What's so sexy about math? | Cédric Villani

672,779 views ・ 2016-06-28

TED


Please double-click on the English subtitles below to play the video.

Prevodilac: Dragana Radmanovic Lektor: Tijana Mihajlović
00:12
What is it that French people do better than all the others?
0
12804
4412
Šta to Francuzi rade bolje od svih drugih?
00:18
If you would take polls,
1
18454
1926
Ako biste sproveli istraživanje,
00:20
the top three answers might be:
2
20404
1807
najčešća tri odgovora bi možda bila:
00:22
love, wine and whining.
3
22235
4039
ljubav, vino i žaljenje.
00:26
(Laughter)
4
26298
1301
(Smeh)
00:27
Maybe.
5
27623
1159
Možda.
00:29
But let me suggest a fourth one:
6
29530
2338
Ali, dozvolite mi da predložim i četvrti:
00:31
mathematics.
7
31892
1190
matematika.
00:33
Did you know that Paris has more mathematicians
8
33760
2853
Da li znate da Pariz ima više matematičara
00:36
than any other city in the world?
9
36637
1801
od bilo kog drugog grada u svetu?
00:38
And more streets with mathematicians' names, too.
10
38801
2494
I više ulica sa imenima matematičara, takođe.
00:42
And if you look at the statistics of the Fields Medal,
11
42215
3449
I ukoliko pogledamo statistiku Fildsove medalje,
00:45
often called the Nobel Prize for mathematics,
12
45688
2493
često nazivane Nobelovom nagradom za matematičare,
00:48
and always awarded to mathematicians below the age of 40,
13
48205
3932
koja se uvek dodeljuje matematičarima ispod 40 godina,
00:52
you will find that France has more Fields medalists per inhabitant
14
52161
3887
otkrićete da Francuska ima više dobitnika ove medalje po glavi stanovnika
00:56
than any other country.
15
56072
1168
od bilo koje druge države.
00:58
What is it that we find so sexy in math?
16
58286
2954
Šta nam je tako privlačno u matematici?
01:02
After all, it seems to be dull and abstract,
17
62153
3204
Naposletku, deluje da je dosadna i apstraktna;
01:05
just numbers and computations and rules to apply.
18
65381
3483
samo brojevi, računanje i pravila koja treba primeniti.
01:10
Mathematics may be abstract,
19
70518
2112
Matematika je možda apstraktna,
01:12
but it's not dull
20
72654
1151
ali nije dosadna
01:13
and it's not about computing.
21
73829
1729
i nije u vezi sa proračunima.
01:16
It is about reasoning
22
76178
1747
U vezi je sa razmišljanjem
01:17
and proving our core activity.
23
77949
2260
i dokazivanjem naše suštinske aktivnosti.
01:20
It is about imagination,
24
80513
1522
U vezi je sa maštom,
01:22
the talent which we most praise.
25
82059
2019
talentom koji cenimo više od svega.
01:24
It is about finding the truth.
26
84102
2101
U vezi je sa nalaženjem istine.
01:27
There's nothing like the feeling which invades you
27
87613
2737
Nema ničega boljeg od osećaja koji te prožme
01:30
when after months of hard thinking,
28
90374
2171
kada, posle meseci teškog razmišljanja,
01:32
you finally understand the right reasoning to solve your problem.
29
92569
3298
konačno razumeš kako da rešiš svoj problem.
01:37
The great mathematician André Weil likened this --
30
97042
3576
Veliki matematičar, Andre Vejl, je uporedio to -
01:40
no kidding --
31
100642
1151
bez šale -
01:41
to sexual pleasure.
32
101817
1589
sa seksualnim zadovoljstvom.
01:44
But noted that this feeling can last for hours, or even days.
33
104197
5341
S tim da ovaj osećaj može da traje satima ili čak danima.
01:50
The reward may be big.
34
110804
1853
Nagrada može biti velika.
01:53
Hidden mathematical truths permeate our whole physical world.
35
113325
3864
Skrivene matematičke istine prožimaju sav naš fizički svet.
01:57
They are inaccessible to our senses
36
117680
2670
Do njih se ne može doći putem čula,
02:00
but can be seen through mathematical lenses.
37
120374
2724
ali se mogu uočiti kroz matematička sočiva.
