請雙擊下方英文字幕播放視頻。
譯者: 易帆 余
審譯者: Jianan(Tiana) Zhao
00:12
For the next 16 minutes,
I'm going to take you on a journey
0
12612
2762
接下來的16分鐘,
我要帶各位進行一段冒險之旅,
00:15
that is probably
the biggest dream of humanity:
1
15398
3086
這大概是人類最大的夢想:
00:18
to understand the code of life.
2
18508
2015
了解生命的密碼。
00:21
So for me, everything started
many, many years ago
3
21072
2743
對我而言,這一切的開始,
要拉回到好幾好幾年前,
00:23
when I met the first 3D printer.
4
23839
2723
當我第一次遇上3D印表機時。
00:26
The concept was fascinating.
5
26586
1674
它的概念真的很棒。
00:28
A 3D printer needs three elements:
6
28284
2022
3D印表機需要三個元素:
00:30
a bit of information, some
raw material, some energy,
7
30330
4134
少量的資訊、一些原物料、
再加上點能量,
00:34
and it can produce any object
that was not there before.
8
34488
3334
這樣它就可以製造出
以前從未存在過的任何東西。
00:38
I was doing physics,
I was coming back home
9
38517
2137
我當時研究的是物理學,
有天回到家裡時,
00:40
and I realized that I actually
always knew a 3D printer.
10
40678
3438
我突然意識到,我家裡
就有一台 3D 印表機。
00:44
And everyone does.
11
44140
1336
而且每個人家裡都有一台。
00:45
It was my mom.
12
45500
1158
那就是我媽嗎。
00:46
(Laughter)
13
46682
1001
(笑聲)
00:47
My mom takes three elements:
14
47707
2414
我媽也有三個元素:
00:50
a bit of information, which is between
my father and my mom in this case,
15
50145
3973
少量的資訊:我這個例子,
指的是我媽跟我爸之間的投入,
00:54
raw elements and energy
in the same media, that is food,
16
54142
4157
食物就是原物料及能量的來源,
00:58
and after several months, produces me.
17
58323
2508
然後,幾個月後,生下了我。
01:00
And I was not existent before.
18
60855
1812
而我以前也是不存的。
01:02
So apart from the shock of my mom
discovering that she was a 3D printer,
19
62691
3762
所以,除了我發現我媽
就是一台3D列印機之外,
01:06
I immediately got mesmerized
by that piece,
20
66477
4738
我突然間也被
這個吸引注了,
01:11
the first one, the information.
21
71239
1717
那邊的第一項,資訊。
01:12
What amount of information does it take
22
72980
2251
要有多少這樣的資訊
01:15
to build and assemble a human?
23
75255
1936
才能建構並組裝出一個人來呢?
01:17
Is it much? Is it little?
24
77215
1574
要很多嗎?還是只要一點點?
01:18
How many thumb drives can you fill?
25
78813
2180
要多少隨身碟存取這些資訊呢?
01:21
Well, I was studying physics
at the beginning
26
81017
2624
我一開始是研究物理學的,
01:23
and I took this approximation of a human
as a gigantic Lego piece.
27
83665
5597
我喜歡把人類比喻成
一個大型的樂高玩具,
01:29
So, imagine that the building
blocks are little atoms
28
89286
3785
你可以想像,每一個
樂高積木就是一個原子,
01:33
and there is a hydrogen here,
a carbon here, a nitrogen here.
29
93095
4653
氫原子在這,碳原子在這,
氮原子在這。
01:37
So in the first approximation,
30
97772
1571
按照最初的估算想法,
01:39
if I can list the number of atoms
that compose a human being,
31
99367
4343
如果我可以列出
人類的原子清單的數量,
01:43
I can build it.
32
103734
1387
我就可以把它建造出來。
01:45
Now, you can run some numbers
33
105145
2029
現在,請各位算一下,
01:47
and that happens to be
quite an astonishing number.
