Ajit Narayanan: A word game to communicate in any language

114,911 views ・ 2014-03-10

TED


Please double-click on the English subtitles below to play the video.

Prevodilac: Mile Živković Lektor: Dejan Vicai
00:12
I work with children with autism.
0
12721
2670
Ja radim sa decom sa autizmom.
00:15
Specifically, I make technologies
1
15391
1914
Tačnije, razvijam tehnologije
00:17
to help them communicate.
2
17305
2171
koje im pomažu da komuniciraju.
00:19
Now, many of the problems that children
3
19476
1539
Mnogi problemi sa kojima se deca
00:21
with autism face, they have a common source,
4
21015
3763
sa autizmom suočavaju, imaju isti izvor,
00:24
and that source is that they find it difficult
5
24778
2094
a to je da im je veoma teško
00:26
to understand abstraction, symbolism.
6
26872
5260
da razumeju apstrakciju, simbolizam.
00:32
And because of this, they have a lot of difficulty with language.
7
32132
4652
Zbog ovoga, ona imaju mnogo poteškoća sa jezikom.
00:36
Let me tell you a little bit about why this is.
8
36784
3015
Dozvolite mi da vam kažem malo o tome zašto je to tako.
00:39
You see that this is a picture of a bowl of soup.
9
39799
3934
Ovo je slika činije sa supom.
00:43
All of us can see it. All of us understand this.
10
43733
2485
Svi mi to vidimo. Svi mi razumemo to.
00:46
These are two other pictures of soup,
11
46218
2312
Ovo su dve druge slike supe,
00:48
but you can see that these are more abstract
12
48530
2067
ali su one apstraktnije.
00:50
These are not quite as concrete.
13
50597
1856
Nisu u tolikoj meri konkretne.
00:52
And when you get to language,
14
52453
2174
A kada stignemo do jezika,
00:54
you see that it becomes a word
15
54627
1868
vidimo da ona postaje reč,
00:56
whose look, the way it looks and the way it sounds,
16
56495
3261
čiji izgled, kako izgleda i kako zvuči,
00:59
has absolutely nothing to do with what it started with,
17
59756
2912
nema nikakve veze sa onim od čega je potekla
01:02
or what it represents, which is the bowl of soup.
18
62668
2830
ili sa onim što predstavlja, a to je činija supe.
01:05
So it's essentially a completely abstract,
19
65498
2900
Ona je u suštini u potpunosti apstraktna,
01:08
a completely arbitrary representation of something
20
68398
2576
potpuno arbitrarna reprezentacija nečega
01:10
which is in the real world,
21
70974
1163
što je u stvarnom svetu
01:12
and this is something that children with autism
22
72137
1791
i to je nešto sa čime deca sa autizmom
01:13
have an incredible amount of difficulty with.
23
73928
3164
imaju neverovatnih poteškoća.
01:17
Now that's why most of the people that work with children with autism --
24
77092
2751
Zbog ovoga većina ljudi koji rade sa decom sa autizmom -
01:19
speech therapists, educators --
25
79843
1878
govorni terapeuti, učitelji -
01:21
what they do is, they try to help children with autism
26
81721
2633
pokušavaju da pomognu deci sa autizmom
01:24
communicate not with words, but with pictures.
27
84354
3229
da komuniciraju, ne rečima, nego putem slika.
01:27
So if a child with autism wanted to say,
28
87583
1930
Ako bi dete sa autizmom želelo da kaže:
01:29
"I want soup," that child would pick
29
89513
2458
"Želim supu", to dete bi izabralo
01:31
three different pictures, "I," "want," and "soup,"
30
91971
2260
tri različite slike: "ja", "želeti" i "supa"
01:34
and they would put these together,
31
94231
1609
i spojilo bi ih
01:35
and then the therapist or the parent would
32
95840
1867
i tako bi terapeut ili roditelj razumeo
01:37
understand that this is what the kid wants to say.
33
97707
1887
da je to ono što dete želi da kaže.
01:39
And this has been incredibly effective;
34
99594
1778
Ovo je bilo izuzetno efikasno;
01:41
for the last 30, 40 years
35
101372
2141
ljudi su radili ovo
01:43
people have been doing this.
36
103513
1613
u proteklih 30, 40 godina.
01:45
In fact, a few years back,
37
105126
1349
U stvari, pre nekoliko godina,
01:46
I developed an app for the iPad
38
106475
2675
razvio sam aplikaciju za Ajped
01:49
which does exactly this. It's called Avaz,
39
109150
2255
koja radi upravo ovo.
Ona se zove Avaz, a radi tako što dete bira
01:51
and the way it works is that kids select
40
111405
2279
01:53
different pictures.
41
113684
1321
različite slike.
01:55
These pictures are sequenced together to form sentences,
42
115005
2570
Ove slike su poređane u nizu i stvaraju rečenice,
01:57
and these sentences are spoken out.
43
117575
1719
a onda se ove rečenice izgovaraju.