02:04
Close your eyes for moment
38
124092
1592
Zatvorite oči na trenutak
02:05
and think of what is occurring right now around you.
39
125708
3475
i mislite o tome šta se dešava trenutno oko vas.
02:10
Invisible particles from the air around are bumping on you
40
130337
3493
Nevidljive čestice iz vazduha se sudaraju sa vama,
02:13
by the billions and billions at each second,
41
133854
2733
milijarde i milijarde svake sekunde,
02:16
all in complete chaos.
42
136611
2063
potpuno haotično.
02:19
And still,
43
139049
1151
Ali, ipak,
02:20
their statistics can be accurately predicted by mathematical physics.
44
140224
4688
njihova statistika se može tačno predvideti putem matematičke fizike.
02:25
And open your eyes now
45
145715
2792
Otvorite oči sada
02:28
to the statistics of the velocities of these particles.
46
148531
3310
da vidite statistiku brzina ovih čestica.
02:32
The famous bell-shaped Gauss Curve,
47
152510
3240
Poznata Gausova kriva u obliku zvona,
02:35
or the Law of Errors --
48
155774
2181
ili zakon grešaka -
02:37
of deviations with respect to the mean behavior.
49
157979
2722
odstupanja koja se odnose na srednjestatističko ponašanje.
02:41
This curve tells about the statistics of velocities of particles
50
161550
4302
Kriva pokazuje statistiku brzina čestica
02:45
in the same way as a demographic curve
51
165876
2539
na isti način kao što i demografska kriva
02:48
would tell about the statistics of ages of individuals.
52
168439
3841
pokazuje statistiku godina uzrasta pojedinaca.
02:52
It's one of the most important curves ever.
53
172884
2650
To je jedna od najvažnijih krivih u istoriji.
02:56
It keeps on occurring again and again,
54
176137
3186
Ponavlja se iznova i iznova
02:59
from many theories and many experiments,
55
179347
2403
u mnogim teorijama i eksperimentima,
03:01
as a great example of the universality
56
181774
3281
kao divan primer univerzalnosti
03:05
which is so dear to us mathematicians.
57
185079
3552
koja je nama, matematičarima, tako draga.
03:09
Of this curve,
58
189694
1227
O ovoj je krivoj
03:10
the famous scientist Francis Galton said,
59
190945
3049
poznati naučnik Francis Galton rekao:
03:14
"It would have been deified by the Greeks if they had known it.
60
194018
4524
„Da su znali za nju, Grci bi je obogotvorili.
03:19
It is the supreme law of unreason."
61
199064
3351
To je viši zakon iracionalnosti.“
03:23
And there's no better way to materialize that supreme goddess than Galton's Board.
62
203818
6602
Nema boljeg načina za materijalizovanje te visoke boginje nego kroz Galtonovu tablu.
03:31
Inside this board are narrow tunnels
63
211774
3197
Unutar ove table su uski tuneli
03:34
through which tiny balls will fall down randomly,
64
214995
4628
kroz koje će male loptice padati nadole nasumično,
03:40
going right or left, or left, etc.
65
220295
5387
idući desno, ili levo, ili levo itd.
03:46
All in complete randomness and chaos.
66
226139
3251
U potpunoj nasumičnosti i haosu.
03:50
Let's see what happens when we look at all these random trajectories together.
67
230085
6080
Da vidimo šta se dešava kada pogledamo sve ove nasumične putanje zajedno.
03:56
(Board shaking)
68
236189
5435
(Tabla se trese)
04:01
This is a bit of a sport,
69
241648
2844
Ovo je pomalo poput sporta,
04:04
because we need to resolve some traffic jams in there.
70
244516
4870
zato što se moramo rešiti saobraćajne gužve ovde.
04:11
Aha.
71
251715
1150
Aha.
04:13
We think that randomness is going to play me a trick on stage.
72
253313
3587
Mislimo da će nasumičnost da me prevari na sceni.
04:19
There it is.
73
259609
1463
Evo je.
04:22
Our supreme goddess of unreason.
74
262382
2583
Naša visoka boginja iracionalnosti.
04:24
the Gauss Curve,
75
264989
1519
Gausova kriva,
04:26
trapped here inside this transparent box as Dream in "The Sandman" comics.
