How to read the genome and build a human being | Riccardo Sabatini

325,809 views ・ 2016-05-24

TED


请双击下面的英文字幕来播放视频。

翻译人员: Jingqi Gong 校对人员: Rachel Li
00:12
For the next 16 minutes, I'm going to take you on a journey
0
12612
2762
接下来的一刻钟,我要带大家踏上一段旅程
00:15
that is probably the biggest dream of humanity:
1
15398
3086
这大概是全人类的终极梦想——
00:18
to understand the code of life.
2
18508
2015
解读生命的密码!
00:21
So for me, everything started many, many years ago
3
21072
2743
我的经历开始于很多很多年以前,
00:23
when I met the first 3D printer.
4
23839
2723
那时我遇到了第一台3D打印机。
00:26
The concept was fascinating.
5
26586
1674
3D打印真是个非常赞的概念
00:28
A 3D printer needs three elements:
6
28284
2022
它需要三个要素:
00:30
a bit of information, some raw material, some energy,
7
30330
4134
少量的信息,一些原材料,再加上点能量
00:34
and it can produce any object that was not there before.
8
34488
3334
就能制造出以前从没存在过的任何东西。
当时我正在研究物理学
00:38
I was doing physics, I was coming back home
9
38517
2137
00:40
and I realized that I actually always knew a 3D printer.
10
40678
3438
有天我回到家,突然意识到我家里就有台3D打印机
而且每人家里都有一台
00:44
And everyone does.
11
44140
1336
00:45
It was my mom.
12
45500
1158
就是我妈妈。
00:46
(Laughter)
13
46682
1001
00:47
My mom takes three elements:
14
47707
2414
我妈妈用这三个要素:
00:50
a bit of information, which is between my father and my mom in this case,
15
50145
3973
少量的信息——
来自我爸和我妈的共同投入
00:54
raw elements and energy in the same media, that is food,
16
54142
4157
原材料和能量的共同来源——食物
00:58
and after several months, produces me.
17
58323
2508
历时几个月,制造出了我
01:00
And I was not existent before.
18
60855
1812
而我以前从来没有存在过!
01:02
So apart from the shock of my mom discovering that she was a 3D printer,
19
62691
3762
除了震惊的发现我妈其实是台3D打印机
01:06
I immediately got mesmerized by that piece,
20
66477
4738
我还立即被另一个部分吸引了
01:11
the first one, the information.
21
71239
1717
第一个要素,信息——
01:12
What amount of information does it take
22
72980
2251
到底需要多少信息
01:15
to build and assemble a human?
23
75255
1936
才能制造和组装一个人呢?
01:17
Is it much? Is it little?
24
77215
1574
是要很多?还是很少?
01:18
How many thumb drives can you fill?
25
78813
2180
要用多少个U盘去储存?
01:21
Well, I was studying physics at the beginning
26
81017
2624
我最开始是学物理的,
01:23
and I took this approximation of a human as a gigantic Lego piece.
27
83665
5597
我想如果把人看成是一个巨型的乐高玩具
01:29
So, imagine that the building blocks are little atoms
28
89286
3785
小的乐高模块就像是原子——
01:33
and there is a hydrogen here, a carbon here, a nitrogen here.
29
93095
4653
这里有氢原子,这边有碳原子,上面这有氮原子。
01:37
So in the first approximation,
30
97772
1571
按照最初的这个设定
01:39
if I can list the number of atoms that compose a human being,
31
99367
4343
如果能够列出组成人类的所有原子
01:43
I can build it.
32
103734
1387
应该就能组装出一个人。
01:45
Now, you can run some numbers
33
105145
2029
大致计算一下
01:47
and that happens to be quite an astonishing number.
34
107198
3277
得到的结果非常惊人。
01:50
So the number of atoms,
35
110499
2757
所需要的原子的总数,
01:53
the file that I will save in my thumb drive to assemble a little baby,
36
113280
4755
全部存到U盘里面——即便是组装一个小婴儿
01:58
will actually fill an entire Titanic of thumb drives --
37
118059
4667
用掉的U盘就能装满整个泰坦尼克号
02:02
multiplied 2,000 times.
38
122750
2718
再乘以2000倍...
02:05
This is the miracle of life.