34
107198
3277
這想必是個驚人的數字。
01:50
So the number of atoms,
35
110499
2757
所以,存在這隨身碟裡面
01:53
the file that I will save in my thumb
drive to assemble a little baby,
36
113280
4755
可以組合出來一個小寶寶的檔案,
裡面的原子數數量,
01:58
will actually fill an entire Titanic
of thumb drives --
37
118059
4667
實際上若用樂高玩具
組裝起一個人類,
02:02
multiplied 2,000 times.
38
122750
2718
它的大小足足有
2000台鐵達尼號這麼大。
02:05
This is the miracle of life.
39
125957
3401
這就是生命的奇蹟啊!
02:09
Every time you see from now on
a pregnant lady,
40
129382
2612
從現在起,你每次
看到懷孕的婦女,
02:12
she's assembling the biggest
amount of information
41
132018
2856
她就是那個正在組裝
02:14
that you will ever encounter.
42
134898
1556
你這輩子所遇到的最大量資訊。
02:16
Forget big data, forget
anything you heard of.
43
136478
2950
忘了大數據吧!
忘了你曾聽過的。
02:19
This is the biggest amount
of information that exists.
44
139452
2881
這就是現存的
最大數據資料。
02:22
(Applause)
45
142357
3833
(笑聲)
但...好在大自然比一位
年輕的物理學家還聰明,
02:26
But nature, fortunately, is much smarter
than a young physicist,
46
146214
4644
02:30
and in four billion years, managed
to pack this information
47
150882
3576
這40億年來,大自然中
負責管理包裹這個資訊的
02:34
in a small crystal we call DNA.
48
154482
2705
小晶體--我們稱之為DNA。
02:37
We met it for the first time in 1950
when Rosalind Franklin,
49
157605
4312
我們在1950年第一次認識了它,
02:41
an amazing scientist, a woman,
50
161941
1556
當時有一位了不起的女科學家
--羅莎琳.富蘭克林--
02:43
took a picture of it.
51
163521
1389
給 DNA 拍了張照。
02:44
But it took us more than 40 years
to finally poke inside a human cell,
52
164934
5188
但我們花了40年的時間,
最後才戳進人類細胞裡
02:50
take out this crystal,
53
170146
1602
取出這個晶體,
02:51
unroll it, and read it for the first time.
54
171772
3080
才首次把它伸展開來閱讀。
02:55
The code comes out to be
a fairly simple alphabet,
55
175615
3241
而密碼也就是大家所孰知的
02:58
four letters: A, T, C and G.
56
178880
3772
四個字母:A、T、C、G。
03:02
And to build a human,
you need three billion of them.
57
182676
3490
而建造一個人類,
你需要30億個字母。
03:06
Three billion.
58
186933
1179
30億。
03:08
How many are three billion?
59
188136
1579
30億有多少?
03:09
It doesn't really make
any sense as a number, right?
60
189739
2762
我們對這個數字
真的很沒有概念,對吧?
03:12
So I was thinking how
I could explain myself better
61
192525
4085
所以,我在想,這麼大的數字
我要怎麼解釋
才讓人比較容易了解。
03:16
about how big and enormous this code is.
62
196634
3050
03:19
But there is -- I mean,
I'm going to have some help,
63
199708
3054
但,我的意思是...
我最好找個人來幫忙,
03:22
and the best person to help me
introduce the code
64
202786
3227
而能幫我介紹基因密碼
的最佳人選,
03:26
is actually the first man
to sequence it, Dr. Craig Venter.
65
206037
3522
想當然就是第一個定序的人,
克萊格.凡特博士。
03:29
So welcome onstage, Dr. Craig Venter.
66
209583
3390
所以,讓我們歡迎
克萊格.凡特博士上台。
03:32
(Applause)
67
212997
6931
(掌聲)
03:39
Not the man in the flesh,
68
219952
2256
當然不是活生生的人,
03:43
but for the first time in history,
69
223448
2345
但這是史上第一次
03:45
this is the genome of a specific human,
70
225817
3462
特定人類的基因組被
03:49
printed page-by-page, letter-by-letter:
71
229303
3760
一頁接著一頁,一個字
接著一個字地列印出來:
03:53
262,000 pages of information,
72
233087
3996
262,000頁的資料,
03:57
450 kilograms, shipped
from the United States to Canada
73
237107
4364
450公斤、從美國運到加拿大,
04:01
thanks to Bruno Bowden,
Lulu.com, a start-up, did everything.