01:59
So Avaz is essentially converting pictures,
44
119294
3025
Avaz u suštini radi konverziju,
02:02
it's a translator, it converts pictures into speech.
45
122319
3960
on je prevodilac koji pretvara slike u govor.
02:06
Now, this was very effective.
46
126279
1718
Ovo je bilo veoma efikasno.
02:07
There are thousands of children using this,
47
127997
1384
Hiljade dece koristi ovo,
02:09
you know, all over the world,
48
129381
1430
znate, širom sveta,
02:10
and I started thinking about
49
130811
2175
i počeo sam da razmišljam
02:12
what it does and what it doesn't do.
50
132986
2654
o tome šta ono radi, a šta ne radi.
02:15
And I realized something interesting:
51
135640
1684
I shvatio sam nešto interesantno:
02:17
Avaz helps children with autism learn words.
52
137324
4203
Avaz pomaže deci sa autizmom da nauče reči.
02:21
What it doesn't help them do is to learn
53
141527
2405
Ali ne pomaže im da nauče
02:23
word patterns.
54
143932
2748
obrasce tih reči.
02:26
Let me explain this in a little more detail.
55
146680
2472
Dozvolite mi da objasnim ovo malo detaljnije.
02:29
Take this sentence: "I want soup tonight."
56
149152
3057
Uzmimo rečenicu: "Želim supu večeras."
02:32
Now it's not just the words here that convey the meaning.
57
152209
4080
Nisu samo reči te koje prenose značenje.
02:36
It's also the way in which these words are arranged,
58
156289
3140
Tu je i način na koji su te reči poređane,
02:39
the way these words are modified and arranged.
59
159429
2515
način na koji su one izmenjene i poređane.
02:41
And that's why a sentence like "I want soup tonight"
60
161959
2306
Zato je rečenica: "Želim supu večeras."
02:44
is different from a sentence like
61
164265
1984
drugačija od rečenice kao što je:
02:46
"Soup want I tonight," which is completely meaningless.
62
166249
3312
"Supa želeti ja večeras", koja je u potpunosti besmislena.
02:49
So there is another hidden abstraction here
63
169561
2619
Tu postoji još jedna skrivena apstrakcija
02:52
which children with autism find a lot of difficulty coping with,
64
172180
3557
sa kojom se deca sa autizmom teško nose,
02:55
and that's the fact that you can modify words
65
175737
2840
a to je činjenica da reči možemo da izmenimo
02:58
and you can arrange them to have
66
178577
2101
i možemo da ih poređamo tako
03:00
different meanings, to convey different ideas.
67
180678
2895
da dobijemo različita značenja, prenesemo različite ideje.
03:03
Now, this is what we call grammar.
68
183573
3459
To je ono što zovemo gramatikom.
03:07
And grammar is incredibly powerful,
69
187032
2036
Gramatika je izuzetno moćna,
03:09
because grammar is this one component of language
70
189068
3157
jer je gramatika komponenta jezika
03:12
which takes this finite vocabulary that all of us have
71
192225
3489
koja uzima ograničen vokabular koji svi mi imamo
03:15
and allows us to convey an infinite amount of information,
72
195714
4531
i dozvoljava nam da prenesemo neograničenu količinu informacija,
03:20
an infinite amount of ideas.
73
200245
2134
beskrajni broj ideja.
03:22
It's the way in which you can put things together
74
202379
2002
To je način na koji spajamo stvari
03:24
in order to convey anything you want to.
75
204381
2168
kako bismo preneli šta god želimo.
03:26
And so after I developed Avaz,
76
206549
2127
Nakon što sam razvio Avaz,
03:28
I worried for a very long time
77
208676
1568
dugo sam razmišljao
03:30
about how I could give grammar to children with autism.
78
210244
3910
o tome kako deci sa autizmom da pružim gramatiku.
03:34
The solution came to me from a very interesting perspective.
79
214154
2275
Rešenje mi se javilo iz jednog interesantnog ugla.
03:36
I happened to chance upon a child with autism
80
216429
3449
Sreo sam jedno dete sa autizmom
03:39
conversing with her mom,
81
219878
2109
koje je razgovaralo sa svojom majkom
03:41
and this is what happened.
82
221987
2094
i ovo se desilo.
03:44
Completely out of the blue, very spontaneously,
83
224081
2186
Sasvim neočekivano, veoma spontano
03:46
the child got up and said, "Eat."
84
226267
2463
dete je prišlo i reklo: "Jesti."
03:48
Now what was interesting was
85
228730
1770
Ono što je bilo interesantno
03:50
the way in which the mom was trying to tease out
86
230500
4244
je bio način na koji je majka pokušavala da odgonetne
03:54
the meaning of what the child wanted to say
87
234744
2213
značenje onoga što je dete želelo da kaže
03:56
by talking to her in questions.
88
236957
2260
postavljanjem pitanja.
03:59
So she asked, "Eat what? Do you want to eat ice cream?
89
239217
2593
Pitala je: "Jesti šta? Želiš li da jedeš sladoled?"