76
266532
6452
zarobljena ovde unutar ove providne kutije poput Sna u stripu „Sandman“.
04:34
For you I have shown it,
77
274623
2698
Vama sam je pokazao,
04:37
but to my students I explain why it could not be any other curve.
78
277345
5285
ali svojim studentima objašnjavam zašto to ne može biti neka druga kriva.
04:43
And this is touching the mystery of that goddess,
79
283128
2870
I tu se približavamo misteriji te boginje,
04:46
replacing a beautiful coincidence by a beautiful explanation.
80
286022
4701
zamenjujući prelepu slučajnost prelepim objašnjenjem.
04:51
All of science is like this.
81
291027
2333
Sva nauka je takva.
04:54
And beautiful mathematical explanations are not only for our pleasure.
82
294213
5348
A prelepa matematička objašnjenja nisu tu samo zbog našeg zadovoljstva.
04:59
They also change our vision of the world.
83
299585
2660
Ona takođe menjaju naš pogled na svet.
05:03
For instance,
84
303040
1237
Na primer,
05:04
Einstein,
85
304301
1150
Ajnštajn, Perin, Smolučovski,
05:05
Perrin,
86
305476
1150
05:06
Smoluchowski,
87
306651
1150
05:07
they used the mathematical analysis of random trajectories
88
307826
3559
koristili su matematičku analizu nasumičnih putanja
05:11
and the Gauss Curve
89
311409
2037
i Gausovu krivu
05:13
to explain and prove that our world is made of atoms.
90
313470
4928
da objasne i dokažu da je naš svet izgrađen iz atoma.
05:19
It was not the first time
91
319524
1802
To nije prvi put
05:21
that mathematics was revolutionizing our view of the world.
92
321350
3390
da je matematika iz korena menjala naš pogled na svet.
05:25
More than 2,000 years ago,
93
325555
2212
Pre više od 2 000 godina,
05:27
at the time of the ancient Greeks,
94
327791
2610
u vreme antičke Grčke,
05:31
it already occurred.
95
331502
1479
to se već dogodilo.
05:33
In those days,
96
333827
1286
U to vreme,
05:35
only a small fraction of the world had been explored,
97
335137
3283
samo mali procenat sveta je bio otkriven,
05:38
and the Earth might have seemed infinite.
98
338444
3042
a Zemlja je možda delovala kao da je beskonačna.
05:42
But clever Eratosthenes,
99
342034
1767
Ali, umni Eratosten,
05:43
using mathematics,
100
343825
1417
koristeći se matematikom,
05:45
was able to measure the Earth with an amazing accuracy of two percent.
101
345266
5111
bio je u stanju da izmeri Zemlju
sa sjajnom preciznošću od dva procenta greške.
05:51
Here's another example.
102
351969
1416
Evo ga još jedan primer.
05:54
In 1673, Jean Richer noticed
103
354238
3805
Godine 1673. Žan Rišer je primetio
05:58
that a pendulum swings slightly slower in Cayenne than in Paris.
104
358067
6912
da se klatno malčice sporije ljulja u Kajenu nego u Parizu.
06:06
From this observation alone, and clever mathematics,
105
366350
4400
Iz samo ove observacije i uz lukavu matematiku,
06:10
Newton rightly deduced
106
370774
2306
Njutn je pravilno zaključio
06:13
that the Earth is a wee bit flattened at the poles,
107
373104
5541
da je Zemlja malo ravnija na polovima,
06:18
like 0.3 percent --
108
378669
1601
negde oko 0,3 procenta -
06:20
so tiny that you wouldn't even notice it on the real view of the Earth.
109
380843
4413
toliko malo da to ne možete ni primetiti na pravoj slici Zemlje.
06:26
These stories show that mathematics
110
386276
3928
Ovakve priče pokazuju da uz matematiku
06:30
is able to make us go out of our intuition
111
390228
4762
možemo da idemo dalje od naše intuicije,
06:35
measure the Earth which seems infinite,
112
395512
3485
da izmerimo Zemlju koja deluje kao beskonačna,
06:39
see atoms which are invisible
113
399021
2294
da vidimo atome koji su nevidljivi
06:41
or detect an imperceptible variation of shape.
