How to read the genome and build a human being | Riccardo Sabatini

325,809 views ・ 2016-05-24

TED


請雙擊下方英文字幕播放視頻。

譯者: 易帆 余 審譯者: Jianan(Tiana) Zhao
00:12
For the next 16 minutes, I'm going to take you on a journey
0
12612
2762
接下來的16分鐘, 我要帶各位進行一段冒險之旅,
00:15
that is probably the biggest dream of humanity:
1
15398
3086
這大概是人類最大的夢想:
00:18
to understand the code of life.
2
18508
2015
了解生命的密碼。
00:21
So for me, everything started many, many years ago
3
21072
2743
對我而言,這一切的開始, 要拉回到好幾好幾年前,
00:23
when I met the first 3D printer.
4
23839
2723
當我第一次遇上3D印表機時。
00:26
The concept was fascinating.
5
26586
1674
它的概念真的很棒。
00:28
A 3D printer needs three elements:
6
28284
2022
3D印表機需要三個元素:
00:30
a bit of information, some raw material, some energy,
7
30330
4134
少量的資訊、一些原物料、 再加上點能量,
00:34
and it can produce any object that was not there before.
8
34488
3334
這樣它就可以製造出 以前從未存在過的任何東西。
00:38
I was doing physics, I was coming back home
9
38517
2137
我當時研究的是物理學, 有天回到家裡時,
00:40
and I realized that I actually always knew a 3D printer.
10
40678
3438
我突然意識到,我家裡 就有一台 3D 印表機。
00:44
And everyone does.
11
44140
1336
而且每個人家裡都有一台。
00:45
It was my mom.
12
45500
1158
那就是我媽嗎。
00:46
(Laughter)
13
46682
1001
(笑聲)
00:47
My mom takes three elements:
14
47707
2414
我媽也有三個元素:
00:50
a bit of information, which is between my father and my mom in this case,
15
50145
3973
少量的資訊:我這個例子, 指的是我媽跟我爸之間的投入,
00:54
raw elements and energy in the same media, that is food,
16
54142
4157
食物就是原物料及能量的來源,
00:58
and after several months, produces me.
17
58323
2508
然後,幾個月後,生下了我。
01:00
And I was not existent before.
18
60855
1812
而我以前也是不存的。
01:02
So apart from the shock of my mom discovering that she was a 3D printer,
19
62691
3762
所以,除了我發現我媽 就是一台3D列印機之外,
01:06
I immediately got mesmerized by that piece,
20
66477
4738
我突然間也被 這個吸引注了,
01:11
the first one, the information.
21
71239
1717
那邊的第一項,資訊。
01:12
What amount of information does it take
22
72980
2251
要有多少這樣的資訊
01:15
to build and assemble a human?
23
75255
1936
才能建構並組裝出一個人來呢?
01:17
Is it much? Is it little?
24
77215
1574
要很多嗎?還是只要一點點?
01:18
How many thumb drives can you fill?
25
78813
2180
要多少隨身碟存取這些資訊呢?
01:21
Well, I was studying physics at the beginning
26
81017
2624
我一開始是研究物理學的,
01:23
and I took this approximation of a human as a gigantic Lego piece.
27
83665
5597
我喜歡把人類比喻成 一個大型的樂高玩具,
01:29
So, imagine that the building blocks are little atoms
28
89286
3785
你可以想像,每一個 樂高積木就是一個原子,
01:33
and there is a hydrogen here, a carbon here, a nitrogen here.
29
93095
4653
氫原子在這,碳原子在這, 氮原子在這。
01:37
So in the first approximation,
30
97772
1571
按照最初的估算想法,
01:39
if I can list the number of atoms that compose a human being,
31
99367
4343
如果我可以列出 人類的原子清單的數量,
01:43
I can build it.
32
103734
1387
我就可以把它建造出來。
01:45
Now, you can run some numbers
33
105145
2029
現在,請各位算一下,
01:47
and that happens to be quite an astonishing number.