04:01
You want to eat? Somebody else wants to eat?
90
241810
2112
Ti želiš da jedeš? Neko drugi želi da jede?
04:03
You want to eat cream now? You want to eat ice cream in the evening?"
91
243922
3313
Želiš da jedeš sladoled sada? Želiš da jedeš sladoled uveče?"
04:07
And then it struck me that
92
247235
1514
I onda sam shvatio
04:08
what the mother had done was something incredible.
93
248749
2028
da je majka uradila nešto zaista neverovatno.
04:10
She had been able to get that child to communicate
94
250777
1994
Ona je navela to dete da joj prenese
04:12
an idea to her without grammar.
95
252771
4138
ideju bez gramatike.
04:16
And it struck me that maybe this is what
96
256909
2696
I onda sam shvatio da je možda ovo
04:19
I was looking for.
97
259605
1385
ono što sam tražio.
04:20
Instead of arranging words in an order, in sequence,
98
260990
4142
Umesto ređanja reči u nizove,
04:25
as a sentence, you arrange them
99
265132
2172
kao rečenice, poređajmo ih
04:27
in this map, where they're all linked together
100
267304
3811
na ovu mapu, gde su sve one povezane
04:31
not by placing them one after the other
101
271115
2143
ne putem njihovog nizanja jednih nakon drugih,
04:33
but in questions, in question-answer pairs.
102
273258
3284
već pitanjima, u parovima pitanja i odgovora.
04:36
And so if you do this, then what you're conveying
103
276542
2358
Ako uradimo ovo, onda ne prenosimo
04:38
is not a sentence in English,
104
278900
1986
rečenicu na engleskom,
04:40
but what you're conveying is really a meaning,
105
280886
2966
ono što prenosimo je u stvari značenje,
04:43
the meaning of a sentence in English.
106
283852
1511
značenje rečenice na engleskom.
04:45
Now, meaning is really the underbelly, in some sense, of language.
107
285363
2932
Značenje je u stvari u nekom smislu potpora jezika.
04:48
It's what comes after thought but before language.
108
288295
3821
To je ono što dolazi nakon misli, ali pre jezika.
04:52
And the idea was that this particular representation
109
292116
2503
Ideja je bila da ovaj način predstavljanja
04:54
might convey meaning in its raw form.
110
294619
3261
može da prenese značenje u njegovom sirovom obliku.
04:57
So I was very excited by this, you know,
111
297880
1771
Bio sam veoma uzbuđen ovim, znate,
04:59
hopping around all over the place,
112
299651
1493
skakao sam gore-dole
05:01
trying to figure out if I can convert
113
301144
1771
pokušavajući da otkrijem mogu li da pretvorim
05:02
all possible sentences that I hear into this.
114
302915
2524
sve moguće rečenice koje čujem u ovo.
05:05
And I found that this is not enough.
115
305439
1773
I otkrio sam da ovo nije dovoljno.
05:07
Why is this not enough?
116
307212
1385
Zašto nije dovoljno?
05:08
This is not enough because if you wanted to convey
117
308597
1711
Nije dovoljno, jer ako želite
05:10
something like negation,
118
310308
2250
da prenesete nešto kao negaciju,
05:12
you want to say, "I don't want soup,"
119
312558
1736
želite da kažete: "Ne želim supu",
05:14
then you can't do that by asking a question.
120
314294
2220
onda to ne možete da uradite postavljanjem pitanja.
05:16
You do that by changing the word "want."
121
316514
2285
To radite promenom reči "želeti".
05:18
Again, if you wanted to say,
122
318799
1637
Ukoliko bismo želeli da kažemo:
05:20
"I wanted soup yesterday,"
123
320436
1980
"Želeo sam supu juče",
05:22
you do that by converting the word "want" into "wanted."
124
322416
2737
pretvaramo reč "želeti" u "želeo".
05:25
It's a past tense.
125
325153
1666
To je prošlo vreme.
05:26
So this is a flourish which I added
126
326819
2103
Ovo je ono što sam dodao
05:28
to make the system complete.
127
328922
1576
kako bih kompletirao sistem.
05:30
This is a map of words joined together
128
330498
1977
Ovo je mapa povezanih reči
05:32
as questions and answers,
129
332475
1656
putem pitanja i odgovora,
05:34
and with these filters applied on top of them
130
334131
2264
a ovo su filteri primenjeni na njima
05:36
in order to modify them to represent
131
336395
1817
kako bi pretvorili reči da bi one
05:38
certain nuances.
132
338212
1709
predstavljale određene nijanse.
05:39
Let me show you this with a different example.
133
339921
1951
Pogledajmo to na drugačijem primeru.
05:41
Let's take this sentence:
134
341872
1254
Uzmimo rečenicu:
05:43
"I told the carpenter I could not pay him."
135
343126
1980
"Rekao sam stolaru da ne mogu da mu platim."
05:45
It's a fairly complicated sentence.
136
345106
1792
Ovo je poprilično složena rečenica.