114
401339
3381
ili da detektujemo nevidljive varijacije oblika.
06:44
And if there is just one thing that you should take home from this talk,
115
404744
3847
I ako biste izdvojili samo jednu stvar koju treba da zapamtite iz ovog govora,
06:48
it is this:
116
408615
1194
to je ovo:
06:49
mathematics allows us to go beyond the intuition
117
409833
4378
matematika nam dopušta da idemo dalje od naše intuicije
06:54
and explore territories which do not fit within our grasp.
118
414235
4249
i da istražujemo teritorije koje ne možemo da zamislimo.
06:59
Here's a modern example you will all relate to:
119
419609
2999
Evo modernog primera koji je blizak svima:
07:03
searching the Internet.
120
423362
1667
pretraživanje interneta.
07:06
The World Wide Web,
121
426037
1342
Svetska mreža,
07:07
more than one billion web pages --
122
427403
1804
više od milijardu veb-stranica -
07:09
do you want to go through them all?
123
429231
1674
da li biste pretraživali kroz sve njih?
07:11
Computing power helps,
124
431660
1802
Računarska moć pomaže,
07:13
but it would be useless without the mathematical modeling
125
433486
3186
ali bi bila beskorisna bez matematičkog modelovanja
07:16
to find the information hidden in the data.
126
436696
2563
kojim se nalazi informacija skrivena u podacima.
07:20
Let's work out a baby problem.
127
440491
2379
Hajde da prođemo kroz mali zadatak.
07:23
Imagine that you're a detective working on a crime case,
128
443872
3807
Zamislite da ste detektiv koji radi na slučaju zločina,
07:27
and there are many people who have their version of the facts.
129
447703
3788
i imate mnogo ljudi koji imaju svoju verziju toga šta se dogodilo.
07:32
Who do you want to interview first?
130
452032
1745
Koga biste prvo intervjuisali?
07:34
Sensible answer:
131
454681
1915
Razuman odgovor:
07:36
prime witnesses.
132
456620
1437
glavne svedoke.
07:38
You see,
133
458878
1234
Vidite,
07:40
suppose that there is person number seven,
134
460136
4220
pretpostavimo da vam osoba broj sedam
07:44
tells you a story,
135
464380
1151
ispriča priču,
07:45
but when you ask where he got if from,
136
465555
2014
ali kada je upitate odake ona to zna,
07:47
he points to person number three as a source.
137
467593
3036
ona vam kaže da je njen izvor osoba broj tri.
07:50
And maybe person number three, in turn,
138
470653
2068
I možda osoba broj tri dalje
07:52
points at person number one as the primary source.
139
472745
3696
istakne osobu broj jedan kao primarni izvor.
07:56
Now number one is a prime witness,
140
476465
1661
Sada je osoba broj jedan glavni svedok.
07:58
so I definitely want to interview him -- priority.
141
478150
3238
tako da definitivno hoću nju da intervjuišem - prioritet.
08:02
And from the graph
142
482148
1151
I iz grafika
08:03
we also see that person number four is a prime witness.
143
483323
3228
možemo da pročitamo da je osoba broj četiri takođe među glavnim svedocima.
08:06
And maybe I even want to interview him first,
144
486575
2443
I možda ja mogu i nju prvo da intervjuišem,
08:09
because there are more people who refer to him.
145
489042
2359
zato što ima više osoba koje upućuju na nju.
08:12
OK, that was easy,
146
492354
2664
U redu, to je bilo lako,
08:15
but now what about if you have a big bunch of people who will testify?
147
495042
5246
ali šta ako imate gomilu ljudi koji treba da svedoče?
08:20
And this graph,
148
500864
1352
Ovaj grafik
08:22
I may think of it as all people who testify in a complicated crime case,
149
502240
5619
može da se razume kao da su to svi svedoci ovog komplikovanog kriminalnog slučaja,
08:27
but it may just as well be web pages pointing to each other,
150
507883
4022
ali to isto tako mogu biti i veb-stranice koje ukazuju jedna na drugu,
08:31
referring to each other for contents.
151
511929
2071
čiji sadržaj usmerava sa jedne na drugu.
08:34
Which ones are the most authoritative?
152
514878
2336
Koje stranice su najautoritativnije?
08:37
Not so clear.