34
107198
3277
這想必是個驚人的數字。
01:50
So the number of atoms,
35
110499
2757
所以,存在這隨身碟裡面
01:53
the file that I will save in my thumb drive to assemble a little baby,
36
113280
4755
可以組合出來一個小寶寶的檔案, 裡面的原子數數量,
01:58
will actually fill an entire Titanic of thumb drives --
37
118059
4667
實際上若用樂高玩具 組裝起一個人類,
02:02
multiplied 2,000 times.
38
122750
2718
它的大小足足有 2000台鐵達尼號這麼大。
02:05
This is the miracle of life.
39
125957
3401
這就是生命的奇蹟啊!
02:09
Every time you see from now on a pregnant lady,
40
129382
2612
從現在起,你每次 看到懷孕的婦女,
02:12
she's assembling the biggest amount of information
41
132018
2856
她就是那個正在組裝
02:14
that you will ever encounter.
42
134898
1556
你這輩子所遇到的最大量資訊。
02:16
Forget big data, forget anything you heard of.
43
136478
2950
忘了大數據吧! 忘了你曾聽過的。
02:19
This is the biggest amount of information that exists.
44
139452
2881
這就是現存的 最大數據資料。
02:22
(Applause)
45
142357
3833
(笑聲)
但...好在大自然比一位 年輕的物理學家還聰明,
02:26
But nature, fortunately, is much smarter than a young physicist,
46
146214
4644
02:30
and in four billion years, managed to pack this information
47
150882
3576
這40億年來,大自然中 負責管理包裹這個資訊的
02:34
in a small crystal we call DNA.
48
154482
2705
小晶體--我們稱之為DNA。
02:37
We met it for the first time in 1950 when Rosalind Franklin,
49
157605
4312
我們在1950年第一次認識了它,
02:41
an amazing scientist, a woman,
50
161941
1556
當時有一位了不起的女科學家 --羅莎琳.富蘭克林--
02:43
took a picture of it.
51
163521
1389
給 DNA 拍了張照。
02:44
But it took us more than 40 years to finally poke inside a human cell,
52
164934
5188
但我們花了40年的時間, 最後才戳進人類細胞裡
02:50
take out this crystal,
53
170146
1602
取出這個晶體,
02:51
unroll it, and read it for the first time.
54
171772
3080
才首次把它伸展開來閱讀。
02:55
The code comes out to be a fairly simple alphabet,
55
175615
3241
而密碼也就是大家所孰知的
02:58
four letters: A, T, C and G.
56
178880
3772
四個字母:A、T、C、G。
03:02
And to build a human, you need three billion of them.
57
182676
3490
而建造一個人類, 你需要30億個字母。
03:06
Three billion.
58
186933
1179
30億。
03:08
How many are three billion?
59
188136
1579
30億有多少?
03:09
It doesn't really make any sense as a number, right?
60
189739
2762
我們對這個數字 真的很沒有概念,對吧?
03:12
So I was thinking how I could explain myself better
61
192525
4085
所以,我在想,這麼大的數字
我要怎麼解釋 才讓人比較容易了解。
03:16
about how big and enormous this code is.
62
196634
3050
03:19
But there is -- I mean, I'm going to have some help,
63
199708
3054
但,我的意思是... 我最好找個人來幫忙,
03:22
and the best person to help me introduce the code
64
202786
3227
而能幫我介紹基因密碼 的最佳人選,
03:26
is actually the first man to sequence it, Dr. Craig Venter.
65
206037
3522
想當然就是第一個定序的人, 克萊格.凡特博士。
03:29
So welcome onstage, Dr. Craig Venter.
66
209583
3390
所以,讓我們歡迎 克萊格.凡特博士上台。
03:32
(Applause)
67
212997
6931
(掌聲)
03:39
Not the man in the flesh,
68
219952
2256
當然不是活生生的人,
03:43
but for the first time in history,
69
223448
2345
但這是史上第一次
03:45
this is the genome of a specific human,
70
225817
3462
特定人類的基因組被
03:49
printed page-by-page, letter-by-letter:
71
229303
3760
一頁接著一頁,一個字 接著一個字地列印出來:
03:53
262,000 pages of information,
72
233087
3996
262,000頁的資料,
03:57
450 kilograms, shipped from the United States to Canada
73
237107
4364
450公斤、從美國運到加拿大,
04:01
thanks to Bruno Bowden, Lulu.com, a start-up, did everything.