74
241495
4843
感謝新創公司Lulu.com的布魯諾.鮑登,
他們幫我做的這一切。
04:06
It was an amazing feat.
75
246362
1463
這是個很棒的饗宴。
04:07
But this is the visual perception
of what is the code of life.
76
247849
4297
但這只是對生命密碼
的視覺感受。
04:12
And now, for the first time,
I can do something fun.
77
252170
2478
現在,為了慶祝第一次,
我要做件有趣的事。
04:14
I can actually poke inside it and read.
78
254672
2547
我真的可以從裡面
挑一段來讀一讀。
04:17
So let me take an interesting
book ... like this one.
79
257243
4625
所以,讓我來找一本有趣的....
書兒,比如這本。
04:25
I have an annotation;
it's a fairly big book.
80
265077
2534
我做了個註記;這書太厚了。
04:27
So just to let you see
what is the code of life.
81
267635
3727
讓各位看一下甚麼是生命密碼。
04:32
Thousands and thousands and thousands
82
272566
3391
數以百萬、千萬、
04:35
and millions of letters.
83
275981
2670
億個字母。
04:38
And they apparently make sense.
84
278675
2396
它們當然都有意義。
04:41
Let's get to a specific part.
85
281095
1757
讓我來找一段特別的
04:43
Let me read it to you:
86
283571
1362
讀給各位聽:
04:44
(Laughter)
87
284957
1021
(笑聲)
04:46
"AAG, AAT, ATA."
88
286002
4006
"AAG, AAT, ATA."
04:50
To you it sounds like mute letters,
89
290965
2067
你們可能覺得像是在聽天書,
04:53
but this sequence gives
the color of the eyes to Craig.
90
293056
4041
但這段序列,決定了
克萊格的眼睛顏色。
04:57
I'll show you another part of the book.
91
297633
1932
我再展示另一段給各位看。
04:59
This is actually a little
more complicated.
92
299589
2094
這段實際上稍微複雜些。
05:02
Chromosome 14, book 132:
93
302983
2647
14 號染色體,第132 號書:
05:05
(Laughter)
94
305654
2090
(笑聲)
05:07
As you might expect.
95
307768
1277
如你所望!
05:09
(Laughter)
96
309069
3466
(笑聲)
05:14
"ATT, CTT, GATT."
97
314857
4507
"ATT, CTT, GATT."
05:20
This human is lucky,
98
320329
1687
這個人很幸運,
05:22
because if you miss just
two letters in this position --
99
322040
4517
因為如果你在這個位置
剛好漏掉兩個字母--
05:26
two letters of our three billion --
100
326581
1877
30億個字母,只漏掉兩個--
05:28
he will be condemned
to a terrible disease:
101
328482
2019
你就等同於被宣判
得了一個恐佈的疾病:
05:30
cystic fibrosis.
102
330525
1440
囊性纖維化。
05:31
We have no cure for it,
we don't know how to solve it,
103
331989
3413
目前我們沒有治療的方式,
我們不知道如何解決,
05:35
and it's just two letters
of difference from what we are.
104
335426
3755
僅僅就這兩個字母上
的差異而已。
05:39
A wonderful book, a mighty book,
105
339585
2705
這本偉大的書,
05:43
a mighty book that helped me understand
106
343115
1998
這本偉大的書,
可以幫助我了解,也能讓各位
看到一些嘆為觀止的事情。
05:45
and show you something quite remarkable.
107
345137
2753
05:48
Every one of you -- what makes
me, me and you, you --
108
348480
4435
在場的每一個人,
成就你我不同的地方
05:52
is just about five million of these,
109
352939
2954
就這五百萬個
字母的差異,
05:55
half a book.
110
355917
1228
半本書。
05:58
For the rest,
111
358015
1663
剩下的,
05:59
we are all absolutely identical.