153
517587
1334
Nije sasvim jasno.
08:40
Enter PageRank,
154
520091
1900
Pristupimo „Pejdž ranku“,
08:42
one of the early cornerstones of Google.
155
522015
2536
jednom od kamena temeljaca Gugla.
08:45
This algorithm uses the laws of mathematical randomness
156
525337
4242
Ovaj algoritam koristi zakone matematičke nasumičnosti
08:49
to determine automatically the most relevant web pages,
157
529603
3857
da automatski odredi najrelevantnije veb-stranice,
08:53
in the same way as we used randomness in the Galton Board experiment.
158
533484
5062
na isti način kako smo koristili nasumičnost
u eksperimentu Galtonove table.
08:59
So let's send into this graph
159
539341
2341
Onda, propustimo kroz ovaj grafik
09:01
a bunch of tiny, digital marbles
160
541706
2850
gomilu malih, digitalnih klikera
09:04
and let them go randomly through the graph.
161
544580
3749
i pustimo ih da idu nasumično kroz grafik.
09:08
Each time they arrive at some site,
162
548353
1667
Svaki put kad su na nekom sajtu,
09:10
they will go out through some link chosen at random to the next one.
163
550044
4166
izaći će sa tog sajta i preći na drugi koristeći se nekim nasumičnim linkom.
09:14
And again, and again, and again.
164
554234
1753
I ponovo, i ponovo, i ponovo.
09:16
And with small, growing piles,
165
556358
1628
I malim, rastućim gomilama,
09:18
we'll keep the record of how many times each site has been visited
166
558010
3753
merićemo koliko puta su ovi digitalni klikeri
09:21
by these digital marbles.
167
561787
1945
posetili svaki sajt.
09:24
Here we go.
168
564243
1151
Krećemo.
09:25
Randomness, randomness.
169
565418
1848
Nasumičnost, nasumičnost.
09:27
And from time to time,
170
567811
1448
I s vremena na vreme,
09:29
also let's make jumps completely randomly to increase the fun.
171
569283
3952
da bi bilo zabavnije, preskačimo sasvim proizvoljno.
09:34
And look at this:
172
574471
1216
I pogledajte ovo:
09:36
from the chaos will emerge the solution.
173
576358
2785
iz haosa se pojavljuje rešenje.
09:39
The highest piles correspond to those sites
174
579483
2485
Najviše hrpe odgovaraju onim sajtovima
09:41
which somehow are better connected than the others,
175
581992
3511
koji su na neki način bolje povezani od drugih,
09:45
more pointed at than the others.
176
585527
2273
koji češće od drugih upućuju na druge stranice.
09:47
And here we see clearly
177
587824
1722
I ovde jasno vidimo
09:49
which are the web pages we want to first try.
178
589570
3032
koje veb-stranice hoćemo prvo da isprobamo.
09:53
Once again,
179
593507
1151
Opet,
09:54
the solution emerges from the randomness.
180
594682
2460
rešenje se pojavljuje iz nasumičnosti.
09:57
Of course, since that time,
181
597775
2251
Naravno, od tada,
10:00
Google has come up with much more sophisticated algorithms,
182
600050
3707
Gugl je smislio mnogo sofisticiranije algoritme,
10:03
but already this was beautiful.
183
603781
2280
ali je već tada ovo bilo prelepo.
10:06
And still,
184
606981
1476
Ipak,
10:08
just one problem in a million.
185
608481
1611
to je samo jedan problem iz milion problema.
10:10
With the advent of digital area,
186
610734
2270
Sa razvojem digitalne oblasti,
10:13
more and more problems lend themselves to mathematical analysis,
187
613028
5016
sve više i više problema se može podvrgnuti matematičkoj analizi,
10:18
making the job of mathematician a more and more useful one,
188
618068
4365
čineći posao matematičara sve korisnijim,
10:23
to the extent that a few years ago,
189
623166
2722
do tog nivoa da je pre par godina,
10:25
it was ranked number one among hundreds of jobs
190
625912
3779
bio broj jedan na listi među stotinama poslova
10:29
in a study about the best and worst jobs
191
629715
3968
u istraživanju o najboljim i najgorim poslovima
10:33
published by the Wall Street Journal in 2009.