39
125957
3401
这就是生命的奇迹。
02:09
Every time you see from now on a pregnant lady,
40
129382
2612
现在你再看到一个孕妇
02:12
she's assembling the biggest amount of information
41
132018
2856
她正在组装你能见到的最大量的信息
02:14
that you will ever encounter.
42
134898
1556
02:16
Forget big data, forget anything you heard of.
43
136478
2950
不要谈大数据,不要谈以前听说过的数字
02:19
This is the biggest amount of information that exists.
44
139452
2881
这就是现存的,最最大量的信息。
02:22
(Applause)
45
142357
3833
(掌声)
但是......
02:26
But nature, fortunately, is much smarter than a young physicist,
46
146214
4644
好在大自然比一个年轻的物理学家要聪明多了。
02:30
and in four billion years, managed to pack this information
47
150882
3576
在四十亿年的进化过程中
这些信息被压缩在叫做DNA的小晶体当中。
02:34
in a small crystal we call DNA.
48
154482
2705
02:37
We met it for the first time in 1950 when Rosalind Franklin,
49
157605
4312
在1950年代我们第一次知道了DNA
那时一位杰出的女科学家Rosalind Franklin
02:41
an amazing scientist, a woman,
50
161941
1556
02:43
took a picture of it.
51
163521
1389
给DNA拍了张照
02:44
But it took us more than 40 years to finally poke inside a human cell,
52
164934
5188
但我们花了超过40年的时间,
才最终能够从人类细胞中提取这种晶体,
02:50
take out this crystal,
53
170146
1602
02:51
unroll it, and read it for the first time.
54
171772
3080
展开来,第一次去阅读它。
02:55
The code comes out to be a fairly simple alphabet,
55
175615
3241
这个遗传密码由简单的字母表组成,
02:58
four letters: A, T, C and G.
56
178880
3772
四个字母,A,T,C和G (碱基)。
03:02
And to build a human, you need three billion of them.
57
182676
3490
要组装一个人,需要30亿个字母。
03:06
Three billion.
58
186933
1179
30亿....30亿是多少?
03:08
How many are three billion?
59
188136
1579
03:09
It doesn't really make any sense as a number, right?
60
189739
2762
光这么说大家可能都没概念,
03:12
So I was thinking how I could explain myself better
61
192525
4085
我在想怎么表达才能让人更清楚,
03:16
about how big and enormous this code is.
62
196634
3050
这些遗传密码的数量到底有多庞大。
03:19
But there is -- I mean, I'm going to have some help,
63
199708
3054
所以...我需要点帮助...
03:22
and the best person to help me introduce the code
64
202786
3227
最合适来帮我介绍遗传密码的人,
03:26
is actually the first man to sequence it, Dr. Craig Venter.
65
206037
3522
就是第一位进行人类基因组测序的人,
Craig Venter 博士。
03:29
So welcome onstage, Dr. Craig Venter.
66
209583
3390
我们欢迎Craig Venter博士到台上来——
03:32
(Applause)
67
212997
6931
(掌声)
03:39
Not the man in the flesh,
68
219952
2256
不是他本人——
03:43
but for the first time in history,
69
223448
2345
但这是史上第一次,一个人的基因组
03:45
this is the genome of a specific human,
70
225817
3462
被一页一页,一个字母一个字母的打印在纸上——
03:49
printed page-by-page, letter-by-letter:
71
229303
3760
03:53
262,000 pages of information,
72
233087
3996
总共26万2千页,450千克,
03:57
450 kilograms, shipped from the United States to Canada
73
237107
4364
从美国运到加拿大
04:01
thanks to Bruno Bowden, Lulu.com, a start-up, did everything.
74
241495
4843
感谢Bruno Bowden还有 Lulu.com——
他们负责完成了这一切,一项壮举。
04:06
It was an amazing feat.
75
246362
1463
04:07
But this is the visual perception of what is the code of life.
76
247849
4297
这些就是生命密码给人最直观的视觉感受。
04:12
And now, for the first time, I can do something fun.
77
252170
2478
现在我可以来玩点有趣的——
04:14
I can actually poke inside it and read.
78
254672
2547
从这里面挑一段来读一读。
04:17
So let me take an interesting book ... like this one.
79
257243
4625
我来找一本有意思的...比如这一本...
04:25
I have an annotation; it's a fairly big book.
80
265077
2534
我放了书签在里面,这书太厚了...
