Ajit Narayanan: A word game to communicate in any language

115,040 views ใƒป 2014-03-10

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Hallel Rabinowitz ืžื‘ืงืจ: Ido Dekkers
00:12
I work with children with autism.
0
12721
2670
ืื ื™ ืขื•ื‘ื“ ืขื ื™ืœื“ื™ื ืื•ื˜ื™ืกื˜ื™ื™ื.
00:15
Specifically, I make technologies
1
15391
1914
ืกืคืฆื™ืคื™ืช, ืื ื™ ื™ื•ืฆืจ ื˜ื›ื ื•ืœื•ื’ื™ื•ืช
00:17
to help them communicate.
2
17305
2171
ื›ื“ื™ ืœืกื™ื™ืข ืœื”ื ืœืชืงืฉืจ.
00:19
Now, many of the problems that children
3
19476
1539
ืขื›ืฉื™ื•, ื”ืจื‘ื” ืžื”ื‘ืขื™ื•ืช ืื™ืชืŸ ื™ืœื“ื™ื ืื•ื˜ื™ืกื˜ื™ื™ื
00:21
with autism face, they have a common source,
4
21015
3763
ืžืชืžื•ื“ื“ื™ื ื”ืŸ ื‘ืขืœื•ืช ืฉื•ืจืฉ ืžืฉื•ืชืฃ,
00:24
and that source is that they find it difficult
5
24778
2094
ื•ื”ืฉื•ืจืฉ ื”ื–ื” ื”ื•ื ืฉืงืฉื” ืœื”ื
00:26
to understand abstraction, symbolism.
6
26872
5260
ืœื”ื‘ื™ืŸ ื”ืคืฉื˜ื”, ืกื™ืžืœื™ื•ืช.
00:32
And because of this, they have a lot of difficulty with language.
7
32132
4652
ื•ืœื›ืŸ ื™ืฉ ืœื”ื ืงื•ืฉื™ ืจื‘ ืขื ืฉืคื”.
00:36
Let me tell you a little bit about why this is.
8
36784
3015
ืชื ื• ืœื™ ืœื”ืกื‘ื™ืจ ืœื›ื ืงืฆืช ืœืžื”.
00:39
You see that this is a picture of a bowl of soup.
9
39799
3934
ืืชื ืจื•ืื™ื ืฉื–ื• ืชืžื•ื ื” ืฉืœ ืงืขืจืช ืžืจืง.
00:43
All of us can see it. All of us understand this.
10
43733
2485
ื›ื•ืœื ื• ืจื•ืื™ื ืืช ื–ื”. ื›ื•ืœื ื• ื™ื›ื•ืœื™ื ืœื”ื‘ื™ืŸ ืืช ื–ื”.
00:46
These are two other pictures of soup,
11
46218
2312
ื”ื ื” ืขื•ื“ ืฉืชื™ ืชืžื•ื ื•ืช ืฉืœ ืžืจืง,
00:48
but you can see that these are more abstract
12
48530
2067
ืื‘ืœ ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืฉืืœื• ื™ื•ืชืจ ืžื•ืคืฉื˜ื•ืช
00:50
These are not quite as concrete.
13
50597
1856
ื”ืŸ ืคื—ื•ืช ืžืžืฉื™ื•ืช.
00:52
And when you get to language,
14
52453
2174
ื•ื›ืฉืžื’ื™ืขื™ื ืœืฉืคื”
00:54
you see that it becomes a word
15
54627
1868
ืจื•ืื™ื ืฉื–ื” ื ื”ื™ื” ืžื™ืœื”
00:56
whose look, the way it looks and the way it sounds,
16
56495
3261
ืฉื”ืžืจืื” ืฉืœื”, ืื™ืš ืฉื”ื™ื ื ืจืื™ืช ื•ืื™ืš ืฉื”ื™ื ื ืฉืžืขืช,
00:59
has absolutely nothing to do with what it started with,
17
59756
2912
ืœื ืงืฉื•ืจื™ื ื‘ื›ืœืœ ืœืžื” ืฉื”ืชื—ืœื ื• ืžืžื ื•,
01:02
or what it represents, which is the bowl of soup.
18
62668
2830
ืื• ืœืžื” ืฉื”ื™ื ืžืกืžืœืช, ืงืขืจืช ื”ืžืจืง.
01:05
So it's essentially a completely abstract,
19
65498
2900
ืื– ื”ืžื™ืœื” ื‘ืžื”ื•ืชื” ื”ื™ื ืžื•ืคืฉื˜ืช ืœื’ืžืจื™,
01:08
a completely arbitrary representation of something
20
68398
2576
ื™ื™ืฆื•ื’ ืฉืจื™ืจื•ืชื™ ืœื’ืžืจื™ ืฉืœ ืžืฉื”ื•
01:10
which is in the real world,
21
70974
1163
ืฉืงื™ื™ื ื‘ืขื•ืœื ื”ืืžื™ืชื™.
01:12
and this is something that children with autism
22
72137
1791
ื•ื–ื” ืžืฉื”ื• ืฉื™ืœื“ื™ื ืื•ื˜ื™ืกื˜ื™ื™ื
01:13
have an incredible amount of difficulty with.
23
73928
3164
ื—ื•ื•ื™ื ืงื•ืฉื™ ืขืฆื•ื ืžื•ืœื•.
01:17
Now that's why most of the people that work with children with autism --
24
77092
2751
ื•ื–ืืช ื”ืกื™ื‘ื” ืฉืจื•ื‘ ื”ืื ืฉื™ื ืฉืขื•ื‘ื“ื™ื ืขื ื™ืœื“ื™ื ืื•ื˜ื™ืกื˜ื™ื™ื --
01:19
speech therapists, educators --
25
79843
1878
ืงืœื™ื ืื™ ืชืงืฉื•ืจืช, ืžื—ื ื›ื™ื --
01:21
what they do is, they try to help children with autism
26
81721
2633
ืžื” ืฉื”ื ืขื•ืฉื™ื ื”ื•ื ืœื ืกื•ืช ืœืขื–ื•ืจ ืœื™ืœื“ื™ื ืื•ื˜ื™ืกื˜ื™ื™ื
01:24
communicate not with words, but with pictures.
27
84354
3229
ืœืชืงืฉืจ ืœื ื‘ืขื–ืจืช ืžื™ืœื™ื, ืืœื ื‘ืขื–ืจืช ืชืžื•ื ื•ืช.
01:27
So if a child with autism wanted to say,
28
87583
1930
ืื– ืื ื™ืœื“ ืื•ื˜ื™ืกื˜ื™ ืจืฆื” ืœื”ื’ื™ื“:
01:29
"I want soup," that child would pick
29
89513
2458
"ืื ื™ ืจื•ืฆื” ืžืจืง", ื”ื™ืœื“ ื”ื–ื” ื”ื™ื” ื‘ื•ื—ืจ
01:31
three different pictures, "I," "want," and "soup,"
30
91971
2260
ืฉืœื•ืฉ ืชืžื•ื ื•ืช ืฉื•ื ื•ืช "ืื ื™" "ืจื•ืฆื”" ื•"ืžืจืง",
01:34
and they would put these together,
31
94231
1609
ื•ื”ื ื”ื™ื• ืžื—ื‘ืจื™ื ืืช ื”ืžื™ืœื™ื,
01:35
and then the therapist or the parent would
32
95840
1867
ื•ืื– ื”ืžื˜ืคืœ ืื• ื”ื”ื•ืจื” ื”ื™ื”
01:37
understand that this is what the kid wants to say.
33
97707
1887
ืžื‘ื™ืŸ ืฉื–ื” ืžื” ืฉื”ื™ืœื“ ืจื•ืฆื” ืœื”ื’ื™ื“.
01:39
And this has been incredibly effective;
34
99594
1778
ื•ื”ืฉื™ื˜ื” ื”ื–ื• ื”ื™ื™ืชื” ืืคืงื˜ื™ื‘ื™ืช ืœื’ืžืจื™;
01:41
for the last 30, 40 years
35
101372
2141
ื‘ืžืฉืš ื”30, 40 ืฉื ื” ื”ืื—ืจื•ื ื•ืช
01:43
people have been doing this.
36
103513
1613
ืื ืฉื™ื ืขื•ืฉื™ื ืืช ื–ื”.
01:45
In fact, a few years back,
37
105126
1349
ืœืžืขืฉื”, ืœืคื ื™ ื›ืžื” ืฉื ื™ื,
01:46
I developed an app for the iPad
38
106475
2675
ืื ื™ ืคื™ืชื—ืชื™ ืืคืœื™ืงืฆื™ื” ืœืื™ื™ืคื“
01:49
which does exactly this. It's called Avaz,
39
109150
2255
ืฉืขื•ืฉื” ื‘ื“ื™ื•ืง ืืช ื–ื”. ื”ื™ื ื ืงืจืืช "ืื•ื•ื–",
01:51
and the way it works is that kids select
40
111405
2279
ื•ื‘ืืคืœื™ืงืฆื™ื” ื”ื™ืœื“ื™ื ื‘ื•ื—ืจื™ื
01:53
different pictures.
41
113684
1321
ืชืžื•ื ื•ืช ืฉื•ื ื•ืช.
01:55
These pictures are sequenced together to form sentences,
42
115005
2570
ื”ืชืžื•ื ื•ืช ื”ืืœื• ืžืกื•ื“ืจื•ืช ื™ื—ื“ ื›ื“ื™ ืœื™ืฆื•ืจ ืžืฉืคื˜ื™ื,
01:57
and these sentences are spoken out.
43
117575
1719
ื•ื”ืžืฉืคื˜ื™ื ื”ืœืœื• ื ืืžืจื™ื ื‘ืงื•ืœ.
01:59
So Avaz is essentially converting pictures,
44
119294
3025
ืื– ืื•ื•ื– ื‘ืขืฆื ืžืžื™ืจ ืชืžื•ื ื•ืช,
02:02
it's a translator, it converts pictures into speech.
45
122319
3960
ื–ื” ืžืชืจื’ื, ื–ื” ืžืžื™ืจ ืชืžื•ื ื•ืช ืœื“ื™ื‘ื•ืจ.
02:06
Now, this was very effective.
46
126279
1718
ืขื›ืฉื™ื•, ื–ื” ื”ื™ื” ืืคืงื˜ื™ื‘ื™ ืžืื•ื“.
02:07
There are thousands of children using this,
47
127997
1384
ื™ืฉ ืืœืคื™ ื™ืœื“ื™ื ืฉืžืฉืชืžืฉื™ื ื‘ื–ื”,
02:09
you know, all over the world,
48
129381
1430
ืืชื ื™ื•ื“ืขื™ื, ื‘ื›ืœ ื”ืขื•ืœื,
02:10
and I started thinking about
49
130811
2175
ื•ื”ืชื—ืœืชื™ ืœื—ืฉื•ื‘ ืขืœ
02:12
what it does and what it doesn't do.
50
132986
2654
ืžื” ื–ื” ืขื•ืฉื” ื•ืžื” ื–ื” ืœื ืขื•ืฉื”.
02:15
And I realized something interesting:
51
135640
1684
ื•ื”ื‘ื ืชื™ ืžืฉื”ื• ืžืขื ื™ื™ืŸ:
02:17
Avaz helps children with autism learn words.
52
137324
4203
ืื•ื•ื– ืขื•ื–ืจ ืœื™ืœื“ื™ื ืื•ื˜ื™ืกื˜ื™ื™ื ืœืœืžื•ื“ ืžื™ืœื™ื.
02:21
What it doesn't help them do is to learn
53
141527
2405
ื–ื” ืœื ืขื•ื–ืจ ืœื”ื ืœืœืžื•ื“
02:23
word patterns.
54
143932
2748
ื“ืคื•ืกื™ ืžื™ืœื™ื.
02:26
Let me explain this in a little more detail.
55
146680
2472
ืชื ื• ืœื™ ืœื”ืกื‘ื™ืจ ืืช ื–ื” ื‘ืงืฆืช ื™ื•ืชืจ ืคื™ืจื•ื˜.
02:29
Take this sentence: "I want soup tonight."
56
149152
3057
ืงื—ื• ืืช ื”ืžืฉืคื˜ ื”ื–ื”: "ืื ื™ ืจื•ืฆื” ืžืจืง ื”ืขืจื‘."
02:32
Now it's not just the words here that convey the meaning.
57
152209
4080
ืืœื• ืœื ืจืง ื”ืžื™ืœื™ื ื›ืืŸ ืฉืžืขื‘ื™ืจื•ืช ืืช ื”ืžืฉืžืขื•ืช.
02:36
It's also the way in which these words are arranged,
58
156289
3140
ืืœื ื’ื ื”ื“ืจืš ื‘ื” ืžื™ืœื™ื ืืœื• ืžืกื•ื“ืจื•ืช,
02:39
the way these words are modified and arranged.
59
159429
2515
ื”ื“ืจืš ื‘ื” ื”ืžื™ืœื™ื ืžื•ืชืืžื•ืช ื•ืžืกื•ื“ืจื•ืช.
02:41
And that's why a sentence like "I want soup tonight"
60
161959
2306
ื•ืœื›ืŸ ืžืฉืคื˜ ื›ืžื• "ืื ื™ ืจื•ืฆื” ืžืจืง ื”ืขืจื‘"
02:44
is different from a sentence like
61
164265
1984
ืฉื•ื ื” ืžืžืฉืคื˜ ื›ืžื•
02:46
"Soup want I tonight," which is completely meaningless.
62
166249
3312
"ื”ืขืจื‘ ืจื•ืฆื” ืžืจืง ืื ื™" ืฉื”ื•ื ื—ืกืจ ืžืฉืžืขื•ืช.
02:49
So there is another hidden abstraction here
63
169561
2619
ืื– ื™ืฉ ื›ืืŸ ืขื•ื“ ื”ืคืฉื˜ื” ืžื•ืกืชืจืช
02:52
which children with autism find a lot of difficulty coping with,
64
172180
3557
ืฉื™ืœื“ื™ื ืื•ื˜ื™ืกื˜ื™ื™ื ืžืชืงืฉื™ื ืื™ืชื”,
02:55
and that's the fact that you can modify words
65
175737
2840
ื•ื–ื• ื”ืขื•ื‘ื“ื” ืฉืืคืฉืจ ืœื”ืชืื™ื ืžื™ืœื™ื
02:58
and you can arrange them to have
66
178577
2101
ื•ืœืกื“ืจ ืื•ืชืŸ ื›ืš ืฉื™ืฉ ืœื”ืŸ
03:00
different meanings, to convey different ideas.
67
180678
2895
ืžืฉืžืขื•ื™ื•ืช ืื—ืจื•ืช, ื›ื“ื™ ืœื”ืขื‘ื™ืจ ืจืขื™ื•ื ื•ืช ืฉื•ื ื™ื.
03:03
Now, this is what we call grammar.
68
183573
3459
ื–ื” ืžื” ืฉื ืงืจื ื“ืงื“ื•ืง.
03:07
And grammar is incredibly powerful,
69
187032
2036
ื•ื“ืงื“ื•ืง ื”ื•ื ืขื•ืฆืžืชื™ ืœื”ืคืœื™ื,
03:09
because grammar is this one component of language
70
189068
3157
ื‘ื’ืœืœ ืฉื“ืงื“ื•ืง ื”ื•ื ื”ืžืจื›ื™ื‘ ื‘ืฉืคื”
03:12
which takes this finite vocabulary that all of us have
71
192225
3489
ืฉืœื•ืงื— ืืช ืื•ืฆืจ ื”ืžื™ืœื™ื ื”ืžื•ื’ื‘ืœ ืฉื™ืฉ ืœื›ื•ืœื ื•
03:15
and allows us to convey an infinite amount of information,
72
195714
4531
ื•ืžืืคืฉืจ ืœื ื• ืœื”ืขื‘ื™ืจ ื›ืžื•ืช ืื™ื ืกื•ืคื™ืช ืฉืœ ืžื™ื“ืข,
03:20
an infinite amount of ideas.
73
200245
2134
ืื™ื ืกื•ืฃ ืจืขื™ื•ื ื•ืช.
03:22
It's the way in which you can put things together
74
202379
2002
ื“ืงื“ื•ืง ื”ื•ื ื”ื“ืจืš ื‘ื” ืืคืฉืจ ืœื—ื‘ืจ ื“ื‘ืจื™ื
03:24
in order to convey anything you want to.
75
204381
2168
ื›ื“ื™ ืœื”ืขื‘ื™ืจ ื›ืœ ืžื” ืฉื ืจืฆื”.
03:26
And so after I developed Avaz,
76
206549
2127
ื•ืœื›ืŸ ืื—ืจื™ ืฉืคื™ืชื—ืชื™ ืืช ืื•ื•ื–,
03:28
I worried for a very long time
77
208676
1568
ื”ื•ื˜ืจื“ืชื™ ื”ืจื‘ื” ืžืื•ื“ ื–ืžืŸ
03:30
about how I could give grammar to children with autism.
78
210244
3910
ื‘ืฉืืœื” ืื™ืš ืื•ื›ืœ ืœืชืช ื“ืงื“ื•ืง ืœื™ืœื“ื™ื ืื•ื˜ื™ืกื˜ื™ื™ื?
03:34
The solution came to me from a very interesting perspective.
79
214154
2275
ื”ืคืชืจื•ืŸ ื”ื’ื™ืข ืืœื™ ืžื ืงื•ื“ืช ืžื‘ื˜ ืžืื•ื“ ืžืขื ื™ื™ื ืช.
03:36
I happened to chance upon a child with autism
80
216429
3449
ื‘ืžืงืจื” ื ืชืงืœืชื™ ื‘ื™ืœื“ื” ืื•ื˜ื™ืกื˜ื™ืช
03:39
conversing with her mom,
81
219878
2109
ืžืชืงืฉืจืช ืขื ืืžื”,
03:41
and this is what happened.
82
221987
2094
ื•ื–ื” ืžื” ืฉืงืจื”:
03:44
Completely out of the blue, very spontaneously,
83
224081
2186
ืœื’ืžืจื™ ืœืคืชืข, ื‘ืกืคื•ื ื˜ื ื™ื•ืช ืจื‘ื”,
03:46
the child got up and said, "Eat."
84
226267
2463
ื”ื™ืœื“ื” ืงืžื” ื•ืืžืจื” "ืœืื›ื•ืœ".
03:48
Now what was interesting was
85
228730
1770
ืขื›ืฉื™ื• ืžื” ืฉื”ื™ื” ืžืขื ื™ื™ืŸ ื”ื•ื
03:50
the way in which the mom was trying to tease out
86
230500
4244
ื”ื“ืจืš ื‘ื” ื”ืื ื ื™ืกืชื” ืœื“ืœื•ืช
03:54
the meaning of what the child wanted to say
87
234744
2213
ืืช ื”ืžืฉืžืขื•ืช ืฉืœ ืžื” ืฉื”ื™ืœื“ื” ืจืฆืชื” ืœื”ื’ื™ื“
03:56
by talking to her in questions.
88
236957
2260
ื‘ืืžืฆืขื•ืช ืฉืืœื•ืช.
03:59
So she asked, "Eat what? Do you want to eat ice cream?
89
239217
2593
ืื– ื”ื™ื ืฉืืœื” "ืœืื›ื•ืœ ืžื”? ืืช ืจื•ืฆื” ืœืื›ื•ืœ ื’ืœื™ื“ื”?
04:01
You want to eat? Somebody else wants to eat?
90
241810
2112
ืืช ืจื•ืฆื” ืœืื›ื•ืœ? ืžื™ืฉื”ื• ืื—ืจ ืจื•ืฆื” ืœืื›ื•ืœ?
04:03
You want to eat cream now? You want to eat ice cream in the evening?"
91
243922
3313
ืืช ืจื•ืฆื” ืœืื›ื•ืœ ื’ืœื™ื“ื” ืขื›ืฉื™ื•? ืืช ืจื•ืฆื” ืœืื›ื•ืœ ื’ืœื™ื“ื” ื‘ืขืจื‘?"
04:07
And then it struck me that
92
247235
1514
ื•ืื– ืงืœื˜ืชื™
04:08
what the mother had done was something incredible.
93
248749
2028
ืฉืžื” ืฉื”ืื ืขืฉืชื” ื”ื™ื” ื“ื‘ืจ ืžื“ื”ื™ื.
04:10
She had been able to get that child to communicate
94
250777
1994
ื”ื™ื ื”ืฆืœื™ื—ื” ืœื’ืจื•ื ืœื™ืœื“ื” ืœื”ืขื‘ื™ืจ
04:12
an idea to her without grammar.
95
252771
4138
ืœื” ืจืขื™ื•ืŸ ืœืœื ื“ืงื“ื•ืง.
04:16
And it struck me that maybe this is what
96
256909
2696
ื•ืงืœื˜ืชื™ ืฉืื•ืœื™ ื–ื” ืžื”
04:19
I was looking for.
97
259605
1385
ืฉื—ื™ืคืฉืชื™.
04:20
Instead of arranging words in an order, in sequence,
98
260990
4142
ื‘ืžืงื•ื ืกื™ื“ื•ืจ ืžื™ืœื™ื ื‘ืกื“ืจ, ื‘ืชื‘ื ื™ืช,
04:25
as a sentence, you arrange them
99
265132
2172
ื›ืžืฉืคื˜, ืžืกื“ืจื™ื ืื•ืชื
04:27
in this map, where they're all linked together
100
267304
3811
ื‘ืžืคื” ื”ื–ื•, ื‘ื” ื›ื•ืœื ืžื—ื•ื‘ืจื™ื
04:31
not by placing them one after the other
101
271115
2143
ืœื ืข"ื™ ื”ืกื“ืจ
04:33
but in questions, in question-answer pairs.
102
273258
3284
ืืœื ื‘ืฉืืœื•ืช, ื‘ื–ื•ื’ื•ืช ืฉืœ ืฉืืœื” ื•ืชืฉื•ื‘ื”.
04:36
And so if you do this, then what you're conveying
103
276542
2358
ื•ื›ืš, ืื ืขื•ืฉื™ื ืืช ื–ื”, ืื– ืžื” ืฉืžืขื‘ื™ืจื™ื
04:38
is not a sentence in English,
104
278900
1986
ื”ื•ื ืœื ืžืฉืคื˜ ื‘ืื ื’ืœื™ืช,
04:40
but what you're conveying is really a meaning,
105
280886
2966
ืืœื ืžืขื‘ื™ืจื™ื ืืช ื”ืžืฉืžืขื•ืช.
04:43
the meaning of a sentence in English.
106
283852
1511
ื”ืžืฉืžืขื•ืช ืฉืœ ื”ืžืฉืคื˜ ื‘ืื ื’ืœื™ืช.
04:45
Now, meaning is really the underbelly, in some sense, of language.
107
285363
2932
ืžืฉืžืขื•ืช ื”ื™ื ื‘ืฆื•ืจื” ืžืกื•ื™ื™ืžืช ื”ื‘ื˜ืŸ ื”ืจื›ื” ืฉืœ ืฉืคื”.
04:48
It's what comes after thought but before language.
108
288295
3821
ื–ื” ืžื” ืฉื‘ื ืื—ืจื™ ืžื—ืฉื‘ื”, ืื‘ืœ ืœืคื ื™ ืฉืคื”.
04:52
And the idea was that this particular representation
109
292116
2503
ื•ื”ืจืขื™ื•ืŸ ื”ื™ื” ืฉื”ื™ื™ืฆื•ื’ ื”ืžื™ื•ื—ื“ ื”ื–ื”
04:54
might convey meaning in its raw form.
110
294619
3261
ืื•ืœื™ ื™ืขื‘ื™ืจ ืžืฉืžืขื•ืช ื‘ืฆื•ืจื” ื”ื’ื•ืœืžื™ืช ืฉืœื”.
04:57
So I was very excited by this, you know,
111
297880
1771
ืื– ืื ื™ ื”ืชืจื’ืฉืชื™ ืžืื•ื“ ืžื–ื”, ืืชื ื™ื•ื“ืขื™ื,
04:59
hopping around all over the place,
112
299651
1493
ืงื™ืคืฆืชื™ ื‘ื›ืœ ืžืงื•ื,
05:01
trying to figure out if I can convert
113
301144
1771
ื•ื ื™ืกื™ืชื™ ืœื”ื‘ื™ืŸ ืื ืื ื™ ื™ื›ื•ืœ ืœื”ืžื™ืจ
05:02
all possible sentences that I hear into this.
114
302915
2524
ืืช ื›ืœ ื”ืžืฉืคื˜ื™ื ื”ืืคืฉืจื™ื™ื ืฉืื ื™ ืฉื•ืžืข ืœื–ื”.
05:05
And I found that this is not enough.
115
305439
1773
ื•ืžืฆืืชื™ ืฉื–ื” ืœื ืžืกืคื™ืง.
05:07
Why is this not enough?
116
307212
1385
ืœืžื” ื–ื” ืœื ืžืกืคื™ืง?
05:08
This is not enough because if you wanted to convey
117
308597
1711
ื–ื” ืœื ืžืกืคื™ืง ื‘ื’ืœืœ ืฉืื ืจืฆื™ืชื ืœื”ืขื‘ื™ืจ
05:10
something like negation,
118
310308
2250
ืžืฉื”ื• ื›ืžื• ืฉืœื™ืœื”,
05:12
you want to say, "I don't want soup,"
119
312558
1736
ืจืฆื™ืชื ืœื”ื’ื™ื“ "ืื ื™ ืœื ืจื•ืฆื” ืžืจืง"
05:14
then you can't do that by asking a question.
120
314294
2220
ืื– ืื™ ืืคืฉืจ ืœืขืฉื•ืช ืืช ื–ื” ืขืœ ื™ื“ื™ ืฉืื™ืœืช ืฉืืœื”.
05:16
You do that by changing the word "want."
121
316514
2285
ืขื•ืฉื™ื ืืช ื–ื” ื‘ืขื–ืจืช ืฉื™ื ื•ื™ ื”ืžื™ืœื” "ืจื•ืฆื”".
05:18
Again, if you wanted to say,
122
318799
1637
ืฉื•ื‘, ืื ืจืฆื™ืชื ืœื”ื’ื™ื“
05:20
"I wanted soup yesterday,"
123
320436
1980
"ืื ื™ ืจืฆื™ืชื™ ืžืจืง ืืชืžื•ืœ"
05:22
you do that by converting the word "want" into "wanted."
124
322416
2737
ืขื•ืฉื™ื ื–ืืช ื‘ืขื–ืจืช ื”ืžืจื” ืฉืœ ื”ืžื™ืœื” "ืจื•ืฆื”" ืœ"ืจืฆื™ืชื™"
05:25
It's a past tense.
125
325153
1666
ื–ื” ื‘ื–ืžืŸ ืขื‘ืจ.
05:26
So this is a flourish which I added
126
326819
2103
ืื– ื–ื” ืงื™ืฉื•ื˜ ืฉื”ื•ืกืคืชื™
05:28
to make the system complete.
127
328922
1576
ื›ื“ื™ ืœื”ืฉืœื™ื ืืช ื”ืžืขืจื›ืช.
05:30
This is a map of words joined together
128
330498
1977
ื–ื•ื”ื™ ืžืคืช ืžื™ืœื™ื ื”ืžื—ื•ื‘ืจื•ืช
05:32
as questions and answers,
129
332475
1656
ื›ืฉืืœื•ืช ื•ืชืฉื•ื‘ื•ืช,
05:34
and with these filters applied on top of them
130
334131
2264
ืขื ื”ืคื™ืœื˜ืจื™ื ื”ืืœื” ืขืœื™ื”ื
05:36
in order to modify them to represent
131
336395
1817
ื›ื“ื™ ืœื”ืชืื™ื ืื•ืชื ืœื™ื™ืฆื•ื’
05:38
certain nuances.
132
338212
1709
ืฉืœ ื”ื‘ื“ืœื™ื ืงื˜ื ื™ื ืžืกื•ื™ื™ืžื™ื.
05:39
Let me show you this with a different example.
133
339921
1951
ืชื ื• ืœื™ ืœื”ืจืื•ืช ืœื›ื ืืช ื–ื” ื‘ืืžืฆืขื•ืช ื“ื•ื’ืžื ืื—ืจืช.
05:41
Let's take this sentence:
134
341872
1254
ื‘ื•ืื• ื ื™ืงื— ืืช ื”ืžืฉืคื˜ ื”ื–ื”:
05:43
"I told the carpenter I could not pay him."
135
343126
1980
"ืื ื™ ืืžืจืชื™ ืœื ื’ืจ ืฉืื ื™ ืœื ื™ื›ื•ืœืชื™ ืœืฉืœื ืœื•."
05:45
It's a fairly complicated sentence.
136
345106
1792
ื–ื” ืžืฉืคื˜ ื“ื™ ืžื•ืจื›ื‘.
05:46
The way that this particular system works,
137
346898
1893
ื”ืžืขืจื›ืช ื”ื–ื• ืขื•ื‘ื“ืช ื›ืš
05:48
you can start with any part of this sentence.
138
348791
2578
ืฉืืคืฉืจ ืœื”ืชื—ื™ืœ ื‘ื›ืœ ื—ืœืง ืฉืœ ื”ืžืฉืคื˜.
05:51
I'm going to start with the word "tell."
139
351369
1698
ืื ื™ ื”ื•ืœืš ืœื”ืชื—ื™ืœ ืขื ื”ืžื™ืœื” "ืืžื•ืจ".
05:53
So this is the word "tell."
140
353067
1462
ืื– ื–ื• ื”ืžื™ืœื” "ืืžื•ืจ".
05:54
Now this happened in the past,
141
354529
1600
ืื‘ืœ ื–ื” ืงืจื” ื‘ืขื‘ืจ,
05:56
so I'm going to make that "told."
142
356129
2223
ืื– ืื ื™ ื”ื•ืœืš ืœื”ืคื•ืš ืืช ื–ื” ืœ"ืืžืจ"
05:58
Now, what I'm going to do is,
143
358352
1708
ืขื›ืฉื™ื• ืžื” ืฉืื ื™ ื”ื•ืœืš ืœืขืฉื•ืช ื”ื•ื
06:00
I'm going to ask questions.
144
360060
1756
ืœืฉืื•ืœ ืฉืืœื•ืช.
06:01
So, who told? I told.
145
361816
2364
ืื–, ืžื™ ืืžืจ? ืื ื™ ืืžืจืชื™.
06:04
I told whom? I told the carpenter.
146
364180
1927
ืื ื™ ืืžืจืชื™ ืœืžื™? ืœื ื’ืจ.
06:06
Now we start with a different part of the sentence.
147
366107
1751
ืขื›ืฉื™ื• ืื ื—ื ื• ืžืชื—ื™ืœื™ื ืขื ื—ืœืง ืื—ืจ ื‘ืžืฉืคื˜:
06:07
We start with the word "pay,"
148
367858
1867
ืื ื—ื ื• ืžืชื—ื™ืœื™ื ืขื ื”ืžื™ืœื” "ืœืฉืœื"
06:09
and we add the ability filter to it to make it "can pay."
149
369725
4577
ื•ืื ื—ื ื• ืžื•ืกื™ืคื™ื ืืช ืคื™ืœื˜ืจ ื”ื™ื›ื•ืœืช ื›ื“ื™ ืœื”ืคื•ืš ืืช ื–ื” ืœ"ื™ื›ื•ืœ ืœืฉืœื"
06:14
Then we make it "can't pay,"
150
374302
2101
ื•ืื– ืื ื—ื ื• ื”ื•ืคื›ื™ื ืืช ื–ื” ืœ"ืœื ื™ื›ื•ืœ ืœืฉืœื"
06:16
and we can make it "couldn't pay"
151
376403
1599
ื•ืื ื—ื ื• ื”ื•ืคื›ื™ื ืืช ื–ื” ืœ"ืœื ื™ื›ืœ ืœืฉืœื"
06:18
by making it the past tense.
152
378002
1663
ื‘ืขื–ืจืช ื”ื˜ื™ื™ื” ืœื–ืžืŸ ืขื‘ืจ.
06:19
So who couldn't pay? I couldn't pay.
153
379665
1923
ืื– ืžื™ ืœื ื™ื›ืœ ืœืฉืœื? ืื ื™ ืœื ื™ื›ืœืชื™ ืœืฉืœื.
06:21
Couldn't pay whom? I couldn't pay the carpenter.
154
381588
2676
ืœื ื™ื›ืœืชื™ ืœืฉืœื ืœืžื™? ืœื ื’ืจ.
06:24
And then you join these two together
155
384264
1731
ื•ืื– ืžื—ื‘ืจื™ื ืืช ืฉื ื™ ืืœื•
06:25
by asking this question:
156
385995
1350
ื‘ืขื–ืจืช ื”ืฉืืœื”:
06:27
What did I tell the carpenter?
157
387345
1737
ืžื” ืืžืจืชื™ ืœื ื’ืจ?
06:29
I told the carpenter I could not pay him.
158
389082
4049
ืื ื™ ืืžืจืชื™ ืœื ื’ืจ ืฉืื ื™ ืœื ื™ื›ื•ืœืชื™ ืœืฉืœื ืœื•.
06:33
Now think about this. This is
159
393131
1937
ืขื›ืฉื™ื• ืชื—ืฉื‘ื• ืขืœ ื–ื”, ื–ื• ---
06:35
โ€”(Applause)โ€”
160
395068
3542
----(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)-----
06:38
this is a representation of this sentence
161
398610
3672
ื–ื•ื”ื™ ื”ืฆื’ื” ืฉืœ ืžืฉืคื˜
06:42
without language.
162
402282
2435
ืœืœื ืฉืคื”.
06:44
And there are two or three interesting things about this.
163
404717
2192
ื•ื™ืฉ ืฉื ื™ื™ื ืฉืœื•ืฉื” ื“ื‘ืจื™ื ืžืขื ื™ื™ื ื™ื ื‘ื–ื”,
06:46
First of all, I could have started anywhere.
164
406909
3131
ืงื•ื“ื ื›ืœ, ื™ื›ื•ืœืชื™ ืœื”ืชื—ื™ืœ ื‘ื›ืœ ื—ืœืง.
06:50
I didn't have to start with the word "tell."
165
410040
2243
ืœื ื”ื™ื™ืชื™ ื—ื™ื™ื‘ ืœื”ืชื—ื™ืœ ืขื ื”ืžื™ืœื” "ืืžื•ืจ".
06:52
I could have started anywhere in the sentence,
166
412283
1416
ื™ื›ื•ืœืชื™ ืœื”ืชื—ื™ืœ ื‘ื›ืœ ื—ืœืง ื‘ืžืฉืคื˜,
06:53
and I could have made this entire thing.
167
413699
1507
ื•ื™ื›ื•ืœืชื™ ืœื™ืฆื•ืจ ืืช ื›ืœ ื–ื”.
06:55
The second thing is, if I wasn't an English speaker,
168
415206
2776
ื”ื“ื‘ืจ ื”ืฉื ื™ ื”ื•ื ืฉืื ืœื ื”ื™ื™ืชื™ ื“ื•ื‘ืจ ืื ื’ืœื™ืช,
06:57
if I was speaking in some other language,
169
417982
2175
ืื ื“ื™ื‘ืจืชื™ ื‘ืฉืคื” ืื—ืจืช,
07:00
this map would actually hold true in any language.
170
420157
3156
ื”ืžืคื” ื”ื–ื• ื”ื™ื™ืชื” ืชืงืคื” ื‘ื›ืœ ืฉืคื”.
07:03
So long as the questions are standardized,
171
423313
1990
ื›ืœ ืขื•ื“ ื”ืฉืืœื•ืช ื”ืŸ ืžืชื•ืงื ื ื•ืช,
07:05
the map is actually independent of language.
172
425303
4287
ื”ืžืคื” ื‘ืขืฆื ืœื ืชืœื•ื™ื” ื‘ืฉืคื”.
07:09
So I call this FreeSpeech,
173
429590
2115
ืื– ืื ื™ ืงื•ืจื ืœื–ื” "ืคืจื™ ืกืคื™ื˜ืฉ" (ื“ื™ื‘ื•ืจ ื—ื•ืคืฉื™)
07:11
and I was playing with this for many, many months.
174
431705
2935
ื•ืฉื™ื—ืงืชื™ ืขื ื–ื” ื‘ืžืฉืš ื”ืจื‘ื” ืžืื•ื“ ื—ื•ื“ืฉื™ื.
07:14
I was trying out so many different combinations of this.
175
434640
2726
ื ื™ืกื™ืชื™ ื”ืจื‘ื” ืžืื•ื“ ื”ืจื›ื‘ื™ื ืฉืœ ื–ื”.
07:17
And then I noticed something very interesting about FreeSpeech.
176
437366
2289
ื•ืื– ืฉืžืชื™ ืœื‘ ืœืžืฉื”ื• ืžืื•ื“ ืžืขื ื™ื™ืŸ ื‘"ืคืจื™ ืกืคื™ื˜ืฉ".
07:19
I was trying to convert language,
177
439655
3243
ื ื™ืกื™ืชื™ ืœื”ืžื™ืจ ืฉืคื”,
07:22
convert sentences in English into sentences in FreeSpeech,
178
442898
2384
ืœื”ืžื™ืจ ืžืฉืคื˜ื™ื ื‘ืื ื’ืœื™ืช ืœืžืฉืคื˜ื™ื ื‘"ืคืจื™ ืกืคื™ื˜ืฉ",
07:25
and vice versa, and back and forth.
179
445282
1752
ื•ืœื”ืคืš, ื”ืœื•ืš ื•ืฉื•ื‘.
07:27
And I realized that this particular configuration,
180
447034
2255
ื•ื”ื‘ื ืชื™ ืฉื”ืชืฆื•ืจื” ื”ืžืกื•ื™ื™ืžืช ื”ื–ื•,
07:29
this particular way of representing language,
181
449289
2026
ื”ื“ืจืš ื”ื–ื• ืœื”ืฆื™ื’ ืฉืคื”,
07:31
it allowed me to actually create very concise rules
182
451315
4395
ืืคืฉืจื” ืœื™ ืœื”ื’ื“ื™ืจ ื›ืœืœื™ื ืžืื•ื“ ืชื›ืœื™ืชื™ื™ื
07:35
that go between FreeSpeech on one side
183
455710
2734
ืฉืžืงืฉืจื™ื ื‘ื™ืŸ "ืคืจื™ ืกืคื™ื˜ืฉ" ืžืฆื“ ืื—ื“
07:38
and English on the other.
184
458444
1488
ืœืื ื’ืœื™ืช ืžื”ืฆื“ ื”ืฉื ื™.
07:39
So I could actually write this set of rules
185
459932
2180
ืื– ื™ื›ื•ืœืชื™ ืžืžืฉ ืœื›ืชื•ื‘ ืžืขืจื›ืช ื—ื•ืงื™ื
07:42
that translates from this particular representation into English.
186
462112
3395
ืฉืชืจื’ืžื” ืžื”ื™ื™ืฆื•ื’ ื”ืžืกื•ื™ื ื”ื–ื” ืœืื ื’ืœื™ืช.
07:45
And so I developed this thing.
187
465507
1831
ืื– ืคื™ืชื—ืชื™ ืืช ื”ื“ื‘ืจ ื”ื–ื”.
07:47
I developed this thing called the FreeSpeech Engine
188
467338
2232
ืคื™ืชื—ืชื™ ืืช ื”ื“ื‘ืจ ื”ื–ื” ืฉื ืงืจื ืžื ื•ืข ื”"ืคืจื™ ืกืคื™ื˜ืฉ"
07:49
which takes any FreeSpeech sentence as the input
189
469570
2561
ืฉืœื•ืงื— ื›ืœ ืžืฉืคื˜ "ืคืจื™ ืกืคื™ื˜ืฉ" ื›ืชืฉื•ืžื”
07:52
and gives out perfectly grammatical English text.
190
472131
3930
ื•ืžื•ืฆื™ื ื˜ืงืกื˜ ืžื“ื•ืงื“ืง ืœื’ืžืจื™ ื‘ืื ื’ืœื™ืช.
07:56
And by putting these two pieces together,
191
476061
1605
ื•ื‘ื”ืจื›ื‘ื” ืฉืœ ืฉื ื™ ื—ืœืงื™ื ืืœื• ื‘ื™ื—ื“,
07:57
the representation and the engine,
192
477666
1881
ื”ื™ื™ืฆื•ื’ ื•ื”ืžื ื•ืข,
07:59
I was able to create an app, a technology for children with autism,
193
479547
3796
ื”ื™ื™ืชื™ ืžืกื•ื’ืœ ืœื™ืฆื•ืจ ืืคืœื™ืงืฆื™ื”, ื˜ื›ื ื•ืœื•ื’ื™ื™ื” ืขื‘ื•ืจ ื™ืœื“ื™ื ืื•ื˜ื™ืกื˜ื™ื™ื,
08:03
that not only gives them words
194
483343
2499
ืฉืœื ืจืง ื ื•ืชื ืช ืœื”ื ืžื™ืœื™ื,
08:05
but also gives them grammar.
195
485842
3941
ืืœื ื’ื ื ื•ืชื ืช ืœื”ื ื“ื™ืงื“ื•ืง.
08:09
So I tried this out with kids with autism,
196
489783
2360
ืื– ื ื™ืกื™ืชื™ ืืช ื–ื” ืขื ื™ืœื“ื™ื ืื•ื˜ื™ืกื˜ื™ื™ื,
08:12
and I found that there was an incredible amount of identification.
197
492143
5013
ื•ืžืฆืืชื™ ื›ื™ ื”ื™ื™ืชื” ื–ื”ื•ืช ืขืฆื•ืžื”.
08:17
They were able to create sentences in FreeSpeech
198
497156
2720
ื”ื ื”ื™ื• ืžืกื•ื’ืœื™ื ืœื™ืฆื•ืจ ืžืฉืคื˜ื™ื ื‘"ืคืจื™ ืกืคื™ื˜ืฉ"
08:19
which were much more complicated but much more effective
199
499876
2558
ืฉื”ื™ื• ื™ื•ืชืจ ืžืกื•ื‘ื›ื™ื ืืš ื”ืจื‘ื” ื™ื•ืชืจ ืืคืงื˜ื™ื‘ื™ื
08:22
than equivalent sentences in English,
200
502434
2899
ืžืืฉืจ ืžืฉืคื˜ื™ื ืืœื• ื‘ืื ื’ืœื™ืช.
08:25
and I started thinking about
201
505333
1682
ื•ื”ืชื—ืœืชื™ ืœื—ืฉื•ื‘
08:27
why that might be the case.
202
507015
1969
ืœืžื”?
08:28
And I had an idea, and I want to talk to you about this idea next.
203
508984
4287
ื•ื”ื™ื” ืœื™ ืจืขื™ื•ืŸ, ื•ืื ื™ ืจื•ืฆื” ืœื“ื‘ืจ ืื™ืชื›ื ืขืœ ื”ืจืขื™ื•ืŸ ื”ื–ื”.
08:33
In about 1997, about 15 years back,
204
513271
3142
ื‘ืขืจืš ื‘1997, ืœืคื ื™ ื› 15 ืฉื ื”,
08:36
there were a group of scientists that were trying
205
516413
2011
ื”ื™ื™ืชื” ืงื‘ื•ืฆืช ืžื“ืขื ื™ื ืฉื ื™ืกื•
08:38
to understand how the brain processes language,
206
518424
2389
ืœื”ื‘ื™ืŸ ืื™ืš ื”ืžื— ืžืขื‘ื“ ืฉืคื”,
08:40
and they found something very interesting.
207
520813
1779
ื•ื”ื ื’ื™ืœื• ืžืฉื”ื• ืžืื•ื“ ืžืขื ื™ื™ืŸ.
08:42
They found that when you learn a language
208
522592
1872
ื”ื ื’ื™ืœื• ืฉื›ืฉืœื•ืžื“ื™ื ืฉืคื”
08:44
as a child, as a two-year-old,
209
524464
2912
ื›ื™ืœื“ื™ื, ื›ื‘ื ื™ ืฉื ืชื™ื™ื,
08:47
you learn it with a certain part of your brain,
210
527376
2366
ืœื•ืžื“ื™ื ืื•ืชื” ืขื ื—ืœืง ืžืกื•ื™ื™ื ื‘ืžื—,
08:49
and when you learn a language as an adult --
211
529742
1600
ื•ื›ืฉืœื•ืžื“ื™ื ืฉืคื” ื›ืžื‘ื•ื’ืจื™ื --
08:51
for example, if I wanted to learn Japanese right now โ€”
212
531342
3911
ืœื“ื•ื’ืžื ืื ืจืฆื™ืชื™ ืœืœืžื•ื“ ื™ืคื ื™ืช ืขื›ืฉื™ื• --
08:55
a completely different part of my brain is used.
213
535253
2707
ืžืฉืชืžืฉื™ื ื‘ื—ืœืง ืื—ืจ ืœื’ืžืจื™ ื‘ืžื—.
08:57
Now I don't know why that's the case,
214
537960
1831
ืขื›ืฉื™ื• ืื ื™ ืœื ื™ื•ื“ืข ืœืžื” ื–ื” ืงื•ืจื”,
08:59
but my guess is that that's because
215
539791
1991
ืื‘ืœ ื”ื ื™ื—ื•ืฉ ืฉืœื™ ื”ื•ื ืฉื–ื” ื‘ื’ืœืœ
09:01
when you learn a language as an adult,
216
541782
2437
ืฉื›ืฉืœื•ืžื“ื™ื ืฉืคื” ื›ืžื‘ื•ื’ืจื™ื,
09:04
you almost invariably learn it
217
544219
1616
ื›ืžืขื˜ ืชืžื™ื“ ืœื•ืžื“ื™ื ืื•ืชื”
09:05
through your native language, or through your first language.
218
545835
4266
ื“ืจืš ืฉืคืช ื”ืื, ืื• ื“ืจืš ื”ืฉืคื” ื”ืจืืฉื•ื ื”.
09:10
So what's interesting about FreeSpeech
219
550101
3252
ืื– ืžื” ืฉืžืขื ื™ื™ืŸ ื‘"ืคืจื™ ืกืคื™ื˜ืฉ"
09:13
is that when you create a sentence
220
553353
1802
ื”ื•ื ืฉื›ืฉื™ื•ืฆืจื™ื ืžืฉืคื˜
09:15
or when you create language,
221
555155
1695
ืื• ื›ืฉื™ื•ืฆืจื™ื ืฉืคื”,
09:16
a child with autism creates language with FreeSpeech,
222
556850
3070
ื™ืœื“ ืื•ื˜ื™ืกื˜ื™ ืฉื™ื•ืฆืจ ืฉืคื” ืขื "ืคืจื™ ืกืคื™ื˜ืฉ",
09:19
they're not using this support language,
223
559920
1833
ืœื ืžืฉืชืžืฉื™ื ื‘ืฉืคื” ืชื•ืžื›ืช,
09:21
they're not using this bridge language.
224
561753
2211
ืœื ืžืฉืชืžืฉื™ื ื‘ืฉืคื” ืžื’ืฉืจืช.
09:23
They're directly constructing the sentence.
225
563964
2657
ื‘ื•ื ื™ื ืืช ื”ืžืฉืคื˜ ื‘ืฆื•ืจื” ื™ืฉื™ืจื”.
09:26
And so this gave me this idea.
226
566621
2193
ืื– ื–ื” ื ืชืŸ ืœื™ ืจืขื™ื•ืŸ.
09:28
Is it possible to use FreeSpeech
227
568814
2024
ื”ืื ืืคืฉืจ ืœื”ืฉืชืžืฉ ื‘"ืคืจื™ ืกืคื™ื˜ืฉ"
09:30
not for children with autism
228
570838
2510
ืœื ืขื‘ื•ืจ ื™ืœื“ื™ื ืื•ื˜ื™ืกื˜ื™ื™ื
09:33
but to teach language to people without disabilities?
229
573348
6262
ืืœื ื›ื“ื™ ืœืœืžื“ ืฉืคื” ืœืื ืฉื™ื ืœืœื ืžื•ื’ื‘ืœื•ื™ื•ืช?
09:39
And so I tried a number of experiments.
230
579610
1978
ืื– ื ื™ืกื™ืชื™ ื›ืžื” ื ื™ืกื•ื™ื™ื.
09:41
The first thing I did was I built a jigsaw puzzle
231
581588
2948
ื”ื“ื‘ืจ ื”ืจืืฉื•ืŸ ืฉืขืฉื™ืชื™ ื”ื•ื ืฉื‘ื ื™ืชื™ ืคืื–ืœ
09:44
in which these questions and answers
232
584536
1970
ื‘ื• ื”ืฉืืœื•ืช ื•ื”ืชืฉื•ื‘ื•ืช ื”ืœืœื•
09:46
are coded in the form of shapes,
233
586506
1835
ืžื•ืฆืคื ื•ืช ื‘ืฆื•ืจืช ืฆื•ืจื•ืช
09:48
in the form of colors,
234
588341
1138
ืื• ืฆื‘ืขื™ื,
09:49
and you have people putting these together
235
589479
1849
ื•ื™ืฉ ืื ืฉื™ื ืฉืžืจื›ื™ื‘ื™ื ืืช ื”ื—ืœืงื™ื ื”ืืœื”
09:51
and trying to understand how this works.
236
591328
1773
ื•ืžื ืกื™ื ืœื”ื‘ื™ืŸ ืื™ืš ื–ื” ืขื•ื‘ื“.
09:53
And I built an app out of it, a game out of it,
237
593101
2376
ื•ื‘ื ื™ืชื™ ืžื–ื” ืืคืœื™ืงืฆื™ื”, ืžืฉื—ืง,
09:55
in which children can play with words
238
595477
2661
ื‘ื• ื™ืœื“ื™ื ื™ื›ื•ืœื™ื ืœืฉื—ืง ืขื ืžื™ืœื™ื
09:58
and with a reinforcement,
239
598138
1704
ื•ืขื ืชื™ื’ื‘ื•ืจ,
09:59
a sound reinforcement of visual structures,
240
599842
2585
ืชื™ื’ื‘ื•ืจ ืงื•ืœื™ ืฉืœ ืžื‘ื ื™ื ื•ื™ื–ื•ืืœื™ื,
10:02
they're able to learn language.
241
602427
2013
ื”ื ืžืกื•ื’ืœื™ื ืœืœืžื•ื“ ืฉืคื”.
10:04
And this, this has a lot of potential, a lot of promise,
242
604440
2736
ื•ืœื–ื”, ืœื–ื” ื™ืฉ ืคื•ื˜ื ืฆื™ืืœ, ื–ื” ืžื‘ื˜ื™ื— ืžืื•ื“,
10:07
and the government of India recently
243
607176
1975
ื•ืžืžืฉืœืช ื”ื•ื“ื• ืœืื—ืจื•ื ื”
10:09
licensed this technology from us,
244
609151
1404
ื”ื™ืจืฉืชื” ืืช ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ื”ื–ื• ืžืื™ืชื ื•,
10:10
and they're going to try it out with millions of different children
245
610555
2074
ื•ื”ื ื”ื•ืœื›ื™ื ืœื ืกื•ืช ืืช ื–ื” ืขื ืžืœื™ื•ื ื™ ื™ืœื“ื™ื
10:12
trying to teach them English.
246
612629
2605
ื‘ื ืกื™ื•ืŸ ืœืœืžื“ ืื•ืชื ืื ื’ืœื™ืช.
10:15
And the dream, the hope, the vision, really,
247
615234
2614
ื•ื”ื—ืœื•ื, ื”ืชืงื•ื•ื”, ื”ื—ื–ื•ืŸ ื‘ืืžืช ื”ื•ื
10:17
is that when they learn English this way,
248
617848
3082
ืฉื›ืฉื”ื ืœื•ืžื“ื™ื ืื ื’ืœื™ืช ื‘ืฆื•ืจื” ื”ื–ื•,
10:20
they learn it with the same proficiency
249
620930
2643
ื”ื ืœื•ืžื“ื™ื ืื•ืชื” ื‘ืื•ืชื” ืžื•ืžื—ื™ื•ืช
10:23
as their mother tongue.
250
623573
3718
ืฉืœ ืฉืคืช ื”ืื ืฉืœื”ื.
10:27
All right, let's talk about something else.
251
627291
3816
ื‘ืกื“ืจ, ื‘ื•ืื• ื ื“ื‘ืจ ืขืœ ืžืฉื”ื• ืื—ืจ.
10:31
Let's talk about speech.
252
631107
1997
ื‘ื•ืื• ื ื“ื‘ืจ ืขืœ ื“ื™ื‘ื•ืจ.
10:33
This is speech.
253
633104
1271
ื–ื”ื• ื“ื™ื‘ื•ืจ.
10:34
So speech is the primary mode of communication
254
634375
1962
ืื– ื“ื™ื‘ื•ืจ ื”ื•ื ืฆื•ืจืช ื‘ืกื™ืก ืฉืœ ืชืงืฉื•ืจืช
10:36
delivered between all of us.
255
636337
1613
ื”ืžื•ืขื‘ืจ ื‘ื™ืŸ ื›ื•ืœื ื•.
10:37
Now what's interesting about speech is that
256
637950
1855
ืขื›ืฉื™ื• ืžื” ืฉืžืขื ื™ื™ืŸ ื‘ื“ื™ื‘ื•ืจ ื”ื•ื
10:39
speech is one-dimensional.
257
639805
1245
ืฉื“ื™ื‘ื•ืจ ื”ื•ื ื—ื“-ืžื™ืžื“ื™.
10:41
Why is it one-dimensional?
258
641050
1359
ืœืžื” ื”ื•ื ื—ื“-ืžื™ืžื“ื™?
10:42
It's one-dimensional because it's sound.
259
642409
1568
ื”ื•ื ื—ื“-ืžื™ืžื“ื™ ื‘ื’ืœืœ ืฉื”ื•ื ืงื•ืœ.
10:43
It's also one-dimensional because
260
643977
1539
ื”ื•ื ื’ื ื—ื“-ืžื™ืžื“ื™ ื‘ื’ืœืœ
10:45
our mouths are built that way.
261
645516
1205
ืฉื”ืคื™ื•ืช ืฉืœื ื• ื‘ื ื•ื™ื•ืช ื›ืš.
10:46
Our mouths are built to create one-dimensional sound.
262
646721
3512
ื”ืคื™ื•ืช ืฉืœื ื• ื‘ื ื•ื™ื•ืช ืœื™ื™ืฆืจ ืงื•ืœ ื—ื“-ืžื™ืžื“ื™.
10:50
But if you think about the brain,
263
650233
2866
ืื‘ืœ ืื ื—ื•ืฉื‘ื™ื ืขืœ ื”ืžื—,
10:53
the thoughts that we have in our heads
264
653099
1764
ื”ืžื—ืฉื‘ื•ืช ืฉืขื•ื‘ืจื•ืช ื‘ืจืืฉื ื•
10:54
are not one-dimensional.
265
654863
2102
ืื™ื ืŸ ื—ื“-ืžื™ืžื“ื™ื•ืช.
10:56
I mean, we have these rich,
266
656965
1459
ื–ืืช ืื•ืžืจืช, ื™ืฉ ืœื ื• ืขื•ืฉืจ,
10:58
complicated, multi-dimensional ideas.
267
658424
3028
ืžื•ืจื›ื‘ื•ืช ื•ืจื‘-ืžื™ืžื“ื™ื•ืช ื‘ืจืขื™ื•ื ื•ืช ืฉืœื ื•.
11:01
Now, it seems to me that language
268
661452
1690
ื ื“ืžื” ืœื™ ืฉืฉืคื”
11:03
is really the brain's invention
269
663142
2332
ื”ื™ื ื”ืžืฆืื” ืฉืœ ื”ืžื—
11:05
to convert this rich, multi-dimensional thought
270
665474
3096
ืฉื ื•ืขื“ื” ืœื”ืžื™ืจ ืžื—ืฉื‘ื•ืช ืจื‘-ืžื™ืžื“ื™ื•ืช
11:08
on one hand
271
668570
1587
ืžื—ื“,
11:10
into speech on the other hand.
272
670157
1923
ืœื“ื™ื‘ื•ืจ ืžืื™ื“ืš.
11:12
Now what's interesting is that
273
672080
1762
ืขื›ืฉื™ื• ืžื” ืฉืžืขื ื™ื™ืŸ ื”ื•ื
11:13
we do a lot of work in information nowadays,
274
673842
2568
ืฉืื ื—ื ื• ืขื•ืฉื™ื ื”ืจื‘ื” ืขื‘ื•ื“ื” ื‘ืžื™ื“ืข ื›ื™ื•ื,
11:16
and almost all of that is done in the language domain.
275
676410
3079
ื•ื›ืžืขื˜ ื›ื•ืœื” ื ืขืฉื™ืช ื‘ืชื—ื•ื ื”ืฉืคื”.
11:19
Take Google, for example.
276
679489
1939
ืงื—ื• ืืช ื’ื•ื’ืœ ืœื“ื•ื’ืžื.
11:21
Google trawls all these countless billions of websites,
277
681428
2677
ื’ื•ื’ืœ ื“ื’ ืืช ื›ืœ ืื™ื ืกืคื•ืจ ื”ืืชืจื™ื ื”ืืœื•,
11:24
all of which are in English, and when you want to use Google,
278
684105
2725
ื›ื•ืœื ื‘ืื ื’ืœื™ืช, ื•ื›ืฉืื ื—ื ื• ืจื•ืฆื™ื ืœื”ืฉืชืžืฉ ื‘ื’ื•ื’ืœ
11:26
you go into Google search, and you type in English,
279
686830
2450
ืื ื—ื ื• ื ื›ื ืกื™ื ืœื—ื™ืคื•ืฉ ื‘ื’ื•ื’ืœ, ื•ืžืงืœื™ื“ื™ื ื‘ืื ื’ืœื™ืช,
11:29
and it matches the English with the English.
280
689280
4163
ื•ื’ื•ื’ืœ ืžืชืื™ื ืืช ื”ืื ื’ืœื™ืช ืขื ื”ืื ื’ืœื™ืช.
11:33
What if we could do this in FreeSpeech instead?
281
693443
3583
ืžื” ืื ื”ื™ื™ื ื• ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ื–ืืช ื‘"ืคืจื™ ืกืคื™ื˜ืฉ" ื‘ืžืงื•ื ื–ืืช?
11:37
I have a suspicion that if we did this,
282
697026
2301
ื™ืฉ ืœื™ ื—ืฉื“ ืฉืื ื”ื™ื™ื ื• ืขื•ืฉื™ื ื–ืืช
11:39
we'd find that algorithms like searching,
283
699327
2068
ื”ื™ื™ื ื• ืžื’ืœื™ื ืฉืืœื’ื•ืจื™ืชืžื™ื ื›ืžื• ื—ื™ืคื•ืฉ,
11:41
like retrieval, all of these things,
284
701395
2325
ื›ืžื• ืฉืœื™ืคืช ืžื™ื“ืข, ื›ืœ ื”ื“ื‘ืจื™ื ื”ืœืœื•,
11:43
are much simpler and also more effective,
285
703720
3075
ื”ื™ื• ื”ืจื‘ื” ื™ื•ืชืจ ืคืฉื•ื˜ื™ื ื•ื’ื ื™ื•ืชืจ ืืคืงื˜ื™ื‘ื™ื,
11:46
because they don't process the data structure of speech.
286
706795
4417
ื‘ื’ืœืœ ืฉื”ื ืœื ืžืขื‘ื“ื™ื ืืช ืžื‘ื ื” ื”ื“ื™ื‘ื•ืจ.
11:51
Instead they're processing the data structure of thought.
287
711212
5976
ื‘ืžืงื•ื ื–ืืช ื”ื ืžืขื‘ื“ื™ื ืืช ืžื‘ื ื” ื”ืžื—ืฉื‘ื”.
11:57
The data structure of thought.
288
717188
2808
ืžื‘ื ื” ื”ืžื—ืฉื‘ื”.
11:59
That's a provocative idea.
289
719996
2076
ื–ื” ืจืขื™ื•ืŸ ืคืจื•ื‘ื•ืงื˜ื™ื‘ื™.
12:02
But let's look at this in a little more detail.
290
722072
2142
ืื‘ืœ ื‘ื•ืื• ื ืกืชื›ืœ ืขืœ ื–ื” ื‘ืงืฆืช ื™ื•ืชืจ ืคืจื•ื˜.
12:04
So this is the FreeSpeech ecosystem.
291
724214
2366
ืื– ื–ื•ื”ื™ ื”ืžืขืจื›ืช ื”ืืงื•ืœื•ื’ื™ืช ืฉืœ "ืคืจื™ ืกืคื™ื˜ืฉ".
12:06
We have the Free Speech representation on one side,
292
726580
2884
ื™ืฉ ืœื ื• ืืช ื™ื™ืฆื•ื’ ื”"ืคืจื™ ืกืคื™ื˜ืฉ" ืžืฆื“ ืื—ื“,
12:09
and we have the FreeSpeech Engine, which generates English.
293
729464
2228
ื•ื™ืฉ ืœื ื• ืืช ื”ืžื ื•ืข ื”ืžื™ื™ืฆืจ ืื ื’ืœื™ืช.
12:11
Now if you think about it,
294
731694
1725
ืขื›ืฉื™ื• ืื ื—ื•ืฉื‘ื™ื ืขืœ ื–ื”,
12:13
FreeSpeech, I told you, is completely language-independent.
295
733419
2544
"ืคืจื™ ืกืคื™ื˜ืฉ" ื›ืžื• ืฉืืžืจืชื™ ืœื›ื ื”ื•ื ืœื’ืžืจื™ ื‘ืœืชื™ ืชืœื•ื™ ื‘ืฉืคื•ืช.
12:15
It doesn't have any specific information in it
296
735963
2087
ืื™ืŸ ื‘ื• ืฉื•ื ืžื™ื“ืข ืžืกื•ื™ื
12:18
which is about English.
297
738050
1228
ืขืœ ืื ื’ืœื™ืช.
12:19
So everything that this system knows about English
298
739278
2800
ืื– ื›ืœ ืžื” ืฉื”ืžืขืจื›ืช ื”ื–ื• ื™ื•ื“ืขืช ืขืœ ืื ื’ืœื™ืช
12:22
is actually encoded into the engine.
299
742078
4620
ื‘ืขืฆื ืžื•ืฆืคืŸ ื‘ืžื ื•ืข.
12:26
That's a pretty interesting concept in itself.
300
746698
2237
ื–ื” ืงื•ื ืกืคื˜ ื“ื™ ืžืขื ื™ื™ืŸ ื‘ืคื ื™ ืขืฆืžื•.
12:28
You've encoded an entire human language
301
748935
3604
ื”ื›ื ืกื ื• ืฉืคืช ืื“ื ืฉืœืžื”
12:32
into a software program.
302
752539
2645
ืœืชื•ืš ืชื•ื›ื ื”.
12:35
But if you look at what's inside the engine,
303
755184
2531
ืื‘ืœ ืื ืžืกืชื›ืœื™ื ืขืœ ืžื” ืฉื‘ืชื•ืš ื”ืžื ื•ืข,
12:37
it's actually not very complicated.
304
757715
2358
ื–ื” ื‘ืขืฆื ืœื ื›ืœ ื›ืš ืžืกื•ื‘ืš.
12:40
It's not very complicated code.
305
760073
2105
ื–ื” ืœื ืงื•ื“ ืžืื•ื“ ืžืกื•ื‘ืš.
12:42
And what's more interesting is the fact that
306
762178
2672
ื•ืขื•ื“ ื™ื•ืชืจ ืžืขื ื™ื™ื ืช ื”ื™ื ื”ืขื•ื‘ื“ื”
12:44
the vast majority of the code in that engine
307
764850
2203
ืฉื”ืจื•ื‘ ื”ืžื•ื—ืœื˜ ืฉืœ ื”ืงื•ื“ ื‘ืžื ื•ืข
12:47
is not really English-specific.
308
767053
2412
ื”ื•ื ืœื ืžืžืฉ ืกืคืฆื™ืคื™ ืœืื ื’ืœื™ืช.
12:49
And that gives this interesting idea.
309
769465
1895
ื•ื–ื” ืžืฆื™ื’ ืจืขื™ื•ืŸ ืžืขื ื™ื™ืŸ.
12:51
It might be very easy for us to actually
310
771360
2038
ื™ื™ืชื›ืŸ ื•ื™ื”ื™ื” ืœื ื• ืงืœ ืžืื•ื“
12:53
create these engines in many, many different languages,
311
773398
3826
ืœื™ืฆื•ืจ ืžื ื•ืขื™ื ื›ืืœื• ื‘ื”ืจื‘ื” ืžืื•ื“ ืฉืคื•ืช,
12:57
in Hindi, in French, in German, in Swahili.
312
777224
6354
ื‘ื”ื™ื ื“ื™, ื‘ืฆืจืคืชื™ืช, ื‘ื’ืจืžื ื™ืช, ื‘ืกื•ื•ื”ื™ืœื™.
13:03
And that gives another interesting idea.
313
783578
2799
ื•ื–ื” ืžื™ื™ืฆืจ ืขื•ื“ ืจืขื™ื•ืŸ ืžืขื ื™ื™ืŸ.
13:06
For example, supposing I was a writer,
314
786377
2654
ืœื“ื•ื’ืžื, ื ื’ื™ื“ ืฉืื ื™ ื›ืชื‘,
13:09
say, for a newspaper or for a magazine.
315
789031
2122
ื ื’ื™ื“ ื‘ืฉื‘ื™ืœ ืขื™ืชื•ืŸ ืื• ืžื’ื–ื™ืŸ.
13:11
I could create content in one language, FreeSpeech,
316
791153
5011
ืื ื™ ืื•ื›ืœ ืœื™ืฆื•ืจ ืชื•ื›ืŸ ื‘ืฉืคื” ืื—ืช, ื‘"ืคืจื™ ืกืคื™ื˜ืฉ",
13:16
and the person who's consuming that content,
317
796164
2056
ื•ื”ืื“ื ืฉืฆื•ืจืš ืืช ื”ืชื•ื›ืŸ,
13:18
the person who's reading that particular information
318
798220
3061
ื”ืื“ื ืฉืงื•ืจื ืืช ื”ืžื™ื“ืข ื”ืžืกื•ื™ื ื”ื–ื”
13:21
could choose any engine,
319
801281
2495
ื™ื•ื›ืœ ืœื‘ื—ื•ืจ ื‘ื›ืœ ืžื ื•ืข
13:23
and they could read it in their own mother tongue,
320
803776
2736
ื•ื™ื•ื›ืœ ืœืงืจื•ื ื‘ืฉืคืช ื”ืื ืฉืœื•,
13:26
in their native language.
321
806512
3939
ื‘ืฉืคืชื• ื”ืžื•ืœื“ืช.
13:30
I mean, this is an incredibly attractive idea,
322
810451
2722
ื–ื” ืจืขื™ื•ืŸ ืžื•ืฉืš ื‘ืฆื•ืจื” ื™ื•ืฆืืช ืžืŸ ื”ื›ืœืœ,
13:33
especially for India.
323
813173
1999
ื‘ืขื™ืงืจ ืขื‘ื•ืจ ื”ื•ื“ื•.
13:35
We have so many different languages.
324
815172
1690
ื™ืฉ ืœื ื• ื›ืœ ื›ืš ื”ืจื‘ื” ืฉืคื•ืช ืฉื•ื ื•ืช.
13:36
There's a song about India, and there's a description
325
816862
2142
ื™ืฉ ืฉื™ืจ ืขืœ ื”ื•ื“ื• ื•ื™ืฉ ืชื™ืื•ืจ
13:39
of the country as, it says,
326
819004
2344
ืฉืœ ื”ืžื“ื™ื ื” ื•ื”ื•ื:
13:41
(in Sanskrit).
327
821348
2360
(ื‘ืกื ืกืงืจื™ืช).
13:43
That means "ever-smiling speaker
328
823708
2773
ืžืฉืžืขื•ืชื• "ื“ื•ื‘ืจ ืฉืคื•ืช ื™ืคื•ืช
13:46
of beautiful languages."
329
826481
4519
ื”ืžื—ื•ื™ื™ืš ืชืžื™ื“"
13:51
Language is beautiful.
330
831000
1964
ืฉืคื” ื”ื™ื ื™ืคื”.
13:52
I think it's the most beautiful of human creations.
331
832964
2454
ืื ื™ ื—ื•ืฉื‘ ืฉื”ื™ื ื”ื™ืคื” ื‘ื™ื•ืชืจ ืžื™ืฆื™ืจื•ืช ื”ืื“ื.
13:55
I think it's the loveliest thing that our brains have invented.
332
835418
3978
ืื ื™ ื—ื•ืฉื‘ ืฉื”ื™ื ื”ื“ื‘ืจ ื”ืžื•ืคืœื ื‘ื™ื•ืชืจ ืฉืžื•ื—ื•ืชื™ื ื• ื”ืžืฆื™ืื•.
13:59
It entertains, it educates, it enlightens,
333
839396
3584
ื”ื™ื ืžื‘ื“ืจืช, ื”ื™ื ืžืœืžื“ืช, ื”ื™ื ืžื—ื ื›ืช,
14:02
but what I like the most about language
334
842980
2044
ืื‘ืœ ืžื” ืฉืื ื™ ื”ื›ื™ ืื•ื”ื‘ ื‘ืฉืคื”
14:05
is that it empowers.
335
845024
1500
ื”ื•ื ืฉื”ื™ื ืžืขืฆื™ืžื”.
14:06
I want to leave you with this.
336
846524
1838
ืื ื™ ืจื•ืฆื” ืœื”ืฉืื™ืจ ืืชื›ื ืขื ื–ื”.
14:08
This is a photograph of my collaborators,
337
848362
2385
ื–ื” ืชืฆืœื•ื ืฉืœ ืื—ืช ืžืฉื•ืชืคื•ืชื™ื™,
14:10
my earliest collaborators
338
850747
997
ืฉื•ืชืคื•ืชื™ื™ ื”ืจืืฉื•ื ื•ืช
14:11
when I started working on language
339
851744
1462
ื›ืฉื”ืชื—ืœืชื™ ืœืขื‘ื•ื“ ืขืœ ืฉืคื”
14:13
and autism and various other things.
340
853206
1502
ื•ืื•ื˜ื™ื–ื ื•ืขื•ื“ ื›ืœ ืžื™ื ื™ ื“ื‘ืจื™ื.
14:14
The girl's name is Pavna,
341
854708
1417
ืฉืžื” ืฉืœ ื”ื‘ืช ื”ื•ื ืคื•ื•ื ื”,
14:16
and that's her mother, Kalpana.
342
856125
1902
ื•ื–ื•ื”ื™ ืืžื”, ืงืœืคื ื”.
14:18
And Pavna's an entrepreneur,
343
858027
2138
ืคื•ื•ื ื” ื”ื™ื ื™ื–ืžืช,
14:20
but her story is much more remarkable than mine,
344
860165
2371
ืื‘ืœ ื”ืกื™ืคื•ืจ ืฉืœื” ื”ื•ื ื”ืจื‘ื” ื™ื•ืชืจ ืžื“ื”ื™ื ืžืฉืœ ืฉืœื™,
14:22
because Pavna is about 23.
345
862536
2400
ื‘ื’ืœืœ ืฉืคื•ื•ื ื” ื”ื™ื ื‘ืช ื›23.
14:24
She has quadriplegic cerebral palsy,
346
864936
2552
ื™ืฉ ืœื” ืฉื™ืชื•ืง ืžื•ื—ื™ืŸ,
14:27
so ever since she was born,
347
867488
1640
ืื– ืžืื– ืฉื”ื™ื ื ื•ืœื“ื”
14:29
she could neither move nor talk.
348
869128
3600
ื”ื™ื ืœื ื™ื›ืœื” ืœื ืœื–ื•ื– ื•ืœื ืœื“ื‘ืจ.
14:32
And everything that she's accomplished so far,
349
872728
2403
ื•ื›ืœ ืžื” ืฉื”ื™ื ื”ืฉื™ื’ื” ืขื“ ืขื›ืฉื™ื•,
14:35
finishing school, going to college,
350
875131
2227
ืกื™ื•ื ื‘ื™ืช ื”ืกืคืจ, ืœื™ืžื•ื“ ื‘ืงื•ืœื’',
14:37
starting a company,
351
877358
1416
ื™ื™ืกื•ื“ ื—ื‘ืจื”,
14:38
collaborating with me to develop Avaz,
352
878774
2140
ืฉื™ืชื•ืฃ ืคืขื•ืœื” ืื™ืชื™ ื›ื“ื™ ืœื™ืฆื•ืจ ืืช ืื•ื•ื–,
14:40
all of these things she's done
353
880914
1892
ืืช ื›ืœ ื”ื“ื‘ืจื™ื ื”ืœืœื• ื”ื™ื ืขืฉืชื”
14:42
with nothing more than moving her eyes.
354
882806
5523
ืขื ืœื ื™ื•ืชืจ ืžืชื–ื•ื–ื•ืช ืขื™ื ื™ื”.
14:48
Daniel Webster said this:
355
888329
2689
ื“ื ื™ืืœ ื•ื•ื‘ืกื˜ืจ ืืžืจ:
14:51
He said, "If all of my possessions were taken
356
891018
2940
"ืื ื›ืœ ืžื” ืฉืฉื™ื™ืš ืœื™ ื ืœืงื—
14:53
from me with one exception,
357
893958
2988
ืžืžื ื™ ืœืžืขื˜ ื“ื‘ืจ ืื—ื“,
14:56
I would choose to keep the power of communication,
358
896946
2981
ื”ื™ื™ืชื™ ื‘ื•ื—ืจ ืœืฉืžื•ืจ ืืช ื›ื— ื”ืชืงืฉื•ืจืช,
14:59
for with it, I would regain all the rest."
359
899927
3903
ื›ื™ ืื™ืชื•, ื”ื™ื™ืชื™ ืจื•ื›ืฉ ืืช ื›ืœ ื”ืฉืืจ ืžื—ื“ืฉ."
15:03
And that's why, of all of these incredible applications of FreeSpeech,
360
903830
5116
ื•ืœื›ืŸ, ืžืชื•ืš ื›ืœ ื”ื™ื™ืฉื•ืžื™ื ื”ืžื“ื”ื™ืžื™ื ื”ืœืœื• ืฉืœ "ืคืจื™ ืกืคื™ื˜ืฉ",
15:08
the one that's closest to my heart
361
908946
2080
ื”ืงืจื•ื‘ ื‘ื™ื•ืชืจ ืœืœื™ื‘ื™
15:11
still remains the ability for this
362
911026
2068
ืขื“ื™ื™ืŸ ื ืฉืืจ ื”ื™ื›ื•ืœืช
15:13
to empower children with disabilities
363
913094
2380
ืœื”ืขืฆื™ื ื™ืœื“ื™ื ืขื ืžื•ื’ื‘ืœื•ื™ื•ืช
15:15
to be able to communicate,
364
915474
1773
ืœืชืงืฉืจ,
15:17
the power of communication,
365
917247
1789
ื›ื— ื”ืชืงืฉื•ืจืช,
15:19
to get back all the rest.
366
919036
2240
ื›ื“ื™ ืœืจื›ื•ืฉ ืžื—ื“ืฉ ืืช ื›ืœ ื”ืฉืืจ.
15:21
Thank you.
367
921276
1397
ืชื•ื“ื”.
15:22
(Applause)
368
922673
1332
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
15:24
Thank you. (Applause)
369
924005
4199
ืชื•ื“ื”. (ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
15:28
Thank you. Thank you. Thank you. (Applause)
370
928204
5323
ืชื•ื“ื”. ืชื•ื“ื”. ืชื•ื“ื”. (ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
15:33
Thank you. Thank you. Thank you. (Applause)
371
933527
4000
ืชื•ื“ื”. ืชื•ื“ื”. ืชื•ื“ื”. (ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7