192
633707
2975
koje je „Vol strit džurnal“ objavio 2009. godine.
10:37
Mathematician --
193
637445
1852
Matematičar -
10:39
best job in the world.
194
639321
1433
najbolji posao na svetu.
10:41
That's because of the applications:
195
641646
3068
To je zbog primena:
10:44
communication theory,
196
644738
2139
komunikaciona teorija,
10:46
information theory,
197
646901
1820
informaciona teorija,
10:48
game theory,
198
648745
1260
teorija igara,
10:50
compressed sensing,
199
650029
1446
kompresija signala,
10:51
machine learning,
200
651499
1562
mašinsko učenje,
10:53
graph analysis,
201
653085
1567
teorija grafova,
10:54
harmonic analysis.
202
654676
1742
harmonijska analiza.
10:56
And why not stochastic processes,
203
656442
2640
I zašto da ne, stohastički procesi,
10:59
linear programming,
204
659106
1630
linearno programiranje
11:00
or fluid simulation?
205
660760
2028
ili simulacija dinamike tečnosti?
11:03
Each of these fields have monster industrial applications.
206
663292
3895
Svaka od ovih oblasti ima ogromnu primenu u industriji.
11:07
And through them,
207
667211
1151
I kroz primenu,
11:08
there is big money in mathematics.
208
668386
1999
matematika donosi mnogo novca.
11:11
And let me concede
209
671400
2040
I da potvrdim da su,
11:13
that when it comes to making money from the math,
210
673464
2477
kada je reč o zarađivanju od matematike,
11:15
the Americans are by a long shot the world champions,
211
675965
3824
Amerikanci daleko najbolji svetski šampioni u tome,
11:19
with clever, emblematic billionaires and amazing, giant companies,
212
679813
4619
sa mudrim, realnim milijarderima i sjajnim, ogromnim kompanijama,
11:24
all resting, ultimately, on good algorithm.
213
684456
3280
a svi počivaju, na kraju krajeva, na dobrim algoritmima.
11:29
Now with all this beauty, usefulness and wealth,
214
689091
3972
Sada, uzimajući u obzir svu ovu lepotu, praktičnu primenu i bogatstvo,
11:33
mathematics does look more sexy.
215
693087
2284
matematika doista izgleda privlačnije.
11:36
But don't you think
216
696399
1617
Ali, nemojte misliti
11:38
that the life a mathematical researcher is an easy one.
217
698040
4120
da je život matematičara istraživača lak.
11:42
It is filled with perplexity,
218
702959
2741
Ispunjen je zbunjenošću,
11:46
frustration,
219
706347
1150
frustracijom,
11:48
a desperate fight for understanding.
220
708172
2445
očajnom borbom da se nešto razume.
11:51
Let me evoke for you
221
711955
2140
Da vam predstavim
11:54
one of the most striking days in my mathematician's life.
222
714119
4380
jedan od najboljih dana u mom matematičkom životu.
11:58
Or should I say,
223
718523
1151
Ili bolje,
11:59
one of the most striking nights.
224
719698
1737
jednu od mojih najboljih noći.
12:02
At that time,
225
722713
1151
U to vreme, bio sam u Institutu za primenjeno istraživanje u Prinstonu -
12:03
I was staying at the Institute for Advanced Studies in Princeton --
226
723888
3151
koji je mnogo godina bio dom Albertu Ajnštajnu
12:07
for many years, the home of Albert Einstein
227
727063
2139
12:09
and arguably the most holy place for mathematical research in the world.
228
729226
4428
i koji je možda najsvetije mesto za istraživanje matematike u svetu.
12:14
And that night I was working and working on an elusive proof,
229
734878
3844
Te noći sam radio i radio na jednom teškom dokazu,
12:18
which was incomplete.
230
738746
1378
koji je bio nepotpun.
12:21
It was all about understanding
231
741304
2208
Reč je bila o razumevanju
12:23
the paradoxical stability property of plasmas,
232
743536
3823
paradoksalnog svojstva stabilnosti plazmi,
12:27
which are a crowd of electrons.
233
747383
1958
koje su suštinski skupina elektrona.
12:30
In the perfect world of plasma,
234
750423
2736
U savršenom svetu plazmi,
12:33
there are no collisions
235
753183
1778
nema sudara
12:34
and no friction to provide the stability like we are used to.