74
241495
4843
感謝新創公司Lulu.com的布魯諾.鮑登, 他們幫我做的這一切。
04:06
It was an amazing feat.
75
246362
1463
這是個很棒的饗宴。
04:07
But this is the visual perception of what is the code of life.
76
247849
4297
但這只是對生命密碼 的視覺感受。
04:12
And now, for the first time, I can do something fun.
77
252170
2478
現在,為了慶祝第一次, 我要做件有趣的事。
04:14
I can actually poke inside it and read.
78
254672
2547
我真的可以從裡面 挑一段來讀一讀。
04:17
So let me take an interesting book ... like this one.
79
257243
4625
所以,讓我來找一本有趣的.... 書兒,比如這本。
04:25
I have an annotation; it's a fairly big book.
80
265077
2534
我做了個註記;這書太厚了。
04:27
So just to let you see what is the code of life.
81
267635
3727
讓各位看一下甚麼是生命密碼。
04:32
Thousands and thousands and thousands
82
272566
3391
數以百萬、千萬、
04:35
and millions of letters.
83
275981
2670
億個字母。
04:38
And they apparently make sense.
84
278675
2396
它們當然都有意義。
04:41
Let's get to a specific part.
85
281095
1757
讓我來找一段特別的
04:43
Let me read it to you:
86
283571
1362
讀給各位聽:
04:44
(Laughter)
87
284957
1021
(笑聲)
04:46
"AAG, AAT, ATA."
88
286002
4006
"AAG, AAT, ATA."
04:50
To you it sounds like mute letters,
89
290965
2067
你們可能覺得像是在聽天書,
04:53
but this sequence gives the color of the eyes to Craig.
90
293056
4041
但這段序列,決定了 克萊格的眼睛顏色。
04:57
I'll show you another part of the book.
91
297633
1932
我再展示另一段給各位看。
04:59
This is actually a little more complicated.
92
299589
2094
這段實際上稍微複雜些。
05:02
Chromosome 14, book 132:
93
302983
2647
14 號染色體,第132 號書:
05:05
(Laughter)
94
305654
2090
(笑聲)
05:07
As you might expect.
95
307768
1277
如你所望!
05:09
(Laughter)
96
309069
3466
(笑聲)
05:14
"ATT, CTT, GATT."
97
314857
4507
"ATT, CTT, GATT."
05:20
This human is lucky,
98
320329
1687
這個人很幸運,
05:22
because if you miss just two letters in this position --
99
322040
4517
因為如果你在這個位置 剛好漏掉兩個字母--
05:26
two letters of our three billion --
100
326581
1877
30億個字母,只漏掉兩個--
05:28
he will be condemned to a terrible disease:
101
328482
2019
你就等同於被宣判 得了一個恐佈的疾病:
05:30
cystic fibrosis.
102
330525
1440
囊性纖維化。
05:31
We have no cure for it, we don't know how to solve it,
103
331989
3413
目前我們沒有治療的方式, 我們不知道如何解決,
05:35
and it's just two letters of difference from what we are.
104
335426
3755
僅僅就這兩個字母上 的差異而已。
05:39
A wonderful book, a mighty book,
105
339585
2705
這本偉大的書,
05:43
a mighty book that helped me understand
106
343115
1998
這本偉大的書,
可以幫助我了解,也能讓各位 看到一些嘆為觀止的事情。
05:45
and show you something quite remarkable.
107
345137
2753
05:48
Every one of you -- what makes me, me and you, you --
108
348480
4435
在場的每一個人, 成就你我不同的地方
05:52
is just about five million of these,
109
352939
2954
就這五百萬個 字母的差異,
05:55
half a book.