05:46
The way that this particular system works,
137
346898
1893
Način na koji ovaj sistem radi je takav
05:48
you can start with any part of this sentence.
138
348791
2578
da možete da krenete od bilo kog dela ove rečenice.
05:51
I'm going to start with the word "tell."
139
351369
1698
Ja ću krenuti sa rečju: "reći".
05:53
So this is the word "tell."
140
353067
1462
Ovo je reč "reći".
05:54
Now this happened in the past,
141
354529
1600
Pošto se ovo desilo u prošlosti,
05:56
so I'm going to make that "told."
142
356129
2223
pretvoriću je u "rekao".
05:58
Now, what I'm going to do is,
143
358352
1708
Sada ću
06:00
I'm going to ask questions.
144
360060
1756
postaviti pitanje.
06:01
So, who told? I told.
145
361816
2364
Ko je rekao? Ja sam rekao.
06:04
I told whom? I told the carpenter.
146
364180
1927
Kome sam rekao? Rekao sam stolaru.
06:06
Now we start with a different part of the sentence.
147
366107
1751
Sada ćemo krenuti od drugog dela rečenice.
06:07
We start with the word "pay,"
148
367858
1867
Krenućemo od reči "platiti"
06:09
and we add the ability filter to it to make it "can pay."
149
369725
4577
i dodaćemo filter za mogućnost da bismo je pretvorili u "mogu da platim".
06:14
Then we make it "can't pay,"
150
374302
2101
Zatim ćemo je pretvoriti u "ne mogu da platim"
06:16
and we can make it "couldn't pay"
151
376403
1599
i onda u "nisam mogao da platim"
06:18
by making it the past tense.
152
378002
1663
dodavajući prošlo vreme.
06:19
So who couldn't pay? I couldn't pay.
153
379665
1923
Ko nije mogao da plati? Ja nisam mogao da platim.
06:21
Couldn't pay whom? I couldn't pay the carpenter.
154
381588
2676
Kome nisam mogao da platim? Nisam mogao da platim stolaru.
06:24
And then you join these two together
155
384264
1731
Onda spojimo ova dva dela
06:25
by asking this question:
156
385995
1350
postavljanjem pitanja:
06:27
What did I tell the carpenter?
157
387345
1737
"Šta sam rekao stolaru?
06:29
I told the carpenter I could not pay him.
158
389082
4049
Rekao sam stolaru da ne mogu da mu platim.
06:33
Now think about this. This is
159
393131
1937
Razmislite o ovome. Ovo je
06:35
—(Applause)—
160
395068
3542
- (Aplauz) -
06:38
this is a representation of this sentence
161
398610
3672
ovo je predstavljanje ove rečenice bez jezika.
06:42
without language.
162
402282
2435
06:44
And there are two or three interesting things about this.
163
404717
2192
Postoje dve ili tri interesantne stvari u vezi s ovim.
06:46
First of all, I could have started anywhere.
164
406909
3131
Prvo, mogao sam da počnem bilo gde.
06:50
I didn't have to start with the word "tell."
165
410040
2243
Nisam morao da krenem sa rečju "reći".
06:52
I could have started anywhere in the sentence,
166
412283
1416
Mogao sam da krenem bilo gde
06:53
and I could have made this entire thing.
167
413699
1507
i mogao sam da stvorim sve ovo.
06:55
The second thing is, if I wasn't an English speaker,
168
415206
2776
Druga stvar je, da nisam govornik engleskog,
06:57
if I was speaking in some other language,
169
417982
2175
da govorim nekim drugim jezikom,
07:00
this map would actually hold true in any language.
170
420157
3156
ova mapa bi bila identična u bilo kom jeziku.
07:03
So long as the questions are standardized,
171
423313
1990
Dokle god su pitanja standardizovana,
07:05
the map is actually independent of language.
172
425303
4287
ova mapa je u stvari nezavisna od jezika.
07:09
So I call this FreeSpeech,
173
429590
2115
Ovo sam nazvao FreeSpeech
07:11
and I was playing with this for many, many months.
174
431705
2935
i igrao sam se ovime mnogo meseci.
07:14
I was trying out so many different combinations of this.
175
434640
2726
Pokušavao sam mnogo različitih kombinacija
07:17
And then I noticed something very interesting about FreeSpeech.
176
437366
2289
I onda sam primetio nešto veoma interesantno.
07:19
I was trying to convert language,
177
439655
3243
Pokušavao sam da pretvorim jezik,
07:22
convert sentences in English into sentences in FreeSpeech,
178
442898
2384
rečenice na engleskom u rečenice FreeSpeech-a
07:25
and vice versa, and back and forth.
179
445282
1752
i obrnuto, u jednom i drugom pravcu.
07:27
And I realized that this particular configuration,
180
447034
2255
I shvatio sam da mi je ova konfiguracija,
07:29
this particular way of representing language,
181
449289
2026
ovaj način predstavljanja jezika,
07:31
it allowed me to actually create very concise rules
182
451315
4395
da su mi dozvolili da stvorim veoma koncizna pravila
07:35
that go between FreeSpeech on one side
183
455710
2734
koja povezuju FreeSpeech sa jedne strane
07:38
and English on the other.