236
754985
3658
i nema trenja koji bi obezbedili stabilnost na koju smo navikli.
12:39
But still,
237
759392
1151
Ipak, ako se malčice naruši ekvilibrijum plazme,
12:40
if you slightly perturb a plasma equilibrium,
238
760567
3033
12:43
you will find that the resulting electric field
239
763624
2688
primetiće se da električno polje koje se pojavilo kao posledica toga
12:46
spontaneously vanishes,
240
766336
2339
spontano nestaje
12:48
or damps out,
241
768699
1975
i gasi se,
12:50
as if by some mysterious friction force.
242
770698
3294
kao da je pod dejstvom neke tajanstvene sile trenja.
12:54
This paradoxical effect,
243
774728
1835
Ovaj paradoksalni efekat
12:56
called the Landau damping,
244
776587
1477
pod nazivom Landauovo prigušenje
12:58
is one of the most important in plasma physics,
245
778088
2989
jedan je od najvažnijih u fizici plazme
13:01
and it was discovered through mathematical ideas.
246
781101
3002
i otkriven je kroz matematičke ideje.
13:04
But still,
247
784970
1151
Ipak, nedostajalo je potpuno matematičko razumevanje ovog fenomena.
13:06
a full mathematical understanding of this phenomenon was missing.
248
786145
4230
13:10
And together with my former student and main collaborator Clément Mouhot,
249
790399
4786
I zajedno sa svojim bivšim studentom i glavnim saradnikom, Klementom Muoom,
13:15
in Paris at the time,
250
795209
1492
tada u Parizu,
13:16
we had been working for months and months on such a proof.
251
796725
4086
radili smo mesecima i mesecima na tom dokazu.
13:21
Actually,
252
801832
1335
U stvari,
13:23
I had already announced by mistake that we could solve it.
253
803191
4746
ja sam već greškom objavio da možemo to da rešimo.
13:27
But the truth is,
254
807961
1725
Ali, istina je bila
13:29
the proof was just not working.
255
809710
2147
da dokaz jednostavno nije funkcionisao.
13:32
In spite of more than 100 pages of complicated, mathematical arguments,
256
812196
4349
Bez obzira na to što je postojalo
više od 100 stranica komplikovanih matematičkih pretpostavki,
13:36
and a bunch discoveries,
257
816569
1690
kao i niz otkrića
13:38
and huge calculation,
258
818283
1267
i ogromni proračuni,
13:39
it was not working.
259
819574
1169
dokaz nije funkcionisao.
13:41
And that night in Princeton,
260
821290
1681
I te noći u Prinstonu,
13:42
a certain gap in the chain of arguments was driving me crazy.
261
822995
4301
određena nelogičost u lancu pretpostavki me je izluđivala.
13:47
I was putting in there all my energy and experience and tricks,
262
827658
4593
Uložio sam svu svoju energiju, iskustvo i trikove,
13:52
and still nothing was working.
263
832275
1742
a ipak ništa nije funkcionisalo.
13:54
1 a.m., 2 a.m., 3 a.m.,
264
834553
3882
Jedan ujutru, dva ujutru, tri ujutru;
13:58
not working.
265
838459
1308
ne funkcioniše.
14:00
Around 4 a.m., I go to bed in low spirits.
266
840545
4321
Oko četiri ujutru, ležem u rđavom raspoloženju.
14:05
Then a few hours later,
267
845915
2460
Onda, nekoliko sati kasnije,
14:08
waking up and go,
268
848399
1151
budim se i mislim:
14:09
"Ah, it's time to get the kids to school --"
269
849574
3357
„Ah, vreme je da odvedem decu u školu - “
14:12
What is this?
270
852955
1151
Šta je ovo?
14:14
There was this voice in my head, I swear.
271
854130
2142
Čuo sam glas u glavi, kunem se.
14:16
"Take the second term to the other side,
272
856894
1913
„Prebaci drugi član na drugu stranu,
14:18
Fourier transform and invert in L2."
273
858831
1919
Furijeova transformacija i invertuj na L2.“
14:21
(Laughter)
274
861257
1151
(Smeh)
14:22
Damn it,
275
862432
1702
Dođavola,
to je bio početak rešenja!