110
355917
1228
半本書。
05:58
For the rest,
111
358015
1663
剩下的,
05:59
we are all absolutely identical.
112
359702
2562
我們絕對都長一樣。
06:03
Five hundred pages is the miracle of life that you are.
113
363008
4018
就是這 500 頁的字母, 行塑了你是甚麼樣的人,
06:07
The rest, we all share it.
114
367050
2531
剩下的,我們都一樣。
06:09
So think about that again when we think that we are different.
115
369605
2909
所以,當我們在討論彼此差異的時候, 讓我們再反思一下,
06:12
This is the amount that we share.
116
372538
2221
其實我們共同的地方 真的有這麼多。
06:15
So now that I have your attention,
117
375441
3429
所以,我問一下各位,
06:18
the next question is:
118
378894
1359
接下來的問題:
06:20
How do I read it?
119
380277
1151
我要怎麼讀它?
06:21
How do I make sense out of it?
120
381452
1509
我要怎麼搞懂它?
06:23
Well, for however good you can be at assembling Swedish furniture,
121
383409
4240
其實,無論你多麼會 看說明書組裝瑞典的家具,
06:27
this instruction manual is nothing you can crack in your life.
122
387673
3563
這本安裝手冊也沒辦法 教你如何破解你的人生。
06:31
(Laughter)
123
391260
1603
(笑聲)
06:32
And so, in 2014, two famous TEDsters,
124
392887
3112
2014年,兩位出名的 TED 演講者,
06:36
Peter Diamandis and Craig Venter himself,
125
396023
2540
彼得.戴曼迪斯和 克雷格.文特爾本人,
06:38
decided to assemble a new company.
126
398587
1927
他們決定創立一家新公司。
06:40
Human Longevity was born,
127
400538
1412
《人類長壽公司》誕生了,
06:41
with one mission:
128
401974
1370
並賦予一個使命:
06:43
trying everything we can try
129
403368
1861
竭盡所能的,
06:45
and learning everything we can learn from these books,
130
405253
2759
從這些書上,嘗試每樣東西, 學習每樣東西,
06:48
with one target --
131
408036
1705
就為了一個目標——
06:50
making real the dream of personalized medicine,
132
410862
2801
讓個人化醫療的美夢可以成真,
06:53
understanding what things should be done to have better health
133
413687
3767
了解需要做哪些事 才能更健康,
06:57
and what are the secrets in these books.
134
417478
2283
以及了解這些書 裡面的秘密。
07:00
An amazing team, 40 data scientists and many, many more people,
135
420329
4250
一個令人驚豔的團隊,40 個數據科學家, 還有其他很多、很多的人,
07:04
a pleasure to work with.
136
424603
1350
一起為團隊努力。
07:05
The concept is actually very simple.
137
425977
2253
這概念其實很簡單。
07:08
We're going to use a technology called machine learning.
138
428254
3158
我們將要使用一種叫 「機械自主學習」的概念。
07:11
On one side, we have genomes -- thousands of them.
139
431436
4539
一方面,我們有 成千上萬的基因組——
07:15
On the other side, we collected the biggest database of human beings:
140
435999
3997
另一方面,我們收集了 人類最大的資料庫:
07:20
phenotypes, 3D scan, NMR -- everything you can think of.
141
440020
4296
生物特性、3D掃描、核磁共振—— 你能想到的每樣東西。
07:24
Inside there, on these two opposite sides,
142
444340
2899
這兩方面的資料, 被自主翻譯出來後
07:27
there is the secret of translation.
143
447263
2442
就可以解開很多的祕密。
07:29
And in the middle, we build a machine.
144
449729
2472
在這兩個中間, 我們建立了一台機器。
07:32
We build a machine and we train a machine --
145
452801
2385
我建立它,訓練它——
07:35
well, not exactly one machine, many, many machines --
146
455210
3210
當然,並不只一台機器啦! 是很多很多台機器——
07:38
to try to understand and translate the genome in a phenotype.
