How to read the genome and build a human being | Riccardo Sabatini

320,260 views

2016-05-24 ・ TED


New videos

How to read the genome and build a human being | Riccardo Sabatini

320,260 views ・ 2016-05-24

TED


Dvaput kliknite na engleske titlove ispod za reprodukciju videozapisa.

Prevoditelj: Sanda L Recezent: Tilen Pigac - EFZG
00:12
For the next 16 minutes, I'm going to take you on a journey
0
12612
2762
U sljedećih 16 minuta povest ću vas na putovanje
00:15
that is probably the biggest dream of humanity:
1
15398
3086
koje je vjerojatno najveći san čovječanstva:
00:18
to understand the code of life.
2
18508
2015
razumijevanje kôda života.
Za mene je sve počelo prije mnogo, mnogo godina,
00:21
So for me, everything started many, many years ago
3
21072
2743
00:23
when I met the first 3D printer.
4
23839
2723
kada sam saznao za prvi 3D printer.
00:26
The concept was fascinating.
5
26586
1674
Sam koncept je bio fascinantan.
00:28
A 3D printer needs three elements:
6
28284
2022
3D printeru su potrebna tri elementa:
00:30
a bit of information, some raw material, some energy,
7
30330
4134
djelić informacije, nešto sirovine, nešto energije
00:34
and it can produce any object that was not there before.
8
34488
3334
i može proizvesti bilo koji predmet koji prethodno nije ni postojao.
00:38
I was doing physics, I was coming back home
9
38517
2137
Bavio sam se fizikom, vraćao sam se kući
00:40
and I realized that I actually always knew a 3D printer.
10
40678
3438
te shvatio da mi je 3D printer oduvijek bio poznat.
Kao i svima ostalima.
00:44
And everyone does.
11
44140
1336
00:45
It was my mom.
12
45500
1158
Bila je to moja mama.
00:46
(Laughter)
13
46682
1001
(Smijeh)
00:47
My mom takes three elements:
14
47707
2414
Moja mama je uzela tri elementa:
djelić informacije, u ovom slučaju između mog oca i moje majke,
00:50
a bit of information, which is between my father and my mom in this case,
15
50145
3973
sirovine i energiju u istom mediju, odnosno hrani,
00:54
raw elements and energy in the same media, that is food,
16
54142
4157
00:58
and after several months, produces me.
17
58323
2508
i nakon nekoliko mjeseci proizvela je mene.
01:00
And I was not existent before.
18
60855
1812
A ja prije toga nisam postojao.
01:02
So apart from the shock of my mom discovering that she was a 3D printer,
19
62691
3762
Pored zapanjenosti moje mame, saznavši da je se smatra 3D printerom,
01:06
I immediately got mesmerized by that piece,
20
66477
4738
istog trena bio sam opčinjen tim dijelom,
01:11
the first one, the information.
21
71239
1717
tim prvim dijelom, informacijom.
01:12
What amount of information does it take
22
72980
2251
Koliko informacija je potrebno
01:15
to build and assemble a human?
23
75255
1936
kako bi se izgradio i sastavio čovjek?
01:17
Is it much? Is it little?
24
77215
1574
Mnogo? Malo?
01:18
How many thumb drives can you fill?
25
78813
2180
Koliko USB diskova biste mogli ispuniti?
Pa, na početku sam studirao fiziku
01:21
Well, I was studying physics at the beginning
26
81017
2624
01:23
and I took this approximation of a human as a gigantic Lego piece.
27
83665
5597
i zamislio tu pretpostavku o čovjeku kao golemoj Lego slagalici.
01:29
So, imagine that the building blocks are little atoms
28
89286
3785
Dakle, zamislite da su kockice sitni atomi
i vodik je ovdje, ugljik ovdje, a dušik ovdje.
01:33
and there is a hydrogen here, a carbon here, a nitrogen here.
29
93095
4653
01:37
So in the first approximation,
30
97772
1571
Prema prvoj pretpostavci,
01:39
if I can list the number of atoms that compose a human being,
31
99367
4343
ako bih mogao navesti broj atoma od kojih se sastoji ljudsko biće,
01:43
I can build it.
32
103734
1387
mogao bih ga sagraditi.
Možete provjeriti brojke
01:45
Now, you can run some numbers
33
105145
2029
01:47
and that happens to be quite an astonishing number.
34
107198
3277
i to izgleda kao prilično zapanjujući broj.
