
226
681757
3979
我们综合了所有已知的信息——
11:25
In the vial of blood, we predicted he's a male.
227
685760
3350
从血液测试的结果,我们预测这是一名男性,
11:29
And the subject is a male.
228
689134
1364
被试是男性。
11:30
We predict that he's a meter and 76 cm.
229
690996
2438
预测他身高1米76,
11:33
The subject is a meter and 77 cm.
230
693458
2392
被试身高1米77。
11:35
So, we predicted that he's 76; the subject is 82.
231
695874
4110
预测他体重76kg,被试是82kg;
11:40
We predict his age, 38.
232
700701
2632
我们还预测了年龄,38岁
11:43
The subject is 35.
233
703357
1904
被试实际是35岁。
11:45
We predict his eye color.
234
705851
2124
预测了眼睛的颜色,有点偏深了;
11:48
Too dark.
235
708824
1211
11:50
We predict his skin color.
236
710059
1555
预测他的皮肤颜色,
11:52
We are almost there.
237
712026
1410
基本上准确。
11:53
That's his face.
238
713899
1373
这是他的面孔...
11:57
Now, the reveal moment:
239
717172
3269
现在到了揭晓的时刻:
12:00
the subject is this person.
240
720465
1770
被试对象是这个人。
12:02
(Laughter)
241
722259
1935
(笑声)
12:04
And I did it intentionally.
242
724218
2058
我是有意拿自己做测试的,
12:06
I am a very particular and peculiar ethnicity.
243
726300
3692
我属于一个特别又特殊的种族,
12:10
Southern European, Italians -- they never fit in models.
244
730016
2950
南欧人,意大利人——从来都不符合模型预测。
12:12
And it's particular -- that ethnicity is a complex corner case for our model.
245
732990
5130
而且这一种族在模型里是一个复杂的边界情况。
12:18
But there is another point.
246
738144
1509
但还有另一个重点——
12:19
So, one of the things that we use a lot to recognize people
247
739677
3477
最常用的来辨识人的方法,
12:23
will never be written in the genome.
248
743178
1722
不是由基因组编译的。
12:24
It's our free will, it's how I look.
249
744924
2317
是人们的自由意志——我想让自己看起来怎么样,
12:27
Not my haircut in this case, but my beard cut.
250
747265
3229
虽然我的发型不是我自己决定的,但胡子是的。
12:30
So I'm going to show you, I'm going to, in this case, transfer it --
251
750518
3553
下面我们来看一下——
12:34
and this is nothing more than Photoshop, no modeling --
252
754095
2765
单纯的用photoshop,不用建模——
12:36
the beard on the subject.
253
756884
1713
把胡子加上去。
12:38
And immediately, we get much, much better in the feeling.
254
758621
3472
是不是立即觉得变得很相像了。
12:42
So, why do we do this?
255
762955
2709
那么,我们为什么要研究这些?
12:47
We certainly don't do it for predicting height
256
767938
5140
当然不是为了预测身高,
12:53
or taking a beautiful picture out of your blood.
257
773102
2372
或者是根据血液样本得到一张美照;
12:56
We do it because the same technology and the same approach,
258
776390
4018
我们研究是因为同样的技术和手段——
13:00
the machine learning of this code,
259
780432
2520
对基因组的机器学习,
13:02
is helping us to understand how we work,
260
782976
3137
能帮助我们了解人类自身,
13:06
how your body works,
261
786137
1486
你的身体怎么运作,身体如何老化,
13:07
how your body ages,
262
787647
1665
13:09
how disease generates in your body,
263
789336
2769
疾病是如何产生的,
13:12
how your cancer grows and develops,
264
792129
2972
癌症是怎么出现和恶化的;
13:15
how drugs work
265
795125
1783
药物如何起作用——
13:16
and if they work on your body.
266
796932
2314
药物是不是能够对你有效。
13:19
This is a huge challenge.
267
799713
1667
这是一个巨大的挑战,
13:21
This is a challenge that we share
268
801894
1638
而且是一个全球的科学家都面临的挑战
13:23
with thousands of other researchers around the world.
269
803556
2579
13:26
It's called personalized medicine.
270
806159
2222
——个性化医疗。
13:29
It's the ability to move from a statistical approach
271
809125
3460
从只能借助统计学方法——
13:32
where you're a dot in the ocean,
272
812609
2032
每个人都只是沧海一粟——
13:34
to a personalized approach,
273
814665
1813
到能够实现有针对性的治疗,
13:36
where we read all these books
274
816502
2185
通过解码这些基因信息,
13:38
and we get an understanding of exactly how you are.
275
818711
2864
我们能够彻底了解每一个人。
13:42
But it is a particularly complicated challenge,
276
822260
3362
但这是一项异常复杂的挑战,
13:45
because of all these books, as of today,
277
825646
3998
因为到目前为止在这么庞大的基因组信息中,
13:49
we just know probably two percent:
278
829668
2642
我们大概只了解2%:
13:53
four books of more than 175.
279
833027
3653
175本书里的4本...
13:58
And this is not the topic of my talk,
280
838021
3206
当然这不是我今天演讲的主题,
14:02
because we will learn more.
281
842145
2598
因为我们会进步,会了解更多——
14:05
There are the best minds in the world on this topic.
282
845378
2669
有很多顶尖的人才在从事这项工作。
14:09
The prediction will get better,
283
849048
1834
预测能力会提升,模型会更准确。
14:10
the model will get more precise.
284
850906
2253
14:13
And the more we learn,
285
853183
1858
随着了解的逐渐深入,
14:15
the more we will be confronted with decisions
286
855065
4830
我们需要做的决定会越来越多,
14:19
that we never had to face before
287
859919
3021
而且是一些从前没有想象过的决定——
14:22
about life,
288
862964
1435
关于生,关于死,关于子孙后代...
14:24
about death,
289
864423
1674
14:26
about parenting.
290
866121
1603
所以我们在此的讨论,涉及生命最本质的东西,
14:32
So, we are touching the very inner detail on how life works.
291
872626
4746
14:38
And it's a revolution that cannot be confined
292
878118
3158
这些改变不只是在科学和技术层面。
14:41
in the domain of science or technology.
293
881300
2659
14:44
This must be a global conversation.
294
884960
2244
我们必须要有全球性的对话,
14:47
We must start to think of the future we're building as a humanity.
295
887798
5217
必须要为全人类的未来设想。
我们需要和创新人才、艺术家、哲学家交流,
14:53
We need to interact with creatives, with artists, with philosophers,
296
893039
4064
14:57
with politicians.
297
897127
1510
还需要政治家的参与。
14:58
Everyone is involved,
298
898661
1158
每个人都身在其中,因为这关乎人类的未来。
14:59
because it's the future of our species.
299
899843
2825
15:03
Without fear, but with the understanding
300
903273
3968
不需要惊慌——
但必须了解我们现在做出的每一项决定,
15:07
that the decisions that we make in the next year
301
907265
3871
15:11
will change the course of history forever.
302
911160
3789
都会彻底改变历史。
15:15
Thank you.
303
915732
1160
谢谢。
15:16
(Applause)
304
916916
10159
(持久的掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7