147
458444
4544
嘗試去了解並翻譯 基因組的生物特徵表象。
07:43
What are those letters, and what do they do?
148
463362
3340
這些字母代表甚麼? 它們有甚麼作用?
07:46
It's an approach that can be used for everything,
149
466726
2747
這個方法可以運用在每件事上,
07:49
but using it in genomics is particularly complicated.
150
469497
2993
但用在基因學上, 它就特別複雜。
07:52
Little by little we grew and we wanted to build different challenges.
151
472514
3276
在一點一滴的慢慢累積後, 我們想建立不一樣的挑戰。
07:55
We started from the beginning, from common traits.
152
475814
2732
我們從共同的特徵開始。
07:58
Common traits are comfortable because they are common,
153
478570
2603
談共同特徵比較輕鬆, 因為它們都很普遍。
08:01
everyone has them.
154
481197
1184
每個人都有。
08:02
So we started to ask our questions:
155
482405
2494
我們從這個問題開始問:
08:04
Can we predict height?
156
484923
1380
我們可以預測身高嗎?
08:06
Can we read the books and predict your height?
157
486985
2177
我們可以光看書 就可以知道你的身高嗎?
08:09
Well, we actually can,
158
489186
1151
沒錯,我們真的可以,
08:10
with five centimeters of precision.
159
490361
1793
預測的誤差在五公分內。
08:12
BMI is fairly connected to your lifestyle,
160
492178
3135
身體質量指數與 你的生活形式有關,
08:15
but we still can, we get in the ballpark, eight kilograms of precision.
161
495337
3864
但我們仍然可以,相當精準地 將預測誤差控制在 8 公斤以內。
08:19
Can we predict eye color?
162
499225
1231
那我們可以預測眼睛顏色嗎?
08:20
Yeah, we can.
163
500480
1158
是的,我們可以。
08:21
Eighty percent accuracy.
164
501662
1324
精準度高達80%。
08:23
Can we predict skin color?
165
503466
1858
我們可以預測皮膚顏色嗎?
08:25
Yeah we can, 80 percent accuracy.
166
505348
2441
是的,可以,80%的準確率。
08:27
Can we predict age?
167
507813
1340
年齡呢?
08:30
We can, because apparently, the code changes during your life.
168
510121
3739
可以,因為隨著年紀, 你的基因碼也會更著改變。
08:33
It gets shorter, you lose pieces, it gets insertions.
169
513884
3282
它會變短、消失或被插入。
08:37
We read the signals, and we make a model.
170
517190
2555
我們可以讀到那個訊號, 並把它模擬出來。
08:40
Now, an interesting challenge:
171
520438
1475
現在,有一項有趣的挑戰:
08:41
Can we predict a human face?
172
521937
1729
我們可以預測一個人的臉嗎?
08:45
It's a little complicated,
173
525014
1278
這有點複雜,
08:46
because a human face is scattered among millions of these letters.
174
526316
3191
因為人臉上散播了 上百萬個這種字母。
08:49
And a human face is not a very well-defined object.
175
529531
2629
而人臉不太容易預測。
08:52
So, we had to build an entire tier of it
176
532184
2051
所以,我們必須建立一個 完整的堆疊系統,
08:54
to learn and teach a machine what a face is,
177
534259
2710
去學習並教會機器 人臉是甚麼,
08:56
and embed and compress it.
178
536993
2037
然後把它嵌進去並壓縮。
08:59
And if you're comfortable with machine learning,
179
539054
2248
如果你很懂機器自主學習,
09:01
you understand what the challenge is here.
180
541326
2284
你會懂得這邊的挑戰是甚麼。
09:04
Now, after 15 years -- 15 years after we read the first sequence --
181
544108
5991
15年後--整整15年後-- 我們讀取到第一個序列--
09:10
this October, we started to see some signals.
182
550123
2902
今年10月,我們開始看到一些訊號。
09:13
And it was a very emotional moment.
183
553049
2455
真的是令人感動的時刻。
09:15
What you see here is a subject coming in our lab.
184
555528
3745
你現在看到的是一個 進來我們實驗室的實驗對象。
09:19
This is a face for us.
