How to read the genome and build a human being | Riccardo Sabatini

320,260 views ใƒป 2016-05-24

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Zeeva Livshitz ืžื‘ืงืจ: Oded Kenny
00:12
For the next 16 minutes, I'm going to take you on a journey
0
12612
2762
ื‘ืžืฉืš 16 ื”ื“ืงื•ืช ื”ื‘ืื•ืช, ืื ื™ ื”ื•ืœืš ืœืงื—ืช ืืชื›ื ืœืžืกืข
00:15
that is probably the biggest dream of humanity:
1
15398
3086
ืฉื”ื•ื ื›ื ืจืื” ื”ื—ืœื•ื ื”ื’ื“ื•ืœ ื‘ื™ื•ืชืจ ืฉืœ ื”ืื ื•ืฉื•ืช:
00:18
to understand the code of life.
2
18508
2015
ืœื”ื‘ื™ืŸ ืืช ื”ืงื•ื“ ืฉืœ ื”ื—ื™ื™ื.
00:21
So for me, everything started many, many years ago
3
21072
2743
ืื– ื‘ืฉื‘ื™ืœื™, ื”ื›ืœ ื”ืชื—ื™ืœ ืœืคื ื™ ืฉื ื™ื ืจื‘ื•ืช ืžืื•ื“.
00:23
when I met the first 3D printer.
4
23839
2723
ื›ืฉืคื’ืฉืชื™ ืืช ืžื“ืคืกืช ื”ืชืœืช-ืžื™ืžื“ ื”ืจืืฉื•ื ื”.
00:26
The concept was fascinating.
5
26586
1674
ื”ืจืขื™ื•ืŸ ื”ื™ื” ืžืจืชืง.
00:28
A 3D printer needs three elements:
6
28284
2022
ืžื“ืคืกืช ืชืœืช-ืžื™ืžื“ ืฆืจื™ื›ื” ืฉืœื•ืฉื” ืืœืžื ื˜ื™ื:
00:30
a bit of information, some raw material, some energy,
7
30330
4134
ืงืฆืช ืžื™ื“ืข, ื›ืžื” ื—ื•ืžืจ ื’ืœื, ืื ืจื’ื™ื” ืžืกื•ื™ืžืช,
00:34
and it can produce any object that was not there before.
8
34488
3334
ื•ื–ื” ื™ื›ื•ืœ ืœื™ื™ืฆืจ ื›ืœ ืื•ื‘ื™ื™ืงื˜ ืฉืœื ื”ื™ื” ืฉื ืงื•ื“ื.
00:38
I was doing physics, I was coming back home
9
38517
2137
ืขืกืงืชื™ ื‘ืคื™ื–ื™ืงื”, ื—ื–ืจืชื™ ื”ื‘ื™ืชื”
00:40
and I realized that I actually always knew a 3D printer.
10
40678
3438
ื•ื”ื‘ื ืชื™ ืฉืื ื™ ื‘ืขืฆื ืชืžื™ื“ ื”ื›ืจืชื™ ืžื“ืคืกืช ืชืœืช-ืžื™ืžื“.
00:44
And everyone does.
11
44140
1336
ื•ื›ืœ ืื—ื“ ืžื›ื™ืจ.
00:45
It was my mom.
12
45500
1158
ื–ื• ื”ื™ืชื” ืืžื ืฉืœื™.
00:46
(Laughter)
13
46682
1001
(ืฆื—ื•ืง)
00:47
My mom takes three elements:
14
47707
2414
ืœืืžื™ ื ื—ื•ืฆื™ื ืฉืœื•ืฉื” ืืœืžื ื˜ื™ื:
00:50
a bit of information, which is between my father and my mom in this case,
15
50145
3973
ืงืฆืช ืžื™ื“ืข, ืฉื”ื•ื ื‘ื™ืŸ ืื‘ื™ ื•ืืžื™ ื‘ืžืงืจื” ื–ื”,
00:54
raw elements and energy in the same media, that is food,
16
54142
4157
ืืœืžื ื˜ื™ื ืฉืœ ื’ืœื ื•ืื ืจื’ื™ื” ื‘ืื•ืชื” ืžื“ื™ื”, ื–ื”ื• ืžื–ื•ืŸ.
00:58
and after several months, produces me.
17
58323
2508
ื•ืœืื—ืจ ื›ืžื” ื—ื•ื“ืฉื™ื, ืžื™ื™ืฆืจืช ืื•ืชื™.
01:00
And I was not existent before.
18
60855
1812
ื•ืœื ื”ื™ื™ืชื™ ืงื™ื™ื ืœืคื ื™ ื›ืŸ.
01:02
So apart from the shock of my mom discovering that she was a 3D printer,
19
62691
3762
ืื– ืžืœื‘ื“ ื”ื”ืœื ืฉืœ ืืžื ืฉืœื™ ืฉืžื’ืœื” ืฉื”ื™ื ืžื“ืคืกืช 3D,
01:06
I immediately got mesmerized by that piece,
20
66477
4738
ืื ื™ ืžื™ื™ื“ ื”ื•ืงืกืžืชื™ ืžื“ื‘ืจ ื–ื”.
01:11
the first one, the information.
21
71239
1717
ื”ืจืืฉื•ืŸ, ื”ืžื™ื“ืข.
01:12
What amount of information does it take
22
72980
2251
ืžื”ื™ ื›ืžื•ืช ื”ืžื™ื“ืข ื”ื ื—ื•ืฆื”
01:15
to build and assemble a human?
23
75255
1936
ืœื‘ื ื•ืช ื•ืœื”ืจื›ื™ื‘ ืื“ื?
01:17
Is it much? Is it little?
24
77215
1574
ื”ืื ื–ื” ื”ืจื‘ื”? ื”ืื ืžืขื˜?
01:18
How many thumb drives can you fill?
25
78813
2180
ื›ืžื” ื›ื•ื ื ื™ื ืงืฉื™ื—ื™ื ืืชื ื™ื›ื•ืœื™ื ืœืžืœื?
01:21
Well, I was studying physics at the beginning
26
81017
2624
ื•ื‘ื›ืŸ, ืœืžื“ืชื™ ืคื™ื–ื™ืงื” ื‘ื”ืชื—ืœื”
01:23
and I took this approximation of a human as a gigantic Lego piece.
27
83665
5597
ื•ืœืงื—ืชื™ ืื•ืžื“ืŸ ื‘ืงื™ืจื•ื‘ ื–ื” ืฉืœ ืื“ื ื›ืคื™ืกืช ืœื’ื• ืขื ืงื™ืช.
01:29
So, imagine that the building blocks are little atoms
28
89286
3785
ืื– ื“ืžื™ื™ื ื• ืฉืื‘ื ื™ ื”ื‘ื ื™ื™ืŸ ื”ื ืื˜ื•ืžื™ื ืงื˜ื ื™ื
01:33
and there is a hydrogen here, a carbon here, a nitrogen here.
29
93095
4653
ื•ื™ืฉ ืžื™ืžืŸ ื›ืืŸ, ืคื—ืžืŸ ื›ืืŸ, ื—ื ืงืŸ ื›ืืŸ.
01:37
So in the first approximation,
30
97772
1571
ืื– ื‘ืื•ืžื“ืŸ ื‘ืงื™ืจื•ื‘ ื”ืจืืฉื•ืŸ,
01:39
if I can list the number of atoms that compose a human being,
31
99367
4343
ืื ืื ื™ ื™ื›ื•ืœ ืœืžื ื•ืช ืืช ืžืกืคืจ ื”ืื˜ื•ืžื™ื ืฉืžืจื›ื™ื‘ื™ื ื‘ืŸ ืื“ื,
01:43
I can build it.
32
103734
1387
ืื ื™ ื™ื›ื•ืœ ืœื‘ื ื•ืช ืืช ื–ื”.
01:45
Now, you can run some numbers
33
105145
2029
ื›ืขืช, ืืชื ื™ื›ื•ืœื™ื ืœื”ืจื™ืฅ ื›ืžื” ืžืกืคืจื™ื
01:47
and that happens to be quite an astonishing number.