112
359702
2562
我們絕對都長一樣。
06:03
Five hundred pages
is the miracle of life that you are.
113
363008
4018
就是這 500 頁的字母,
行塑了你是甚麼樣的人,
06:07
The rest, we all share it.
114
367050
2531
剩下的,我們都一樣。
06:09
So think about that again
when we think that we are different.
115
369605
2909
所以,當我們在討論彼此差異的時候,
讓我們再反思一下,
06:12
This is the amount that we share.
116
372538
2221
其實我們共同的地方
真的有這麼多。
06:15
So now that I have your attention,
117
375441
3429
所以,我問一下各位,
06:18
the next question is:
118
378894
1359
接下來的問題:
06:20
How do I read it?
119
380277
1151
我要怎麼讀它?
06:21
How do I make sense out of it?
120
381452
1509
我要怎麼搞懂它?
06:23
Well, for however good you can be
at assembling Swedish furniture,
121
383409
4240
其實,無論你多麼會
看說明書組裝瑞典的家具,
06:27
this instruction manual
is nothing you can crack in your life.
122
387673
3563
這本安裝手冊也沒辦法
教你如何破解你的人生。
06:31
(Laughter)
123
391260
1603
(笑聲)
06:32
And so, in 2014, two famous TEDsters,
124
392887
3112
2014年,兩位出名的 TED 演講者,
06:36
Peter Diamandis and Craig Venter himself,
125
396023
2540
彼得.戴曼迪斯和
克雷格.文特爾本人,
06:38
decided to assemble a new company.
126
398587
1927
他們決定創立一家新公司。
06:40
Human Longevity was born,
127
400538
1412
《人類長壽公司》誕生了,
06:41
with one mission:
128
401974
1370
並賦予一個使命:
06:43
trying everything we can try
129
403368
1861
竭盡所能的,
06:45
and learning everything
we can learn from these books,
130
405253
2759
從這些書上,嘗試每樣東西,
學習每樣東西,
06:48
with one target --
131
408036
1705
就為了一個目標——
06:50
making real the dream
of personalized medicine,
132
410862
2801
讓個人化醫療的美夢可以成真,
06:53
understanding what things
should be done to have better health
133
413687
3767
了解需要做哪些事
才能更健康,
06:57
and what are the secrets in these books.
134
417478
2283
以及了解這些書
裡面的秘密。
07:00
An amazing team, 40 data scientists
and many, many more people,
135
420329
4250
一個令人驚豔的團隊,40 個數據科學家,
還有其他很多、很多的人,
07:04
a pleasure to work with.
136
424603
1350
一起為團隊努力。
07:05
The concept is actually very simple.
137
425977
2253
這概念其實很簡單。
07:08
We're going to use a technology
called machine learning.
138
428254
3158
我們將要使用一種叫
「機械自主學習」的概念。
07:11
On one side, we have genomes --
thousands of them.
139
431436
4539
一方面,我們有
成千上萬的基因組——
07:15
On the other side, we collected
the biggest database of human beings:
140
435999
3997
另一方面,我們收集了
人類最大的資料庫:
07:20
phenotypes, 3D scan, NMR --
everything you can think of.
141
440020
4296
生物特性、3D掃描、核磁共振——
你能想到的每樣東西。
07:24
Inside there, on these two opposite sides,
142
444340
2899
這兩方面的資料,
被自主翻譯出來後
07:27
there is the secret of translation.
143
447263
2442
就可以解開很多的祕密。
07:29
And in the middle, we build a machine.
144
449729
2472
在這兩個中間,
我們建立了一台機器。
07:32
We build a machine
and we train a machine --
145
452801
2385
我建立它,訓練它——
07:35
well, not exactly one machine,
many, many machines --
146
455210
3210
當然,並不只一台機器啦!
是很多很多台機器——
07:38
to try to understand and translate
the genome in a phenotype.
147
458444
4544
嘗試去了解並翻譯
基因組的生物特徵表象。
07:43
What are those letters,
and what do they do?
148
463362
3340
這些字母代表甚麼?