185
559619
1928
這是一個我們人類的臉。
09:21
So we take the real face of a subject, we reduce the complexity,
186
561571
3631
所以我們拿一個真實的臉當作實驗對象, 我們減少了複雜度,
09:25
because not everything is in your face --
187
565226
1970
因為不是每樣東西都會在 你的臉上原貌呈現出來--
09:27
lots of features and defects and asymmetries come from your life.
188
567220
3786
有很多的特徵、缺陷及不對稱 來自於你後天的生活方式。
09:31
We symmetrize the face, and we run our algorithm.
189
571030
3469
我們把臉對稱好後, 拿去跑我們的演算法。
09:35
The results that I show you right now,
190
575245
1898
我現在展示給各位看的結果,
09:37
this is the prediction we have from the blood.
191
577167
3372
是由血液演算出來的預測結果。
09:41
(Applause)
192
581596
1524
(掌聲)
09:43
Wait a second.
193
583144
1435
稍等一下。
09:44
In these seconds, your eyes are watching, left and right, left and right,
194
584603
4692
在這短短的幾秒鐘,你的眼睛會 左看看、右看看做比較,
09:49
and your brain wants those pictures to be identical.
195
589319
3930
而你的大腦會希望 這些照片是一致的。
09:53
So I ask you to do another exercise, to be honest.
196
593273
2446
所以,我要求各位做另一項活動, 這次要誠實。
09:55
Please search for the differences,
197
595743
2287
請找出他們不一樣的地方,
09:58
which are many.
198
598054
1361
有很多喔。
09:59
The biggest amount of signal comes from gender,
199
599439
2603
最多的訊號來自性別,
10:02
then there is age, BMI, the ethnicity component of a human.
200
602066
5201
然後是年齡、身體質量指數、 人類種族族群。
10:07
And scaling up over that signal is much more complicated.
201
607291
3711
把這些訊號擴大是相當複雜的。
10:11
But what you see here, even in the differences,
202
611026
3250
但即使你現在看到有點不同,
10:14
lets you understand that we are in the right ballpark,
203
614300
3595
還是要讓各位知道, 我們預測還算不錯,
10:17
that we are getting closer.
204
617919
1348
已經很接近了。
10:19
And it's already giving you some emotions.
205
619291
2349
這已經讓你有點激動了。
10:21
This is another subject that comes in place,
206
621664
2703
這裡有另外一個例子,
10:24
and this is a prediction.
207
624391
1409
這是預測的結果。
10:25
A little smaller face, we didn't get the complete cranial structure,
208
625824
4596
有點小的臉,我們雖然沒有 跑完整個頭蓋骨結構,
10:30
but still, it's in the ballpark.
209
630444
2651
但,還是很精準。
10:33
This is a subject that comes in our lab,
210
633634
2224
這是另一個實驗對象,
10:35
and this is the prediction.
211
635882
1443
這是預測結果。
10:38
So these people have never been seen in the training of the machine.
212
638056
4676
這些人從未在我們 訓練的機器裡面出現過。
10:42
These are the so-called "held-out" set.
213
642756
2837
也就是說這些從 外面隨機取樣的。
10:45
But these are people that you will probably never believe.
214
645617
3740
但也許各位不相信。
10:49
We're publishing everything in a scientific publication,
215
649381
2676
我們已經在科學期刊上 發表這一切了,
10:52
you can read it.
216
652081
1151
你可以找到。
10:53
But since we are onstage, Chris challenged me.
217
653256
2344
但自從知道我們要上台後, 克里斯就挑戰我說,
10:55
I probably exposed myself and tried to predict
218
655624
3626
我也許可以自己上陣
10:59
someone that you might recognize.
219
659274
2831
並嘗試預測你們可能認識的人。
11:02
So, in this vial of blood -- and believe me, you have no idea
220
662470
4425
所以,在這一瓶血液裡面-- 相信我,你們絕對不知道
11:06
what we had to do to have this blood now, here --
221
666919
2880
我們去哪裡搞來這一瓶血的,
11:09
in this vial of blood is the amount of biological information
222
669823
3901
這瓶血就擁有 全部的生物資訊,
11:13
that we need to do a full genome sequence.