34
107198
3277
ื•ื–ื” ื™ื”ื™ื” ืžืกืคืจ ื“ื™ ืžื“ื”ื™ื,
01:50
So the number of atoms,
35
110499
2757
ืื– ืžืกืคืจ ื”ืื˜ื•ืžื™ื,
01:53
the file that I will save in my thumb drive to assemble a little baby,
36
113280
4755
ื”ืงื•ื‘ืฅ ืฉืื ื™ ืืฉืžื•ืจ ื‘ื›ื•ื ืŸ ื”ืงืฉื™ื— ื›ื“ื™ ืœื”ืจื›ื™ื‘ ืชื™ื ื•ืง ืงื˜ืŸ,
01:58
will actually fill an entire Titanic of thumb drives --
37
118059
4667
ื™ืžืœื ืœืžืขืฉื” ื˜ื™ื˜ืื ื™ืง ืฉืœื ืฉืœ ื›ื•ื ื ื™ื ืงืฉื™ื—ื™ื,
02:02
multiplied 2,000 times.
38
122750
2718
ืžื•ื›ืคืœ ืคื™ ืืœืคื™ื™ื.
02:05
This is the miracle of life.
39
125957
3401
ื–ื”ื• ืคืœื ื”ื—ื™ื™ื.
02:09
Every time you see from now on a pregnant lady,
40
129382
2612
ื‘ื›ืœ ืคืขื, ืžืขืชื” ื•ื”ืœืื”, ืฉืืชื ืจื•ืื™ื ื’ื‘ืจืช ื‘ื”ืจื™ื•ืŸ,
02:12
she's assembling the biggest amount of information
41
132018
2856
ื”ื™ื ืžืจื›ื™ื‘ื” ืืช ื›ืžื•ืช ื”ืžื™ื“ืข ื”ื’ื“ื•ืœื” ื‘ื™ื•ืชืจ
02:14
that you will ever encounter.
42
134898
1556
ืฉืชื™ืชืงืœื• ื‘ื” ืื™ ืคืขื.
02:16
Forget big data, forget anything you heard of.
43
136478
2950
ืฉื™ื›ื—ื• ืืช ื”ื ืชื•ื ื™ื ื”ืจื‘ื™ื, ืฉื™ื›ื—ื• ืืช ื›ืœ ืžื” ืฉืฉืžืขืชื ืขืœื™ื•
02:19
This is the biggest amount of information that exists.
44
139452
2881
ื–ื•ื”ื™ ื”ื›ืžื•ืช ื”ื’ื“ื•ืœื” ื‘ื™ื•ืชืจ ืฉืœ ื ืชื•ื ื™ื ืฉืงื™ื™ืžืช.
02:22
(Applause)
45
142357
3833
(ืชืฉื•ืื•ืช)
02:26
But nature, fortunately, is much smarter than a young physicist,
46
146214
4644
ืื‘ืœ ื”ื˜ื‘ืข, ืœืžืจื‘ื” ื”ืžื–ืœ, ื”ืจื‘ื” ื™ื•ืชืจ ื—ื›ื ืžืคื™ื–ื™ืงืื™ ืฆืขื™ืจ,
02:30
and in four billion years, managed to pack this information
47
150882
3576
ื•ื‘ืืจื‘ืขื” ืžื™ืœื™ืืจื“ ืฉื ื™ื, ื”ืฆืœื™ื— ืœืืจื•ื– ืืช ื”ืžื™ื“ืข ื”ื–ื”
02:34
in a small crystal we call DNA.
48
154482
2705
ื‘ื’ื‘ื™ืฉ ืงื˜ืŸ ืฉืื ื• ืงื•ืจืื™ื ืœื• DNA.
02:37
We met it for the first time in 1950 when Rosalind Franklin,
49
157605
4312
ืคื’ืฉื ื• ืื•ืชื• ื‘ืคืขื ื”ืจืืฉื•ื ื” ื‘-1950 ื›ืฉืจื•ื–ืœื™ื ื“ ืคืจื ืงืœื™ืŸ,
02:41
an amazing scientist, a woman,
50
161941
1556
ืžื“ืขื ื™ืช ืžื“ื”ื™ืžื”, ืื™ืฉื”,
02:43
took a picture of it.
51
163521
1389
ืฆื™ืœืžื” ืื•ืชื•.
02:44
But it took us more than 40 years to finally poke inside a human cell,
52
164934
5188
ืื‘ืœ ื–ื” ืœืงื— ืœื ื• ื™ื•ืชืจ ืž -40 ืฉื ื™ื ืœืชืงื•ืข ืœื‘ืกื•ืฃ ื‘ืชื•ืš ืชื ืื ื•ืฉื™,
02:50
take out this crystal,
53
170146
1602
ืœื”ื•ืฆื™ื ืืช ื”ื’ื‘ื™ืฉ ื”ื–ื”,
02:51
unroll it, and read it for the first time.
54
171772
3080
ืœื’ื•ืœืœ ืื•ืชื•, ื•ืœืงืจื•ื ืื•ืชื• ื‘ืคืขื ื”ืจืืฉื•ื ื”.
02:55
The code comes out to be a fairly simple alphabet,
55
175615
3241
ื”ืงื•ื“ ืžื•ืคื™ืข ื›ืืœืคื‘ื™ืช ืคืฉื•ื˜ ืœืžื“ื™
02:58
four letters: A, T, C and G.
56
178880
3772
ืืจื‘ืข ืื•ืชื™ื•ืช: ,A,T,C,ึทึท & G
03:02
And to build a human, you need three billion of them.
57
182676
3490
ื•ื›ื“ื™ ืœื‘ื ื•ืช ืื“ื ืฆืจื™ืš ืฉืœื•ืฉื” ืžื™ืœื™ืืจื“ ืžื”ื.
03:06
Three billion.
58
186933
1179
ืฉืœื•ืฉื” ืžื™ืœื™ืืจื“.
03:08
How many are three billion?
59
188136
1579
ื›ืžื” ื”ื ืฉืœื•ืฉื” ืžื™ืœื™ืืจื“?
03:09
It doesn't really make any sense as a number, right?
60
189739
2762
ื–ื” ืœื ื‘ืืžืช ื ืจืื” ื›ืžื• ืžืกืคืจ ื”ื’ื™ื•ื ื™, ื ื›ื•ืŸ?
03:12
So I was thinking how I could explain myself better
61
192525
4085
ืื– ื—ืฉื‘ืชื™ ืื™ืš ื™ื›ื•ืœืชื™ ืœื”ืกื‘ื™ืจ ืืช ืขืฆืžื™ ื˜ื•ื‘ ื™ื•ืชืจ
03:16
about how big and enormous this code is.
62
196634
3050
ื›ืžื” ื’ื“ื•ืœ ื•ืขื ืง ื”ื•ื ืงื•ื“ ื–ื”.
03:19
But there is -- I mean, I'm going to have some help,
63
199708
3054
ืื‘ืœ ื™ืฉ - ืื ื™ ืžืชื›ื•ื•ืŸ, ื”ื•ืœื›ืช ืœื”ื™ื•ืช ืœื™ ืงืฆืช ืขื–ืจื”,
03:22
and the best person to help me introduce the code
64
202786
3227
ื•ื”ืื“ื ื”ืžืชืื™ื ื‘ื™ื•ืชืจ ืœืขื–ื•ืจ ืœื™ ืœื”ืฆื™ื’ ืืช ื”ืงื•ื“
03:26
is actually the first man to sequence it, Dr. Craig Venter.
65
206037
3522
ื”ื•ื ืœืžืขืฉื” ื”ืื“ื ื”ืจืืฉื•ืŸ ืฉืขืจืš ืจืฆืฃ ื–ื”, ื“"ืจ ืงืจื™ื™ื’ ื•ื ื˜ืจ.
03:29
So welcome onstage, Dr. Craig Venter.
66
209583
3390
ืื– ื‘ืจื•ืš ื”ื‘ื ืœื‘ืžื” ื“"ืจ ืงืจื™ื™ื’ ื•ื ื˜ืจ.
03:32
(Applause)
67
212997
6931
(ืชืฉื•ืื•ืช)
03:39
Not the man in the flesh,
68
219952
2256
ืœื ื”ืื™ืฉ ืขืฆืžื•,
03:43
but for the first time in history,
69
223448
2345
ืื‘ืœ ื‘ืคืขื ื”ืจืืฉื•ื ื” ื‘ื”ื™ืกื˜ื•ืจื™ื”,
03:45
this is the genome of a specific human,
70
225817
3462
ื–ื” ื”ื’ื ื•ื ื”ืžื‘ื•ืงืฉ ืฉืœ ืื“ื ืžืกื•ื™ื,
03:49
printed page-by-page, letter-by-letter:
71
229303
3760
ืฉืžื•ื“ืคืก ื“ืฃ ืื—ืจ ื“ืฃ, ืื•ืช ืื—ืจ ืื•ืช:
03:53
262,000 pages of information,
72
233087
3996
262,000 ืขืžื•ื“ื™ื ืฉืœ ืžื™ื“ืข,
03:57
450 kilograms, shipped from the United States to Canada
73
237107
4364
450 ืง"ื’, ืฉื ืฉืœื—ื• ืžืืจืฆื•ืช ื”ื‘ืจื™ืช ืœืงื ื“ื”
04:01
thanks to Bruno Bowden, Lulu.com, a start-up, did everything.