它們有甚麼作用?
07:46
It's an approach that can
be used for everything,
149
466726
2747
這個方法可以運用在每件事上,
07:49
but using it in genomics
is particularly complicated.
150
469497
2993
但用在基因學上,
它就特別複雜。
07:52
Little by little we grew and we wanted
to build different challenges.
151
472514
3276
在一點一滴的慢慢累積後,
我們想建立不一樣的挑戰。
07:55
We started from the beginning,
from common traits.
152
475814
2732
我們從共同的特徵開始。
07:58
Common traits are comfortable
because they are common,
153
478570
2603
談共同特徵比較輕鬆,
因為它們都很普遍。
08:01
everyone has them.
154
481197
1184
每個人都有。
08:02
So we started to ask our questions:
155
482405
2494
我們從這個問題開始問:
08:04
Can we predict height?
156
484923
1380
我們可以預測身高嗎?
08:06
Can we read the books
and predict your height?
157
486985
2177
我們可以光看書
就可以知道你的身高嗎?
08:09
Well, we actually can,
158
489186
1151
沒錯,我們真的可以,
08:10
with five centimeters of precision.
159
490361
1793
預測的誤差在五公分內。
08:12
BMI is fairly connected to your lifestyle,
160
492178
3135
身體質量指數與
你的生活形式有關,
08:15
but we still can, we get in the ballpark,
eight kilograms of precision.
161
495337
3864
但我們仍然可以,相當精準地
將預測誤差控制在 8 公斤以內。
08:19
Can we predict eye color?
162
499225
1231
那我們可以預測眼睛顏色嗎?
08:20
Yeah, we can.
163
500480
1158
是的,我們可以。
08:21
Eighty percent accuracy.
164
501662
1324
精準度高達80%。
08:23
Can we predict skin color?
165
503466
1858
我們可以預測皮膚顏色嗎?
08:25
Yeah we can, 80 percent accuracy.
166
505348
2441
是的,可以,80%的準確率。
08:27
Can we predict age?
167
507813
1340
年齡呢?
08:30
We can, because apparently,
the code changes during your life.
168
510121
3739
可以,因為隨著年紀,
你的基因碼也會更著改變。
08:33
It gets shorter, you lose pieces,
it gets insertions.
169
513884
3282
它會變短、消失或被插入。
08:37
We read the signals, and we make a model.
170
517190
2555
我們可以讀到那個訊號,
並把它模擬出來。
08:40
Now, an interesting challenge:
171
520438
1475
現在,有一項有趣的挑戰:
08:41
Can we predict a human face?
172
521937
1729
我們可以預測一個人的臉嗎?
08:45
It's a little complicated,
173
525014
1278
這有點複雜,
08:46
because a human face is scattered
among millions of these letters.
174
526316
3191
因為人臉上散播了
上百萬個這種字母。
08:49
And a human face is not
a very well-defined object.
175
529531
2629
而人臉不太容易預測。
08:52
So, we had to build an entire tier of it
176
532184
2051
所以,我們必須建立一個
完整的堆疊系統,
08:54
to learn and teach
a machine what a face is,
177
534259
2710
去學習並教會機器
人臉是甚麼,
08:56
and embed and compress it.
178
536993
2037
然後把它嵌進去並壓縮。
08:59
And if you're comfortable
with machine learning,
179
539054
2248
如果你很懂機器自主學習,
09:01
you understand what the challenge is here.
180
541326
2284
你會懂得這邊的挑戰是甚麼。
09:04
Now, after 15 years -- 15 years after
we read the first sequence --
181
544108
5991
15年後--整整15年後--
我們讀取到第一個序列--
09:10
this October, we started
to see some signals.
182
550123
2902
今年10月,我們開始看到一些訊號。
09:13
And it was a very emotional moment.
183
553049
2455
真的是令人感動的時刻。
09:15
What you see here is a subject
coming in our lab.
184
555528
3745
你現在看到的是一個
進來我們實驗室的實驗對象。
09:19
This is a face for us.