223
673748
2277
夠我們跑完全部的基因組定序。
11:16
We just need this amount.
224
676049
2070
我們只需要這麼多。
11:18
We ran this sequence, and I'm going to do it with you.
225
678528
3205
我們已經把它拿去定序, 下次再做給大家看。
11:21
And we start to layer up all the understanding we have.
226
681757
3979
然後開始堆疊出 所有我們知道的東西,
11:25
In the vial of blood, we predicted he's a male.
227
685760
3350
從這瓶血液裡, 我們預測出他是位男士。
11:29
And the subject is a male.
228
689134
1364
而實驗對象是男士。
11:30
We predict that he's a meter and 76 cm.
229
690996
2438
我們預測他身高176公分。
11:33
The subject is a meter and 77 cm.
230
693458
2392
實際上他身高177公分。
11:35
So, we predicted that he's 76; the subject is 82.
231
695874
4110
我們預測他的體重是76公斤; 實際上是82公斤。
11:40
We predict his age, 38.
232
700701
2632
我們預測他的年齡是38歲。
11:43
The subject is 35.
233
703357
1904
實際上是35歲。
11:45
We predict his eye color.
234
705851
2124
我們預測眼睛的顏色是這樣。
11:48
Too dark.
235
708824
1211
太暗了。
11:50
We predict his skin color.
236
710059
1555
我們預測他的皮膚顏色。
11:52
We are almost there.
237
712026
1410
幾乎很接近了。
11:53
That's his face.
238
713899
1373
這是他的臉。
11:57
Now, the reveal moment:
239
717172
3269
現在,真相要大白的時刻了:
12:00
the subject is this person.
240
720465
1770
他長這樣。
12:02
(Laughter)
241
722259
1935
(笑聲)
12:04
And I did it intentionally.
242
724218
2058
我故意這樣做的。
12:06
I am a very particular and peculiar ethnicity.
243
726300
3692
我是一個非常特別的奇特種族。
12:10
Southern European, Italians -- they never fit in models.
244
730016
2950
南歐洲人、義大利人—— 他們從來不會跟我們的預測相符。
12:12
And it's particular -- that ethnicity is a complex corner case for our model.
245
732990
5130
這個種族在我們的模式下, 就是一個很複雜的特殊案例。
12:18
But there is another point.
246
738144
1509
但有另外一個重點。
12:19
So, one of the things that we use a lot to recognize people
247
739677
3477
我們用很多工具 來辨認人的特徵,
12:23
will never be written in the genome.
248
743178
1722
但絕對不會把這些特徵 寫到基因組裡面。
12:24
It's our free will, it's how I look.
249
744924
2317
因為這是我們的自由意志, 我就是長這樣。
12:27
Not my haircut in this case, but my beard cut.
250
747265
3229
在這個案例中,重點不是我的髮型, 而是我的鬍鬚。
12:30
So I'm going to show you, I'm going to, in this case, transfer it --
251
750518
3553
所以,我要秀給各位看, 我會把它轉變一下--
12:34
and this is nothing more than Photoshop, no modeling --
252
754095
2765
就僅是用Photoshop上個鬍子,
12:36
the beard on the subject.
253
756884
1713
沒有調整其他的。
12:38
And immediately, we get much, much better in the feeling.
254
758621
3472
突然間,感覺就比較像了。
12:42
So, why do we do this?
255
762955
2709
所以,我們為什麼要做這個?
12:47
We certainly don't do it for predicting height
256
767938
5140
我們絕對不是為了預測高度
12:53
or taking a beautiful picture out of your blood.