74
241495
4843
ื‘ื–ื›ื•ืช ื‘ืจื•ื ื• ื‘ืื•ื“ืŸ, Lulu.com, ื—ื‘ืจืช ืกื˜ืืจื˜-ืืค, ืขืฉืชื” ื”ื›ืœ.
04:06
It was an amazing feat.
75
246362
1463
ื–ื” ื”ื™ื” ื”ื™ืฉื’ ืžื“ื”ื™ื.
04:07
But this is the visual perception of what is the code of life.
76
247849
4297
ืื‘ืœ ื–ื•ื”ื™ ื”ืชืคื™ืกื” ื”ื—ื–ื•ืชื™ืช ืฉืœ ืžื” ื”ื•ื ื”ืงื•ื“ ืฉืœ ื—ื™ื™ื.
04:12
And now, for the first time, I can do something fun.
77
252170
2478
ื•ืขื›ืฉื™ื•, ื‘ืคืขื ื”ืจืืฉื•ื ื”, ืื ื™ ื™ื›ื•ืœ ืœืขืฉื•ืช ืžืฉื”ื• ืžื”ื ื”.
04:14
I can actually poke inside it and read.
78
254672
2547
ืื ื™ ื™ื›ื•ืœ ืœืžืขืฉื” ืœื ื‘ื•ืจ ื‘ืชื•ื›ื• ื•ืœืงืจื•ื.
04:17
So let me take an interesting book ... like this one.
79
257243
4625
ืื– ืชื ื• ืœื™ ืœืงื—ืช ืกืคืจ ืžืขื ื™ื™ืŸ ... ื›ืžื• ื–ื”.
04:25
I have an annotation; it's a fairly big book.
80
265077
2534
ื™ืฉ ืœื™ ื”ืขืจื”; ื–ื” ืกืคืจ ื“ื™ ื’ื“ื•ืœ.
04:27
So just to let you see what is the code of life.
81
267635
3727
ืื– ืจืง ื›ื“ื™ ืฉืชื•ื›ืœื• ืœืจืื•ืช ืžื”ื• ื”ืงื•ื“ ืฉืœ ื”ื—ื™ื™ื.
04:32
Thousands and thousands and thousands
82
272566
3391
ืืœืคื™ื ืขืœ ืืœืคื™ื ื•ืืœืคื™ื
04:35
and millions of letters.
83
275981
2670
ื•ืžื™ืœื™ื•ื ื™ ืื•ืชื™ื•ืช.
04:38
And they apparently make sense.
84
278675
2396
ื•ื”ื ื›ื ืจืื” ื”ื’ื™ื•ื ื™ื™ื.
04:41
Let's get to a specific part.
85
281095
1757
ื‘ื•ืื• ื•ื ื’ื™ืข ืœื—ืœืง ืžืกื•ื™ื.
04:43
Let me read it to you:
86
283571
1362
ืชื ื• ืœื™ ืœื”ืงืจื™ื ืœื›ื ืื•ืชื•;
04:44
(Laughter)
87
284957
1021
(ืฆื—ื•ืง)
04:46
"AAG, AAT, ATA."
88
286002
4006
"AAG, AAT, ATA."
04:50
To you it sounds like mute letters,
89
290965
2067
ืœื›ื ื–ื” ื ืฉืžืข ื›ืžื• ืื•ืชื™ื•ืช ืื™ืœืžื•ืช,
04:53
but this sequence gives the color of the eyes to Craig.
90
293056
4041
ืื‘ืœ ืจืฆืฃ ื–ื” ื ื•ืชืŸ ืืช ืฆื‘ืข ื”ืขื™ื ื™ื™ื ืœืงืจื™ื™ื’.
04:57
I'll show you another part of the book.
91
297633
1932
ืื ื™ ืืจืื” ืœื›ื ืขื•ื“ ื—ืœืง ืžื”ืกืคืจ.
04:59
This is actually a little more complicated.
92
299589
2094
ื–ื” ืœืžืขืฉื” ืงืฆืช ื™ื•ืชืจ ืžืกื•ื‘ืš.
05:02
Chromosome 14, book 132:
93
302983
2647
ื›ืจื•ืžื•ื–ื•ื 14, ื‘ืกืคืจ 132:
05:05
(Laughter)
94
305654
2090
(ืฆื—ื•ืง)
05:07
As you might expect.
95
307768
1277
ื›ืคื™ ืฉื”ื™ื” ืืคืฉืจ ืœืฆืคื•ืช.
05:09
(Laughter)
96
309069
3466
(ืฆื—ื•ืง)
05:14
"ATT, CTT, GATT."
97
314857
4507
".ATT, CTT, GATT."
05:20
This human is lucky,
98
320329
1687
ืื“ื ื–ื” ื”ื•ื ื‘ืจ ืžื–ืœ,
05:22
because if you miss just two letters in this position --
99
322040
4517
ื›ื™ ืื ืชืคืกืคืกื• ืจืง 2 ืื•ืชื™ื•ืช ื‘ืžื™ืงื•ื ื”ื–ื” --
05:26
two letters of our three billion --
100
326581
1877
ืฉืชื™ ืื•ืชื™ื•ืช ืžืชื•ืš ืฉืœื•ืฉืช ื”ืžื™ืœื™ืืจื“ ืฉืœื ื• --
05:28
he will be condemned to a terrible disease:
101
328482
2019
ื”ื•ื ื™ื”ื™ื” ื ื™ื“ื•ืŸ ืœืžื—ืœื” ืื™ื•ืžื”:
05:30
cystic fibrosis.
102
330525
1440
ืกื™ืกื˜ื™ืง ืคื™ื‘ืจื•ื–ื™ืก (ื‘ืขื‘ืจื™ืช: ืœึทื™ึถึผืคึถืช ื›ึดึผื™ืกึฐืชึดื™ืช).
05:31
We have no cure for it, we don't know how to solve it,
103
331989
3413
ืื™ืŸ ืœื ื• ืชืจื•ืคื” ืœื–ื”, ืื ื—ื ื• ืœื ื™ื•ื“ืขื™ื ืœืจืคื ืืช ื–ื”,
05:35
and it's just two letters of difference from what we are.
104
335426
3755
ื•ืจืง ืฉืชื™ ืื•ืชื™ื•ืช ืžื‘ื“ื™ืœื•ืช ื‘ื™ืŸ ืžื” ืฉื”ื ื ื•.
05:39
A wonderful book, a mighty book,
105
339585
2705
ืกืคืจ ื ืคืœื, ืกืคืจ ืื“ื™ืจ,
05:43
a mighty book that helped me understand
106
343115
1998
ืกืคืจ ืื“ื™ืจ ืฉืขื–ืจ ืœื™ ืœื”ื‘ื™ืŸ
05:45
and show you something quite remarkable.
107
345137
2753
ื•ืœื”ืจืื•ืช ืœื›ื ืžืฉื”ื• ื“ื™ ืžื“ื”ื™ื.
05:48
Every one of you -- what makes me, me and you, you --
108
348480
4435
ื›ืœ ืื—ื“ ืžื›ื -- ืžื” ืฉืขื•ืฉื” ืื•ืชื™, ืื•ืชื™ ื•ืื•ืชื›ื, ืื•ืชื›ื --
05:52
is just about five million of these,
109
352939
2954
ื–ื ืจืง ื›ื—ืžื™ืฉื” ืžื™ืœื™ื•ืŸ ืžืืœื”,
05:55
half a book.
110
355917
1228
ื—ืฆื™ ืกืคืจ.
05:58
For the rest,
111
358015
1663
ื‘ืืฉืจ ืœืฉืืจ,
05:59
we are all absolutely identical.
112
359702
2562
ื›ื•ืœื ื• ื–ื”ื™ื ืœื—ืœื•ื˜ื™ืŸ.
06:03
Five hundred pages is the miracle of life that you are.
113
363008
4018
ื—ืžืฉ ืžืื•ืช ืขืžื•ื“ื™ื ื”ื ื ืก ื”ื—ื™ื™ื ืฉื”ื•ื ืืชื.
06:07
The rest, we all share it.
114
367050
2531
ืืช ื”ืฉืืจ, ื›ื•ืœื ื• ื—ื•ืœืงื™ื.
06:09
So think about that again when we think that we are different.
115
369605
2909
ืื– ืชื—ืฉื‘ื• ืขืœ ื–ื” ืฉื•ื‘ ื›ืฉืื ื—ื ื• ื—ื•ืฉื‘ื™ื ืฉืื ื—ื ื• ืฉื•ื ื™ื.
06:12
This is the amount that we share.
116
372538
2221
ื–ื•ื”ื™ ื”ื›ืžื•ืช ืฉืื ื• ื—ื•ืœืงื™ื.
06:15
So now that I have your attention,
117
375441
3429
ืื– ืขื›ืฉื™ื• ื›ืฉืงื™ื‘ืœืชื™ ืืช ืชืฉื•ืžืช ื”ืœื‘ ืฉืœื›ื,
06:18
the next question is:
118
378894
1359
ื”ืฉืืœื” ื”ื‘ืื” ื”ื™ื:
06:20
How do I read it?
119
380277
1151
ืื™ืš ืื ื™ ืงื•ืจื ืืช ื–ื”?
06:21
How do I make sense out of it?
120
381452
1509
ืื™ืš ืื ื™ ืžื•ืฆื ื‘ื–ื” ื”ื™ื’ื™ื•ืŸ?
06:23
Well, for however good you can be at assembling Swedish furniture,
121
383409
4240
ื•ื‘ื›ืŸ, ืขื“ ื›ืžื” ืฉืชื•ื›ืœื• ืœื”ื™ื•ืช ื˜ื•ื‘ื™ื ื‘ื”ืจื›ื‘ืช ืจื”ื™ื˜ื™ื ืฉื•ื•ื“ื™ื™ื,
06:27
this instruction manual is nothing you can crack in your life.
122
387673
3563
ืืช ื—ื•ื‘ืจืช ื”ื”ื•ืจืื•ืช ื”ื–ื• ื‘ื—ื™ื™ื ืœื ืชื•ื›ืœื• ืœืคืฆื—.
06:31
(Laughter)
123
391260
1603
(ืฆื—ื•ืง)
06:32
And so, in 2014, two famous TEDsters,
124
392887
3112
ื•ื›ืš, ื‘ 2014, ืฉื ื™ ื˜ื“ืกื˜ืจื™ื ืžืคื•ืจืกืžื™ื,
06:36
Peter Diamandis and Craig Venter himself,
125
396023
2540
ืคื™ื˜ืจ ื“ื™ืืžื ื“ื™ืก ื•ืงืจื™ื™ื’ ื•ื ื˜ืจ ืขืฆืžื•,
06:38
decided to assemble a new company.
126
398587
1927
ื”ื—ืœื™ื˜ื• ืœื™ื™ืกื“ ื—ื‘ืจื” ื—ื“ืฉื”,
06:40
Human Longevity was born,
127
400538
1412
"ืืจื™ื›ื•ืช ื™ืžื™ ืื“ื" ื ื•ืœื“ื”,
06:41
with one mission:
128
401974
1370
ืขื ืžืฉื™ืžื” ืื—ืช
06:43
trying everything we can try
129
403368
1861
ืžื ืกื™ื ืืช ื›ืœ ืžื” ืฉืื ื• ื™ื›ื•ืœื™ื ืœืขืฉื•ืช
06:45
and learning everything we can learn from these books,
130
405253
2759
ื•ืœื•ืžื“ื™ื ื›ืœ ืžื” ืฉืื ื• ื™ื›ื•ืœื™ื ืœืœืžื•ื“ ืžืŸ ื”ืกืคืจื™ื ื”ืืœื”,
06:48
with one target --
131
408036
1705
ื‘ืžื˜ืจื” ืื—ืช --
06:50
making real the dream of personalized medicine,
132
410862
2801
ืœื”ื’ืฉื™ื ืืช ื”ื—ืœื•ื ืฉืœ ืจืคื•ืื” ืื™ืฉื™ืช,
06:53
understanding what things should be done to have better health
133
413687
3767
ืœื”ื‘ื™ืŸ ืื™ืœื• ื“ื‘ืจื™ื ืฆืจื™ื›ื™ื ืœื”ื™ืขืฉื•ืช ื›ื“ื™ ืœื–ื›ื•ืช ื‘ื‘ืจื™ืื•ืช ื˜ื•ื‘ื” ื™ื•ืชืจ
06:57
and what are the secrets in these books.
134
417478
2283
ื•ืžื” ื”ื ื”ืกื•ื“ื•ืช ื‘ืกืคืจื™ื ื”ืืœื”.
07:00
An amazing team, 40 data scientists and many, many more people,
135
420329
4250
ืฆื•ื•ืช ืžื“ื”ื™ื, 40 ืžื“ืขื ื™ ื ืชื•ื ื™ื ื”ืจื‘ื”, ื”ืจื‘ื” ื™ื•ืชืจ ืื ืฉื™ื,
07:04
a pleasure to work with.
136
424603
1350
ืฉืชืขื ื•ื’ ืœืขื‘ื•ื“ ืื™ืชื.
07:05
The concept is actually very simple.
137
425977
2253
ื”ืจืขื™ื•ืŸ ื”ื•ื ืœืžืขืฉื” ืžืื•ื“ ืคืฉื•ื˜.
07:08
We're going to use a technology called machine learning.
138
428254
3158
ืื ื—ื ื• ื”ื•ืœื›ื™ื ืœื”ืฉืชืžืฉ ื‘ื˜ื›ื ื•ืœื•ื’ื™ื” ืฉื ืงืจืืช ืœืžื™ื“ืช ืžื›ื•ื ื”.
07:11
On one side, we have genomes -- thousands of them.
139
431436
4539
ืžืฆื“ ืื—ื“ ื™ืฉ ืœื ื• ื’ื ื•ืžื™ื - ืืœืคื™ื ืžื”ื
07:15
On the other side, we collected the biggest database of human beings:
140
435999
3997
ืžื”ืฆื“ ื”ืฉื ื™, ืืกืคื ื• ืืช ืžืกื“ ื”ื ืชื•ื ื™ื ื”ื’ื“ื•ืœ ื‘ื™ื•ืชืจ ืฉืœ ื‘ื ื™ ืื“ื:
07:20
phenotypes, 3D scan, NMR -- everything you can think of.
141
440020
4296
07:24
Inside there, on these two opposite sides,
142
444340
2899
ื‘ืคื ื™ื ืฉื, ืขืœ ืฉื ื™ ืฆื“ื“ื™ื ืžื ื•ื’ื“ื™ื ืืœื”,
07:27
there is the secret of translation.
143
447263
2442
ื™ืฉื ื• ืกื•ื“ ื”ืชืจื’ื•ื.
07:29
And in the middle, we build a machine.
144
449729
2472
ื•ื‘ืืžืฆืข ืื ื• ื‘ื•ื ื™ื ืžื›ื•ื ื”.
07:32
We build a machine and we train a machine --
145
452801
2385
ืื ื—ื ื• ื‘ื•ื ื™ื ืžื›ื•ื ื” ื•ืื ื—ื ื• ืžืืžื ื™ื ืžื›ื•ื ื”
07:35
well, not exactly one machine, many, many machines --
146
455210
3210
ื˜ื•ื‘, ืœื ื‘ื“ื™ื•ืง ืžื›ื•ื ื” ืื—ืช, ื”ืจื‘ื”, ื”ืจื‘ื” ืžื›ื•ื ื•ืช --
07:38
to try to understand and translate the genome in a phenotype.
147
458444
4544
ืœื ืกื•ืช ืœื”ื‘ื™ืŸ ื•ืœืชืจื’ื ืืช ื”ื’ื ื•ื ื‘ืคื ื•ื˜ื™ืค.
07:43
What are those letters, and what do they do?
148
463362
3340
ืžื”ืŸ ื”ืื•ืชื™ื•ืช ื”ืืœื•, ื•ืžื” ื”ืŸ ืขื•ืฉื•ืช?
07:46
It's an approach that can be used for everything,
149
466726
2747
ื–ื• ื’ื™ืฉื” ืฉื™ื›ื•ืœื” ืœืฉืžืฉ ืœื›ืœ ื“ื‘ืจ,
07:49
but using it in genomics is particularly complicated.
150
469497
2993
ืื‘ืœ ืœื”ืฉืชืžืฉ ื‘ื” ื‘ื’ื ื•ืžื™ืงื” ื–ื” ืžืกื•ื‘ืš ื‘ืžื™ื•ื—ื“.
07:52
Little by little we grew and we wanted to build different challenges.
151
472514
3276
ืœืื˜ ืœืื˜ ื’ื“ืœื ื• ื•ืจืฆื™ื ื• ืœื‘ื ื•ืช ืืชื’ืจื™ื ืฉื•ื ื™ื.
07:55
We started from the beginning, from common traits.
152
475814
2732
ื”ืชื—ืœื ื• ืžื”ื”ืชื—ืœื”, ืžืชื›ื•ื ื•ืช ืžืฉื•ืชืคื•ืช ืœื›ื•ืœื.
07:58
Common traits are comfortable because they are common,
153
478570
2603
ืชื›ื•ื ื•ืช ืฉื›ื™ื—ื•ืช ื”ืŸ ื ื•ื—ื•ืช ื›ื™ ื”ืŸ ื ืคื•ืฆื•ืช,
08:01
everyone has them.
154
481197
1184
ืœื›ื•ืœื ื™ืฉ ืื•ืชืŸ.
08:02
So we started to ask our questions:
155
482405
2494
ืื– ื”ืชื—ืœื ื• ืœืฉืื•ืœ ืืช ื”ืฉืืœื•ืช ืฉืœื ื•:
08:04
Can we predict height?
156
484923
1380
ื”ืื ื ื•ื›ืœ ืœื—ื–ื•ืช ื’ื•ื‘ื”?
08:06
Can we read the books and predict your height?
157
486985
2177
ื”ืื ื ื•ื›ืœ ืœืงืจื•ื ืืช ื”ืกืคืจื™ื ื•ืœื—ื–ื•ืช ืืช ื”ื’ื•ื‘ื” ืฉืœื›ื?
08:09
Well, we actually can,
158
489186
1151
ื•ื‘ื›ืŸ, ืื ื• ืœืžืขืฉื” ื™ื›ื•ืœื™ื,
08:10
with five centimeters of precision.
159
490361
1793
ืขื ื—ืžื™ืฉื” ืกื ื˜ื™ืžื˜ืจื™ื ืฉืœ ื“ื™ื•ืง.
08:12
BMI is fairly connected to your lifestyle,
160
492178
3135
BMI ืชืœื•ื™ ืœืžื“ื™ ื‘ืื•ืจื— ื”ื—ื™ื™ื ืฉืœื›ื,
08:15
but we still can, we get in the ballpark, eight kilograms of precision.
161
495337
3864
ืื‘ืœ ืื ื—ื ื• ืขื“ื™ื™ืŸ ื™ื›ื•ืœื™ื, ืื ื• ืžืงื‘ืœื™ื ื‘ืงื™ืจื•ื‘, 8 ืงื™ืœื•ื’ืจืžื™ื ืฉืœ ื“ื™ื•ืง.
08:19
Can we predict eye color?
162
499225
1231
ื”ืื ื ื•ื›ืœ ืœื—ื–ื•ืช ืฆื‘ืข ืขื™ื ื™ื™ื?
08:20
Yeah, we can.
163
500480
1158
ื›ืŸ, ืื ื—ื ื• ื™ื›ื•ืœื™ื.
08:21
Eighty percent accuracy.
164
501662
1324
80 ืื—ื•ื–ื™ื ื“ื™ื•ืง.
08:23
Can we predict skin color?
165
503466
1858
ื”ืื ื ื•ื›ืœ ืœื—ื–ื•ืช ืฆื‘ืข ืขื•ืจ?
08:25
Yeah we can, 80 percent accuracy.
166
505348
2441
ื›ืŸ ืื ื—ื ื• ื™ื›ื•ืœื™ื, ื“ื™ื•ืง ืฉืœ 80 ืื—ื•ื–.
08:27
Can we predict age?
167
507813
1340
ื”ืื ื ื•ื›ืœ ืœื—ื–ื•ืช ื’ื™ืœ?
08:30
We can, because apparently, the code changes during your life.
168
510121
3739
ืื ื—ื ื• ื™ื›ื•ืœื™ื, ื›ื™ ื›ื›ืœ ื”ื ืจืื”, ื”ืงื•ื“ ืžืฉืชื ื” ื‘ืžื”ืœืš ื—ื™ื™ื›ื.
08:33
It gets shorter, you lose pieces, it gets insertions.
169
513884
3282
ื–ื” ื”ื•ืœืš ื•ืžืชืงืฆืจ, ืืชื ืžืื‘ื“ื™ื ืคื™ืกื•ืช, ืžืชืงื‘ืœื•ืช ืชื•ืกืคื•ืช.
08:37
We read the signals, and we make a model.
170
517190
2555
ืื ื• ืงื•ืจืื™ื ืืช ื”ืื•ืชื•ืช ื•ืื ื—ื ื• ืขื•ืฉื™ื ืžื•ื“ืœ.
08:40
Now, an interesting challenge:
171
520438
1475
ืขื›ืฉื™ื•, ืืชื’ืจ ืžืขื ื™ื™ืŸ:
08:41
Can we predict a human face?
172
521937
1729
ื”ืื ื ื•ื›ืœ ืœื—ื–ื•ืช ืคืจืฆื•ืฃ ืื ื•ืฉื™?
08:45
It's a little complicated,
173
525014
1278
ื–ื” ืงืฆืช ืžืกื•ื‘ืš,
08:46
because a human face is scattered among millions of these letters.
174
526316
3191
ื›ื™ ืคืจืฆื•ืฃ ืื ื•ืฉื™ ืžืคื•ื–ืจ ื‘ื™ืŸ ืžื™ืœื™ื•ื ื™ ืื•ืชื™ื•ืช ืืœื•.
08:49
And a human face is not a very well-defined object.
175
529531
2629
ื•ืคืจืฆื•ืฃ ืื ื•ืฉื™ ืื™ื ื• ืื•ื‘ื™ื™ืงื˜ ืžื•ื’ื“ืจ ื”ื™ื˜ื‘ ืžืื•ื“.
08:52
So, we had to build an entire tier of it
176
532184
2051
ืื– ื”ื™ื™ื ื• ื ืืœืฆื™ื ืœื‘ื ื•ืช ื ื“ื‘ืš ืฉืœื ืฉืœ ื–ื”
08:54
to learn and teach a machine what a face is,
177
534259
2710
ืœืœืžื•ื“ ื•ืœืœืžื“ ืืช ื”ืžื›ื•ื ื” ืžื” ื–ื” ืคืจืฆื•ืฃ,
08:56
and embed and compress it.
178
536993
2037
ื•ืœื”ื˜ื‘ื™ืข ื•ืœื›ื‘ื•ืฉ ืื•ืชื•.
08:59
And if you're comfortable with machine learning,
179
539054
2248
ื•ืื ืืชื ืžืจื’ื™ืฉื™ื ื ื•ื— ืขื ืœืžื™ื“ืช ืžื›ื•ื ื”,
09:01
you understand what the challenge is here.
180
541326
2284
ืืชื ืžื‘ื™ื ื™ื ืžื”ื• ื”ืืชื’ืจ ื›ืืŸ.
09:04
Now, after 15 years -- 15 years after we read the first sequence --
181
544108
5991
ืขื›ืฉื™ื•, ืœืื—ืจ 15 ืฉื ื™ื, ืื ื• ืงื•ืจืื™ื ืืช ื”ืจืฆืฃ ื”ืจืืฉื•ืŸ --
09:10
this October, we started to see some signals.
182
550123
2902
ื‘ืื•ืงื˜ื•ื‘ืจ ื–ื” ื”ืชื—ืœื ื• ืœืจืื•ืช ื›ืžื” ืื•ืชื•ืช.
09:13
And it was a very emotional moment.
183
553049
2455
ื•ื–ื” ื”ื™ื” ืจื’ืข ืžืื•ื“ ืžืจื’ืฉ.
09:15
What you see here is a subject coming in our lab.
184
555528
3745
ืžื” ืฉืืชื ืจื•ืื™ื ื›ืืŸ ื”ื•ื ื ื•ืฉื ืฉืขื•ืœื” ื‘ืžืขื‘ื“ื” ืฉืœื ื•.
09:19
This is a face for us.
185
559619
1928
ื–ื”ื• ืคืจืฆื•ืฃ ื‘ืฉื‘ื™ืœื ื•.
09:21
So we take the real face of a subject, we reduce the complexity,
186
561571
3631
ืื– ืื ื—ื ื• ืœื•ืงื—ื™ื ืคืจืฆื•ืฃ ืืžื™ืชื™ ืฉืœ ืกื•ื‘ื™ื™ืงื˜, ืื ื• ืžืคื—ื™ืชื™ื ืืช ืžื•ืจื›ื‘ื•ืชื•,
09:25
because not everything is in your face --
187
565226
1970
ืžืคื ื™ ืฉืœื ื”ื›ืœ ื ืžืฆื ื‘ืคืจืฆื•ืคื›ื --
09:27
lots of features and defects and asymmetries come from your life.
188
567220
3786
ื”ืจื‘ื” ืชื›ื•ื ื•ืช ื•ืคื’ืžื™ื ื•ืืกื™ืžื˜ืจื™ื•ืช ืžื’ื™ืขื™ื ืžื—ื™ื™ื›ื.
09:31
We symmetrize the face, and we run our algorithm.
189
571030
3469
ืื ื—ื ื• ื™ื•ืฆืจื™ื ืกื™ืžื˜ืจื™ื” ื‘ืคื ื™ื, ื•ืžืจื™ืฆื™ื ืืช ื”ืืœื’ื•ืจื™ืชื ืฉืœื ื•
09:35
The results that I show you right now,
190
575245
1898
ื”ืชื•ืฆืื•ืช ืฉืื ื™ ืžืจืื” ืœื›ื ืžืžืฉ ื›ืขืช
09:37
this is the prediction we have from the blood.
191
577167
3372
ื”ื ื”ืชื—ื–ื™ืช ืฉื™ืฉ ืœื ื• ืžืชื•ืš ื”ื“ื.
09:41
(Applause)
192
581596
1524
(ืชืฉื•ืื•ืช)
09:43
Wait a second.
193
583144
1435
ื—ื›ื• ืฉื ื™ื™ื”.
09:44
In these seconds, your eyes are watching, left and right, left and right,
194
584603
4692
ื‘ืฉื ื™ื•ืช ืืœื• ืขื™ื ื™ื›ื ืฆื•ืคื•ืช, ืฉืžืืœ ื•ื™ืžื™ืŸ, ื™ืžื™ืŸ ื•ืฉืžืืœ,
09:49
and your brain wants those pictures to be identical.
195
589319
3930
ื•ื”ืžื•ื— ืฉืœื›ื ืจื•ืฆื” ืฉื”ืชืžื•ื ื•ืช ื”ืืœื• ื™ื”ื™ ื–ื”ื•ืช.
09:53
So I ask you to do another exercise, to be honest.
196
593273
2446
ืื– ืื ื™ ืžื‘ืงืฉ ืžื›ื ืœืขืฉื•ืช ืชืจื’ื™ืœ ืื—ืจ, ืื ืœื”ื™ื•ืช ื›ื ื”.
09:55
Please search for the differences,
197
595743
2287
ื‘ื‘ืงืฉื” ื—ืคืฉื• ืืช ื”ื”ื‘ื“ืœื™ื,
09:58
which are many.
198
598054
1361
ืฉื”ื ืจื‘ื™ื,
09:59
The biggest amount of signal comes from gender,
199
599439
2603
ื”ื›ืžื•ืช ื”ื’ื“ื•ืœื” ื‘ื™ื•ืชืจ ืฉืœ ืื•ืชื•ืช ืžื’ื™ืขื” ืžื”ืžื’ื“ืจ,
10:02
then there is age, BMI, the ethnicity component of a human.
200
602066
5201
ื•ืื– ื™ืฉ ื’ื™ืœ, BMI, ื”ืจื›ื™ื‘ ื”ืืชื ื™ ืฉืœ ืื“ื.
10:07
And scaling up over that signal is much more complicated.
201
607291
3711
ื•ืžื“ืจื•ื’ ืžืขืœ ื”ืื•ืช ื”ื–ื” ื”ื•ื ื”ืจื‘ื” ื™ื•ืชืจ ืžืกื•ื‘ืš.
10:11
But what you see here, even in the differences,
202
611026
3250
ืื‘ืœ ืžื” ืฉืืชื ืจื•ืื™ื ื›ืืŸ, ืืคื™ืœื• ื‘ื”ื‘ื“ืœื™ื,
10:14
lets you understand that we are in the right ballpark,
203
614300
3595
ื ื•ืชืŸ ืœื›ื ืœื”ื‘ื™ืŸ ืฉืื ื—ื ื• ื ืžืฆืื™ื ื‘ืžื’ืจืฉ ื”ื ื›ื•ืŸ,
10:17
that we are getting closer.
204
617919
1348
ืฉืื ื—ื ื• ืžืชืงืจื‘ื™ื
10:19
And it's already giving you some emotions.
205
619291
2349
ื•ื–ื” ื›ื‘ืจ ืžืขื•ืจืจ ื‘ื›ื ื›ืžื” ืจื’ืฉื•ืช,
10:21
This is another subject that comes in place,
206
621664
2703
ื–ื” ื ื•ืฉื ืื—ืจ ืฉืžื•ืฆื ืืช ืžืงื•ืžื•,
10:24
and this is a prediction.
207
624391
1409
ื•ื–ื• ืชื—ื–ื™ืช.
10:25
A little smaller face, we didn't get the complete cranial structure,
208
625824
4596
ื‘ืคื ื™ื ืงืฆืช ื™ื•ืชืจ ืงื˜ื ื™ื , ืœื ืงื™ื‘ืœื ื• ืืช ืžื‘ื ื” ื”ื’ื•ืœื’ื•ืœืช ื”ืฉืœื,
10:30
but still, it's in the ballpark.
209
630444
2651
ืื‘ืœ ืขื“ื™ื™ืŸ ื–ื” ื‘ืžื’ืจืฉ.
10:33
This is a subject that comes in our lab,
210
633634
2224
ื–ื”ื• ื ื•ืฉื ืฉืขื•ืœื” ื‘ืžืขื‘ื“ื” ืฉืœื ื•,
10:35
and this is the prediction.
211
635882
1443
ื•ื–ื• ื”ืชื—ื–ื™ืช.
10:38
So these people have never been seen in the training of the machine.
212
638056
4676
ืื– ืื ืฉื™ื ืืœื” ืžืขื•ืœื ืœื ื ืจืื• ื‘ืื™ืžื•ืŸ ืฉืœ ื”ืžื›ื•ื ื”.
10:42
These are the so-called "held-out" set.
213
642756
2837
ืืœื” ื”ื ืžื™ ืฉื ืงืจืื™ื ืงื‘ื•ืฆื” ื‘"ื”ืฉื”ื™ื™ื”".
10:45
But these are people that you will probably never believe.
214
645617
3740
ืื‘ืœ ืืœื” ื”ื ืื ืฉื™ื ืฉื‘ื”ื ืืชื ืœืขื•ืœื ืœื ืชืืžื™ื ื•.
10:49
We're publishing everything in a scientific publication,
215
649381
2676
ืื ื—ื ื• ืžืคืจืกืžื™ื ื”ื›ืœ ื‘ืคืจืกื•ื ืžื“ืขื™,
10:52
you can read it.
216
652081
1151
ืืชื ื™ื›ื•ืœื™ื ืœืงืจื•ื ืืช ื–ื”.
10:53
But since we are onstage, Chris challenged me.
217
653256
2344
ืื‘ืœ ืžืื—ืจ ื•ืื ื—ื ื• ืขืœ ื”ื‘ืžื”, ื›ืจื™ืก ืืชื’ืจ ืื•ืชื™.
10:55
I probably exposed myself and tried to predict
218
655624
3626
ืื ื™ ื›ื ืจืื” ื—ืฉืคืชื™ ืืช ืขืฆืžื™ ื•ื ื™ืกื™ืชื™ ืœื—ื–ื•ืช
10:59
someone that you might recognize.
219
659274
2831
ืžื™ืฉื”ื• ืฉืืชื ืขืฉื•ื™ื™ื ืœื–ื”ื•ืช.
11:02
So, in this vial of blood -- and believe me, you have no idea
220
662470
4425
ืื– ื‘ืžื‘ื—ื ื” ื–ื• ืฉืœ ื“ื -- ื•ื”ืืžื™ื ื• ืœื™, ืื™ืŸ ืœื›ื ืฉื•ื ืžื•ืฉื’
11:06
what we had to do to have this blood now, here --
221
666919
2880
ืžื” ืฉื”ื™ื™ื ื• ืฆืจื™ื›ื™ื ืœืขืฉื•ืช ื›ื“ื™ ืฉื™ื”ื™ื” ืœื ื• ืืช ื”ื“ื ื”ื–ื” ืขื›ืฉื™ื•, ื›ืืŸ -
11:09
in this vial of blood is the amount of biological information
222
669823
3901
ื‘ืžื‘ื—ื ื” ื–ื• ืฉืœ ื“ื ื™ืฉื ื” ื›ืžื•ืช ืฉืœ ืžื™ื“ืข ื‘ื™ื•ืœื•ื’ื™
11:13
that we need to do a full genome sequence.
223
673748
2277
ืฉืื ื—ื ื• ืฆืจื™ื›ื™ื ื›ื“ื™ ืœื™ื™ืฆืจ ืจืฆืฃ ืžืœื ืฉืœ ื’ื ื•ื.
11:16
We just need this amount.
224
676049
2070
ืื ื• ืจืง ืฆืจื™ื›ื™ื ืืช ื”ืกื›ื•ื ื”ื–ื”.
11:18
We ran this sequence, and I'm going to do it with you.
225
678528
3205
ื”ืจืฆื ื• ืืช ื”ืจืฆืฃ ื”ื–ื”, ื•ืื ื™ ื”ื•ืœืš ืœืขืฉื•ืช ืืช ื–ื” ืืชื›ื.
11:21
And we start to layer up all the understanding we have.
226
681757
3979
ื•ื”ืชื—ืœื ื• ืœืจื‘ื“ ืืช ื›ืœ ื”ื”ื‘ื ื” ืฉื™ืฉ ืœื ื•.
11:25
In the vial of blood, we predicted he's a male.
227
685760
3350
ื‘ืžื‘ื—ื ืช ื”ื“ื, ืฆืคื™ื ื• ืฉื–ื” ื–ื›ืจ.
11:29
And the subject is a male.
228
689134
1364
ื•ื”ืกื•ื‘ื™ื™ืงื˜ ื”ื•ื ื–ื›ืจ.
11:30
We predict that he's a meter and 76 cm.
229
690996
2438
ืฆืคื™ื ื• ืฉื’ื•ื‘ื”ื• ืžื˜ืจ ื•-76 ืก"ืž.
11:33
The subject is a meter and 77 cm.
230
693458
2392
ื•ื”ืกื•ื‘ื™ื™ืงื˜ ื”ื•ื 77 ืก"ืž.
11:35
So, we predicted that he's 76; the subject is 82.
231
695874
4110
ืื– ืฆืคื™ื ื• ืฉื”ื•ื ื‘ืŸ 76: ื”ืกื•ื‘ื™ื™ืงื˜ ื‘ืŸ 82.
11:40
We predict his age, 38.
232
700701
2632
ืฆืคื™ื ื• ืฉื’ื™ืœื• ื”ื•ื 38.
11:43
The subject is 35.
233
703357
1904
ื”ืกื•ื‘ื™ื™ืงื˜ ื‘ืŸ 35.
11:45
We predict his eye color.
234
705851
2124
ืื ื• ืฆื•ืคื™ื ืืช ืฆื‘ืข ืขื™ื ื™ื•.
11:48
Too dark.
235
708824
1211
ื›ื”ื” ืžื“ื™.
11:50
We predict his skin color.
236
710059
1555
ืื ื• ืฆื•ืคื™ื ืืช ืฆื‘ืข ืขื•ืจื•.
11:52
We are almost there.
237
712026
1410
ืื ื—ื ื• ื›ืžืขื˜ ืฉื.
11:53
That's his face.
238
713899
1373
ืืœื” ื”ืคื ื™ื ืฉืœื•.
11:57
Now, the reveal moment:
239
717172
3269
ื›ืขืช, ืจื’ืข ื”ื—ืฉื™ืคื”:
12:00
the subject is this person.
240
720465
1770
ื”ืกื•ื‘ื™ื™ืงื˜ ื”ื•ื ืื“ื ื–ื”.
12:02
(Laughter)
241
722259
1935
(ืฆื—ื•ืง)
12:04
And I did it intentionally.
242
724218
2058
ื•ืขืฉื™ืชื™ ื–ืืช ื‘ื›ื•ื•ื ื”.
12:06
I am a very particular and peculiar ethnicity.
243
726300
3692
ืื ื™ ืžืื•ื“ ืกืคืฆื™ืคื™ ื•ืžื•ื–ืจ ืžื‘ื—ื™ื ืช ืžื•ืฆื ืืชื ื™.
12:10
Southern European, Italians -- they never fit in models.
244
730016
2950
ื“ืจื•ื ืื™ืจื•ืคืื™ื, ืื™ื˜ืœืงื™ื -- ื”ื ืืฃ ืคืขื ืœื ืžืชืื™ืžื™ื ื‘ืžื•ื“ืœื™ื.
12:12
And it's particular -- that ethnicity is a complex corner case for our model.
245
732990
5130
ื•ื–ื” ืžื™ื•ื—ื“ -- ืฉืืชื ื™ื•ืช ื”ื™ื ืžืงืจื” ืคื™ื ืชื™ ืžื•ืจื›ื‘ ืขื‘ื•ืจ ื”ืžื•ื“ืœ ืฉืœื ื•.
12:18
But there is another point.
246
738144
1509
ืืš ืงื™ื™ืžืช ื ืงื•ื“ื” ื ื•ืกืคืช.
12:19
So, one of the things that we use a lot to recognize people
247
739677
3477
ืœื›ืŸ, ืื—ื“ ื”ื“ื‘ืจื™ื ืฉืื ื• ืžืฉืชืžืฉื™ื ื‘ื”ื ื”ืจื‘ื” ื›ื“ื™ ืœื”ื›ื™ืจ ืื ืฉื™ื
12:23
will never be written in the genome.
248
743178
1722
ืœื ื™ื™ื›ืชื‘ ืœืขื•ืœื ื‘ื’ื ื•ื.
12:24
It's our free will, it's how I look.
249
744924
2317
ื–ื” ื”ืจืฆื•ืŸ ื”ื—ื•ืคืฉื™ ืฉืœื ื•, ื–ื” ืื™ืš ืื ื™ ื ืจืื”.
12:27
Not my haircut in this case, but my beard cut.
250
747265
3229
ืœื ื”ืชืกืคื•ืจืช ืฉืœื™ ื‘ืžืงืจื” ื–ื”, ืื‘ืœ ื—ื™ืชื•ืš ื”ื–ืงืŸ ืฉืœื™.
12:30
So I'm going to show you, I'm going to, in this case, transfer it --
251
750518
3553
ืื– ืื ื™ ื”ื•ืœืš ืœื”ืจืื•ืช ืœื›ื, ืื ื™ ื”ื•ืœืš, ื‘ืžืงืจื” ื–ื”, ื•ืœื”ืขื‘ื™ืจ ืื•ืชื• -
12:34
and this is nothing more than Photoshop, no modeling --
252
754095
2765
ื•ื–ื” ืœื ื™ื•ืชืจ ืžืคื•ื˜ื•ืฉื•ืค, ืœื ื“ื•ื’ืžื ื•ืช --
12:36
the beard on the subject.
253
756884
1713
ื”ื–ืงืŸ ืขืœ ื”ืื•ื‘ื™ื™ืงื˜.
12:38
And immediately, we get much, much better in the feeling.
254
758621
3472
ื•ืžื™ื“, ืื ื—ื ื• ืžืงื‘ืœื™ื ืชื—ื•ืฉื” ื”ืจื‘ื” ื™ื•ืชืจ ื˜ื•ื‘ื”.
12:42
So, why do we do this?
255
762955
2709
ืื–, ืœืžื” ืื ื—ื ื• ืขื•ืฉื™ื ืืช ื–ื”?
12:47
We certainly don't do it for predicting height
256
767938
5140
ืื ื—ื ื• ื‘ื”ื—ืœื˜ ืœื ืขื•ืฉื™ื ืืช ื–ื” ืœื ื™ื‘ื•ื™ ื’ื•ื‘ื”
12:53
or taking a beautiful picture out of your blood.
257
773102
2372
ืื• ืœืงื—ืช ืชืžื•ื ื” ื™ืคื” ืžืชื•ืš ื”ื“ื ืฉืœื›ื.
12:56
We do it because the same technology and the same approach,
258
776390
4018
ืื ื—ื ื• ืขื•ืฉื™ื ืืช ื–ื” ื›ื™ ืื•ืชื” ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ื•ืื•ืชื” ื”ื’ื™ืฉื”,
13:00
the machine learning of this code,
259
780432
2520
ืœืžื™ื“ืช ื”ืžื›ื•ื ื” ืฉืœ ืงื•ื“ ื–ื”,
13:02
is helping us to understand how we work,
260
782976
3137
ืขื•ื–ืจืช ืœื ื• ืœื”ื‘ื™ืŸ ืื™ืš ืื ื—ื ื• ืขื•ื‘ื“ื™ื,
13:06
how your body works,
261
786137
1486
ืื™ืš ื”ื’ื•ืฃ ืฉืœื›ื ืขื•ื‘ื“,
13:07
how your body ages,
262
787647
1665
ืื™ืš ื”ื’ื•ืฃ ืฉืœื›ื ืžื–ื“ืงืŸ,
13:09
how disease generates in your body,
263
789336
2769
ืื™ืš ืžื—ืœื” ื ื•ืฆืจืช ื‘ื’ื•ืฃ ืฉืœื›ื,
13:12
how your cancer grows and develops,
264
792129
2972
ืื™ืš ื”ืกืจื˜ืŸ ืฉืœื›ื ื’ื“ืœ ื•ืžืชืคืชื—,
13:15
how drugs work
265
795125
1783
ืื™ืš ืชืจื•ืคื•ืช ืขื•ื‘ื“ื•ืช
13:16
and if they work on your body.
266
796932
2314
ื•ื”ืื ื”ืŸ ืขื•ื‘ื“ื•ืช ืขืœ ื’ื•ืคื›ื.
13:19
This is a huge challenge.
267
799713
1667
ื–ื”ื• ืืชื’ืจ ืขื ืง.
13:21
This is a challenge that we share
268
801894
1638
ื–ื”ื• ืืชื’ืจ ืฉืื ื• ื—ื•ืœืงื™ื
13:23
with thousands of other researchers around the world.
269
803556
2579
ืขื ืืœืคื™ ื—ื•ืงืจื™ื ืื—ืจื™ื ื‘ืจื—ื‘ื™ ื”ืขื•ืœื.
13:26
It's called personalized medicine.
270
806159
2222
ื–ื” ื ืงืจื ื˜ื™ืคื•ืœ ืชืจื•ืคืชื™ ืื™ืฉื™.
13:29
It's the ability to move from a statistical approach
271
809125
3460
ื–ื• ื”ื™ื›ื•ืœืช ืœื ื•ืข ืžืชื•ืš ื’ื™ืฉื” ืกื˜ื˜ื™ืกื˜ื™ืช
13:32
where you're a dot in the ocean,
272
812609
2032
ืฉื‘ื” ืืชื ื ืงื•ื“ื” ื‘ื™ื,
13:34
to a personalized approach,
273
814665
1813
ืœื’ื™ืฉื” ืื™ืฉื™ืช,
13:36
where we read all these books
274
816502
2185
ืฉื‘ื” ืื ื• ืงื•ืจืื™ื ืืช ื›ืœ ื”ืกืคืจื™ื ื”ืืœื”
13:38
and we get an understanding of exactly how you are.
275
818711
2864
ื•ืื ื—ื ื• ืžืงื‘ืœื™ื ื”ื‘ื ื” ืฉืœ ืžื™ ืืชื ื‘ื“ื™ื•ืง.
13:42
But it is a particularly complicated challenge,
276
822260
3362
ืื‘ืœ ื–ื” ืืชื’ืจ ืžื•ืจื›ื‘ ื‘ืžื™ื•ื—ื“ ,
13:45
because of all these books, as of today,
277
825646
3998
ื‘ื’ืœืœ ืฉืžื›ืœ ื”ืกืคืจื™ื ื”ืืœื”, ื ื›ื•ืŸ ืœื”ื™ื•ื,
13:49
we just know probably two percent:
278
829668
2642
ืื ื—ื ื• ืจืง ื™ื•ื“ืขื™ื ื›ื ืจืื” ืฉื ื™ ืื—ื•ื–:
13:53
four books of more than 175.
279
833027
3653
ืืจื‘ืขื” ืกืคืจื™ื ืฉืœ ื™ื•ืชืจ ืž -175.
13:58
And this is not the topic of my talk,
280
838021
3206
ื•ื–ื” ืœื ื”ื ื•ืฉื ืฉืœ ื”ืฉื™ื—ื” ืฉืœื™,
14:02
because we will learn more.
281
842145
2598
ืžืคื ื™ ืฉื ืœืžื“ ื™ื•ืชืจ.
14:05
There are the best minds in the world on this topic.
282
845378
2669
ื™ืฉื ื ื”ืžื•ื—ื•ืช ื”ื˜ื•ื‘ื™ื ื‘ื™ื•ืชืจ ื‘ืขื•ืœื ื‘ื ื•ืฉื ื–ื”.
14:09
The prediction will get better,
283
849048
1834
ื”ืชื—ื–ื™ืช ืชืฉืชืคืจ.
14:10
the model will get more precise.
284
850906
2253
ื”ืžื•ื“ืœ ื™ื”ื™ื” ื™ื•ืชืจ ืžื“ื•ื™ืง
14:13
And the more we learn,
285
853183
1858
ื•ื›ื›ืœ ืฉืื ื• ืœื•ืžื“ื™ื ื™ื•ืชืจ,
14:15
the more we will be confronted with decisions
286
855065
4830
ื™ื•ืชืจ ื ืฆื˜ืจืš ืœื”ืชืžื•ื“ื“ ืขื ื”ื—ืœื˜ื•ืช
14:19
that we never had to face before
287
859919
3021
ืฉืžืขื•ืœื ืœื ื ืืœืฆื ื• ืœื”ืชืžื•ื“ื“ ืื™ืชืŸ ืœืคื ื™ ื›ืŸ
14:22
about life,
288
862964
1435
ืขืœ ื”ื—ื™ื™ื.
14:24
about death,
289
864423
1674
ืขืœ ื”ืžื•ื•ืช
14:26
about parenting.
290
866121
1603
ืขืœ ื”ื•ืจื•ืช.
14:32
So, we are touching the very inner detail on how life works.
291
872626
4746
ืื– ืื ื—ื ื• ื ื•ื’ืขื™ื ื‘ืคืจื˜ ื”ืคื ื™ืžื™ ืžืื•ื“ ืขืœ ื”ื“ืจืš ื‘ื” ื—ื™ื™ื ื• ืขื•ื‘ื“ื™ื.
14:38
And it's a revolution that cannot be confined
292
878118
3158
ื•ื–ื•ื”ื™ ืžื”ืคื›ื” ืฉืœื ื™ื›ื•ืœื” ืœื”ื™ื•ืช ืžื•ื’ื‘ืœืช
14:41
in the domain of science or technology.
293
881300
2659
ืœืชื—ื•ื ื”ืžื“ืข ืื• ื”ื˜ื›ื ื•ืœื•ื’ื™ื”.
14:44
This must be a global conversation.
294
884960
2244
ื–ื” ื—ื™ื™ื‘ ืœื”ื™ื•ืช ืฉื™ื— ื’ืœื•ื‘ืœื™.
14:47
We must start to think of the future we're building as a humanity.
295
887798
5217
ืื ื—ื ื• ื—ื™ื™ื‘ื™ื ืœื”ืชื—ื™ืœ ืœื—ืฉื•ื‘ ืขืœ ื”ืขืชื™ื“ ืฉืื ื—ื ื• ื‘ื•ื ื™ื ื›ืื ื•ืฉื•ืช.
14:53
We need to interact with creatives, with artists, with philosophers,
296
893039
4064
ืื ื—ื ื• ื—ื™ื™ื‘ื™ื ืœื”ื™ื•ืช ื‘ืื™ื ื˜ืจืืงืฆื™ื” ืขื ืงืจื™ืื™ื™ื˜ื™ื‘ื™ื™ื, ืขื ืืžื ื™ื, ืขื ืคื™ืœื•ืกื•ืคื™ื,
14:57
with politicians.
297
897127
1510
ืขื ืคื•ืœื™ื˜ื™ืงืื™ื
14:58
Everyone is involved,
298
898661
1158
ื›ื•ืœื ืžืขื•ืจื‘ื™ื,
14:59
because it's the future of our species.
299
899843
2825
ื›ื™ ื–ื” ื”ืขืชื™ื“ ืฉืœ ื”ืžื™ืŸ ืฉืœื ื•.
15:03
Without fear, but with the understanding
300
903273
3968
ืœืœื ืคื—ื“, ืื‘ืœ ืขื ื”ื”ื‘ื ื”
15:07
that the decisions that we make in the next year
301
907265
3871
ืฉื”ื”ื—ืœื˜ื•ืช ืฉืื ื—ื ื• ื ืงื‘ืœ ื‘ืฉื ื” ื”ื‘ืื”
15:11
will change the course of history forever.
302
911160
3789
ื™ืฉื ื• ืืช ืžื”ืœืš ื”ื”ื™ืกื˜ื•ืจื™ื” ืœื ืฆื—.
15:15
Thank you.
303
915732
1160
ืชื•ื“ื”
15:16
(Applause)
304
916916
10159
(ืชืฉื•ืื•ืช)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7