185
559619
1928
這是一個我們人類的臉。
09:21
So we take the real face of a subject,
we reduce the complexity,
186
561571
3631
所以我們拿一個真實的臉當作實驗對象,
我們減少了複雜度,
09:25
because not everything is in your face --
187
565226
1970
因為不是每樣東西都會在
你的臉上原貌呈現出來--
09:27
lots of features and defects
and asymmetries come from your life.
188
567220
3786
有很多的特徵、缺陷及不對稱
來自於你後天的生活方式。
09:31
We symmetrize the face,
and we run our algorithm.
189
571030
3469
我們把臉對稱好後,
拿去跑我們的演算法。
09:35
The results that I show you right now,
190
575245
1898
我現在展示給各位看的結果,
09:37
this is the prediction we have
from the blood.
191
577167
3372
是由血液演算出來的預測結果。
09:41
(Applause)
192
581596
1524
(掌聲)
09:43
Wait a second.
193
583144
1435
稍等一下。
09:44
In these seconds, your eyes are watching,
left and right, left and right,
194
584603
4692
在這短短的幾秒鐘,你的眼睛會
左看看、右看看做比較,
09:49
and your brain wants
those pictures to be identical.
195
589319
3930
而你的大腦會希望
這些照片是一致的。
09:53
So I ask you to do
another exercise, to be honest.
196
593273
2446
所以,我要求各位做另一項活動,
這次要誠實。
09:55
Please search for the differences,
197
595743
2287
請找出他們不一樣的地方,
09:58
which are many.
198
598054
1361
有很多喔。
09:59
The biggest amount of signal
comes from gender,
199
599439
2603
最多的訊號來自性別,
10:02
then there is age, BMI,
the ethnicity component of a human.
200
602066
5201
然後是年齡、身體質量指數、
人類種族族群。
10:07
And scaling up over that signal
is much more complicated.
201
607291
3711
把這些訊號擴大是相當複雜的。
10:11
But what you see here,
even in the differences,
202
611026
3250
但即使你現在看到有點不同,
10:14
lets you understand
that we are in the right ballpark,
203
614300
3595
還是要讓各位知道,
我們預測還算不錯,
10:17
that we are getting closer.
204
617919
1348
已經很接近了。
10:19
And it's already giving you some emotions.
205
619291
2349
這已經讓你有點激動了。
10:21
This is another subject
that comes in place,
206
621664
2703
這裡有另外一個例子,
10:24
and this is a prediction.
207
624391
1409
這是預測的結果。
10:25
A little smaller face, we didn't get
the complete cranial structure,
208
625824
4596
有點小的臉,我們雖然沒有
跑完整個頭蓋骨結構,
10:30
but still, it's in the ballpark.
209
630444
2651
但,還是很精準。
10:33
This is a subject that comes in our lab,
210
633634
2224
這是另一個實驗對象,
10:35
and this is the prediction.
211
635882
1443
這是預測結果。
10:38
So these people have never been seen
in the training of the machine.
212
638056
4676
這些人從未在我們
訓練的機器裡面出現過。
10:42
These are the so-called "held-out" set.
213
642756
2837
也就是說這些從
外面隨機取樣的。
10:45
But these are people that you will
probably never believe.
214
645617
3740
但也許各位不相信。
10:49
We're publishing everything
in a scientific publication,
215
649381
2676
我們已經在科學期刊上
發表這一切了,
10:52
you can read it.
216
652081
1151
你可以找到。
10:53
But since we are onstage,
Chris challenged me.
217
653256
2344
但自從知道我們要上台後,
克里斯就挑戰我說,
10:55
I probably exposed myself
and tried to predict
218
655624
3626
我也許可以自己上陣
10:59
someone that you might recognize.
219
659274
2831
並嘗試預測你們可能認識的人。
11:02
So, in this vial of blood --
and believe me, you have no idea
220
662470
4425
所以,在這一瓶血液裡面--
相信我,你們絕對不知道
11:06
what we had to do to have
this blood now, here --
221
666919
2880
我們去哪裡搞來這一瓶血的,
11:09
in this vial of blood is the amount
of biological information
222
669823
3901
這瓶血就擁有
全部的生物資訊,
11:13
that we need to do a full genome sequence.