01:50
So the number of atoms,
35
110499
2757
Dakle, broj atoma,
01:53
the file that I will save in my thumb drive to assemble a little baby,
36
113280
4755
dokument koji bih sačuvao na USB-u kako bih sastavio jednu bebu,
zapravo bi ispunio prostor veličine Titanika punog USB-ova,
01:58
will actually fill an entire Titanic of thumb drives --
37
118059
4667
02:02
multiplied 2,000 times.
38
122750
2718
pomnoženo 2.000 puta.
02:05
This is the miracle of life.
39
125957
3401
To je čudo života.
02:09
Every time you see from now on a pregnant lady,
40
129382
2612
Od sada, svaki put kada ugledate trudnicu,
ona u sebi sadrži najveću količinu informacija
02:12
she's assembling the biggest amount of information
41
132018
2856
02:14
that you will ever encounter.
42
134898
1556
koju ćete ikad susresti.
02:16
Forget big data, forget anything you heard of.
43
136478
2950
Zaboravite velike količine podataka, ili bilo što što ste čuli.
02:19
This is the biggest amount of information that exists.
44
139452
2881
To je najveća količina informacija koja postoji.
02:22
(Applause)
45
142357
3833
(Pljesak)
02:26
But nature, fortunately, is much smarter than a young physicist,
46
146214
4644
No, srećom, priroda je daleko pametnija od mladog fizičara
02:30
and in four billion years, managed to pack this information
47
150882
3576
i u četiri milijarde godina uspjela je složiti ove informacije
02:34
in a small crystal we call DNA.
48
154482
2705
u mali kristal koji zovemo DNK.
02:37
We met it for the first time in 1950 when Rosalind Franklin,
49
157605
4312
Prvi put smo saznali za njega 1950. kada je Rosalind Franklin,
02:41
an amazing scientist, a woman,
50
161941
1556
nevjerojatna znanstvenica,
02:43
took a picture of it.
51
163521
1389
napravila sliku kristala.
02:44
But it took us more than 40 years to finally poke inside a human cell,
52
164934
5188
No, trebalo nam je više od 40 godina da konačno prodremo u ljudsku stanicu,
izvadimo taj kristal,
02:50
take out this crystal,
53
170146
1602
02:51
unroll it, and read it for the first time.
54
171772
3080
odmotamo ga i prvi puta pročitamo.
02:55
The code comes out to be a fairly simple alphabet,
55
175615
3241
Ispostavilo se da je kôd prilično jednostavna abeceda,
02:58
four letters: A, T, C and G.
56
178880
3772
četiri slova: A, T, C i G.
03:02
And to build a human, you need three billion of them.
57
182676
3490
A kako biste sagradili čovjeka, potrebno vam je tri milijarde njih.
03:06
Three billion.
58
186933
1179
Tri milijarde.
Koliko je tri milijarde?
03:08
How many are three billion?
59
188136
1579
03:09
It doesn't really make any sense as a number, right?
60
189739
2762
Sam broj zaista nema nikakvog smisla, zar ne?
03:12
So I was thinking how I could explain myself better
61
192525
4085
Stoga sam razmišljao kako bih si bolje objasnio
03:16
about how big and enormous this code is.
62
196634
3050
koliko je velik i ogroman ovaj kôd.
03:19
But there is -- I mean, I'm going to have some help,
63
199708
3054
Ali evo ga, mislim, imat ću malu pomoć,
03:22
and the best person to help me introduce the code
64
202786
3227
a najbolja osoba koja bi mi pomogla predstaviti kôd,
zapravo je prvi čovjek koji ga je sekvencirao, dr. Craig Venter.
03:26
is actually the first man to sequence it, Dr. Craig Venter.
65
206037
3522
03:29
So welcome onstage, Dr. Craig Venter.
66
209583
3390
Stoga, pozdravite dr. Craiga Ventera.
03:32
(Applause)
67
212997
6931
(Pljesak)
03:39
Not the man in the flesh,
68
219952
2256
Ne čovjek glavom i bradom,
03:43
but for the first time in history,
69
223448
2345
već po prvi puta u povijesti,
03:45
this is the genome of a specific human,
70
225817
3462
ovo je genom određenog čovjeka,
03:49
printed page-by-page, letter-by-letter:
71
229303
3760
otisnut stranicu po stranicu, slovo po slovo:
262.000 stranica informacija,
03:53
262,000 pages of information,
72
233087
3996
450 kilograma, isporučenih iz SAD-a u Kanadu,
03:57
450 kilograms, shipped from the United States to Canada
73
237107
4364
04:01
thanks to Bruno Bowden, Lulu.com, a start-up, did everything.