04:27
So just to let you see what is the code of life.
81
267635
3727
给你们看一下,生命的密码长什么样子
04:32
Thousands and thousands and thousands
82
272566
3391
成百上千...成千上万...上百万的字母...
04:35
and millions of letters.
83
275981
2670
04:38
And they apparently make sense.
84
278675
2396
它们当然都有意义。
04:41
Let's get to a specific part.
85
281095
1757
让我来找一段特殊的
04:43
Let me read it to you:
86
283571
1362
读给你们听...
04:44
(Laughter)
87
284957
1021
04:46
"AAG, AAT, ATA."
88
286002
4006
"AAG, AAT, ATA"
04:50
To you it sounds like mute letters,
89
290965
2067
你们可能觉得像是听天书,
04:53
but this sequence gives the color of the eyes to Craig.
90
293056
4041
但这段序列决定了Craig眼睛的颜色。
04:57
I'll show you another part of the book.
91
297633
1932
在看看另外一段...
04:59
This is actually a little more complicated.
92
299589
2094
这一段稍微复杂一些...
05:02
Chromosome 14, book 132:
93
302983
2647
第14号染色体,书本编号132...
05:05
(Laughter)
94
305654
2090
(笑声)
05:07
As you might expect.
95
307768
1277
你们想象到了哦...
05:09
(Laughter)
96
309069
3466
(笑声)
05:14
"ATT, CTT, GATT."
97
314857
4507
"ATT, CTT, GATT"
05:20
This human is lucky,
98
320329
1687
这个人很幸运,
05:22
because if you miss just two letters in this position --
99
322040
4517
因为如果他在这个位点上少了2个字母,
05:26
two letters of our three billion --
100
326581
1877
30亿中的2个...
05:28
he will be condemned to a terrible disease:
101
328482
2019
他就会患上一种非常可怕的疾病——
05:30
cystic fibrosis.
102
330525
1440
囊肿性纤维化(cystic fibrosis)
05:31
We have no cure for it, we don't know how to solve it,
103
331989
3413
目前没有治疗的方法,这是绝症,
05:35
and it's just two letters of difference from what we are.
104
335426
3755
仅仅是2个字母的区别。
05:39
A wonderful book, a mighty book,
105
339585
2705
这是一部鸿篇巨著,
05:43
a mighty book that helped me understand
106
343115
1998
它帮助我理解,也能让你们看到
05:45
and show you something quite remarkable.
107
345137
2753
一件更加另人叹为观止的事。
05:48
Every one of you -- what makes me, me and you, you --
108
348480
4435
我们中的每一个人,
是什么让我成为我,让你成为你...
05:52
is just about five million of these,
109
352939
2954
大概只占这其中的500万...
05:55
half a book.
110
355917
1228
只有半本书...
05:58
For the rest,
111
358015
1663
所有剩下的,我们完全一模一样。
05:59
we are all absolutely identical.
112
359702
2562
06:03
Five hundred pages is the miracle of life that you are.
113
363008
4018
500页,涵盖了你的生命奇迹;
06:07
The rest, we all share it.
114
367050
2531
余下的,我们全都一样。
06:09
So think about that again when we think that we are different.
115
369605
2909
讨论人与人差异的时候反思一下,
06:12
This is the amount that we share.
116
372538
2221
我们有这么多共通的东西。
06:15
So now that I have your attention,
117
375441
3429
现在我已经引起了你们的兴趣,
06:18
the next question is:
118
378894
1359
下一步就是:
06:20
How do I read it?
119
380277
1151
怎么去读取这些信息?
06:21
How do I make sense out of it?
120
381452
1509
怎么理解和运用它们?
06:23
Well, for however good you can be at assembling Swedish furniture,
121
383409
4240
不管你在组装宜家家居上有多在行...
06:27
this instruction manual is nothing you can crack in your life.
122
387673
3563
这么长的说明书...基本是不可能完成的任务
06:31
(Laughter)
123
391260
1603
06:32
And so, in 2014, two famous TEDsters,
124
392887
3112
2014年,两位著名的TED参加者
06:36
Peter Diamandis and Craig Venter himself,
125
396023
2540
Peter Diamandis 和 Craig Venter
06:38
decided to assemble a new company.
126
398587
1927
决定成立一个新公司
06:40
Human Longevity was born,
127
400538
1412
人类长寿公司(Human Longevity, Inc.)诞生了。
06:41
with one mission:
128
401974
1370
唯一的任务——
06:43
trying everything we can try
129
403368
1861
竭尽全力,穷尽其学的研究这些书目
06:45
and learning everything we can learn from these books,
130
405253
2759
06:48
with one target --
131
408036
1705
只为达到一个目的:
06:50
making real the dream of personalized medicine,
132
410862
2801
让个人化医疗成为现实。
06:53
understanding what things should be done to have better health
133
413687
3767
怎么做才能提高人类健康水平
06:57
and what are the secrets in these books.
134
417478
2283
了解这些书目背后的秘密。
07:00
An amazing team, 40 data scientists and many, many more people,
135
420329
4250
一个强大的团队,拥有40位数据分析人员
还有很多其他的人力支持
07:04
a pleasure to work with.
136
424603
1350
和他们一起工作十分愉快。
07:05
The concept is actually very simple.
137
425977
2253
实际上工作流程不很复杂
07:08
We're going to use a technology called machine learning.
138
428254
3158
我们用一种叫做机器学习的方法。
07:11
On one side, we have genomes -- thousands of them.
139
431436
4539
一方面,我们有几千个基因组;
07:15
On the other side, we collected the biggest database of human beings:
140
435999
3997
另一边我们建立一个超大的人类信息数据库:
07:20
phenotypes, 3D scan, NMR -- everything you can think of.
141
440020
4296
性状,3D扫描,核磁共振,所有能想到的
07:24
Inside there, on these two opposite sides,
142
444340
2899
在这两个端点之间,
07:27
there is the secret of translation.
143
447263
2442
有神秘的翻译在进行。
07:29
And in the middle, we build a machine.
144
449729
2472
我们在中间建了一个机器,
07:32
We build a machine and we train a machine --
145
452801
2385
建好之后训练这台机器——
07:35
well, not exactly one machine, many, many machines --
146
455210
3210
实际上不只一台机器,而是很多台...
07:38
to try to understand and translate the genome in a phenotype.
147
458444
4544
试图去理解基因组并把它翻译成性状。
07:43
What are those letters, and what do they do?
148
463362
3340
有哪些字母——它们控制什么性状——
07:46
It's an approach that can be used for everything,
149
466726
2747
这是普适的方法,可以用在所有问题上,
07:49
but using it in genomics is particularly complicated.
150
469497
2993
但用在基因组学上异常的复杂。
07:52
Little by little we grew and we wanted to build different challenges.
151
472514
3276
一点一点有了进展,我们再尝试更有挑战性的东西
07:55
We started from the beginning, from common traits.
152
475814
2732
最开始我们从常见的特征下手,
07:58
Common traits are comfortable because they are common,
153
478570
2603
常见特征最容易因为它们太常见了,
08:01
everyone has them.
154
481197
1184
每个人都有。
08:02
So we started to ask our questions:
155
482405
2494
我们开始提出如下问题:
08:04
Can we predict height?
156
484923
1380
能预测身高吗?
08:06
Can we read the books and predict your height?
157
486985
2177
能不能根据这些信息预测身高?
08:09
Well, we actually can,
158
489186
1151
可以,在5厘米的误差范围以内。
08:10
with five centimeters of precision.
159
490361
1793
08:12
BMI is fairly connected to your lifestyle,
160
492178
3135
BMI 主要跟生活习惯有关,
08:15
but we still can, we get in the ballpark, eight kilograms of precision.
161
495337
3864
但我们仍然能预测得差不多,8千克上下的误差。
08:19
Can we predict eye color?
162
499225
1231
眼睛的颜色能不能预测?
08:20
Yeah, we can.
163
500480
1158
可以,80%准确率。
08:21
Eighty percent accuracy.
164
501662
1324
08:23
Can we predict skin color?
165
503466
1858
皮肤颜色?
08:25
Yeah we can, 80 percent accuracy.
166
505348
2441
可以,80%准确。
08:27
Can we predict age?
167
507813
1340
年龄?
08:30
We can, because apparently, the code changes during your life.
168
510121
3739
可以,因为很明显基因随着年龄产生变化。
08:33
It gets shorter, you lose pieces, it gets insertions.
169
513884
3282
DNA 会变短,缺失一些片段,插入另外一些片段
08:37
We read the signals, and we make a model.
170
517190
2555
我们读取这些信号,然后建立模型。
08:40
Now, an interesting challenge:
171
520438
1475
现在来个有意思点的挑战:
08:41
Can we predict a human face?
172
521937
1729
我们能不能预测人的面孔?
08:45
It's a little complicated,
173
525014
1278
这个略有点复杂,
08:46
because a human face is scattered among millions of these letters.
174
526316
3191
因为有几百万个碱基都对人脸产生影响。
08:49
And a human face is not a very well-defined object.
175
529531
2629
而且人脸并不是一个构造十分精准的物体。
08:52
So, we had to build an entire tier of it
176
532184
2051
所以必须要建立一整个单独的模块,
08:54
to learn and teach a machine what a face is,
177
534259
2710
给机器去训练和学习人脸是什么,
08:56
and embed and compress it.
178
536993
2037
再把这个模块压缩整合进去。
08:59
And if you're comfortable with machine learning,
179
539054
2248
如果你对机器学习有点概念的话,
09:01
you understand what the challenge is here.
180
541326
2284
就能够想象这个挑战是有多大。
09:04
Now, after 15 years -- 15 years after we read the first sequence --
181
544108
5991
现在15年过去了——15年前我们读取第一条序列
09:10
this October, we started to see some signals.
182
550123
2902
——今年10月,我们总算有了些进展,
09:13
And it was a very emotional moment.
183
553049
2455
当时还是很激动人心的。
09:15
What you see here is a subject coming in our lab.
184
555528
3745
这是我们的一个测试对象,一张人的脸——
09:19
This is a face for us.
185
559619
1928
09:21
So we take the real face of a subject, we reduce the complexity,
186
561571
3631
我们要对测试对象的面孔进行简化,
09:25
because not everything is in your face --
187
565226
1970
因为并不是所有的特征都是面孔的一部分——
09:27
lots of features and defects and asymmetries come from your life.
188
567220
3786
很多特点、缺陷和不对称是生活的痕迹。
09:31
We symmetrize the face, and we run our algorithm.
189
571030
3469
把面孔调整对称之后,跟我们运算的结果比较。
09:35
The results that I show you right now,
190
575245
1898
现在给你们看,我们根据血液样本生成的预测。
09:37
this is the prediction we have from the blood.
191
577167
3372
09:41
(Applause)
192
581596
1524
(掌声)
09:43
Wait a second.
193
583144
1435
等一下——
09:44
In these seconds, your eyes are watching, left and right, left and right,
194
584603
4692
你们的眼睛正在左右两边交替看,
09:49
and your brain wants those pictures to be identical.
195
589319
3930
大脑希望两幅图是一模一样的。
09:53
So I ask you to do another exercise, to be honest.
196
593273
2446
我其实想请大家反过来,
09:55
Please search for the differences,
197
595743
2287
找找两幅图的不同点,
09:58
which are many.
198
598054
1361
其实非常多。
09:59
The biggest amount of signal comes from gender,
199
599439
2603
性别提供最多的信息,
10:02
then there is age, BMI, the ethnicity component of a human.
200
602066
5201
接下来是年龄,BMI(体质指数),种族;
10:07
And scaling up over that signal is much more complicated.
201
607291
3711
再考虑更多因素会变得更加复杂。
10:11
But what you see here, even in the differences,
202
611026
3250
但是这样的结果,即便有很多不同,
10:14
lets you understand that we are in the right ballpark,
203
614300
3595
表示我们已经接近了,
10:17
that we are getting closer.
204
617919
1348
正在逐渐靠得更近——而且这已经能够鼓舞人心了
10:19
And it's already giving you some emotions.
205
619291
2349
10:21
This is another subject that comes in place,
206
621664
2703
这是另外一个测试对象,
10:24
and this is a prediction.
207
624391
1409
这边是预测结果。
10:25
A little smaller face, we didn't get the complete cranial structure,
208
625824
4596
脸小了一点,完整的颅骨结构没预测到。
10:30
but still, it's in the ballpark.
209
630444
2651
但至少像那么回事。
10:33
This is a subject that comes in our lab,
210
633634
2224
这是又一个测试对象,
10:35
and this is the prediction.
211
635882
1443
这是预测结果。
10:38
So these people have never been seen in the training of the machine.