257
773102
2372
或拍一張你血液的美麗照片。
12:56
We do it because the same technology and the same approach,
258
776390
4018
我們這樣做的原因是, 這些科技、方法、
13:00
the machine learning of this code,
259
780432
2520
機器自主學習程式,
13:02
is helping us to understand how we work,
260
782976
3137
可以幫助我們了解 我們要如何進行工作、
13:06
how your body works,
261
786137
1486
你的身體是如何運作、
13:07
how your body ages,
262
787647
1665
你的身體如何老化、
13:09
how disease generates in your body,
263
789336
2769
你身上的疾病是如何造成的、
13:12
how your cancer grows and develops,
264
792129
2972
你的癌症是如何成長和擴散的、
13:15
how drugs work
265
795125
1783
藥物如何運作、
13:16
and if they work on your body.
266
796932
2314
以及這些藥物在你身上是否有作用。
13:19
This is a huge challenge.
267
799713
1667
這是一個很大的挑戰。
13:21
This is a challenge that we share
268
801894
1638
這是我們全世界的 研究人員共同的挑戰。
13:23
with thousands of other researchers around the world.
269
803556
2579
13:26
It's called personalized medicine.
270
806159
2222
它叫做個人化醫療。
13:29
It's the ability to move from a statistical approach
271
809125
3460
這種醫療能力是從 傳統的統計方法,
13:32
where you're a dot in the ocean,
272
812609
2032
讓你大海撈針亂吃藥,
13:34
to a personalized approach,
273
814665
1813
轉成個人客製化的方法,
13:36
where we read all these books
274
816502
2185
都是從閱讀這些書裡面,
13:38
and we get an understanding of exactly how you are.
275
818711
2864
讓我們了解真正的你。
13:42
But it is a particularly complicated challenge,
276
822260
3362
但這是充滿了複雜的挑戰,
13:45
because of all these books, as of today,
277
825646
3998
因為到目前為止,這些書,
13:49
we just know probably two percent:
278
829668
2642
我們僅大概了解2%:
13:53
four books of more than 175.
279
833027
3653
四本書又175頁。
13:58
And this is not the topic of my talk,
280
838021
3206
但這不是我演講的主題,
14:02
because we will learn more.
281
842145
2598
因為我們還有很多要學。
14:05
There are the best minds in the world on this topic.
282
845378
2669
全世界最聰明的智慧 就在這個主題裡面。
14:09
The prediction will get better,
283
849048
1834
預測會越來越改善,
14:10
the model will get more precise.
284
850906
2253
模式會越來越精準。
14:13
And the more we learn,
285
853183
1858
我們學得越多,
14:15
the more we will be confronted with decisions
286
855065
4830
我們克服從未面對過 的決策的能力就越強,
14:19
that we never had to face before
287
859919
3021
14:22
about life,
288
862964
1435
有關於生命、
14:24
about death,
289
864423
1674
死亡、
14:26
about parenting.
290
866121
1603
養育的決策。
14:32
So, we are touching the very inner detail on how life works.
291
872626
4746
所以,我們正接觸到 生命如何運作的內部細節。
14:38
And it's a revolution that cannot be confined
292
878118
3158
而且這個革命不能只侷限在
14:41
in the domain of science or technology.
293
881300
2659
主流科學或技術上。
14:44
This must be a global conversation.
294
884960
2244
我們需要一個全球性的對話。
14:47
We must start to think of the future we're building as a humanity.
295
887798
5217
我們必須開始思考, 我們要建構的人類未來。
14:53
We need to interact with creatives, with artists, with philosophers,
296
893039
4064
我們需要與創意人才、 藝術家、哲學家
14:57
with politicians.
297
897127
1510
政治家相互配合。
14:58
Everyone is involved,
298
898661
1158
每個人都要參與其中,
14:59
because it's the future of our species.
299
899843
2825
因為這是我們人類的未來。
15:03
Without fear, but with the understanding
300
903273
3968
不需要害怕,但需要包容
15:07
that the decisions that we make in the next year
301
907265
3871
明年我們所做的決定,
15:11
will change the course of history forever.
302
911160
3789
將永遠地改變歷史。
15:15
Thank you.
303
915732
1160
謝謝各位!
15:16
(Applause)
304
916916
10159
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog