请双击下面的英文字幕来播放视频。
翻译人员: Cici W
校对人员: Chen Yimei
00:12
I work with children with autism.
0
12721
2670
我从事关于自闭症儿童的工作。
00:15
Specifically, I make technologies
1
15391
1914
具体而言,我发明技术
00:17
to help them communicate.
2
17305
2171
来帮助他们交流。
00:19
Now, many of the problems that children
3
19476
1539
许多自闭症儿童所面临的问题,
00:21
with autism face, they have a common source,
4
21015
3763
它们有一个共同的根源,
00:24
and that source is that they find it difficult
5
24778
2094
而这个根源就是他们觉得
00:26
to understand abstraction, symbolism.
6
26872
5260
很难理解抽象概念和符号。
00:32
And because of this, they have
a lot of difficulty with language.
7
32132
4652
因此,他们在语言上存在很大的困难。
00:36
Let me tell you a little bit about why this is.
8
36784
3015
让我来告诉你们一些会这样的原因
00:39
You see that this is a picture of a bowl of soup.
9
39799
3934
你看这是一碗汤的图片。
00:43
All of us can see it. All of us understand this.
10
43733
2485
我们都可以看见它。我们都能理解这个。
00:46
These are two other pictures of soup,
11
46218
2312
这里是另外两张汤的图片。
00:48
but you can see that these are more abstract
12
48530
2067
但是你可以看到,这些更加抽象。
00:50
These are not quite as concrete.
13
50597
1856
这些并不那么具体。
00:52
And when you get to language,
14
52453
2174
而当你使用语言的时候,
00:54
you see that it becomes a word
15
54627
1868
你看它变成了一个单词
00:56
whose look, the way it looks and the way it sounds,
16
56495
3261
它看起来,听起来
00:59
has absolutely nothing to do
with what it started with,
17
59756
2912
都跟刚开始的或代表的一碗汤,
01:02
or what it represents, which is the bowl of soup.
18
62668
2830
没有半点关系。
01:05
So it's essentially a completely abstract,
19
65498
2900
所以它本质上是完全抽象的,
01:08
a completely arbitrary representation of something
20
68398
2576
一个对现实生活中事物
01:10
which is in the real world,
21
70974
1163
很随意的陈述,
01:12
and this is something that children with autism
22
72137
1791
这才是自闭症儿童
01:13
have an incredible amount of difficulty with.
23
73928
3164
有极大困难的地方。
01:17
Now that's why most of the people
that work with children with autism --
24
77092
2751
这就是为什么如今大多数从事自闭症儿童工作的人
01:19
speech therapists, educators --
25
79843
1878
——语言治疗师们,教育者们
01:21
what they do is, they try to help children with autism
26
81721
2633
——他们所做的是帮助自闭症儿童交流,
01:24
communicate not with words, but with pictures.
27
84354
3229
不是通过文字,而是通过图片。
01:27
So if a child with autism wanted to say,
28
87583
1930
于是如果一个自闭症儿童想说,
01:29
"I want soup," that child would pick
29
89513
2458
"I want soup"(我要汤),那个孩子将会拿起
01:31
three different pictures, "I," "want," and "soup,"
30
91971
2260
三张不同的图片,"I"(我),"want"(要)和"soup"(汤)
01:34
and they would put these together,
31
94231
1609
他们会将这些拼凑在一起,
01:35
and then the therapist or the parent would
32
95840
1867
然后治疗师或者家长就能理解
01:37
understand that this is what the kid wants to say.
33
97707
1887
这就是孩子想要说的。
01:39
And this has been incredibly effective;
34
99594
1778
而且这已经卓有成效了;
01:41
for the last 30, 40 years
35
101372
2141
在过去的30,40年间
01:43
people have been doing this.
36
103513
1613
人们一直在这样做。
01:45
In fact, a few years back,
37
105126
1349
事实上,几年前,
01:46
I developed an app for the iPad
38
106475
2675
我在iPad上开发了一个app
01:49
which does exactly this. It's called Avaz,
39
109150
2255
就是这样的运作的。它叫做Avaz,
01:51
and the way it works is that kids select
40
111405
2279
它是这样运行的:孩子们选择
01:53
different pictures.
41
113684
1321
不同的图片。
01:55
These pictures are sequenced
together to form sentences,
42
115005
2570
这些图片排列成句子,
01:57
and these sentences are spoken out.
43
117575
1719
然后这些句子被读出来。
01:59
So Avaz is essentially converting pictures,
44
119294
3025
所以 Avaz 基本上在转译图片,
02:02
it's a translator, it converts pictures into speech.