74
241495
4843
zahvaljujući Bruni Bowdenu, dostupno na Lulu.com, sve je odrađeno.
04:06
It was an amazing feat.
75
246362
1463
Bio je to fantastičan podvig.
04:07
But this is the visual perception of what is the code of life.
76
247849
4297
Ali ovo je vizualni doživljaj onoga što je kôd života.
A sada, po prvi puta, mogu učiniti nešto zabavno.
04:12
And now, for the first time, I can do something fun.
77
252170
2478
04:14
I can actually poke inside it and read.
78
254672
2547
Mogu, zapravo, zaviriti unutra i čitati.
04:17
So let me take an interesting book ... like this one.
79
257243
4625
Dozvolite mi da uzmem zanimljivu knjigu... poput ove.
Samo jedna opaska; knjiga je prilično obimna.
04:25
I have an annotation; it's a fairly big book.
80
265077
2534
04:27
So just to let you see what is the code of life.
81
267635
3727
Samo da vidite što je kôd života.
04:32
Thousands and thousands and thousands
82
272566
3391
Na tisuće i tisuće i tisuće
04:35
and millions of letters.
83
275981
2670
i milijune slova.
04:38
And they apparently make sense.
84
278675
2396
I ona očito daju neki smisao.
Pogledajmo jedan specifičan dio.
04:41
Let's get to a specific part.
85
281095
1757
04:43
Let me read it to you:
86
283571
1362
Dozvolite da vam ga pročitam:
04:44
(Laughter)
87
284957
1021
(Smijeh)
"AAG, AAT, ATA."
04:46
"AAG, AAT, ATA."
88
286002
4006
04:50
To you it sounds like mute letters,
89
290965
2067
Vama ovo zvuči kao obična slova bez smisla,
no, ovaj redoslijed određuje Craigovu boju očiju.
04:53
but this sequence gives the color of the eyes to Craig.
90
293056
4041
04:57
I'll show you another part of the book.
91
297633
1932
Pokazat ću vam jedan drugi dio iz knjige.
04:59
This is actually a little more complicated.
92
299589
2094
Ovaj je, zapravo, nešto složeniji.
05:02
Chromosome 14, book 132:
93
302983
2647
Kromosom 14, knjiga 132:
05:05
(Laughter)
94
305654
2090
(Smijeh)
05:07
As you might expect.
95
307768
1277
Kao što biste i očekivali.
(Smijeh)
05:09
(Laughter)
96
309069
3466
05:14
"ATT, CTT, GATT."
97
314857
4507
"ATT, CTT, GATT."
05:20
This human is lucky,
98
320329
1687
Ova osoba ima sreće,
jer ako izostavite samo dva slova u ovom redoslijedu,
05:22
because if you miss just two letters in this position --
99
322040
4517
05:26
two letters of our three billion --
100
326581
1877
dva slova od tri milijarde,
05:28
he will be condemned to a terrible disease:
101
328482
2019
ova osoba bit će osuđena na užasnu bolest:
05:30
cystic fibrosis.
102
330525
1440
cističnu fibrozu.
05:31
We have no cure for it, we don't know how to solve it,
103
331989
3413
Za nju još nemamo lijek, ne znamo kako je izliječiti,
05:35
and it's just two letters of difference from what we are.
104
335426
3755
a samo su dva slova različita od onih koja mi ostali imamo.
05:39
A wonderful book, a mighty book,
105
339585
2705
Predivna knjiga, moćna knjiga,
moćna knjiga koja mi je pomogla razumjeti
05:43
a mighty book that helped me understand
106
343115
1998
i pokazati vam nešto zaista izvanredno.
05:45
and show you something quite remarkable.
107
345137
2753
05:48
Every one of you -- what makes me, me and you, you --
108
348480
4435
Svatko od vas -- ono zbog čega sam ja, ja, a vi ste vi --
05:52
is just about five million of these,
109
352939
2954
samo je oko pet milijuna ovih slova,
05:55
half a book.
110
355917
1228
polovica knjige.
Što se tiče ostalog,
05:58
For the rest,
111
358015
1663
05:59
we are all absolutely identical.
112
359702
2562
posve smo identični.
Pet stotina stranica je čudo života koje predstavljate vi.
06:03
Five hundred pages is the miracle of life that you are.
113
363008
4018
Ostalo svi mi dijelimo.
06:07
The rest, we all share it.
114
367050
2531
06:09
So think about that again when we think that we are different.
115
369605
2909
Zato se sjetite toga kada pomislite kako smo svi različiti.
06:12
This is the amount that we share.
116
372538
2221
Ovo je količina koju svi dijelimo.
06:15
So now that I have your attention,
117
375441
3429
I sada kada imam vašu pažnju,
06:18
the next question is:
118
378894
1359
sledeće pitanje je:
06:20
How do I read it?
119
380277
1151
Kako da to pročitam?
06:21
How do I make sense out of it?
120
381452
1509
Kako da pronađem smisao u tome?
06:23
Well, for however good you can be at assembling Swedish furniture,
121
383409
4240
Pa, koliko god ste dobri u sastavljanju švedskog namještaja,
06:27
this instruction manual is nothing you can crack in your life.
122
387673
3563
ovaj priručnik za upotrebu je nešto što nećete dešifrirati u svom životu.
06:31
(Laughter)
123
391260
1603
(Smijeh)
06:32
And so, in 2014, two famous TEDsters,
124
392887
3112
I tako su 2014. godine, dva čuvena TED-ovca,
Peter Diamandis i Craig Venter osobno,
06:36
Peter Diamandis and Craig Venter himself,
125
396023
2540
06:38
decided to assemble a new company.
126
398587
1927
odlučili osnovati novu tvrtku.
06:40
Human Longevity was born,
127
400538
1412
Rođen je Human Longevity,
06:41
with one mission:
128
401974
1370
sa samo jednom misijom:
06:43
trying everything we can try
129
403368
1861
pokušati sve što možemo
06:45
and learning everything we can learn from these books,
130
405253
2759
i naučiti sve što možemo naučiti iz ovih knjiga,
s jednim ciljem,
06:48
with one target --
131
408036
1705
06:50
making real the dream of personalized medicine,
132
410862
2801
ostvariti san o personaliziranoj medicini,
06:53
understanding what things should be done to have better health
133
413687
3767
razumjeti što se treba učiniti kako bismo bili zdraviji
06:57
and what are the secrets in these books.
134
417478
2283
i koje tajne kriju ove knjige.
07:00
An amazing team, 40 data scientists and many, many more people,
135
420329
4250
Fantastična ekipa, 40 znanstvenika za podatke i još mnogo, mnogo ljudi,
07:04
a pleasure to work with.
136
424603
1350
s kojima je užitak raditi.
07:05
The concept is actually very simple.
137
425977
2253
Koncept je, zapravo, vrlo jednostavan.
07:08
We're going to use a technology called machine learning.
138
428254
3158
Koristit ćemo tehnologiju koja se zove strojno učenje.
07:11
On one side, we have genomes -- thousands of them.
139
431436
4539
S jedne strane imamo genome -- na tisuće njih.
07:15
On the other side, we collected the biggest database of human beings:
140
435999
3997
S druge strane, sakupili smo najveću bazu podataka o ljudskim bićima:
fenotipe, 3D snimke, magnetsku rezonanciju, sve što vam pada na pamet.
07:20
phenotypes, 3D scan, NMR -- everything you can think of.
141
440020
4296
07:24
Inside there, on these two opposite sides,
142
444340
2899
Unutar toga, na ovim suprotnim stranama,
07:27
there is the secret of translation.
143
447263
2442
nalazi se tajna prevođenja.
07:29
And in the middle, we build a machine.
144
449729
2472
A u sredini smo izradili stroj.
07:32
We build a machine and we train a machine --
145
452801
2385
Izradili smo stroj i obučili ga --
07:35
well, not exactly one machine, many, many machines --
146
455210
3210
zapravo, ne baš jedan stroj, već mnogo, mnogo strojeva
07:38
to try to understand and translate the genome in a phenotype.
147
458444
4544
kako bi se pokušao razumjeti i prevesti genom u fenotipu.
07:43
What are those letters, and what do they do?
148
463362
3340
Što su ta slova i čemu ona služe?
07:46
It's an approach that can be used for everything,
149
466726
2747
To je pristup koji se može za sve koristiti,
07:49
but using it in genomics is particularly complicated.
150
469497
2993
ali je njegova upotreba u genetici naročito složena.
07:52
Little by little we grew and we wanted to build different challenges.
151
472514
3276
Malo po malo smo rasli te smo željeli stvoriti drugačije izazove.
07:55
We started from the beginning, from common traits.
152
475814
2732
Počeli smo od početka, od zajedničkih osobina.
07:58
Common traits are comfortable because they are common,
153
478570
2603
Zajedničke osobine su prikladne baš zato što su zajedničke,
08:01
everyone has them.
154
481197
1184
svi ih imamo.
08:02
So we started to ask our questions:
155
482405
2494
Stoga smo počeli postavljati pitanja:
08:04
Can we predict height?
156
484923
1380
Možemo li predvidjeti visinu?
08:06
Can we read the books and predict your height?
157
486985
2177
Možemo li čitanjem ovih knjiga predvidjeti vašu visinu?
08:09
Well, we actually can,
158
489186
1151
Pa, zapravo možemo,
08:10
with five centimeters of precision.
159
490361
1793
preciznošću od pet centimetara.
Indeks tjelesne mase usko je povezan s vašim načinom života,
08:12
BMI is fairly connected to your lifestyle,
160
492178
3135
08:15
but we still can, we get in the ballpark, eight kilograms of precision.
161
495337
3864
ali i dalje možemo pogoditi, preciznošću od osam kilograma.
Možemo li predvidjeti boju očiju?
08:19
Can we predict eye color?
162
499225
1231
08:20
Yeah, we can.
163
500480
1158
Da, možemo.
08:21
Eighty percent accuracy.
164
501662
1324
Preciznošću od 80%.
08:23
Can we predict skin color?
165
503466
1858
Možemo li predvidjeti boju kože?
08:25
Yeah we can, 80 percent accuracy.
166
505348
2441
Možemo, preciznošću od 80%.
08:27
Can we predict age?
167
507813
1340
Možemo li predvidjeti dob?
Možemo, jer izgleda da se kôd mijenja tijekom vašeg života.
08:30
We can, because apparently, the code changes during your life.
168
510121
3739
08:33
It gets shorter, you lose pieces, it gets insertions.
169
513884
3282
Postaje kraći, gubite dijelove, dodaju se umeci.
08:37
We read the signals, and we make a model.
170
517190
2555
Čitamo signale i stvaramo model.
08:40
Now, an interesting challenge:
171
520438
1475
A sada, zanimljiv izazov:
08:41
Can we predict a human face?
172
521937
1729
Možemo li predvidjeti ljudsko lice?
To je malo složenije,
08:45
It's a little complicated,
173
525014
1278
08:46
because a human face is scattered among millions of these letters.
174
526316
3191
jer je ljudsko lice razasuto među milijunima ovih slova.
08:49
And a human face is not a very well-defined object.
175
529531
2629
A ljudsko lice nije precizno definiran objekt.
08:52
So, we had to build an entire tier of it
176
532184
2051
Stoga smo morali napraviti čitav niz njih,
08:54
to learn and teach a machine what a face is,
177
534259
2710
kako bismo naučili i uputili stroj da zna što je lice,
08:56
and embed and compress it.
178
536993
2037
te ga ugradi i sažme.
A ako vam je poznato strojno učenje,
08:59
And if you're comfortable with machine learning,
179
539054
2248
09:01
you understand what the challenge is here.
180
541326
2284
razumjet ćete o kakvom se izazovu ovdje radi.
Sada, nakon 15 godina -- 15 godina nakon što smo pročitali prvu sekvencu,
09:04
Now, after 15 years -- 15 years after we read the first sequence --
181
544108
5991
ovog listopada, počeli smo primjećivati neke signale.
09:10
this October, we started to see some signals.
182
550123
2902
I bio je to izuzetno emotivan trenutak.
09:13
And it was a very emotional moment.
183
553049
2455
09:15
What you see here is a subject coming in our lab.
184
555528
3745
Ovdje vidite ono što je došlo u naš laboratorij.
09:19
This is a face for us.
185
559619
1928
Ovo je za nas lice.
09:21
So we take the real face of a subject, we reduce the complexity,
186
561571
3631
Uzimamo pravo lice ovog subjekta, učinimo ga manje složenim,
09:25
because not everything is in your face --
187
565226
1970
jer nije sve u vašem licu,
09:27
lots of features and defects and asymmetries come from your life.
188
567220
3786
mnoge crte, nedostaci i asimetrija potječu iz vašeg života.
Ujednačavamo simetriju lica i provlačimo ga kroz naš algoritam.
09:31
We symmetrize the face, and we run our algorithm.
189
571030
3469
09:35
The results that I show you right now,
190
575245
1898
Rezultati koje vam upravo pokazujem,
predviđanja su koja dobivamo iz krvi.
09:37
this is the prediction we have from the blood.
191
577167
3372
09:41
(Applause)
192
581596
1524
(Pljesak)
Pričekajte na tren.
09:43
Wait a second.
193
583144
1435
09:44
In these seconds, your eyes are watching, left and right, left and right,
194
584603
4692
U ovim trenucima, vaše oči promatraju lijevo i desno, lijevo i desno,
09:49
and your brain wants those pictures to be identical.
195
589319
3930
a vaš mozak želi da te slike budu jednake.
09:53
So I ask you to do another exercise, to be honest.
196
593273
2446
Zato tražim od vas drugu vježbu, da budete iskreni.
09:55
Please search for the differences,
197
595743
2287
Zamolit ću vas da potražite razlike,
a ima ih mnogo.
09:58
which are many.
198
598054
1361
09:59
The biggest amount of signal comes from gender,
199
599439
2603
Najveća količina signala dolazi od spola,
zatim je tu dob, indeks tjelesne mase te čovjekovo etničko obilježje.
10:02
then there is age, BMI, the ethnicity component of a human.
200
602066
5201
10:07
And scaling up over that signal is much more complicated.
201
607291
3711
Sve dalje preko tog signala postaje daleko složenije.
Ali ono što vidite ovdje, čak i uz razlike,
10:11
But what you see here, even in the differences,
202
611026
3250
10:14
lets you understand that we are in the right ballpark,
203
614300
3595
dozvoljava vam da shvatite kako smo na dobrom putu,
10:17
that we are getting closer.
204
617919
1348
i sve smo bliže.
10:19
And it's already giving you some emotions.
205
619291
2349
Ovo vam već stvara neke dojmove.
10:21
This is another subject that comes in place,
206
621664
2703
Ovo je još jedan primjer koji se posložio,
10:24
and this is a prediction.
207
624391
1409
i ovo je predviđanje.
10:25
A little smaller face, we didn't get the complete cranial structure,
208
625824
4596
Nešto manje lice, ovdje nismo dobili potpunu strukturu lubanje,
10:30
but still, it's in the ballpark.
209
630444
2651
no, ipak, blizu je.
10:33
This is a subject that comes in our lab,
210
633634
2224
Ovo je primjer koji je došao u naš laboratorij,
10:35
and this is the prediction.
211
635882
1443
a ovo je predviđanje.
Dakle, stroj u svojoj obradi nikada nije imao ove ljude.
10:38
So these people have never been seen in the training of the machine.
212
638056
4676
10:42
These are the so-called "held-out" set.
213
642756
2837
Ovo je tzv. "izostavljeni" skup.
10:45
But these are people that you will probably never believe.
214
645617
3740
Ovi ljudi vam vjerojatno nikada neće djelovati uvjerljivo.
10:49
We're publishing everything in a scientific publication,
215
649381
2676
Sve objavljujemo u znanstvenim časopisima
i možete pročitati.
10:52
you can read it.
216
652081
1151
10:53
But since we are onstage, Chris challenged me.
217
653256
2344
Ali budući smo na sceni, Chris me je izazvao.
10:55
I probably exposed myself and tried to predict
218
655624
3626
Vjerojatno sam se otkrio i pokušao predvidjeti
10:59
someone that you might recognize.
219
659274
2831
nekoga koga biste mogli prepoznati.
11:02
So, in this vial of blood -- and believe me, you have no idea
220
662470
4425
Dakle, u ovoj epruveti krvi -- i vjerujte mi, nemate pojma
11:06
what we had to do to have this blood now, here --
221
666919
2880
što smo sve morali učiniti da bismo donijeli krv danas ovdje,
11:09
in this vial of blood is the amount of biological information
222
669823
3901
u ovoj epruveti krvi je količina bioloških informacija
11:13
that we need to do a full genome sequence.
223
673748
2277
koja nam je potrebna za sekvenciranje čitavog genoma.
11:16
We just need this amount.
224
676049
2070
Samo nam je ovoliko potrebno.
11:18
We ran this sequence, and I'm going to do it with you.
225
678528
3205
Izvršili smo sekvenciranje i učinit ću to s vama.
11:21
And we start to layer up all the understanding we have.
226
681757
3979
Počinjemo raslojavati svo znanje koje imamo.
11:25
In the vial of blood, we predicted he's a male.
227
685760
3350
Iz ove epruvete krvi, predvidjeli smo da se radi o muškarcu.
Subjekt i jest muškarac.
11:29
And the subject is a male.
228
689134
1364
11:30
We predict that he's a meter and 76 cm.
229
690996
2438
Predvidjeli smo da je visok 176 cm.
11:33
The subject is a meter and 77 cm.
230
693458
2392
Subjekt je visok 177 cm.
11:35
So, we predicted that he's 76; the subject is 82.
231
695874
4110
Nadalje, predvidjeli smo da ima 76 kg, zapravo ima 82 kg.
11:40
We predict his age, 38.
232
700701
2632
Predvidjeli smo da ima 38 godina.
11:43
The subject is 35.
233
703357
1904
Subjekt ima 35 godina.
11:45
We predict his eye color.
234
705851
2124
Predvidjeli smo njegovu boju očiju.
11:48
Too dark.
235
708824
1211
Pretamna je.
Predvideli smo boju kože.
11:50
We predict his skin color.
236
710059
1555
Skoro da smo pogodili.
11:52
We are almost there.
237
712026
1410
11:53
That's his face.
238
713899
1373
Ovo je njegovo lice.
A sada, trenutak razotkrivanja:
11:57
Now, the reveal moment:
239
717172
3269
12:00
the subject is this person.
240
720465
1770
subjekt je ova osoba.
12:02
(Laughter)
241
722259
1935
(Smijeh)
12:04
And I did it intentionally.
242
724218
2058
Učinio sam to namjerno.
12:06
I am a very particular and peculiar ethnicity.
243
726300
3692
Ja sam vrlo specifičnog, osebujnog porijekla.
Južni Europljani, Talijani -- nikada se ne uklapaju u kalupe.
12:10
Southern European, Italians -- they never fit in models.
244
730016
2950
12:12
And it's particular -- that ethnicity is a complex corner case for our model.
245
732990
5130
A specifično je -- etničko porijeklo je složeni izuzetak za naš model.
Ali, ovdje je još nešto ključno.
12:18
But there is another point.
246
738144
1509
12:19
So, one of the things that we use a lot to recognize people
247
739677
3477
Dakle, nešto što mnogo koristimo kako bismo prepoznali ljude,
nikada neće biti zapisano u genomu.
12:23
will never be written in the genome.
248
743178
1722
12:24
It's our free will, it's how I look.
249
744924
2317
To je naša slobodna volja, naš izgled.
12:27
Not my haircut in this case, but my beard cut.
250
747265
3229
Ne moja frizura, u ovom slučaju, već moja brada.
12:30
So I'm going to show you, I'm going to, in this case, transfer it --
251
750518
3553
Stoga ću vam pokazati, u ovom slučaju ću to prenijeti,
a ovo nije ništa više od Photoshopa, nije modeliranje,
12:34
and this is nothing more than Photoshop, no modeling --
252
754095
2765
12:36
the beard on the subject.
253
756884
1713
brada ovog subjekta.
12:38
And immediately, we get much, much better in the feeling.
254
758621
3472
I odmah imamo mnogo, mnogo bolji dojam.
12:42
So, why do we do this?
255
762955
2709
Dakle, zašto ovo radimo?
12:47
We certainly don't do it for predicting height
256
767938
5140
Sigurno to ne radimo kako bismo predvidjeli visinu,
ili da bismo izradili predivnu sliku iz vaše krvi.
12:53
or taking a beautiful picture out of your blood.
257
773102
2372
12:56
We do it because the same technology and the same approach,
258
776390
4018
Radimo to jer ista ova tehnologija i isti pristup,
13:00
the machine learning of this code,
259
780432
2520
strojno učenje ovog kôda,
13:02
is helping us to understand how we work,
260
782976
3137
pomaže nam razumjeti kako funkcioniramo,
kako vaše tijelo funkcionira,
13:06
how your body works,
261
786137
1486
13:07
how your body ages,
262
787647
1665
kako vaše tijelo stari,
13:09
how disease generates in your body,
263
789336
2769
kako nastaje bolest u vašem tijelu,
kako u vama raste i razvija se rak,
13:12
how your cancer grows and develops,
264
792129
2972
kako djeluju lijekovi
13:15
how drugs work
265
795125
1783
13:16
and if they work on your body.
266
796932
2314
i djeluju li na vaše tijelo.
13:19
This is a huge challenge.
267
799713
1667
To je ogroman izazov.
13:21
This is a challenge that we share
268
801894
1638
To je zajednički izazov nas
13:23
with thousands of other researchers around the world.
269
803556
2579
i tisuće drugih istraživača diljem svijeta.
Zove se personalizirana medicina.
13:26
It's called personalized medicine.
270
806159
2222
To je mogućnost da se odmaknemo od statističkog pristupa,
13:29
It's the ability to move from a statistical approach
271
809125
3460
13:32
where you're a dot in the ocean,
272
812609
2032
u kojem ste samo točkica u oceanu,
13:34
to a personalized approach,
273
814665
1813
prema osobno prilagođenom pristupu,
13:36
where we read all these books
274
816502
2185
gdje čitamo sve ove knjige
13:38
and we get an understanding of exactly how you are.
275
818711
2864
i dobivamo saznanje o tome kako ste baš vi.
13:42
But it is a particularly complicated challenge,
276
822260
3362
Ali ovo je izrazito složen izazov,
13:45
because of all these books, as of today,
277
825646
3998
jer od svih ovih knjiga koje ste danas vidjeli,
13:49
we just know probably two percent:
278
829668
2642
znamo vjerojatno samo 2%.
Četiri knjige od njih preko 175.
13:53
four books of more than 175.
279
833027
3653
A ovo nije tema mog govora,
13:58
And this is not the topic of my talk,
280
838021
3206
jer ćemo saznati i više.
14:02
because we will learn more.
281
842145
2598
14:05
There are the best minds in the world on this topic.
282
845378
2669
Najveći umovi na svijetu bave se ovim pitanjem.
Predviđanje će postati bolje,
14:09
The prediction will get better,
283
849048
1834
14:10
the model will get more precise.
284
850906
2253
model će biti sve precizniji.
14:13
And the more we learn,
285
853183
1858
I što više naučimo,
više ćemo biti suočeni s odlukama,
14:15
the more we will be confronted with decisions
286
855065
4830
14:19
that we never had to face before
287
859919
3021
s kojima se prije nismo susretali,
14:22
about life,
288
862964
1435
o životu,
14:24
about death,
289
864423
1674
o smrti,
o roditeljstvu.
14:26
about parenting.
290
866121
1603
Dakle, dodirujemo samu unutarnju pojedinost onoga kako život funkcionira.
14:32
So, we are touching the very inner detail on how life works.
291
872626
4746
A to je revolucija koja ne može biti ograničena
14:38
And it's a revolution that cannot be confined
292
878118
3158
14:41
in the domain of science or technology.
293
881300
2659
na područje znanosti ili tehnologije.
14:44
This must be a global conversation.
294
884960
2244
To mora biti globalna rasprava.
14:47
We must start to think of the future we're building as a humanity.
295
887798
5217
Moramo početi razmišljati o budućnosti koju gradimo kao o čovječanstvu.
Moramo surađivati s kreativcima, umjetnicima, filozofima,
14:53
We need to interact with creatives, with artists, with philosophers,
296
893039
4064
s političarima.
14:57
with politicians.
297
897127
1510
14:58
Everyone is involved,
298
898661
1158
Svi su uključeni,
14:59
because it's the future of our species.
299
899843
2825
jer se radi o budućnosti naše vrste.
15:03
Without fear, but with the understanding
300
903273
3968
Bez straha, ali uz razumijevanje
15:07
that the decisions that we make in the next year
301
907265
3871
da će odluke koje donesemo u sljedećoj godini
zauvijek promijeniti tijek povijesti.
15:11
will change the course of history forever.
302
911160
3789
15:15
Thank you.
303
915732
1160
Hvala.
15:16
(Applause)
304
916916
10159
(Pljesak)
O ovoj web stranici

Ova stranica će vas upoznati s YouTube videozapisima koji su korisni za učenje engleskog jezika. Vidjet ćete lekcije engleskog koje vode vrhunski profesori iz cijelog svijeta. Dvaput kliknite na engleske titlove prikazane na svakoj video stranici da biste reproducirali video s tog mjesta. Titlovi se pomiču sinkronizirano s reprodukcijom videozapisa. Ako imate bilo kakvih komentara ili zahtjeva, obratite nam se putem ovog obrasca za kontakt.

https://forms.gle/WvT1wiN1qDtmnspy7