14:24
that was the start of the solution!
276
864158
2113
14:27
You see,
277
867519
1151
Vidite, mislio sam da sam se odmorio,
14:28
I thought I had taken some rest,
278
868694
2283
14:31
but really my brain had continued to work on it.
279
871001
3388
ali je moj mozak u stvari nastavio da radi na tome.
14:35
In those moments,
280
875008
1597
U tim trenucima,
14:36
you don't think of your career or your colleagues,
281
876629
2601
ne misliš na svoju karijeru ili na kolege;
14:39
it's just a complete battle between the problem and you.
282
879254
3690
to je prosto potpuna bitka između problema i tebe.
14:44
That being said,
283
884098
1328
Imajući to u vidu,
14:45
it does not harm when you do get a promotion in reward for your hard work.
284
885450
3949
ne škodi ni kada se dobije unapređenje kao nagrada za naporan rad.
14:49
And after we completed our huge analysis of the Landau damping,
285
889808
5160
I pošto smo završili našu ogromnu analizu Landauovog prigušenja,
14:54
I was lucky enough
286
894992
1615
bio sam dovoljno srećan
14:56
to get the most coveted Fields Medal
287
896631
3030
da dobijem najpoželjniju Fildsovu medalju
14:59
from the hands of the President of India,
288
899685
2867
koju mi je uručila predsednica Indije,
15:02
in Hyderabad on 19 August, 2010 --
289
902576
3920
u Hajderabadu 19. avgusta 2010. -
15:07
an honor that mathematicians never dare to dream,
290
907453
3251
čast o kojoj se matematičari i ne usuđuju da sanjaju,
15:10
a day that I will remember until I live.
291
910728
2399
dan koji ću pamtiti dok sam živ.
15:14
What do you think,
292
914366
1447
O čemu misliti
15:15
on such an occasion?
293
915837
2141
u takvoj prilici?
15:18
Pride, yes?
294
918002
1150
Ponos, zar ne?
15:19
And gratitude to the many collaborators who made this possible.
295
919791
3640
I zahvalnost mnogim saradnicima koji su učinili to mogućim.
15:24
And because it was a collective adventure,
296
924304
2212
I zato što je to bio zajednički poduhvat,
15:26
you need to share it, not just with your collaborators.
297
926540
4142
potrebno ga je podeliti ne samo sa saradnicima.
15:31
I believe that everybody can appreciate the thrill of mathematical research,
298
931548
5692
Verujem da su svi u stanju da cene uzbuđenje matematičkog istraživanja
15:37
and share the passionate stories of humans and ideas behind it.
299
937264
4318
i da strastveno dele priče o ljudima i idejama iza njih.
15:42
And I've been working with my staff at Institut Henri Poincaré,
300
942494
4774
Moje osoblje pri Institutu Anri Poenkare i ja smo radili,
15:47
together with partners and artists of mathematical communication worldwide,
301
947292
5181
zajedno sa partnerima i umetnicima matematičke komunikacije širom sveta,
15:52
so that we can found our own, very special museum of mathematics there.
302
952497
4587
na osnivanju sopstvenog, veoma specijalnog muzeja matematike tamo.
15:58
So in a few years,
303
958537
1777
Tako, kroz par godina
16:00
when you come to Paris,
304
960885
1577
kada dođete u Pariz,
16:02
after tasting the great, crispy baguette and macaroon,
305
962486
5658
posle isprobavanja sjajnog, hrskavog bageta i makaruna,
16:08
please come and visit us at Institut Henri Poincaré,
306
968168
3663
molim vas dođite i posetite nas u Institutu Anri Poenkare
16:11
and share the mathematical dream with us.
307
971856
2515
i sanjajte matematički san zajedno sa nama.
16:14
Thank you.
308
974395
1151
Hvala.
16:15
(Applause)
309
975570
7000
(Aplauz)
About this website

This site will introduce you to YouTube videos that are useful for learning English. You will see English lessons taught by top-notch teachers from around the world. Double-click on the English subtitles displayed on each video page to play the video from there. The subtitles scroll in sync with the video playback. If you have any comments or requests, please contact us using this contact form.

https://forms.gle/WvT1wiN1qDtmnspy7