45
122319
3960
他是个翻译器,它将图片翻译成语音。
02:06
Now, this was very effective.
46
126279
1718
现在,这已经很有效了。
02:07
There are thousands of children using this,
47
127997
1384
有数千个孩子正在使用这个,
02:09
you know, all over the world,
48
129381
1430
你知道的,遍布全世界,
02:10
and I started thinking about
49
130811
2175
于是我开始思考
02:12
what it does and what it doesn't do.
50
132986
2654
它可以做的和不能做的地方。
02:15
And I realized something interesting:
51
135640
1684
我发现了一些有趣的地方:
02:17
Avaz helps children with autism learn words.
52
137324
4203
Avaz 可以帮助自闭症儿童学习单词。
02:21
What it doesn't help them do is to learn
53
141527
2405
它没做到的是帮助他们学习
02:23
word patterns.
54
143932
2748
文字模式。
02:26
Let me explain this in a little more detail.
55
146680
2472
让我更具体地解释下这个。
02:29
Take this sentence: "I want soup tonight."
56
149152
3057
比如这句话:"I want soup tonight"(我要汤今晚)。
02:32
Now it's not just the words
here that convey the meaning.
57
152209
4080
它不仅仅是文字传达了意思。
02:36
It's also the way in which these words are arranged,
58
156289
3140
这些文字的排列方式也起到了作用,
02:39
the way these words are modified and arranged.
59
159429
2515
文字被修饰和排列的方式。
02:41
And that's why a sentence like "I want soup tonight"
60
161959
2306
那就是为什么一句话比如"I want soup tonight"(我要汤今晚)
02:44
is different from a sentence like
61
164265
1984
不同于这句
02:46
"Soup want I tonight," which
is completely meaningless.
62
166249
3312
"Soup want I tonight"(汤要我今晚),后者是没意义 的。
02:49
So there is another hidden abstraction here
63
169561
2619
所以这里有另一个隐藏的抽象概念
02:52
which children with autism find
a lot of difficulty coping with,
64
172180
3557
自闭症儿童很难应对,
02:55
and that's the fact that you can modify words
65
175737
2840
那就是,你可以修辞文字
02:58
and you can arrange them to have
66
178577
2101
你可以对他们进行排序
03:00
different meanings, to convey different ideas.
67
180678
2895
来得到不同的含义,来表达不同的思想。
03:03
Now, this is what we call grammar.
68
183573
3459
这就是我们所说的语法。
03:07
And grammar is incredibly powerful,
69
187032
2036
而且语法极其有用的,
03:09
because grammar is this one component of language
70
189068
3157
因为语法是语言的一个这样的组成部分。
03:12
which takes this finite vocabulary that all of us have
71
192225
3489
它用我们所拥有的有限的词汇
03:15
and allows us to convey an
infinite amount of information,
72
195714
4531
使我们表达无限的信息,
03:20
an infinite amount of ideas.
73
200245
2134
无限的思想。
03:22
It's the way in which you can put things together
74
202379
2002
这是一种你可以将事物连在一起
03:24
in order to convey anything you want to.
75
204381
2168
来表达任何你所要表达的。
03:26
And so after I developed Avaz,
76
206549
2127
于是在我开发了 Avaz 之后,
03:28
I worried for a very long time
77
208676
1568
我担心过很长一段时间
03:30
about how I could give grammar
to children with autism.
78
210244
3910
关于我该怎样将语法传递给患了自闭症的孩子们。
03:34
The solution came to me from
a very interesting perspective.
79
214154
2275
解决方案来自于一个很有意思的观点。
03:36
I happened to chance upon a child with autism
80
216429
3449
我碰巧遇到一个自闭症孩子
03:39
conversing with her mom,
81
219878
2109
正在和他的妈妈交谈,
03:41
and this is what happened.
82
221987
2094
然后发生了这样的事。
03:44
Completely out of the blue, very spontaneously,
83
224081
2186
完全出乎意料的,很自然地,
03:46
the child got up and said, "Eat."
84
226267
2463
那个孩子站起来并说道,"Eat"(吃)
03:48
Now what was interesting was
85
228730
1770
非常有意思的是
03:50
the way in which the mom was trying to tease out
86
230500
4244
这位妈妈试图梳理出
03:54
the meaning of what the child wanted to say
87
234744
2213
孩子所以表达的意思
03:56
by talking to her in questions.
88
236957
2260
通过提问来与她交谈。
03:59
So she asked, "Eat what? Do
you want to eat ice cream?
89
239217
2593
于是她问道,“吃什么?你想吃冰淇淋吗?
04:01
You want to eat? Somebody else wants to eat?
90
241810
2112
你想吃?还是别人想吃?
04:03
You want to eat cream now? You
want to eat ice cream in the evening?"
91
243922
3313
你现在想吃奶油?还是你晚上想吃冰淇淋?“
04:07
And then it struck me that
92
247235
1514
这件事让我突然想到
04:08
what the mother had done was something incredible.
93
248749
2028
这位妈妈做的事情是不可思议的。
04:10
She had been able to get that child to communicate
94
250777
1994
她已经能够让孩子和她交流想法
04:12
an idea to her without grammar.
95
252771
4138
却不需要语法。
04:16
And it struck me that maybe this is what
96
256909
2696
我突然想到也许这就是
04:19
I was looking for.
97
259605
1385
我一直在寻找的。
04:20
Instead of arranging words in an order, in sequence,
98
260990
4142
与其将文字 按顺序,按词组,按句子排列,
04:25
as a sentence, you arrange them
99
265132
2172
不如将他们安放在
04:27
in this map, where they're all linked together
100
267304
3811
这个地图中,它们都是联系在一起
04:31
not by placing them one after the other
101
271115
2143
不是通过将他们一个接着一个地排放
04:33
but in questions, in question-answer pairs.
102
273258
3284
而是按问题,按 [问题-答案] 成对排列。
04:36
And so if you do this, then what you're conveying
103
276542
2358
如果你这样做,那么你所表达的
04:38
is not a sentence in English,
104
278900
1986
就不是英文中的一个句子,
04:40
but what you're conveying is really a meaning,
105
280886
2966
你所表达的是真实的"意义",
04:43
the meaning of a sentence in English.
106
283852
1511
英文句子的"意义"。
04:45
Now, meaning is really the underbelly,
in some sense, of language.
107
285363
2932
"意义"在某种程度上是语言的软肋。
04:48
It's what comes after thought but before language.
108
288295
3821
它是一种在想法之后语言之前的东西。
04:52
And the idea was that this particular representation
109
292116
2503
所以这个想法是,这种特别的表达方式
04:54
might convey meaning in its raw form.
110
294619
3261
可能能够用原始形式传递"意义"。
04:57
So I was very excited by this, you know,
111
297880
1771
我对此非常兴奋,你知道的,
04:59
hopping around all over the place,
112
299651
1493
手舞足蹈地,
05:01
trying to figure out if I can convert
113
301144
1771
试图确定我是否能够将
05:02
all possible sentences that I hear into this.
114
302915
2524
所有我听到的句子转换成这样。
05:05
And I found that this is not enough.
115
305439
1773
然后我发现这样是不够的。
05:07
Why is this not enough?
116
307212
1385
为什么不够呢?
05:08
This is not enough because if you wanted to convey
117
308597
1711
不够是因为如果你想要表达
05:10
something like negation,
118
310308
2250
某些东西,比如否认,
05:12
you want to say, "I don't want soup,"
119
312558
1736
你会想说,"I don't want soup"(我不想要汤),
05:14
then you can't do that by asking a question.
120
314294
2220
然而你不能通过提问来做到这个,
05:16
You do that by changing the word "want."
121
316514
2285
你通过改变“want”(要)这个词来做到的。
05:18
Again, if you wanted to say,
122
318799
1637
再者,如果你想要说,
05:20
"I wanted soup yesterday,"
123
320436
1980
"I wanted soup yesterday"(我昨天想要汤)
05:22
you do that by converting
the word "want" into "wanted."
124
322416
2737
你是通过将“want”转换成“wanted”做到的
05:25
It's a past tense.
125
325153
1666
它是个过去时态。
05:26
So this is a flourish which I added
126
326819
2103
所以这是一个重要的进度
05:28
to make the system complete.
127
328922
1576
使我完善这系统。
05:30
This is a map of words joined together
128
330498
1977
这是单词彼此联系在一起的一张图
05:32
as questions and answers,
129
332475
1656
通过问题和答案的方式,
05:34
and with these filters applied on top of them
130
334131
2264
通过顶上这些过滤器的应用
05:36
in order to modify them to represent
131
336395
1817
来修改他们来表达
05:38
certain nuances.
132
338212
1709
某种细微差别。
05:39
Let me show you this with a different example.
133
339921
1951
让我通过一个不同的例子来展示给大家。
05:41
Let's take this sentence:
134
341872
1254
就拿这个句子来说吧:
05:43
"I told the carpenter I could not pay him."
135
343126
1980
"I told the carpenter I could not pay him."(我跟木匠说过了我不能付他钱)
05:45
It's a fairly complicated sentence.
136
345106
1792
这是一个相当复杂的句子。
05:46
The way that this particular system works,
137
346898
1893
这个特别的系统工作的方式就是,
05:48
you can start with any part of this sentence.
138
348791
2578
你可以以句子的任意部分开始。
05:51
I'm going to start with the word "tell."
139
351369
1698
我将从"tell"(说)这个词开始。
05:53
So this is the word "tell."
140
353067
1462
这就是“说‘(tell)这个单词。
05:54
Now this happened in the past,
141
354529
1600
这发生在过去,
05:56
so I'm going to make that "told."
142
356129
2223
所以我将把它变成"说过"(told)。
05:58
Now, what I'm going to do is,
143
358352
1708
现在,我将这样做,
06:00
I'm going to ask questions.
144
360060
1756
我将提问,
06:01
So, who told? I told.
145
361816
2364
那么,谁说(told)了?我说(told)了。
06:04
I told whom? I told the carpenter.
146
364180
1927
我跟谁说(told)了?我跟木匠说(told)了。
06:06
Now we start with a different part of the sentence.
147
366107
1751
现在让我们从句子的另一个部分开始。
06:07
We start with the word "pay,"
148
367858
1867
我们从“付钱”(pay)这个词开始,
06:09
and we add the ability filter to it to make it "can pay."
149
369725
4577
我们加入了能力过滤器,将它变成了“can pay”(能够付钱)。
06:14
Then we make it "can't pay,"
150
374302
2101
然后我们将它变成了“can't pay”(不能付钱)
06:16
and we can make it "couldn't pay"
151
376403
1599
而且我们将它变成了“couldn't pay”((过去)不能付钱)
06:18
by making it the past tense.
152
378002
1663
通过将它变成过去时态。
06:19
So who couldn't pay? I couldn't pay.
153
379665
1923
那么谁"couldn't pay"((过去)不能付钱)?我"couldn't pay"((过去)不能付钱)。
06:21
Couldn't pay whom? I couldn't pay the carpenter.
154
381588
2676
不能付钱给谁?我不能付钱付给木匠。
06:24
And then you join these two together
155
384264
1731
然后你讲这两个关联在一起
06:25
by asking this question:
156
385995
1350
通过问这样的一个问题:
06:27
What did I tell the carpenter?
157
387345
1737
我跟木匠说什么了?
06:29
I told the carpenter I could not pay him.
158
389082
4049
我跟木匠说我不能付钱给他。
06:33
Now think about this. This is
159
393131
1937
现在想想这个问题。这是
06:35
—(Applause)—
160
395068
3542
—(掌声)—
06:38
this is a representation of this sentence
161
398610
3672
这是对这个句子的一个描述
06:42
without language.
162
402282
2435
不需要语言。
06:44
And there are two or three
interesting things about this.
163
404717
2192
这里有两三个很有意思的现象。
06:46
First of all, I could have started anywhere.
164
406909
3131
首先,我可以从任何地方开始。
06:50
I didn't have to start with the word "tell."
165
410040
2243
我没有必要从"tell"(说)这个单词开始。
06:52
I could have started anywhere in the sentence,
166
412283
1416
我本可以从句子的任何一个地方开始,
06:53
and I could have made this entire thing.
167
413699
1507
也能弄出这整个东西。
06:55
The second thing is, if I wasn't an English speaker,
168
415206
2776
第二点是,如果我不是一个说英语的人,
06:57
if I was speaking in some other language,
169
417982
2175
如果我说某种其他的语言,
07:00
this map would actually hold true in any language.
170
420157
3156
这个地图能够在任何语言中适用。
07:03
So long as the questions are standardized,
171
423313
1990
只要问题能够被标准化,
07:05
the map is actually independent of language.
172
425303
4287
这个地图事实上是独立于语言的。
07:09
So I call this FreeSpeech,
173
429590
2115
我管这个叫 Free Speech(自由说话),
07:11
and I was playing with this for many, many months.
174
431705
2935
我玩这个玩了好多好多个月。
07:14
I was trying out so many
different combinations of this.
175
434640
2726
我试过关于这个的好多个不同的组合。
07:17
And then I noticed something very
interesting about FreeSpeech.
176
437366
2289
然后我注意到 Free Speech 有一些非常有趣的现象。
07:19
I was trying to convert language,
177
439655
3243
我尝试过将语言进行转换,
07:22
convert sentences in English
into sentences in FreeSpeech,
178
442898
2384
将英文句子转换成 Free Speech的句子,
07:25
and vice versa, and back and forth.
179
445282
1752
然后反向转换,然后反复转换。
07:27
And I realized that this particular configuration,
180
447034
2255
我意识到这种特别的结构,
07:29
this particular way of representing language,
181
449289
2026
这种特别的语言表示方式,
07:31
it allowed me to actually create very concise rules
182
451315
4395
它竟然能让我创造非常简明的规则,
07:35
that go between FreeSpeech on one side
183
455710
2734
这种规则能够在 Free Speech 和
07:38
and English on the other.
184
458444
1488
英语之间转换。
07:39
So I could actually write this set of rules
185
459932
2180
因此我事实上能够写下这些
07:42
that translates from this particular
representation into English.
186
462112
3395
将特别表示法转换成英语的规则。
07:45
And so I developed this thing.
187
465507
1831
于是我发明了这个东西。
07:47
I developed this thing called
the FreeSpeech Engine
188
467338
2232
我发明了这个,叫做 Free Speech 引擎
07:49
which takes any FreeSpeech sentence as the input
189
469570
2561
它将任何 Free Speech 句子作为输入
07:52
and gives out perfectly grammatical English text.
190
472131
3930
然后输出语法完美的英语文本。
07:56
And by putting these two pieces together,
191
476061
1605
通过将这两部分结合在一起,
07:57
the representation and the engine,
192
477666
1881
表示部分和引擎部分,
07:59
I was able to create an app, a
technology for children with autism,
193
479547
3796
我得以创造一个 app, 一种专为自闭症儿童而生的技术,
08:03
that not only gives them words
194
483343
2499
它不仅教他们文字
08:05
but also gives them grammar.
195
485842
3941
它也教他们语法。
08:09
So I tried this out with kids with autism,
196
489783
2360
我给患了自闭症的孩子试过这个,
08:12
and I found that there was an
incredible amount of identification.
197
492143
5013
我获得了莫大的肯定。
08:17
They were able to create sentences in FreeSpeech
198
497156
2720
他们能够使用 Free Speech 来创造那些
08:19
which were much more complicated
but much more effective
199
499876
2558
比起类似英文语句
08:22
than equivalent sentences in English,
200
502434
2899
更复杂却有效多了的语句,
08:25
and I started thinking about
201
505333
1682
然后我开始思考
08:27
why that might be the case.
202
507015
1969
为什么是这样的。
08:28
And I had an idea, and I want to
talk to you about this idea next.
203
508984
4287
我有一个想法,我后面想要和大家说说这个想法。
08:33
In about 1997, about 15 years back,
204
513271
3142
大概在1997年,大约15年前,
08:36
there were a group of scientists that were trying
205
516413
2011
有一群科学家他们试图
08:38
to understand how the brain processes language,
206
518424
2389
弄清楚大脑是如何处理语言的,
08:40
and they found something very interesting.
207
520813
1779
然后他们发现了一些有很意思的现象。
08:42
They found that when you learn a language
208
522592
1872
他们发现当你还说小孩时学习一门语言
08:44
as a child, as a two-year-old,
209
524464
2912
比如2岁大,
08:47
you learn it with a certain part of your brain,
210
527376
2366
你使用大脑的特定的部分来学习它,
08:49
and when you learn a language as an adult --
211
529742
1600
当你作为一名成年人来学习它的时候——
08:51
for example, if I wanted to
learn Japanese right now —
212
531342
3911
比如,我现在想学习日语——
08:55
a completely different part of my brain is used.
213
535253
2707
我的大脑的一个完全不同的部分被使用了。
08:57
Now I don't know why that's the case,
214
537960
1831
现在我不知道为什么是这样的,
08:59
but my guess is that that's because
215
539791
1991
但是我猜测那是因为
09:01
when you learn a language as an adult,
216
541782
2437
当你作为成年人学习语言的时候,
09:04
you almost invariably learn it
217
544219
1616
你几乎总是在
09:05
through your native language, or
through your first language.
218
545835
4266
通过你的母语或者通过你的第一语言在学习它。
09:10
So what's interesting about FreeSpeech
219
550101
3252
所以对于 Free Speech 而言有意思的是
09:13
is that when you create a sentence
220
553353
1802
当你创造一个句子
09:15
or when you create language,
221
555155
1695
或者当你创造语言时,
09:16
a child with autism creates
language with FreeSpeech,
222
556850
3070
患了自闭症的孩子通过 Free Speech 创造语言,
09:19
they're not using this support language,
223
559920
1833
他们没有使用这种语言中介,
09:21
they're not using this bridge language.
224
561753
2211
他们没有使用桥梁语言。
09:23
They're directly constructing the sentence.
225
563964
2657
他们直接在构造句子。
09:26
And so this gave me this idea.
226
566621
2193
这给了我这样一个想法。
09:28
Is it possible to use FreeSpeech
227
568814
2024
这样是可能的吗?不仅仅将 Free Speech
09:30
not for children with autism
228
570838
2510
给自闭症儿童使用
09:33
but to teach language to people without disabilities?
229
573348
6262
也给没有缺陷的人学习语言用?
09:39
And so I tried a number of experiments.
230
579610
1978
于是我尝试了一些实验。
09:41
The first thing I did was I built a jigsaw puzzle
231
581588
2948
首先我做的时建造一个拼图游戏
09:44
in which these questions and answers
232
584536
1970
它的问题和答案
09:46
are coded in the form of shapes,
233
586506
1835
以图形和颜色
09:48
in the form of colors,
234
588341
1138
的形式编码,
09:49
and you have people putting these together
235
589479
1849
然后你让人们把他们拼凑在一起
09:51
and trying to understand how this works.
236
591328
1773
然后试图理解这是怎么运作的。
09:53
And I built an app out of it, a game out of it,
237
593101
2376
我通过它制作了一个应用,是一个游戏
09:55
in which children can play with words
238
595477
2661
孩子们可以用文字游戏
09:58
and with a reinforcement,
239
598138
1704
然后巩固,
09:59
a sound reinforcement of visual structures,
240
599842
2585
用声音强化视觉结构,
10:02
they're able to learn language.
241
602427
2013
让他们学习语言。
10:04
And this, this has a lot of potential, a lot of promise,
242
604440
2736
然后这个,这个有很大的潜力,很多承诺,
10:07
and the government of India recently
243
607176
1975
而且印度政府最近
10:09
licensed this technology from us,
244
609151
1404
从我们这项技术授权,
10:10
and they're going to try it out
with millions of different children
245
610555
2074
他们将在上百万不同的儿童身上使用
10:12
trying to teach them English.
246
612629
2605
尝试教他们英语。
10:15
And the dream, the hope, the vision, really,
247
615234
2614
而这个梦想,希望,远景,实际上,
10:17
is that when they learn English this way,
248
617848
3082
就是他们能够用这种方式学习英语,
10:20
they learn it with the same proficiency
249
620930
2643
他们想能够将它学得熟练得
10:23
as their mother tongue.
250
623573
3718
跟他们的母语一样。
10:27
All right, let's talk about something else.
251
627291
3816
好吧,让我们来谈点别的东西。
10:31
Let's talk about speech.
252
631107
1997
让我们谈谈语言。
10:33
This is speech.
253
633104
1271
这个是语言,
10:34
So speech is the primary mode of communication
254
634375
1962
语言是我们之间
10:36
delivered between all of us.
255
636337
1613
交流主要模式。
10:37
Now what's interesting about speech is that
256
637950
1855
关于语言有意思的是
10:39
speech is one-dimensional.
257
639805
1245
语言是一维的。
10:41
Why is it one-dimensional?
258
641050
1359
为什么是一维的呢?
10:42
It's one-dimensional because it's sound.
259
642409
1568
它是一维的因为它是声音。
10:43
It's also one-dimensional because
260
643977
1539
它是一维的也是因为
10:45
our mouths are built that way.
261
645516
1205
我们的嘴是那样构造的。
10:46
Our mouths are built to create
one-dimensional sound.
262
646721
3512
我们的嘴被构造得生产一维的声音。
10:50
But if you think about the brain,
263
650233
2866
但是如果你想想大脑,
10:53
the thoughts that we have in our heads
264
653099
1764
在我们脑子中的思法
10:54
are not one-dimensional.
265
654863
2102
不是一维的。
10:56
I mean, we have these rich,
266
656965
1459
我的意思是,我们拥有这些丰富的,
10:58
complicated, multi-dimensional ideas.
267
658424
3028
复杂的,多维的思想。
11:01
Now, it seems to me that language
268
661452
1690
现在,对我而言好像是这样的
11:03
is really the brain's invention
269
663142
2332
语言确实是大脑的发明
11:05
to convert this rich, multi-dimensional thought
270
665474
3096
将这种丰富的,多维的想法
11:08
on one hand
271
668570
1587
进行转换,一方面,
11:10
into speech on the other hand.
272
670157
1923
转换成语言,另一方面。
11:12
Now what's interesting is that
273
672080
1762
现在有趣的是
11:13
we do a lot of work in information nowadays,
274
673842
2568
我们如今在做大量的信息化工作,
11:16
and almost all of that is done
in the language domain.
275
676410
3079
而且几乎所有的工作都是在语言领域的。
11:19
Take Google, for example.
276
679489
1939
比如Google,打个比方吧。
11:21
Google trawls all these
countless billions of websites,
277
681428
2677
Google 网罗了数十亿的网站,
11:24
all of which are in English,
and when you want to use Google,
278
684105
2725
都是英文网站,当你想要使用 Google 时,
11:26
you go into Google search, and you type in English,
279
686830
2450
你进入 Google 搜索,然后你输入英文,
11:29
and it matches the English with the English.
280
689280
4163
然后它将英文与英文匹配。
11:33
What if we could do this in FreeSpeech instead?
281
693443
3583
如果我们能够用 Free Speech 来替代这件事会怎样呢?
11:37
I have a suspicion that if we did this,
282
697026
2301
我有一个猜想就是如果我们做到了这个,
11:39
we'd find that algorithms like searching,
283
699327
2068
我们就会发现类似于搜索,
11:41
like retrieval, all of these things,
284
701395
2325
类似于检索,所有这样的算法,
11:43
are much simpler and also more effective,
285
703720
3075
简单得多同时也有效得多了,
11:46
because they don't process
the data structure of speech.
286
706795
4417
因为他们不是处理语言的信息结构,
11:51
Instead they're processing
the data structure of thought.
287
711212
5976
而是他们处理想法的信息结构。
11:57
The data structure of thought.
288
717188
2808
想法的信息结构。
11:59
That's a provocative idea.
289
719996
2076
这是个令人振奋的主意。
12:02
But let's look at this in a little more detail.
290
722072
2142
但是让我们更仔细的想想这个问题。
12:04
So this is the FreeSpeech ecosystem.
291
724214
2366
这就是 Free Speech 生态体系。
12:06
We have the Free Speech
representation on one side,
292
726580
2884
我们把 Free Speech 的表示法放置在一个站点上,
12:09
and we have the FreeSpeech
Engine, which generates English.
293
729464
2228
我们有 Free Speech 引擎, 它生成英文。
12:11
Now if you think about it,
294
731694
1725
现在大家思考一下这个,
12:13
FreeSpeech, I told you, is completely
language-independent.
295
733419
2544
Free Speech,我已经跟大家讲过,是完全语言独立的。
12:15
It doesn't have any specific information in it
296
735963
2087
他没有任何特定的信息在里面
12:18
which is about English.
297
738050
1228
关于英语的。
12:19
So everything that this system knows about English
298
739278
2800
于是这个系统所知的所有关于英语的
12:22
is actually encoded into the engine.
299
742078
4620
事实上都被编码写入了引擎。
12:26
That's a pretty interesting concept in itself.
300
746698
2237
它本身就是一个非常有趣的概念。
12:28
You've encoded an entire human language
301
748935
3604
你已经将整个人类的的语种编码
12:32
into a software program.
302
752539
2645
写入了一个软件程序中。
12:35
But if you look at what's inside the engine,
303
755184
2531
但是如果你看看引擎里面有什么,
12:37
it's actually not very complicated.
304
757715
2358
他实际上并不是很复杂。
12:40
It's not very complicated code.
305
760073
2105
不是非常复杂的代码。
12:42
And what's more interesting is the fact that
306
762178
2672
更有趣的情况是
12:44
the vast majority of the code in that engine
307
764850
2203
引擎里绝大多数的代码
12:47
is not really English-specific.
308
767053
2412
都不是英文特有的。
12:49
And that gives this interesting idea.
309
769465
1895
这给出的这样一个有趣的想法。
12:51
It might be very easy for us to actually
310
771360
2038
或许对我们来说
12:53
create these engines in many,
many different languages,
311
773398
3826
用许多不同的语言来创造这些引擎是很容易的,
12:57
in Hindi, in French, in German, in Swahili.
312
777224
6354
比如用印地语,法语,德语,斯瓦希里语。
13:03
And that gives another interesting idea.
313
783578
2799
这给了我们另一个有趣的想法。
13:06
For example, supposing I was a writer,
314
786377
2654
比如,假设我是一名作家,
13:09
say, for a newspaper or for a magazine.
315
789031
2122
比方说,为报社或者为杂志工作。
13:11
I could create content in one language, FreeSpeech,
316
791153
5011
我可以用一种语言创作内容,Free Speech,
13:16
and the person who's consuming that content,
317
796164
2056
看内容的人,
13:18
the person who's reading that particular information
318
798220
3061
阅览特定信息的人,
13:21
could choose any engine,
319
801281
2495
能够选择任意引擎,
13:23
and they could read it in their own mother tongue,
320
803776
2736
他们能够用他们的母语来阅读,
13:26
in their native language.
321
806512
3939
用他们的当地语言。
13:30
I mean, this is an incredibly attractive idea,
322
810451
2722
我的意思是,这是一个极其诱人的想法,
13:33
especially for India.