223
673748
2277
夠我們跑完全部的基因組定序。
11:16
We just need this amount.
224
676049
2070
我們只需要這麼多。
11:18
We ran this sequence,
and I'm going to do it with you.
225
678528
3205
我們已經把它拿去定序,
下次再做給大家看。
11:21
And we start to layer up
all the understanding we have.
226
681757
3979
然後開始堆疊出
所有我們知道的東西,
11:25
In the vial of blood,
we predicted he's a male.
227
685760
3350
從這瓶血液裡,
我們預測出他是位男士。
11:29
And the subject is a male.
228
689134
1364
而實驗對象是男士。
11:30
We predict that he's a meter and 76 cm.
229
690996
2438
我們預測他身高176公分。
11:33
The subject is a meter and 77 cm.
230
693458
2392
實際上他身高177公分。
11:35
So, we predicted that he's 76;
the subject is 82.
231
695874
4110
我們預測他的體重是76公斤;
實際上是82公斤。
11:40
We predict his age, 38.
232
700701
2632
我們預測他的年齡是38歲。
11:43
The subject is 35.
233
703357
1904
實際上是35歲。
11:45
We predict his eye color.
234
705851
2124
我們預測眼睛的顏色是這樣。
11:48
Too dark.
235
708824
1211
太暗了。
11:50
We predict his skin color.
236
710059
1555
我們預測他的皮膚顏色。
11:52
We are almost there.
237
712026
1410
幾乎很接近了。
11:53
That's his face.
238
713899
1373
這是他的臉。
11:57
Now, the reveal moment:
239
717172
3269
現在,真相要大白的時刻了:
12:00
the subject is this person.
240
720465
1770
他長這樣。
12:02
(Laughter)
241
722259
1935
(笑聲)
12:04
And I did it intentionally.
242
724218
2058
我故意這樣做的。
12:06
I am a very particular
and peculiar ethnicity.
243
726300
3692
我是一個非常特別的奇特種族。
12:10
Southern European, Italians --
they never fit in models.
244
730016
2950
南歐洲人、義大利人——
他們從來不會跟我們的預測相符。
12:12
And it's particular -- that ethnicity
is a complex corner case for our model.
245
732990
5130
這個種族在我們的模式下,
就是一個很複雜的特殊案例。
12:18
But there is another point.
246
738144
1509
但有另外一個重點。
12:19
So, one of the things that we use
a lot to recognize people
247
739677
3477
我們用很多工具
來辨認人的特徵,
12:23
will never be written in the genome.
248
743178
1722
但絕對不會把這些特徵
寫到基因組裡面。
12:24
It's our free will, it's how I look.
249
744924
2317
因為這是我們的自由意志,
我就是長這樣。
12:27
Not my haircut in this case,
but my beard cut.
250
747265
3229
在這個案例中,重點不是我的髮型,
而是我的鬍鬚。
12:30
So I'm going to show you, I'm going to,
in this case, transfer it --
251
750518
3553
所以,我要秀給各位看,
我會把它轉變一下--
12:34
and this is nothing more
than Photoshop, no modeling --
252
754095
2765
就僅是用Photoshop上個鬍子,
12:36
the beard on the subject.
253
756884
1713
沒有調整其他的。
12:38
And immediately, we get
much, much better in the feeling.
254
758621
3472
突然間,感覺就比較像了。
12:42
So, why do we do this?
255
762955
2709
所以,我們為什麼要做這個?
12:47
We certainly don't do it
for predicting height
256
767938
5140
我們絕對不是為了預測高度
12:53
or taking a beautiful picture
out of your blood.