184
458444
1488
i engleski s druge.
07:39
So I could actually write this set of rules
185
459932
2180
Tako bih mogao na napišem set ovakvih pravila
07:42
that translates from this particular representation into English.
186
462112
3395
koji prevodi iz ove reprezentacije u engleski.
07:45
And so I developed this thing.
187
465507
1831
I razvio sam to.
07:47
I developed this thing called the FreeSpeech Engine
188
467338
2232
Razvio sam takozvani FreeSpeech Engine
07:49
which takes any FreeSpeech sentence as the input
189
469570
2561
koji uzima bilo koju FreeSpeech rečenicu kao ulaznu informaciju
07:52
and gives out perfectly grammatical English text.
190
472131
3930
i daje gramatičnu englesku rečenicu.
07:56
And by putting these two pieces together,
191
476061
1605
Spajanjem ova dva dela
07:57
the representation and the engine,
192
477666
1881
predstave i mehanizma
07:59
I was able to create an app, a technology for children with autism,
193
479547
3796
stvorio sam aplikaciju, tehnologiju za decu sa autizmom
08:03
that not only gives them words
194
483343
2499
koja im ne daje samo reči
08:05
but also gives them grammar.
195
485842
3941
nego im daje i gramatiku.
08:09
So I tried this out with kids with autism,
196
489783
2360
Ispobao sam ovo sa decom sa autizmom
08:12
and I found that there was an incredible amount of identification.
197
492143
5013
i otkrio sam da postoji visok stepen identifikacije.
08:17
They were able to create sentences in FreeSpeech
198
497156
2720
Mogli su da stvaraju rečenice u FreeSpeech-u
08:19
which were much more complicated but much more effective
199
499876
2558
koje su bile mnogo složenije, ali i efikasnije
08:22
than equivalent sentences in English,
200
502434
2899
od ekvivalenata na engleskom
08:25
and I started thinking about
201
505333
1682
i počeo sam da razmišljam o tome
08:27
why that might be the case.
202
507015
1969
zašto je to tako.
08:28
And I had an idea, and I want to talk to you about this idea next.
203
508984
4287
Imao sam ideju, i želim sada da vam pričam o njoj.
08:33
In about 1997, about 15 years back,
204
513271
3142
1997, pre oko 15 godina
08:36
there were a group of scientists that were trying
205
516413
2011
grupa naučnika pokušavala je
08:38
to understand how the brain processes language,
206
518424
2389
da razume kako mozak obrađuje jezik
08:40
and they found something very interesting.
207
520813
1779
i otkrili su nešto veoma interesantno.
08:42
They found that when you learn a language
208
522592
1872
Otkrili su da kada učimo jezik
08:44
as a child, as a two-year-old,
209
524464
2912
kao deca, kao dvogodišnjaci,
08:47
you learn it with a certain part of your brain,
210
527376
2366
učimo ga sa jednim delom mozga,
08:49
and when you learn a language as an adult --
211
529742
1600
a kada ga učimo kao odrasli -
08:51
for example, if I wanted to learn Japanese right now —
212
531342
3911
na primer, ako bih sada želeo da naučim japanski -
08:55
a completely different part of my brain is used.
213
535253
2707
koristio bih potpuno drugačiji deo mozga.
08:57
Now I don't know why that's the case,
214
537960
1831
Ne znam zašto je to tako,
08:59
but my guess is that that's because
215
539791
1991
pretpostavljam da je to zato što
09:01
when you learn a language as an adult,
216
541782
2437
kada učimo jezike kao odrasli,
09:04
you almost invariably learn it
217
544219
1616
skoro stalno ih učimo
09:05
through your native language, or through your first language.
218
545835
4266
putem maternjeg jezika ili putem prvog jezika.
09:10
So what's interesting about FreeSpeech
219
550101
3252
Ono što je interesantno u vezi FreeSpeech-a
09:13
is that when you create a sentence
220
553353
1802
je da kada stvarate rečenicu
09:15
or when you create language,
221
555155
1695
ili kada stvarate jezik,
09:16
a child with autism creates language with FreeSpeech,
222
556850
3070
kada dete sa autizmom stvara jezik pomoću FreeSpeech-a,
09:19
they're not using this support language,
223
559920
1833
ono ga ne koristi kao pomoćni jezik,
09:21
they're not using this bridge language.
224
561753
2211
kao vezu između dva jezika.
09:23
They're directly constructing the sentence.
225
563964
2657
Oni direktno stvaraju rečenicu.
09:26
And so this gave me this idea.
226
566621
2193
Ovo mi je dalo ideju.
09:28
Is it possible to use FreeSpeech
227
568814
2024
Da li je moguće koristiti FreeSpeech
09:30
not for children with autism
228
570838
2510
ne za decu sa autizmom,
09:33
but to teach language to people without disabilities?
229
573348
6262
nego da ljude bez invaliditeta učimo jezicima?
09:39
And so I tried a number of experiments.
230
579610
1978
Sproveo sam nekoliko eksperimenata.
09:41
The first thing I did was I built a jigsaw puzzle
231
581588
2948
Prva stvar koju sam napravio je slagalica
09:44
in which these questions and answers
232
584536
1970
u kojoj su ova pitanja i odgovori
09:46
are coded in the form of shapes,
233
586506
1835
pretvoreni u oblike,
09:48
in the form of colors,
234
588341
1138
boje
09:49
and you have people putting these together
235
589479
1849
i ljudi ovo slažu
09:51
and trying to understand how this works.
236
591328
1773
i pokušavaju da razumeju kako radi.
09:53
And I built an app out of it, a game out of it,
237
593101
2376
Napravio sam aplikaciju, igru,
09:55
in which children can play with words
238
595477
2661
u kojoj deca mogu da se igraju rečima,
09:58
and with a reinforcement,
239
598138
1704
i putem potvrde,
09:59
a sound reinforcement of visual structures,
240
599842
2585
zvučne potvrde vizuelnih struktura,
10:02
they're able to learn language.
241
602427
2013
oni mogu da nauče jezik.
10:04
And this, this has a lot of potential, a lot of promise,
242
604440
2736
Ovo ima mnogo potencijala, obećava mnogo
10:07
and the government of India recently
243
607176
1975
i vlada Indije je nedavno
10:09
licensed this technology from us,
244
609151
1404
otkupila ovu tehnologiju od nas
10:10
and they're going to try it out with millions of different children
245
610555
2074
i isprobavaju je sa milionima dece
10:12
trying to teach them English.
246
612629
2605
pokušavajući da ih nauče engleski.
10:15
And the dream, the hope, the vision, really,
247
615234
2614
San, nada, vizija
10:17
is that when they learn English this way,
248
617848
3082
je da kada ovako uče engleski
10:20
they learn it with the same proficiency
249
620930
2643
oni ga uče sa istom sposobnošću
10:23
as their mother tongue.
250
623573
3718
kao svoj maternji jezik.
10:27
All right, let's talk about something else.
251
627291
3816
Hajde da govorimo o nečemu drugom.
10:31
Let's talk about speech.
252
631107
1997
Hajde da govorimo o govoru.
10:33
This is speech.
253
633104
1271
Ovo je govor.
10:34
So speech is the primary mode of communication
254
634375
1962
Govor je primarno sredstvo komunikacije
10:36
delivered between all of us.
255
636337
1613
između svih nas.
10:37
Now what's interesting about speech is that
256
637950
1855
Kod govora je interesantno to što je on
10:39
speech is one-dimensional.
257
639805
1245
jednodimenzionalan.
10:41
Why is it one-dimensional?
258
641050
1359
Zašto je jednodimenzionalan?
10:42
It's one-dimensional because it's sound.
259
642409
1568
Zato što je zvuk.
10:43
It's also one-dimensional because
260
643977
1539
Jednodimenzionalan je takođe
10:45
our mouths are built that way.
261
645516
1205
jer su nam usta tako napravljena.
10:46
Our mouths are built to create one-dimensional sound.
262
646721
3512
Naša usta su stvorena da stvaraju jednodimenzionalni zvuk.
10:50
But if you think about the brain,
263
650233
2866
Ali ako razmislite, mozak,
10:53
the thoughts that we have in our heads
264
653099
1764
misli koje imamo u glavi,
10:54
are not one-dimensional.
265
654863
2102
nisu jednodimenzionalne.
10:56
I mean, we have these rich,
266
656965
1459
Imamo ove bogate,
10:58
complicated, multi-dimensional ideas.
267
658424
3028
komplikovane, multi-dimenzionalne ideje.
11:01
Now, it seems to me that language
268
661452
1690
Čini mi se da je jezik
11:03
is really the brain's invention
269
663142
2332
u stvari izum mozga
11:05
to convert this rich, multi-dimensional thought
270
665474
3096
kojim pretvara ovu bogatu, multi-dimenzionalnu misao
11:08
on one hand
271
668570
1587
s jedne strane
11:10
into speech on the other hand.
272
670157
1923
u govor s druge strane.
11:12
Now what's interesting is that
273
672080
1762
Interesantno je to da
11:13
we do a lot of work in information nowadays,
274
673842
2568
danas mnogo radimo sa informacijama
11:16
and almost all of that is done in the language domain.
275
676410
3079
i skoro sve što se radi je u domenu jezika.
11:19
Take Google, for example.
276
679489
1939
Uzmimo Gugl, na primer.
11:21
Google trawls all these countless billions of websites,
277
681428
2677
Gugl pročešljava nebrojene milijarde sajtova,
11:24
all of which are in English, and when you want to use Google,
278
684105
2725
od kojih su svi na engleskom, i kada želite da koristite Gugl,
11:26
you go into Google search, and you type in English,
279
686830
2450
idete na Gugl pretragu i kucate na engleskom,
11:29
and it matches the English with the English.
280
689280
4163
i ona upari engleski s engleskim.
11:33
What if we could do this in FreeSpeech instead?
281
693443
3583
Šta ako bismo ovo mogli da uradimo sa FreeSpeech-om?
11:37
I have a suspicion that if we did this,
282
697026
2301
Čini mi se da kada bismo ovo uradili,
11:39
we'd find that algorithms like searching,
283
699327
2068
otkrili bismo da su algoritmi poput pretrage,
11:41
like retrieval, all of these things,
284
701395
2325
davanja rezultata, sve ove stvari,
11:43
are much simpler and also more effective,
285
703720
3075
da je sve to jednostavnije i efikasnije,
11:46
because they don't process the data structure of speech.
286
706795
4417
jer ne mora da se obradi struktura podataka govora.
11:51
Instead they're processing the data structure of thought.
287
711212
5976
Umesto toga se obrađuje struktura podataka misli.
11:57
The data structure of thought.
288
717188
2808
Struktura podataka misli.
11:59
That's a provocative idea.
289
719996
2076
To je provokativna zamisao.
12:02
But let's look at this in a little more detail.
290
722072
2142
Ali hajde da detaljnije pogledamo ovo.
12:04
So this is the FreeSpeech ecosystem.
291
724214
2366
Ovo je ekosistem FreeSpeech-a.
12:06
We have the Free Speech representation on one side,
292
726580
2884
Sa jedne strane imamo prikaz FreeSpeech-a,
12:09
and we have the FreeSpeech Engine, which generates English.
293
729464
2228
i imamo mehanizam FreeSpeech-a, koji stvara engleski.
12:11
Now if you think about it,
294
731694
1725
Ako razmislite o tome,
12:13
FreeSpeech, I told you, is completely language-independent.
295
733419
2544
rekao sam vam da je FreeSpeech potpuno nezavisan od jezika.
12:15
It doesn't have any specific information in it
296
735963
2087
U sebi ne sadrži posebne informacije
12:18
which is about English.
297
738050
1228
vezane za engleski.
12:19
So everything that this system knows about English
298
739278
2800
Sve što ovaj sistem zna o engleskom
12:22
is actually encoded into the engine.
299
742078
4620
je zapravo zapisano u mehanizmu.
12:26
That's a pretty interesting concept in itself.
300
746698
2237
To je samo po sebi zanimljiv koncept.
12:28
You've encoded an entire human language
301
748935
3604
Kodirali smo čitav ljudski jezik
12:32
into a software program.
302
752539
2645
u softverski program.
12:35
But if you look at what's inside the engine,
303
755184
2531
Ali ako pogledate unutar mehanizma,
12:37
it's actually not very complicated.
304
757715
2358
zapravo nije veoma komplikovano.
12:40
It's not very complicated code.
305
760073
2105
Kod nije veoma komplikovan.
12:42
And what's more interesting is the fact that
306
762178
2672
A interesantnija je činjenica
12:44
the vast majority of the code in that engine
307
764850
2203
da je većina koda u tom mehanizmu
12:47
is not really English-specific.
308
767053
2412
nevezana za engleski.
12:49
And that gives this interesting idea.
309
769465
1895
To nam je dalo zanimljivu ideju.
12:51
It might be very easy for us to actually
310
771360
2038
Možda bi bilo lako da zapravo
12:53
create these engines in many, many different languages,
311
773398
3826
napravimo ove mehanizme u mnogo različitih jezika,
12:57
in Hindi, in French, in German, in Swahili.
312
777224
6354
indijskom, francuskom, nemačkom, svahiliju.
13:03
And that gives another interesting idea.
313
783578
2799
A to nam je dalo još jednu zanimljivu ideju.
13:06
For example, supposing I was a writer,
314
786377
2654
Na primer, recimo da sam pisac,
13:09
say, for a newspaper or for a magazine.
315
789031
2122
za novine ili magazin.
13:11
I could create content in one language, FreeSpeech,
316
791153
5011
Mogao bih da stvaram sadržaj u jednom jeziku, FreeSpeech-u,
13:16
and the person who's consuming that content,
317
796164
2056
a osoba koja konzumira taj sadržaj,
13:18
the person who's reading that particular information
318
798220
3061
koja čita te informacije,
13:21
could choose any engine,
319
801281
2495
mogla bi da odabere bilo koji mehanizam,
13:23
and they could read it in their own mother tongue,
320
803776
2736
i mogla bi da čita to
13:26
in their native language.
321
806512
3939
na svom maternjem jeziku.
13:30
I mean, this is an incredibly attractive idea,
322
810451
2722
Ovo je neverovatno privlačna ideja,
13:33
especially for India.
323
813173
1999
naročito za Indiju.
13:35
We have so many different languages.
324
815172
1690
Imamo toliko različitih jezika.
13:36
There's a song about India, and there's a description
325
816862
2142
Postoji pesma o Indiji, i postoji
13:39
of the country as, it says,
326
819004
2344
opis zemlje koji kaže,
13:41
(in Sanskrit).
327
821348
2360
(na Sanskritu).
13:43
That means "ever-smiling speaker
328
823708
2773
To znači: "govornik predivnih jezika
13:46
of beautiful languages."
329
826481
4519
koji se stalno smeje".
13:51
Language is beautiful.
330
831000
1964
Jezik je predivan.
13:52
I think it's the most beautiful of human creations.
331
832964
2454
Mislim da je to najlepša od svih ljudskih kreacija.
13:55
I think it's the loveliest thing that our brains have invented.
332
835418
3978
Mislim da je to najdraža stvar koju su smislili naši mozgovi.
13:59
It entertains, it educates, it enlightens,
333
839396
3584
On zabavlja, obrazuje, prosvetljuje,
14:02
but what I like the most about language
334
842980
2044
ali kod jezika najviše volim to
14:05
is that it empowers.
335
845024
1500
što daje moć.
14:06
I want to leave you with this.
336
846524
1838
Želim da vas ostavim sa ovim.
14:08
This is a photograph of my collaborators,
337
848362
2385
Ovo je fotografija mojih saradnika,
14:10
my earliest collaborators
338
850747
997
najranijih saradnika,
14:11
when I started working on language
339
851744
1462
kada sam počeo da radim na jeziku
14:13
and autism and various other things.
340
853206
1502
i autizmu i drugim stvarima.
14:14
The girl's name is Pavna,
341
854708
1417
Ime ove devojčice je Pavna,
14:16
and that's her mother, Kalpana.
342
856125
1902
a to je njena majka, Kalpana.
14:18
And Pavna's an entrepreneur,
343
858027
2138
Pavna je preduzetnica,
14:20
but her story is much more remarkable than mine,
344
860165
2371
ali njena priča je fascinantnija od moje,
14:22
because Pavna is about 23.
345
862536
2400
jer Pavna ima oko 23 godine.
14:24
She has quadriplegic cerebral palsy,
346
864936
2552
Ona ima cerebralnu paralizu,
14:27
so ever since she was born,
347
867488
1640
tako da od svog rođenja
14:29
she could neither move nor talk.
348
869128
3600
nije mogla da se pomera ili priča.
14:32
And everything that she's accomplished so far,
349
872728
2403
Sve što je do sada postigla,
14:35
finishing school, going to college,
350
875131
2227
završavanje škole, odlazak na fakultet,
14:37
starting a company,
351
877358
1416
osnivanje kompanije,
14:38
collaborating with me to develop Avaz,
352
878774
2140
saradnja sa mnom na razvijanju Avaza,
14:40
all of these things she's done
353
880914
1892
sve ove stvari je uradila
14:42
with nothing more than moving her eyes.
354
882806
5523
samo uz pomeranje svojih očiju.
14:48
Daniel Webster said this:
355
888329
2689
Danijel Vebster je rekao ovo:
14:51
He said, "If all of my possessions were taken
356
891018
2940
"Kada bi mi oduzeli sve stvari,
14:53
from me with one exception,
357
893958
2988
uz jedan izuzetak,
14:56
I would choose to keep the power of communication,
358
896946
2981
odabrao bih da zadržim moć komunikacije,
14:59
for with it, I would regain all the rest."
359
899927
3903
jer bih uz njenu pomoć vratio sve ostalo".
15:03
And that's why, of all of these incredible applications of FreeSpeech,
360
903830
5116
Zbog toga, od svih neverovatnih primena FreeSpeech-a,
15:08
the one that's closest to my heart
361
908946
2080
meni je najdraža
15:11
still remains the ability for this
362
911026
2068
mogućnost da se da moć
15:13
to empower children with disabilities
363
913094
2380
deci sa invaliditetom,
15:15
to be able to communicate,
364
915474
1773
da mogu da mogu da komuniciraju,
15:17
the power of communication,
365
917247
1789
moć komunikacije,
15:19
to get back all the rest.
366
919036
2240
kako bi mogli da vrate sve ostalo.
15:21
Thank you.
367
921276
1397
Hvala vam.
15:22
(Applause)
368
922673
1332
(Aplauz)
15:24
Thank you. (Applause)
369
924005
4199
Hvala vam. (Aplauz)
15:28
Thank you. Thank you. Thank you. (Applause)
370
928204
5323
Hvala vam. Hvala vam. (Aplauz)
15:33
Thank you. Thank you. Thank you. (Applause)
371
933527
4000
Hvala vam. Hvala. (Aplauz)
About this website

This site will introduce you to YouTube videos that are useful for learning English. You will see English lessons taught by top-notch teachers from around the world. Double-click on the English subtitles displayed on each video page to play the video from there. The subtitles scroll in sync with the video playback. If you have any comments or requests, please contact us using this contact form.

https://forms.gle/WvT1wiN1qDtmnspy7