212
638056
4676
这些面孔在训练机器的时候是没有用过的,
10:42
These are the so-called "held-out" set.
213
642756
2837
就是所谓的随机测试组。
10:45
But these are people that you will probably never believe.
214
645617
3740
并且你们不认识这些人,可能说服力不太够。
10:49
We're publishing everything in a scientific publication,
215
649381
2676
我们在学术期刊上发表了这些结果,
10:52
you can read it.
216
652081
1151
你们可以去读一下。
10:53
But since we are onstage, Chris challenged me.
217
653256
2344
但既然我们在台上,Chris 给我出了个点子,
10:55
I probably exposed myself and tried to predict
218
655624
3626
我可以挑战一下,尝试预测一个你们都认识的人。
10:59
someone that you might recognize.
219
659274
2831
11:02
So, in this vial of blood -- and believe me, you have no idea
220
662470
4425
这里有管血液——你们很难想象
11:06
what we had to do to have this blood now, here --
221
666919
2880
我们为了带一管血液到这里花了多少工夫...
11:09
in this vial of blood is the amount of biological information
222
669823
3901
这支试管里的血液足够完成一次全基因组测序
11:13
that we need to do a full genome sequence.
223
673748
2277
11:16
We just need this amount.
224
676049
2070
只需要这么多。
11:18
We ran this sequence, and I'm going to do it with you.
225
678528
3205
完成了测序,下面我们一条条来看——
11:21
And we start to layer up all the understanding we have.
226
681757
3979
我们综合了所有已知的信息——
11:25
In the vial of blood, we predicted he's a male.
227
685760
3350
从血液测试的结果,我们预测这是一名男性,
11:29
And the subject is a male.
228
689134
1364
被试是男性。
11:30
We predict that he's a meter and 76 cm.
229
690996
2438
预测他身高1米76,
11:33
The subject is a meter and 77 cm.
230
693458
2392
被试身高1米77。
11:35
So, we predicted that he's 76; the subject is 82.
231
695874
4110
预测他体重76kg,被试是82kg;
11:40
We predict his age, 38.
232
700701
2632
我们还预测了年龄,38岁
11:43
The subject is 35.
233
703357
1904
被试实际是35岁。
11:45
We predict his eye color.
234
705851
2124
预测了眼睛的颜色,有点偏深了;
11:48
Too dark.
235
708824
1211
11:50
We predict his skin color.
236
710059
1555
预测他的皮肤颜色,
11:52
We are almost there.
237
712026
1410
基本上准确。
11:53
That's his face.
238
713899
1373
这是他的面孔...
11:57
Now, the reveal moment:
239
717172
3269
现在到了揭晓的时刻:
12:00
the subject is this person.
240
720465
1770
被试对象是这个人。
12:02
(Laughter)
241
722259
1935
(笑声)
12:04
And I did it intentionally.
242
724218
2058
我是有意拿自己做测试的,
12:06
I am a very particular and peculiar ethnicity.
243
726300
3692
我属于一个特别又特殊的种族,
12:10
Southern European, Italians -- they never fit in models.
244
730016
2950
南欧人,意大利人——从来都不符合模型预测。
12:12
And it's particular -- that ethnicity is a complex corner case for our model.
245
732990
5130
而且这一种族在模型里是一个复杂的边界情况。
12:18
But there is another point.
246
738144
1509
但还有另一个重点——
12:19
So, one of the things that we use a lot to recognize people
247
739677
3477
最常用的来辨识人的方法,
12:23
will never be written in the genome.
248
743178
1722
不是由基因组编译的。
12:24
It's our free will, it's how I look.
249
744924
2317
是人们的自由意志——我想让自己看起来怎么样,
12:27
Not my haircut in this case, but my beard cut.
250
747265
3229
虽然我的发型不是我自己决定的,但胡子是的。
12:30
So I'm going to show you, I'm going to, in this case, transfer it --
251
750518
3553
下面我们来看一下——
12:34
and this is nothing more than Photoshop, no modeling --
252
754095
2765
单纯的用photoshop,不用建模——
12:36
the beard on the subject.
253
756884
1713
把胡子加上去。
12:38
And immediately, we get much, much better in the feeling.
254
758621
3472
是不是立即觉得变得很相像了。
12:42
So, why do we do this?
255
762955
2709
那么,我们为什么要研究这些?