257
773102
2372
或拍一張你血液的美麗照片。
12:56
We do it because the same technology
and the same approach,
258
776390
4018
我們這樣做的原因是,
這些科技、方法、
13:00
the machine learning of this code,
259
780432
2520
機器自主學習程式,
13:02
is helping us to understand how we work,
260
782976
3137
可以幫助我們了解
我們要如何進行工作、
13:06
how your body works,
261
786137
1486
你的身體是如何運作、
13:07
how your body ages,
262
787647
1665
你的身體如何老化、
13:09
how disease generates in your body,
263
789336
2769
你身上的疾病是如何造成的、
13:12
how your cancer grows and develops,
264
792129
2972
你的癌症是如何成長和擴散的、
13:15
how drugs work
265
795125
1783
藥物如何運作、
13:16
and if they work on your body.
266
796932
2314
以及這些藥物在你身上是否有作用。
13:19
This is a huge challenge.
267
799713
1667
這是一個很大的挑戰。
13:21
This is a challenge that we share
268
801894
1638
這是我們全世界的
研究人員共同的挑戰。
13:23
with thousands of other
researchers around the world.
269
803556
2579
13:26
It's called personalized medicine.
270
806159
2222
它叫做個人化醫療。
13:29
It's the ability to move
from a statistical approach
271
809125
3460
這種醫療能力是從
傳統的統計方法,
13:32
where you're a dot in the ocean,
272
812609
2032
讓你大海撈針亂吃藥,
13:34
to a personalized approach,
273
814665
1813
轉成個人客製化的方法,
13:36
where we read all these books
274
816502
2185
都是從閱讀這些書裡面,
13:38
and we get an understanding
of exactly how you are.
275
818711
2864
讓我們了解真正的你。
13:42
But it is a particularly
complicated challenge,
276
822260
3362
但這是充滿了複雜的挑戰,
13:45
because of all these books, as of today,
277
825646
3998
因為到目前為止,這些書,
13:49
we just know probably two percent:
278
829668
2642
我們僅大概了解2%:
13:53
four books of more than 175.
279
833027
3653
四本書又175頁。
13:58
And this is not the topic of my talk,
280
838021
3206
但這不是我演講的主題,
14:02
because we will learn more.
281
842145
2598
因為我們還有很多要學。
14:05
There are the best minds
in the world on this topic.
282
845378
2669
全世界最聰明的智慧
就在這個主題裡面。
14:09
The prediction will get better,
283
849048
1834
預測會越來越改善,
14:10
the model will get more precise.
284
850906
2253
模式會越來越精準。
14:13
And the more we learn,
285
853183
1858
我們學得越多,
14:15
the more we will
be confronted with decisions
286
855065
4830
我們克服從未面對過
的決策的能力就越強,
14:19
that we never had to face before
287
859919
3021
14:22
about life,
288
862964
1435
有關於生命、
14:24
about death,
289
864423
1674
死亡、
14:26
about parenting.
290
866121
1603
養育的決策。
14:32
So, we are touching the very
inner detail on how life works.
291
872626
4746
所以,我們正接觸到
生命如何運作的內部細節。
14:38
And it's a revolution
that cannot be confined
292
878118
3158
而且這個革命不能只侷限在
14:41
in the domain of science or technology.
293
881300
2659
主流科學或技術上。
14:44
This must be a global conversation.
294
884960
2244
我們需要一個全球性的對話。
14:47
We must start to think of the future
we're building as a humanity.
295
887798
5217
我們必須開始思考,
我們要建構的人類未來。
14:53
We need to interact with creatives,
with artists, with philosophers,
296
893039
4064
我們需要與創意人才、
藝術家、哲學家
14:57
with politicians.
297
897127
1510
政治家相互配合。
14:58
Everyone is involved,
298
898661
1158
每個人都要參與其中,
14:59
because it's the future of our species.
299
899843
2825
因為這是我們人類的未來。
15:03
Without fear, but with the understanding
300
903273
3968
不需要害怕,但需要包容
15:07
that the decisions
that we make in the next year
301
907265
3871
明年我們所做的決定,
15:11
will change the course of history forever.
302
911160
3789
將永遠地改變歷史。
15:15
Thank you.
303
915732
1160
謝謝各位!
15:16
(Applause)
304
916916
10159
(掌聲)
New videos
Original video on YouTube.com
關於本網站
本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。