323
813173
1999
特别是对印度而言。
13:35
We have so many different languages.
324
815172
1690
我们有这么多不同的语言。
13:36
There's a song about India, and there's a description
325
816862
2142
有一首关于印度的歌,其中有一段描述
13:39
of the country as, it says,
326
819004
2344
是关于这个国家的,它是这样唱的,
13:41
(in Sanskrit).
327
821348
2360
(梵文)
13:43
That means "ever-smiling speaker
328
823708
2773
意思是说“永远微笑着的
13:46
of beautiful languages."
329
826481
4519
美好的语言的述说者”
13:51
Language is beautiful.
330
831000
1964
语言是美好的。
13:52
I think it's the most beautiful of human creations.
331
832964
2454
我认为它是人类发明中最美好的。
13:55
I think it's the loveliest thing
that our brains have invented.
332
835418
3978
我认为他是我们的大脑创造的最可爱的东西。
13:59
It entertains, it educates, it enlightens,
333
839396
3584
它使人欢乐,教导众生,启发心灵
14:02
but what I like the most about language
334
842980
2044
但是关于语言我最喜欢的
14:05
is that it empowers.
335
845024
1500
是它带给人力量。
14:06
I want to leave you with this.
336
846524
1838
我想以一下内容作为结束。
14:08
This is a photograph of my collaborators,
337
848362
2385
这是一张我的同事的照片,
14:10
my earliest collaborators
338
850747
997
我最早的同事
14:11
when I started working on language
339
851744
1462
当我开始研究语言
14:13
and autism and various other things.
340
853206
1502
和自闭症和许多其他的东西的时候。
14:14
The girl's name is Pavna,
341
854708
1417
这个女孩的名字叫 Pavna,
14:16
and that's her mother, Kalpana.
342
856125
1902
这个是她的妈妈, Kalpana。
14:18
And Pavna's an entrepreneur,
343
858027
2138
Pavna 是一名创业者,
14:20
but her story is much more remarkable than mine,
344
860165
2371
但她的故事比我的更值得一提,
14:22
because Pavna is about 23.
345
862536
2400
因为 Pavna 大约只有23岁。
14:24
She has quadriplegic cerebral palsy,
346
864936
2552
她患有脑性四肢瘫痪,
14:27
so ever since she was born,
347
867488
1640
所以从她出生以来,
14:29
she could neither move nor talk.
348
869128
3600
她既不能行动也不能说话。
14:32
And everything that she's accomplished so far,
349
872728
2403
她目前的所有成就,
14:35
finishing school, going to college,
350
875131
2227
完成学业,进入大学,
14:37
starting a company,
351
877358
1416
创立公司,
14:38
collaborating with me to develop Avaz,
352
878774
2140
与我合作开发 Avaz,
14:40
all of these things she's done
353
880914
1892
她所做的所有这些
14:42
with nothing more than moving her eyes.
354
882806
5523
都是通过移动她的眼睛来完成的。
14:48
Daniel Webster said this:
355
888329
2689
Daniel Webster 曾经这样说过:
14:51
He said, "If all of my possessions were taken
356
891018
2940
他说,“如果我所拥有的一切都将被带走
14:53
from me with one exception,
357
893958
2988
只能有一个例外,
14:56
I would choose to keep the power of communication,
358
896946
2981
我将选择留下交流的力量,
14:59
for with it, I would regain all the rest."
359
899927
3903
因为有了它,我将能够重建所有其他的东西。”
15:03
And that's why, of all of these incredible
applications of FreeSpeech,
360
903830
5116
这就是为何,在 Free Speech 所有这些不可思议的应用中,
15:08
the one that's closest to my heart
361
908946
2080
最接近我的心灵的那一个
15:11
still remains the ability for this
362
911026
2068
仍旧是它赋予
15:13
to empower children with disabilities
363
913094
2380
自闭症儿童
15:15
to be able to communicate,
364
915474
1773
能够交流的力量,
15:17
the power of communication,
365
917247
1789
交流的力量,
15:19
to get back all the rest.
366
919036
2240
重建所有其他的东西。
15:21
Thank you.
367
921276
1397
谢谢大家。
15:22
(Applause)
368
922673
1332
(掌声)
15:24
Thank you. (Applause)
369
924005
4199
谢谢。(掌声)
15:28
Thank you. Thank you. Thank you. (Applause)
370
928204
5323
谢谢大家。谢谢。谢谢。(掌声)
15:33
Thank you. Thank you. Thank you. (Applause)
371
933527
4000
谢谢大家。谢谢。谢谢。(掌声)
New videos
关于本网站
这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。