12:47
We certainly don't do it for predicting height
256
767938
5140
当然不是为了预测身高,
12:53
or taking a beautiful picture out of your blood.
257
773102
2372
或者是根据血液样本得到一张美照;
12:56
We do it because the same technology and the same approach,
258
776390
4018
我们研究是因为同样的技术和手段——
13:00
the machine learning of this code,
259
780432
2520
对基因组的机器学习,
13:02
is helping us to understand how we work,
260
782976
3137
能帮助我们了解人类自身,
13:06
how your body works,
261
786137
1486
你的身体怎么运作,身体如何老化,
13:07
how your body ages,
262
787647
1665
13:09
how disease generates in your body,
263
789336
2769
疾病是如何产生的,
13:12
how your cancer grows and develops,
264
792129
2972
癌症是怎么出现和恶化的;
13:15
how drugs work
265
795125
1783
药物如何起作用——
13:16
and if they work on your body.
266
796932
2314
药物是不是能够对你有效。
13:19
This is a huge challenge.
267
799713
1667
这是一个巨大的挑战,
13:21
This is a challenge that we share
268
801894
1638
而且是一个全球的科学家都面临的挑战
13:23
with thousands of other researchers around the world.
269
803556
2579
13:26
It's called personalized medicine.
270
806159
2222
——个性化医疗。
13:29
It's the ability to move from a statistical approach
271
809125
3460
从只能借助统计学方法——
13:32
where you're a dot in the ocean,
272
812609
2032
每个人都只是沧海一粟——
13:34
to a personalized approach,
273
814665
1813
到能够实现有针对性的治疗,
13:36
where we read all these books
274
816502
2185
通过解码这些基因信息,
13:38
and we get an understanding of exactly how you are.
275
818711
2864
我们能够彻底了解每一个人。
13:42
But it is a particularly complicated challenge,
276
822260
3362
但这是一项异常复杂的挑战,
13:45
because of all these books, as of today,
277
825646
3998
因为到目前为止在这么庞大的基因组信息中,
13:49
we just know probably two percent:
278
829668
2642
我们大概只了解2%:
13:53
four books of more than 175.
279
833027
3653
175本书里的4本...
13:58
And this is not the topic of my talk,
280
838021
3206
当然这不是我今天演讲的主题,
14:02
because we will learn more.
281
842145
2598
因为我们会进步,会了解更多——
14:05
There are the best minds in the world on this topic.
282
845378
2669
有很多顶尖的人才在从事这项工作。
14:09
The prediction will get better,
283
849048
1834
预测能力会提升,模型会更准确。
14:10
the model will get more precise.
284
850906
2253
14:13
And the more we learn,
285
853183
1858
随着了解的逐渐深入,
14:15
the more we will be confronted with decisions
286
855065
4830
我们需要做的决定会越来越多,
14:19
that we never had to face before
287
859919
3021
而且是一些从前没有想象过的决定——
14:22
about life,
288
862964
1435
关于生,关于死,关于子孙后代...
14:24
about death,
289
864423
1674
14:26
about parenting.
290
866121
1603
所以我们在此的讨论,涉及生命最本质的东西,
14:32
So, we are touching the very inner detail on how life works.
291
872626
4746
14:38
And it's a revolution that cannot be confined
292
878118
3158
这些改变不只是在科学和技术层面。
14:41
in the domain of science or technology.
293
881300
2659
14:44
This must be a global conversation.
294
884960
2244
我们必须要有全球性的对话,
14:47
We must start to think of the future we're building as a humanity.
295
887798
5217
必须要为全人类的未来设想。
我们需要和创新人才、艺术家、哲学家交流,
14:53
We need to interact with creatives, with artists, with philosophers,
296
893039
4064
14:57
with politicians.
297
897127
1510
还需要政治家的参与。
14:58
Everyone is involved,
298
898661
1158
每个人都身在其中,因为这关乎人类的未来。
14:59
because it's the future of our species.
299
899843
2825
15:03
Without fear, but with the understanding
300
903273
3968
不需要惊慌——
但必须了解我们现在做出的每一项决定,
15:07
that the decisions that we make in the next year
301
907265
3871
15:11
will change the course of history forever.
302
911160
3789
都会彻底改变历史。
15:15
Thank you.
303
915732
1160
谢谢。
15:16
(Applause)
304
916916
10159
(持久的掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog